Sample records for taurus spitzer survey

  1. The Taurus Spitzer Legacy Project

    NASA Astrophysics Data System (ADS)

    McCabe, Caer-Eve; Padgett, D. L.; Rebull, L.; Noriega-Crespo, A.; Carey, S.; Brooke, T.; Stapelfeldt, K. R.; Fukagawa, M.; Hines, D.; Terebey, S.; Huard, T.; Hillenbrand, L.; Guedel, M.; Audard, M.; Monin, J.; Guieu, S.; Knapp, G.; Evans, N. J., III; Menard, F.; Harvey, P.; Allen, L.; Wolf, S.; Skinner, S.; Strom, S.; Glauser, A.; Saavedra, C.; Koerner, D.; Myers, P.; Shupe, D.; Latter, W.; Grosso, N.; Heyer, M.; Dougados, C.; Bouvier, J.

    2009-01-01

    Without massive stars and dense stellar clusters, Taurus plays host to a distributed mode of low-mass star formation particularly amenable to observational and theoretical study. In 2005-2007, our team mapped the central 43 square degrees of the main Taurus clouds at wavelengths from 3.6 - 160 microns with the IRAC and MIPS cameras on the Spitzer Space Telescope. Together, these images form the largest contiguous Spitzer map of a single star-forming region (and any region outside the galactic plane). Our Legacy team has generated re-reduced mosaic images and source catalogs, available to the community via the Spitzer Science Center website http://ssc.spitzer.caltech.edu/legacy/all.html . This Spitzer survey is a central and crucial part of a multiwavelength study of the Taurus cloud complex that we have performed using XMM, CFHT, and the SDSS. The seven photometry data points from Spitzer allow us to characterize the circumstellar environment of each object, and, in conjunction with optical and NIR photometry, construct a complete luminosity function for the cloud members that will place constraints on the initial mass function. We present results drawing upon our catalog of several hundred thousand IRAC and thousands of MIPS sources. Initial results from our study of the Taurus clouds include new disks around brown dwarfs, new low luminosity YSO candidates, and new Herbig-Haro objects.

  2. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  3. A CENSUS OF ROTATION AND VARIABILITY IN L1495: A UNIFORM ANALYSIS OF TRANS-ATLANTIC EXOPLANET SURVEY LIGHT CURVES FOR PRE-MAIN-SEQUENCE STARS IN TAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Hongyu; Covey, Kevin R.; Lloyd, James P.

    2012-09-15

    We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve ({sigma}{sub orig.}) to the standard deviation of a light curve that has been smoothed by 9 or 1001more » epochs ({sigma}{sub 9} and {sigma}{sub 1001}, respectively). Known Taurus members typically demonstrate ({sigma}{sub orig.}/{sigma}{sub 9}) < 2.0, and ({sigma}{sub orig.}/{sigma}{sub 1001}) < 5, while field stars reveal ({sigma}{sub orig.}/{sigma}{sub 9}) {approx} 3.0 and ({sigma}{sub orig.}/{sigma}{sub 1001}) {approx} 10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well ({delta}P < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide T Tauri stars. A

  4. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  5. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  6. SERVS: the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Afonso, Jose; Alexander, Dave; Best, Philip; Bonfield, David; Castro, Nieves; Cava, Antonio; Chapman, Scott; Dunlop, James; Dyke, Eleanor; Edge, Alastair; Farrah, Duncan; Ferguson, Harry; Foucaud, Sebastian; Franceschini, Alberto; Geach, Jim; Gonzales, Eduardo; Hatziminaoglou, Evanthia; Hickey, Samantha; Ivison, Rob; Jarvis, Matt; Le Fèvre, Olivier; Lonsdale, Carol; Maraston, Claudia; McLure, Ross; Mortier, Angela; Oliver, Seb; Ouchi, Masami; Parish, Glen; Perez-Fournon, Ismael; Petric, Andreea; Pierre, Mauguerite; Readhead, Tony; Ridgway, Susan; Romer, Katherine; Rottgering, Huub; Rowan-Robinson, Michael; Sajina, Anna; Seymour, Nick; Smail, Ian; Surace, Jason; Thomas, Peter; Trichas, Markos; Vaccari, Mattia; Verma, Aprajita; Xu, Kevin; van Kampen, Eelco

    2008-12-01

    We will use warm Spitzer to image 18deg^2 of sky to microJy depth. This is deep enough to undertake a complete census of massive galaxies from z~6 to ~1 in a volume ~0.8Gpc^3, large enough to overcome the effects of cosmic variance, which place severe limitations on the conclusions that can be drawn from smaller fields. We will greatly enhance the diagnostic power of the Spitzer data by performing most of this survey in the region covered by the near-IR VISTA-VIDEO survey, and in other areas covered by near-IR, Herschel and SCUBA2 surveys. We will build complete near-infrared spectral energy distributions using the superb datasets from VIDEO, in conjunction with our Spitzer data, to derive accurate photometric redshifts and the key properties of stellar mass and star formation rates for a large sample of high-z galaxies. Obscured star formation rates and dust-shrouded BH growth phases will be uncovered by combining the Spitzer data with the Herschel and SCUBA2 surveys. We will thus build a complete picture of the formation of massive galaxies from z~6, where only about 1% of the stars in massive galaxies have formed, to z~1 where ~50% of them haveE Our large volume will allow us to also find examples of rare objects such as high-z quasars (~10-100 at z>6.5), high-z galaxy clusters (~20 at z>1.5 with dark halo masses >10^14 solar masses), and evaluate how quasar activity and galaxy environment affect star formation. This survey makes nearly optimal use of warm Spitzer; (a) all of the complementary data is either taken or will be taken in the very near future, and will be immediately publicly accessible, (b) the slew overheads are relatively small, (c) the observations are deep enough to detect high redshift galaxies but not so deep that source confusion reduces the effective survey area.

  7. A SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION WITH THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.

    Previous studies have found that ∼1 deg{sup 2} fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (∼40 deg{sup 2}) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as wellmore » as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types.« less

  8. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.

    2011-07-10

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg{sup 2} formore » the EP-N and 1.28 deg{sup 2} for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 {mu}m, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of {approx}1.5 deg{sup 2} for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 {mu}m channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 {mu}m), W2 (4.6 {mu}m), W3 (12 {mu}m), and W4 (22 {mu}m), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and

  9. A warm Spitzer survey of the LSST/DES 'Deep drilling' fields

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Farrah, Duncan; Brandt, Niel; Sako, Masao; Richards, Gordon; Norris, Ray; Ridgway, Susan; Afonso, Jose; Brunner, Robert; Clements, Dave; Cooray, Asantha; Covone, Giovanni; D'Andrea, Chris; Dickinson, Mark; Ferguson, Harry; Frieman, Joshua; Gupta, Ravi; Hatziminaoglou, Evanthia; Jarvis, Matt; Kimball, Amy; Lubin, Lori; Mao, Minnie; Marchetti, Lucia; Mauduit, Jean-Christophe; Mei, Simona; Newman, Jeffrey; Nichol, Robert; Oliver, Seb; Perez-Fournon, Ismael; Pierre, Marguerite; Rottgering, Huub; Seymour, Nick; Smail, Ian; Surace, Jason; Thorman, Paul; Vaccari, Mattia; Verma, Aprajita; Wilson, Gillian; Wood-Vasey, Michael; Cane, Rachel; Wechsler, Risa; Martini, Paul; Evrard, August; McMahon, Richard; Borne, Kirk; Capozzi, Diego; Huang, Jiashang; Lagos, Claudia; Lidman, Chris; Maraston, Claudia; Pforr, Janine; Sajina, Anna; Somerville, Rachel; Strauss, Michael; Jones, Kristen; Barkhouse, Wayne; Cooper, Michael; Ballantyne, David; Jagannathan, Preshanth; Murphy, Eric; Pradoni, Isabella; Suntzeff, Nicholas; Covarrubias, Ricardo; Spitler, Lee

    2014-12-01

    We propose a warm Spitzer survey to microJy depth of the four predefined Deep Drilling Fields (DDFs) for the Large Synoptic Survey Telescope (LSST) (three of which are also deep drilling fields for the Dark Energy Survey (DES)). Imaging these fields with warm Spitzer is a key component of the overall success of these projects, that address the 'Physics of the Universe' theme of the Astro2010 decadal survey. With deep, accurate, near-infrared photometry from Spitzer in the DDFs, we will generate photometric redshift distributions to apply to the surveys as a whole. The DDFs are also the areas where the supernova searches of DES and LSST are concentrated, and deep Spitzer data is essential to obtain photometric redshifts, stellar masses and constraints on ages and metallicities for the >10000 supernova host galaxies these surveys will find. This 'DEEPDRILL' survey will also address the 'Cosmic Dawn' goal of Astro2010 through being deep enough to find all the >10^11 solar mass galaxies within the survey area out to z~6. DEEPDRILL will complete the final 24.4 square degrees of imaging in the DDFs, which, when added to the 14 square degrees already imaged to this depth, will map a volume of 1-Gpc^3 at z>2. It will find ~100 > 10^11 solar mass galaxies at z~5 and ~40 protoclusters at z>2, providing targets for JWST that can be found in no other way. The Spitzer data, in conjunction with the multiwavelength surveys in these fields, ranging from X-ray through far-infrared and cm-radio, will comprise a unique legacy dataset for studies of galaxy evolution.

  10. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  11. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  12. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O II] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  13. The Great Observatories Origins Deep Survey Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2005-12-01

    The Great Observatories Origins Deep Survey (GOODS) is a multiwavelength anthology of deep field programs using NASA's Great Observatories and the most powerful ground-based facilities to create a public data resource for studying the formation and evolution of galaxies and active galactic nuclei (AGN) throughout cosmic history. GOODS incorporates a Spitzer Legacy Program, which has obtained the deepest observations with that telescope at 3.6 to 24 microns. The Spitzer/IRAC data detect the rest-frame near-infrared light from galaxies out to z ˜ 6, providing valuable information on their stellar populations and masses. The MIPS 24μ m data are a sensitive probe of re-emitted energy from dust-obscured star formation and AGN out to z ˜ 3. I will very briefly introduce the survey and summarize science highlights from the Spitzer data.

  14. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Technical Reports Server (NTRS)

    Guedel, M.; Briggs, K. R.; Arzner, K.; Audard, M.; Bouvier, J.; Feigelson, E. D.; Franciosini, E.; Glauser, A.; Grosso, N.; Micela, G.; hide

    2007-01-01

    The Taurus Molecular Cloud (TMC) is the nearest large star-forming region, prototypical for the distributed mode of low-mass star formation. Pre-main sequence stars are luminous X-ray sources, probably mostly owing to magnetic energy release. Aims. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (EST) presented in this paper surveys the most populated =5 square degrees of the TMC, using the XMM-Newton X-ray observatory to study the thermal structure, variability, and long-term evolution of hot plasma, to investigate the magnetic dynamo, and to search for new potential members of the association. Many targets are also studied in the optical, and high-resolution X-ray grating spectroscopy has been obtained for selected bright sources. Methods. The X-ray spectra have been coherently analyzed with two different thermal models (2-component thermal model, and a continuous emission measure distribution model). We present overall correlations with fundamental stellar parameters that were derived from the previous literature. A few detections from Chandra observations have been added. Results. The present overview paper introduces the project and provides the basic results from the X-ray analysis of all sources detected in the XEST survey. Comprehensive tables summarize the stellar properties of all targets surveyed. The survey goes deeper than previous X-ray surveys of Taurus by about an order of magnitude and for the first time systematically accesses very faint and strongly absorbed TMC objects. We find a detection rate of 85% and 98% for classical and weak-line T Tau stars (CTTS resp. WTTS), and identify about half of the surveyed protostars and brown dwarfs. Overall, 136 out of 169 surveyed stellar systems are detected. We describe an X-ray luminosity vs. mass correlation, discuss the distribution of X-ray-to-bolometric luminosity ratios, and show evidence for lower X-ray luminosities in CTTS compared to WTTS. Detailed analysis (e.g., variability, rotation

  15. Spitzer Lensing Cluster Legacy Survey

    NASA Astrophysics Data System (ADS)

    Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin

    2015-11-01

    Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.

  16. Variability at the edge: highly accreting objects in Taurus

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Szabo, Robert

    2017-04-01

    In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.

  17. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Technical Reports Server (NTRS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon, T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz, E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; hide

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of approx.115 sq deg in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > or = 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > or = 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (approx.98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > or = 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 microns only detection catalog containing approx. 6.1 million sources, a 4.5 microns only detection catalog containing approx. 6.5 million sources, and a dual-band detection catalog containing approx. 5.4 million sources.

  18. The Spitzer/IRAC Star Formation Reference Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Ashby, Matthew L. N.; Barmby, Pauline; Chakrabarti, Sukanya; Gonzalez-Alfonso, Eduardo; Huang, Jia-Sheng; Madden, Suzanne; Noeske, Kai; Pahre, Michael; Papovich, Casey; Robitaille, Thomas; Smith, Howard; Sturm, Eckhard; Surace, Jason; Wang, Zhong; Whitney, Barbara; Willner, Steven; Wu, Hong; Zezas, Andreas

    2008-03-01

    We propose a statistically robust study of 380 nearby, bright star-forming galaxies of all types to better understand the nature of star formation. The goal of this IRAC reference survey will be to measure total star formation rates via 8.0 micron PAH emission, with an emphasis on quantitative comparisons of multiple global star formation indicators including ultraviolet emission, H-alpha, and radio continuum measurements. The sample is selected to be fully representative of the entire ranges of infrared luminosity, dust temperature, and stellar mass exhibited by star-forming galaxies in the local universe: the sample galaxies exhibit all existing combinations of these properties with the minimum overall number, selected in a manner that allows results to be applied to the entire local galaxy population. Here we propose four-band Spitzer/IRAC photometry for the 275 out of 380 objects which lack suitable observations in the Spitzer archive. All sample galaxies already have extensive complementary data available including global ugrizJHK photometry plus radio continuum intensities. Most also have GALEX imaging; in addition we have already begun a ground-based campaign to acquire global H-alpha imaging for the complete sample. We are submitting this IRAC proposal in the context of a larger campaign that includes a GTO proposal to complete the MIPS 24 micron imaging, and a GO proposal to acquire the IRS low-resolution spectroscopy. Although these companion proposals will significantly increase the scientific return of our survey program, the success of this proposal is not contingent in any way on any other Spitzer proposal. Our international team is dedicated, experienced, and has adequate manpower and institutional resources, with expertise in all the relevant disciplines to ensure the success of this undertaking. PI Fazio believes this proposal to be the most important element of his extragalactic GTO program, and requests that it be assigned first priority.

  19. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less

  20. VizieR Online Data Catalog: Infrared photometry of all known members in Taurus (Esplin+, 2014)

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.; Mamajek, E. E.

    2016-08-01

    To construct a census of the circumstellar disks in Taurus, we begin by compiling a list of all known members of the region. We adopt the 352 members from Luhman et al. 2010 (cat. J/ApJS/186/111), 4 additional stars that have good evidence of membership from previous studies (Section 5.4), 32 members found in a subsequent survey by K. Luhman (in preparation; 33 if GZ Tau A and B are counted separately), and 25 new members (26 if BS Tau A and B are counted separately) that we have confirmed with spectroscopy (Section 5.3). We also adopt as a member HD 285957, which has a proper motion consistent with that of the Taurus subgroup L1551 (Zacharias et al. 2013, cat. I/322; Luhman et al. 2009ApJ...703..399L) and exhibits evidence of youth in the form of Li absorption (Wichmann et al. 2000A&A...359..181W; Sestito et al. 2008, cat. J/A+A/488/943). We make use of mid-infrared photometry for members of Taurus measured with Spitzer's Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS). We consider the four bands of IRAC (3.6, 4.5, 5.8, and 8.0μm) and the 24μm band of MIPS, which are denoted as [3.6], [4.5], [5.8], [8.0], and [24], respectively. IRAC produced images with a field of view of 5.2'*5.2' and FWHM of 1.6''-1.9'' for [3.6] to [8.0]. MIPS had a field of view of 5.4'*5.4' and a FWHM of 5.9'' for [24]. Photometry from most Spitzer images for most members of Taurus has been measured by Luhman et al. 2010 (cat. J/ApJS/186/111) (see also Hartmann et al. 2005ApJ...629..881H; Luhman et al. 2006, cat. J/ApJ/647/1180; Guieu et al. 2007, cat. 2007A&A...465..855G; Rebull et al. 2010, cat. J/ApJS/186/259). We have measured photometry of the members that were not considered in Luhman et al. 2010 (cat. J/ApJS/186/111) and all known members appearing in Spitzer images that have become publicly available since that study (Astronomical Observation Requests 26470912, 26471168 26477056, 26475264, 26472704, 26473216, and 23272448). These data were

  1. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our

  2. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  3. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  4. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low Type IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. vVhile previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from ten targets (approx. 15 %) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests these SNe "turn off" at " approx. 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors having similar mass-loss histories.

  5. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  6. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  7. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric; Guedel, M.

    2007-12-01

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud is an exceptionally large and growing X-ray survey of the Taurus Molecular Cloud (TMC). Now comprising 31 1/2-degree diameter fields, observed with the three XMM-Newton EPIC cameras. High-resolution spectroscopy has been obtained for about ten T Tauri stars (TTS) with the RGS instruments, and the Optical Monitor secured an optical/UV survey. XEST detects essentially the entire surveyed TTS population of the TMC in X-rays including about half of the observed (8/16) brown dwarfs and Class I protostars (8/20). Several new candidate members are identified. The X-ray luminosity (LX) of TTS shows related correlations with both stellar bolometric luminosity and mass. Classical TTS show suppressed X-ray output in the CCD band by a factor of about 2. These statistical results confirm results from other star formation regions. Different from previous reports on TMC, XEST identifies no activity-rotation relation. Brown dwarfs are found to follow trends set by TTS, both for accreting and non-accreting objects. But a decrease of the fractional luminosity, LX/Lbol, is seen with decreasing mass indicating weakened heating efficiency in the substellar domain. XEST reports five members of the class of "Two-Absorber X-Ray" (TAX) sources which reveal a double-peaked spectrum originating from two unrelated sources with different absorption column densities. The softer emission is thought to be related to jets, as explicitly seen in DG Tau. RGS spectroscopy shows a systematic "X-ray soft excess" in classical TTS, suggesting excessive cool (1-2 MK) plasma due to accretion, although the excess seems to correlate with magnetic activity as well. XEST has been supported by the Space Science Institute (Bern/Switz.).

  8. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.

    2010-12-01

    We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observationsmore » represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 {mu}m photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L{sub disk}/L{sub *} = 2 x 10{sup -3} in 2 Myr and more tenuous than L{sub disk}/L{sub *} = 5 x 10{sup -4} in 4 Myr.« less

  9. The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations

    NASA Astrophysics Data System (ADS)

    Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.

    2018-02-01

    We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.

  10. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.

    2016-03-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.

  11. X-rays from young stars: A summary of highlights from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Astrophysics Data System (ADS)

    Güdel, M.

    2008-02-01

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star-forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM-Newton X-ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high-resolution spectra of T Tauri stars, and is accompanied by an U-band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X-ray features not possible before with smaller samples, in particular the X-ray soft excess in classical T Tauri stars and the Two-Absorber X-ray (TAX) spectra of jet-driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project.

  12. A Survey For Planetary-mass Brown Dwarfs in the Taurus and Perseus Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu

    We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid-M to early-L, and they include the four faintest known members in extinction-corrected K{sub s}, which should have masses as low as ∼4–5 M {sub Jup} according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excessesmore » that indicate the presence of disks. Two fainter objects with types of M9–L2 and M9–L3 also have red mid-IR colors relative to photospheres at ≤L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (∼5 M{sub Jup}).« less

  13. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.

    2009-06-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have

  14. The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2018-05-01

    We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3π Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370 deg2) and deeper (down to ≈3 M Jup) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution (R ≈ 100) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≲100–3 M Jup in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6–L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58 kau) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by ≈40% and added three more L-type members (≲5–10 M Jup). Most notably, our discoveries reveal an older (>10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.

  15. Spitzer c2d Legacy, Circumstellar Disks around wTT Stars

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; c2d Legacy Team

    2007-05-01

    The Spitzer Legacy Project From "Molecular Cores to Planet-forming Disks" conducted a 3.6 to 70um photometric survey of roughly 160 weak- line TTauri Stars (wTTs) and 20 classical TTauri stars (cTTs) in the nearby star-forming regions Chamaeleon, Lupus, Ophiuchus and Taurus. WTTs are so named because they possess weaker H-alpha emission lines signifying weaker disk accretion on to the star than cTTs. The evolution of dust disks around these young stars (Age 10 Myrs) is key to understanding planet formation. From the observed infrared excesses, we infer the presence of circumstellar disks around 12% of wTTs and 75% of cTTs. However, when considering on-cloud sources only, the wTTs disk fraction is 22%, while it is only 6% for off- cloud sources, suggesting an older age for the latter. WTTs, while not discernibly younger than cTTs in age diagnostics, in general have disks which exhibit lower fractional luminosities and larger inner clearings. However, quite a few wTTs systems have fractional disk luminosities as high as cTTs systems. In light of these findings, wTTs seem to be transitional objects between cTTs and debris disks.

  16. Effect of monensin withdrawal on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay

    USDA-ARS?s Scientific Manuscript database

    Effects of monensin withdrawal and cattle subspecies on the utilization of bermudagrass hay (14.3% CP, 72.3% NDF, and 36.9% ADF) were evaluated using ruminally cannulated steers (5 Bos Taurus indicus [BI] and 5 Bos taurus taurus [BT]). Subspecies were concurrently subjected to a 2-period, 2-treatme...

  17. Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay

    USDA-ARS?s Scientific Manuscript database

    Effects of monensin inclusion and cattle subspecies on utilization of bermudagrass hay (13.7% CP, 77.3% NDF, and 38.8% ADF) were evaluated using ruminally cannulated steers (5 Bos taurus indicus [BI] and 5 Bos taurus taurus [BT]; 398 kg BW). Subspecies were concurrently subjected to a 2-period, 2-t...

  18. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  19. The Ultimate Spitzer Phase Curve Survey: Cross-Planetary Comparison of Heat-Redistribution Efficiencies

    NASA Astrophysics Data System (ADS)

    Fraine, Jonathan D.; Stevenson, Kevin; Bean, Jacob; Deming, Drake; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole K.; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam; Feng, Katherina

    2018-01-01

    Exoplanet phase curves provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that continue to open new doors of scientific inquiry and propel future investigations. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions from 3D atmospheric simulations. We will present preliminary results from a 660-hour Spitzer phase curve survey program that targeted six short-period extrasolar planets. By comparing short periods exoplanets over a range of equilibrium temperatures, we can begin to disentangle the effects of planetary rotation and energy budget on a planet's thermal properties. We will discuss how the measured planet temperature and rotation rate affect the heat redistribution efficiencies, examine trends in the phase curve peak offset, and discuss cloud coverage constraints. Our Spitzer observations will provide valuable information for predicting and interpreting future, JWST-era observations.

  20. Physical characterization of Near Earth Objects with Spitzer

    NASA Astrophysics Data System (ADS)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  1. The Gould's Belt Very Large Array Survey. IV. The Taurus-Auriga Complex

    NASA Astrophysics Data System (ADS)

    Dzib, Sergio A.; Loinard, Laurent; Rodríguez, Luis F.; Mioduszewski, Amy J.; Ortiz-León, Gisela N.; Kounkel, Marina A.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Hartmann, Lee; Evans, Neal J., II; Briceño, Cesar; Tobin, John

    2015-03-01

    We present a multi-epoch radio study of the Taurus-Auriga star-forming complex made with the Karl G. Jansky Very Large Array at frequencies of 4.5 GHz and 7.5 GHz. We detect a total of 610 sources, 59 of which are related to young stellar objects (YSOs) and 18 to field stars. The properties of 56% of the young stars are compatible with non-thermal radio emission. We also show that the radio emission of more evolved YSOs tends to be more non-thermal in origin and, in general, that their radio properties are compatible with those found in other star-forming regions. By comparing our results with previously reported X-ray observations, we notice that YSOs in Taurus-Auriga follow a Güdel-Benz relation with κ = 0.03, as we previously suggested for other regions of star formation. In general, YSOs in Taurus-Auriga and in all the previous studied regions seem to follow this relation with a dispersion of ~1 dex. Finally, we propose that most of the remaining sources are related with extragalactic objects but provide a list of 46 unidentified radio sources whose radio properties are compatible with a YSO nature.

  2. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  3. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna

    2014-12-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.

  4. VizieR Online Data Catalog: Taurus ultra-wide pairs (Joncour+, 2017)

    NASA Astrophysics Data System (ADS)

    Joncour, I.; Duchene, G.; Moraux, E.

    2017-05-01

    Although a recent catalog of Taurus members has been released including newly detected mid-infrared Wide-field Infrared Survey Explorer (WISE) sources (Esplin et al., 2014, Cat. J/ApJ/784/126), we adopted the catalog containing 352 Taurus members that offers a full census of members down to 0.02 Mȯ(Luhman et al., 2010, Cat. J/ApJS/186/111; Rebull et al., 2010, Cat. J/ApJS/186/259), which we supplemented with stellar multiplicity data. (3 data files).

  5. First Results From The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin B.; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael R.; Morley, Caroline; Rauscher, Emily; Showman, Adam P.

    2017-10-01

    Exoplanet phase curves provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that continue to open new doors of scientific inquiry and propel future investigations. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. We will present first results from a 660-hour Spitzer phase curve survey program that is targeting six short-period extrasolar planets. We will compare the measured heat redistribution efficiencies with planet temperature and rotation rate, examine trends in the phase curve peak offset, and discuss cloud coverage constraints. We will conclude with how to move forward with phase curve observations in the era of JWST.

  6. Spitzer Operations: Scheduling the Out Years

    NASA Technical Reports Server (NTRS)

    Mahoney, William A.; Effertz, Mark J.; Fisher, Mark E.; Garcia, Lisa J.; Hunt, Joseph C. Jr.; Mannings, Vincent; McElroy, Douglas B.; Scire, Elena

    2012-01-01

    Spitzer Warm Mission operations have remained robust and exceptionally efficient since the cryogenic mission ended in mid-2009. The distance to the now exceeds 1 AU, making telecommunications increasingly difficult; however, analysis has shown that two-way communication could be maintained through at least 2017 with minimal loss in observing efficiency. The science program continues to emphasize the characterization of exoplanets, time domain studies, and deep surveys, all of which can impose interesting scheduling constraints. Recent changes have significantly improved on-board data compression, which both enables certain high volume observations and reduces Spitzer's demand for competitive Deep Space Network resources.

  7. An Enhanced Multiwavelength Photometric Catalog for the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina

    2017-01-01

    Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.

  8. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  9. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  11. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    visible-light image (left) shows a dark sky speckled with stars, infrared images (middle and right), reveal a never-before-seen bundle of stars, called a globular cluster. The left panel is from the California Institute of Technology's Digitized Sky Survey; the middle panel includes images from the NASA-funded Two Micron All-Sky Survey and the University of Wyoming Infrared Observatory (circle inset); and the right panel is from NASA's Spitzer Space Telescope.

    The Two Micron All-Sky Survey false-color image was obtained using near-infrared wavelengths ranging from 1.3 to 2.2 microns. The University of Wyoming Observatory false-color image was captured on July 31, 2004, at wavelengths ranging from 1.2 to 2.2 microns. The Spitzer false-color image composite was taken on April 21, 2004, by its infrared array camera. It is composed of images obtained at four mid-infrared wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  12. Four Brown Dwarfs in the Taurus Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Martín, E. L.; Dougados, C.; Magnier, E.; Ménard, F.; Magazzù, A.; Cuillandre, J.-C.; Delfosse, X.

    2001-11-01

    We have identified four brown dwarfs in the Taurus star-forming region. They were first selected from R and I CCD photometry of 2.29 deg2 obtained at the Canada-France-Hawaii Telescope. Subsequently, they were recovered in the Two Micron All Sky Survey second incremental data release point source catalog. Low-resolution optical spectra obtained at the William Herschel Telescope allow us to derive spectral types in the range M7-M9. One of the brown dwarfs has very strong Hα emission (EW=-340 Å). It also displays Brγ emission in an infrared spectrum obtained with the Infrared Camera and Spectrograph on the Subaru telescope, suggesting that it is accreting matter from a disk. The K I resonance doublet and the Na I subordinate doublet at 818.3 and 819.5 nm in these Taurus objects are weaker than in field dwarfs of similar spectral type, consistent with low surface gravities as expected for young brown dwarfs. Two of the objects are cooler and fainter than GG Tau Bb, the lowest mass known member of the Taurus association. We estimate masses of only 0.03 Msolar for them. The spatial distribution of brown dwarfs in Taurus hints at a possible anticorrelation between the density of stars and the density of brown dwarfs. Based on data collected at the Canada-France-Hawaii Telescope and the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    NASA Astrophysics Data System (ADS)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  14. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  15. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  16. Galactic Distribution of Planets from Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2014-12-01

    We will measure the 'microlens parallaxes' of about 120 microlensing events that peak during Spitzer's 'bulge window' (2015 Jun 09 - Jul 19), by comparing simultaneous Spitzer and ground-based microlensing lightcurves, making use of Spitzer's location about 1 AU from Earth. These measurements will enable mass and distance measurements of about 4 microlensing planets. The ensemble of planet and non-planet distance measurements will yield the first probe of the Galactic distribution of planets Microlens planet mass measurements are very rare and have proved extremely interesting in every case. Microlensing identifies planets at and beyond the snowline, probing unique parameter space and providing vital information to constrain planet formation and migration theories. But the sample of ground-based microlens-parallax measurements is highly biased toward special systems. Spitzer would provide the first unbiased study. The same survey would provide a unique probe of brown dwarf binaries, and yield the first mass-based (not light-based) measurement of the stellar mass function (i.e., including dark objects such as black holes). A very successful 2014 'Pilot Program' demonstrates that this project is technically and scientifically viable. (As in the previous 'Pilot Program', we request zero day proprietary period.)

  17. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  18. GREATS: GOODS Re-ionization Era wide-Area Treasury from Spitzer

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Oesch, Pascal; Illingworth, Garth; van Dokkum, Pieter; Franx, Marijn; Gonzalez, Valentino; Bouwens, Rychard; Magee, Dan; Smit, Renske; Holden, Brad; Stefanon, Mauro; Stiavelli, Massimo

    2014-12-01

    Joint HST/WFC3 and Spitzer/IRAC observations are a powerful tool to probe the buildup of early galaxies, as demonstrated by the recent IRAC detections and stellar mass estimates of several bright z~9-10 galaxies (only 500 Myr after the Big Bang). However, the vast majority of galaxies in the reionization epoch have not been individually detected with IRAC, as extragalactic surveys have mostly focused on medium-deep and wide surveys. IRAC detections are crucial for understanding the evolution of the first galaxies, providing constraints on stellar masses, star formation histories, emission line strengths, and ages. We therefore propose to complete Spitzer's legacy with an ultradeep survey in the CANDELS/GOODS South and North fields at 3.6 and 4.5 micron to 27.1, 26.7 mag (AB,5sigma). Ultradeep data over substantial areas are needed to detect normal galaxies at z>7, provide good statistics, and mitigate field-to-field variance. We demonstrate using pilot ultradeep data from cycle 10 on a small area in GOODS-S, that we can successfully recover IRAC photometry to these limits. GREATS will result in the IRAC detection of 200 galaxies at 750% of the total stellar mass density to z~8. The full UV-IR spectral energy distributions would for the first time enable detailed studies of trends and scatter with luminosity, redshift, color, and size. GREATS will also detect quiescent galaxies at 3Spitzer. The combined HST+Spitzer ultradeep imaging will be a vital benchmark for planning efficient JWST follow-up surveys 4+ years from now, and will provide targets for the first cycles of JWST NIRSPEC observations. With such remarkable datasets, Spitzer's heritage

  19. Spitzer Parallax Observations of Long Duration Gaia Microlensing Events

    NASA Astrophysics Data System (ADS)

    Carey, Sean; Calchi-Novati, Sebastiano; Wyrzykowski, Lukasz; Kruszynska, Katarzyna; Gromadzki, Mariusz; Rybicki, Krzysztof

    2018-05-01

    We proposed to observe of order ten long duration (>100 day) microlensing events identified in Gaia survey data with the Spitzer Space Telescope. The long duration events are likely due to massive lenses, hence they could be isolated black holes. These observations could make defintive mass measurements for the first time of isolated stellar remanant black holes in our Galaxy. The Spitzer data provide a key component to making an umabiguous mass measurement by providing the microlensing parallax (as has been done for >500 event by Spitzer so far). The Gaia data is used for the detection of the events and measurement of the astrometric motion caused by the microlensing event. From the astrometric microlensing signature, the Einstein radius of the lens can be measured and combined with the microlensing parallax yields the lens mass and distance.

  20. Isolated and companion young brown dwarfs in the taurus and chamaeleon molecular clouds

    PubMed

    Tamura; Itoh; Oasa; Nakajima

    1998-11-06

    Infrared imaging observations have detected a dozen faint young stellar objects (YSOs) in the Taurus and Chamaeleon molecular clouds whose near-infrared colors are similar to those of classical T Tauri stars (TTS). They are around four magnitudes fainter than low-luminosity YSOs in Taurus detected in earlier surveys and as much as eight magnitudes fainter than typical TTS. The extreme faintness of the objects and their lower luminosity relative to previously identified brown dwarfs in the Pleiades indicate that these faint YSOs are very young brown dwarfs on the order of 1 million years old.

  1. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  2. Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Sicilia-Aguilar Aurora; Hartmann, Lee W.; Calvet Nuria; Megeath, S. T.; Muzerolle, James; Allen, Lori; D'Alessio, Paola; Merin, Bruno; Stauffer, John; Lada, Charles; hide

    2006-01-01

    We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.

  3. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  4. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  5. Spitzer Observations of GRB Hosts: A Legacy Approach

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  6. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  7. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  8. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  9. Hunting Elusive SPRITEs with Spitzer

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events

  10. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Bally, John; Masci, Frank; Cody, Ann Marie; Bond, Howard E.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Armus, Lee; Boyer, Martha; Cantiello, Matteo; Carlon, Robert L.; Cass, Alexander C.; Cook, David; Corgan, David T.; Faella, Joseph; Fox, Ori D.; Green, Wayne; Gehrz, R. D.; Helou, George; Hsiao, Eric; Johansson, Joel; Khan, Rubab M.; Lau, Ryan M.; Langer, Norbert; Levesque, Emily; Milne, Peter; Mohamed, Shazrene; Morrell, Nidia; Monson, Andy; Moore, Anna; Ofek, Eran O.; O' Sullivan, Donal; Parthasarathy, Mudumba; Perez, Andres; Perley, Daniel A.; Phillips, Mark; Prince, Thomas A.; Shenoy, Dinesh; Smith, Nathan; Surace, Jason; Van Dyk, Schuyler D.; Whitelock, Patricia A.; Williams, Robert

    2017-04-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer/IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between -11 and -14 (Vega-mag) and [3.6]-[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr-1 to >7 mag yr-1. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  11. The GBT 3mm Survey of Infall and Fragmentation of Dense Cores in Taurus

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Goldsmith, Paul; Shirley, Yancy L.; Church, Sara; Frayer, David

    2018-01-01

    We present preliminary results of the infall and fragmentation survey toward a complete population of prestellar cores in Taurus that was carried out with the 16-element W-band focal plane array receiver (Argus) on the 100m Green Bank Telescope. The survey is designed take advantage of the 8.5” angular resolution and high sensitivity of Argus on the GBT to trace infall motions in HCN 1-0 & HCO+ 1-0 and find any evidence of fragmentation in N2H+ & NH2D within prestellar cores ranging in size from 0.05 pc to 0.0075 pc (1500 AU), which is a typical size scale of individual planetary systems. The scientific goal is to estimate the fraction of infall candidates from a complete population of prestellar cores and to understand internal velocity structure during the final gravitational collapse before forming stars. The survey started in the winter of 2016 and is to continue to the end of January 2018. So far, we observed 23 prestellar cores out of 65 targets in HCN 1-0 and HCO+ 1-0. We have so far found only two prestellar cores (L1495A-N, L1521D) out of 23 observed that show infall signatures, which is a fraction of infalling cores less than half of that reported by the previous surveys toward the bright, dense cores in various molecular clouds (Lee et al. 2004; Sohn et al. 2007). We also found that L1495A-N has a highly asymmetric infall motion which does not fit to a conventional model of dense core collapse, while L1521D has a slow infall motion similar to L1544.

  12. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Dusty Disks, Diffuse Clouds, and Dim Suns: Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.

    2004-01-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  14. Dusty Disks, Diffuse Clouds, and Dim Suns - Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.

    2004-05-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  15. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  16. SPITZER 70 AND 160 {mu}m OBSERVATIONS OF THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayer, D. T.; Huynh, M. T.; Bhattacharya, B.

    2009-11-15

    We present Spitzer 70 and 160 {mu}m observations of the COSMOS Spitzer survey (S-COSMOS). The data processing techniques are discussed for the publicly released products consisting of images and source catalogs. We present accurate 70 and 160 {mu}m source counts of the COSMOS field and find reasonable agreement with measurements in other fields and with model predictions. The previously reported counts for GOODS-North and the extragalactic First Look Survey are updated with the latest calibration, and counts are measured based on the large area SWIRE survey to constrain the bright source counts. We measure an extragalactic confusion noise level ofmore » {sigma} {sub c} = 9.4 {+-} 3.3 mJy (q = 5) for the MIPS 160 {mu}m band based on the deep S-COSMOS data and report an updated confusion noise level of {sigma} {sub c} = 0.35 {+-} 0.15 mJy (q = 5) for the MIPS 70 {mu}m band.« less

  17. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  18. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution in the Coronet Cluster, Taurus, and Other 1--8 Myr-old Regions

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Sicilia-Aguilar, Auora

    2011-01-01

    We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  19. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  20. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors betweenmore » 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.« less

  1. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; hide

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  2. NASA Spitzer 12th Anniversary Space Calendar

    NASA Image and Video Library

    2015-08-20

    NASA Spitzer Space Telescope celebrated its 12th anniversary with a new digital calendar showcasing some of the mission most notable discoveries and popular cosmic eye candy. The digital calendar is online at http://www.jpl.nasa.gov/images/spitzer/20150820/Spitzer12thAnniversaryCalendar.pdf The calendar follows the life of the mission, with each month highlighting top infrared images and discoveries from successive years -- everything from a dying star resembling the eye of a monster to a star-studded, swirling galaxy. The final month includes a brand new image of the glittery star-making factory known as the Monkey Head nebula. Spitzer, which launched into space on August 25, 2003, from Cape Canaveral, Florida, is still going strong. It continues to use its ultra-sensitive infrared vision to probe asteroids, comets, exoplanets (planets outside our solar system) and some of the farthest known galaxies. Recently, Spitzer helped discover the closest known rocky exoplanet to us, named HD219134b, at 21 light-years away. In fact, Spitzer's exoplanet studies continue to surprise the astronomy community. The telescope wasn't originally designed to study exoplanets, but as luck -- and some creative engineering -- would have it, Spitzer has turned out to be a critical tool in the field, probing the climates and compositions of these exotic worlds. This pioneering work began in 2005, when Spitzer became the first telescope to detect light from an exoplanet. http://photojournal.jpl.nasa.gov/catalog/PIA19872

  3. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  4. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISEmore » archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.« less

  5. SPRITE: the Spitzer proposal review website

    NASA Astrophysics Data System (ADS)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  6. Star Formation: Answering Fundamental Questions During the Spitzer Warm Mission Phase

    NASA Astrophysics Data System (ADS)

    Strom, Steve; Allen, Lori; Carpenter, John; Hartmann, Lee; Megeath, S. Thomas; Rebull, Luisa; Stauffer, John R.; Liu, Michael

    2007-10-01

    Through existing studies of star-forming regions, Spitzer has created rich databases which have already profoundly influenced our ability to understand the star and planet formation process on micro and macro scales. However, it is essential to note that Spitzer observations to date have focused largely on deep observations of regions of recent star formation associated directly with well-known molecular clouds located within 500 pc. What has not been done is to explore to sufficient depth or breadth a representative sample of the much larger regions surrounding the more massive of these molecular clouds. Also, while there have been targeted studies of specific distant star forming regions, in general, there has been little attention devoted to mapping and characterizing the stellar populations and star-forming histories of the surrounding giant molecular clouds (GMCs). As a result, we have yet to develop an understanding of the major physical processes that control star formation on the scale or spiral arms. Doing so will allow much better comparison of star-formation in our galaxy to the star-forming complexes that dominate the spiral arms of external galaxies. The power of Spitzer in the Warm Mission for studies of star formation is its ability to carry out large-scale surveys unbiased by prior knowledge of ongoing star formation or the presence of molecular clouds. The Spitzer Warm Mission will provide two uniquely powerful capabilities that promise equally profound advances : high sensitivity and efficient coverage of many hundreds of square degrees, and angular resolution sufficient to resolve dense groups and clusters of YSOs and to identify contaminating background galaxies whose colors mimic those of young stars. In this contribution, we describe two major programs: a survey of the outer regions of selected nearby OB associations, and a study of distant GMCs and star formation on the scale of a spiral arm.

  7. It Twins! Spitzer Finds Hidden Jet

    NASA Image and Video Library

    2011-04-04

    NASA Spitzer Space Telescope took this image of a baby star sprouting two identical jets green lines emanating from fuzzy star. The left jet was hidden behind a dark cloud, which Spitzer can see through.

  8. Education with Infrared Astronomy and Spitzer

    NASA Astrophysics Data System (ADS)

    Hemphill, Rosa; Blackwell, J. A.; Herrold, A.; Petroff, E.

    2007-12-01

    We present education and outreach results using our experiences involving the Spitzer Space Telescope project, Star Formation in High Redshift Clusters with Spitzer. The project is a collaboration between the Spitzer Science Center and the National Optical Astronomy Observatory. Using the Spitzer Space Telescope, we measured star formation rates in three galaxy clusters at intermediate redshifts. Six teachers were chosen for the program, each with an interest and involvement in astronomy education. From this project, lesson plans, public outreach, lectures and demonstrations were generated which better the understanding of infrared astronomy, multiwavelength astronomy, galaxy and star formation, and cosmology. The teacher mentors are Dr. Gregory Rudnick (NOAO), Dr. Rose Finn (Siena College), and Dr. Vandana Desai (Caltech). Please see the companion posters by Emily Petroff, Zak Schroeder, and Thomas Loughran, et al, for information concerning the science results.

  9. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less

  10. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. IV. LUPUS V AND VI OBSERVED WITH IRAC AND MIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spezzi, Loredana; Vernazza, Pierre; Merin, Bruno

    2011-04-01

    We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer 'Core to Disk' (c2d) Legacy Survey. We found 43 young stellar object (YSO) candidates in Lupus V and 45 in Lupus VI, including two transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main-sequence star from previous optical, near-IR, and X-ray surveys. A large majority of these YSO candidates appear to bemore » surrounded by thin disks (Class III; {approx}79% in Lupus V and {approx}87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photoevaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lie below the star formation threshold (A{sub V} {approx} 8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myr older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of the Lupus clouds might solve the puzzle but require further observations.« less

  11. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongxiang; Kaplan, David L.; Slane, Patrick

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shockmore » shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.« less

  12. Resource availability at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, R. O.

    1992-01-01

    Early lunar technologies will probably use a common lunar material as ore. They will be robust to minor fluctuations in feedstock composition and will not require appreciable feedstock beneficiation such as rock grinding or mineral concentration. Technologies using unprocessed soil and indifferent to its composition will have the advantage. Nevertheless, the size and grade of the ore body must be confirmed for even the most indiscriminate process. Simple uses such as heaping unprocessed lunar soil for thermal insulation or radiation shielding onto a habitat require that we know the depth of the regolith, the size distributions of its soils, the locations of large boulders, and the ease of excavation. Costs of detailed site surveys trade against restrictions on site selection and conservative engineering design to accommodate unknown conditions of a poorly explored site. Given the above considerations, we consider briefly some abundant lunar materials, their proposed uses, and technologies for their preparation, with particular attention to the Taurus-Littrow site.

  13. VizieR Online Data Catalog: Very Low-Luminosity Objects (VeLLOs) from 1.25-850um (Kim+, 2016)

    NASA Astrophysics Data System (ADS)

    Kim, M.-R.; Lee, C. W.; Dunham, M. M.; Evans, N. J., II; Kim, G.; Allen, L. E.

    2016-10-01

    The Spitzer Gould Belt Survey (GBS) is a project to survey about 21 square degrees of 11 nearby molecular clouds at 3.6-160um to provide a census of star formation in nearby large clouds (P.I. L. Allen). Spitzer has mapped a total of 11 molecular clouds, CMC, Chamaeleon I, Chamaeleon III, Musca, Lupus V, Lupus VI, Ophiuchus North, Aquila, CrA, Cepheus, and IC 5146 with the IRAC and MIPS between 2004 March and 2008 October. We utilized the data provided by the c2d/GBS projects (Evans et al. 2009, J/ApJS/181/321; Dunham et al. 2015, J/ApJS/220/11). There are two cloud complexes which were not listed in the c2d/GBS projects, but observed by other projects, the Taurus molecular clouds and the Orion molecular clouds. The Taurus molecular clouds have been observed over an area of ~44 square degrees by one of the GTO programs (P.I. D. Padgett) with the IRAC and the MIPS instruments. The Orion molecular clouds have been surveyed in ~9°2 area by Spitzer (P.I. T. Megeath). See section 2.1 for further details. Complementary archive infrared data were retrieved from 2MASS and Herschel PACS and SPIRE and JCMT SCUBA-2; see section 2.2. We observed our sources with the N2H+(1-0) line with the Korean Very Long Baseline Interferometry Network (KVN) 21m radio telescopes from 2011 October to 2016 May for the northern hemisphere sources, and the Mopra 22m telescope in 2012 April for the southern hemisphere sources. See section 2.3 for further explanations. (8 data files).

  14. Ices in the Taurus dark cloud environment

    NASA Technical Reports Server (NTRS)

    Chiar, J. E.; Whittet, D. C. B.; Adamson, A. J.; Kerr, T. H.

    1995-01-01

    Field stars provide an important means for probing undisturbed regions of molecular clouds where icy mantles are most likely to form. Combining observation of field stars with those of protostars provides a comparison of the extent of grain processing in photostellar environments. The Taurus dark cloud provides an ideal environment for the formation of icy mantles as it is free from shocks and bright internal sources of ultraviolet (UV) radiation. Earlier low-resolution observations of the Taurus cloud done by Whittet et al. (1989) showed that about 30 percent of the available CO is depleted on to the grains.

  15. Pandora Cluster Seen by Spitzer

    NASA Image and Video Library

    2016-09-28

    This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920

  16. Genetic variation in bison (bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    USDA-ARS?s Scientific Manuscript database

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B.b. athabascae), fourteen breeds of taurine cattle (Bos Taurus Taurus), and two breeds of indicine cattle (Bos Taurus indicus). Genetic distances,...

  17. The Demographics and Properties of Wide-Orbit, Planetary-Mass Companions from PSF Fitting of Spitzer/IRAC Images

    NASA Astrophysics Data System (ADS)

    Martinez, Raquel; Kraus, Adam L.

    2017-06-01

    Over the past decade, a growing population of planetary-mass companions (< 20 MJup PMCs) orbiting young stars have been discovered. These objects are at wide separations (> 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces the observed characteristics of the PMCs will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are developing an automated pipeline to search for wide-orbit PMCs to young stars in Spitzer/IRAC images. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts χ2-minimizing instrumental PSFs, simultaneously measuring astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). In this work, we present the results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). We characterize the systems found to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be discussed. Once this computational foundation is optimized, the stage is set to quickly scour the nearby star-forming regions already imaged by Spitzer, identify potential candidates for further characterization with ground- or space-based telescopes, and increase the number of widely-separated PMCs known.

  18. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  19. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  20. A Spitzer/glimpse Search For Galaxies: What Zone Of Avoidance?

    NASA Astrophysics Data System (ADS)

    Parsons, Lamarr; Benjamin, R. A.; GLIMPSE Team

    2007-12-01

    We report the results of a visual search for galaxy candidates in an area of twelve square degrees covered by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire-3D (GLIMPSE-3D) Spitzer Legacy programs. The areas searched consisted of three 2x2 degree blocks, with galactic coordinates centered at (330, -02), (330, +02) and (331, -02). All three regions were imaged for 2.4 seconds in the 3.6, 4.5, 5.8 and 8.0 µm bands using IRAC on the Spitzer Space Telescope. We report a total of 114 galaxy candidates, yielding an average of 9.5 candidates per square degree. We also show that the galaxy detection rate is dependent on galactic latitude, probably due to the lower diffuse 8 micron background at high latitudes. We have found that the detection rate increases from 4 per square degree (at b=1º) to 12 per square degree (at b=3º). We present the physical parameters of these galaxies, discuss their clustering, and note which have been previously detected in other wavebands/surveys. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  1. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    NASA Astrophysics Data System (ADS)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    -dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  2. Science Highlights from the Spitzer Survey of Stellar Structure in Galaxies (S4G) & Public Release of S4G Data

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2013-01-01

    The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest and the most homogenous survey of the distribution of mass and stellar structure in over 2,300 nearby galaxies. With an integration time of four minutes per pixel at 3.6 and 4.5 microns, the S4G maps are extremely deep, tracing the stellar surface densities of < 1 solar mass per square parsec! S4G is the ultimate survey of the endoskeleton of nearby galaxies from dwarfs to ellipticals and affords an incredible treasury of data which we can address a host of outstanding questions in galaxy evolution. At this special session we will present details on the public release of this survey which will include science ready images, masks for the foreground and background stars, globally integrated properties and radial profiles of all galaxies. In addition we will release the results from a GALFIT decomposition of 200 galaxies which will be supplemented with the remainder of the survey within six months. The data are being released through the NASA/IPAC Infrared Science Archive (IRSA). I will present an overview of the survey, the data we are releasing, introduce the speakers and present science highlights from the team.

  3. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    USDA-ARS?s Scientific Manuscript database

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B. b. athabascae), fourteen breeds of taurine cattle (Bos taurus taurus), and two breeds of indicine cattle (Bos taurus indicus). Genetic distances...

  4. Probing the Physical Properties of High Redshift Optically Obscured Galaxies in the Bootes NOAO Deep Wide Field Survey using the Infrared Spectrograph on Spitzer

    NASA Astrophysics Data System (ADS)

    Higdon, S. J. U.; Weedman, D.; Higdon, J. L.; Houck, J. R.; Soifer, B. T.; Armus, L.; Charmandaris, V.; Herter, T. L.; Brandl, B. R.; Brown, M. J. I.; Dey, A.; Jannuzi, B.; Le Floc'h, E.; Rieke, M.

    2004-12-01

    We have surveyed a field covering 8.4 degrees2 within the NOAO Deep Wide Field Survey region in Boötes with the Multiband Imaging Photometer on the Spitzer Space Telescope to a limiting 24 um flux density of 0.3 mJy, identifying ˜ 22,000 point sources. Thirty one sources from this survey with F(24 um) > 0.75 mJy , which are optically ``invisible'' (R > 26) or very faint (I > 24) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. The spectra were extracted using the IRS SMART spectral analysis package in order to optimize their signal to noise. A suite of mid-IR spectral templates of well known galaxies, observed as part of the IRS GTO program, is used to perform formal fits to the spectral energy distribution of the Boötes sources. These fits enable us to measure their redshift, to calculate the depth of the 9.7 um silicate feature along with the strength of 7.7 um PAH, as well as to estimate their bolometric luminosities. We compare the mid-IR slope, the measured PAH luminosity, and the optical depth of these sources with those of galaxies in the local Universe. As a result we are able to estimate the contribution of a dust enshrouded active nucleus to the mid-IR and bolometric luminosity of these systems. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech.

  5. VizieR Online Data Catalog: Late-type targets in Taurus, Cha I, and Upper Sco (Todorov+, 2014)

    NASA Astrophysics Data System (ADS)

    Todorov, K. O.; Luhman, K. L.; Konopacky, Q. M.; McLeod, K. K.; Apai, D.; Ghez, A. M.; Pascucci, I.; Robberto, M.

    2017-07-01

    To characterize the multiplicity of low-mass stars and brown dwarfs in Taurus and Chamaeleon I, we combine the results from our survey with those from previous high-resolution images in these regions. The latter were collected with WFPC2 (Kraus et al. 2006ApJ...649..306K), Keck speckle imaging (Konopacky et al. 2007ApJ...663..394K), and Keck AO imaging (Kraus & Hillenbrand 2012, J/ApJ/757/141) in Taurus and with WFPC2 (Neuhauser et al. 2002A&A...384..999N), the Advanced Camera for Surveys on Hubble (Luhman 2007, J/ApJS/173/104), and AO at the Very Large Telescope (Ahmic et al. 2007ApJ...671.2074A; Lafreniere et al. 2008ApJ...683..844L) in Chamaeleon I. For comparison to these two regions, we also have compiled binary data measured for late-type members of the Upper Sco association ({tau}~11 Myr; Pecaut et al. 2012, J/ApJ/746/154) with WFPC2 and Keck AO (Kraus et al. 2005ApJ...633..452K; Biller et al. 2011ApJ...730...39B; Kraus & Hillenbrand 2012, J/ApJ/757/141). (1 data file).

  6. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; hide

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  7. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhardt, Charles L.; Capak, Peter; Masters, Dan

    2014-08-20

    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam observations on the 1.8 deg{sup 2} Cosmological Evolution Survey we estimate the masses and star formation rates of 3398 M {sub *} > 10{sup 10} M {sub ☉} star-forming galaxies at 4 < z < 6 with a substantial population up to M {sub *} ≳ 10{sup 11.5} M {sub ☉}. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the ''main sequence'' of star-forming galaxies) extends to z ∼ 6. The observed relation and scatter is consistentmore » with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z ∼ 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.« less

  8. Spitzer, Planck and Kepler Extended by NASA Artist Concept

    NASA Image and Video Library

    2012-04-05

    From left to right, artist concepts of the Spitzer, Planck and Kepler space telescopes. NASA extended Spitzer and Kepler for two additional years; and the U.S. portion of Planck, a European Space Agency mission, for one year.

  9. Spitzer Digs Up Galactic Fossil

    NASA Image and Video Library

    2004-10-12

    This false-color image taken by NASA Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic "fossils" as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA06928

  10. Spitzer Observes Neutron Star Collision

    NASA Image and Video Library

    2017-10-16

    NASA's Spitzer Space Telescope has provisionally detected the faint afterglow of the explosive merger of two neutron stars in the galaxy NGC 4993. The event, labeled GW170817, was initially detected in gravitational waves and gamma rays. Subsequent observations by dozens of telescopes have monitored its afterglow across the entire spectrum of light. The event is located about 130 million light-years from Earth. Spitzer's observation on September 29, 2017, came late in the game, just over 6 weeks after the event was first seen. But if this weak detection is verified, it will play an important role in helping astronomers understand how many of the heaviest elements in the periodic table are created in explosive neutron star mergers. The left panel is a color composite of the 3.6 and 4.5 micron channels of the Spitzer IRAC instrument, rendered in cyan and red. The center panel is a median-filtered color composite showing a faint red dot at the known location of the event. The right panel shows the residual 4.5 micron data after subtracting out the light of the galaxy using an archival image that predates the event. An annotated version is at https://photojournal.jpl.nasa.gov/catalog/PIA21910

  11. Adding the missing piece: Spitzer imaging of the HSC-Deep/PFS fields

    NASA Astrophysics Data System (ADS)

    Sajina, Anna; Bezanson, Rachel; Capak, Peter; Egami, Eiichi; Fan, Xiaohui; Farrah, Duncan; Greene, Jenny; Goulding, Andy; Lacy, Mark; Lin, Yen-Ting; Liu, Xin; Marchesini, Danilo; Moutard, Thibaud; Ono, Yoshiaki; Ouchi, Masami; Sawicki, Marcin; Strauss, Michael; Surace, Jason; Whitaker, Katherine

    2018-05-01

    We propose to observe a total of 7sq.deg. to complete the Spitzer-IRAC coverage of the HSC-Deep survey fields. These fields are the sites of the PrimeFocusSpectrograph (PFS) galaxy evolution survey which will provide spectra of wide wavelength range and resolution for almost all M* galaxies at z 0.7-1.7, and extend out to z 7 for targeted samples. Our fields already have deep broadband and narrowband photometry in 12 bands spanning from u through K and a wealth of other ancillary data. We propose completing the matching depth IRAC observations in the extended COSMOS, ELAIS-N1 and Deep2-3 fields. By complementing existing Spitzer coverage, this program will lead to an unprecedended in spectro-photometric coverage dataset across a total of 15 sq.deg. This dataset will have significant legacy value as it samples a large enough cosmic volume to be representative of the full range of environments, but also doing so with sufficient information content per galaxy to confidently derive stellar population characteristics. This enables detailed studies of the growth and quenching of galaxies and their supermassive black holes in the context of a galaxy's local and large scale environment.

  12. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Smith, J. D. T.; Schlawin, E. A.; Armus, L.; Buckalew, B. A.; Cohen, S. A.; Helou, G.; Jarrett, T. H.; Johnson, L. C.; Moustakas, J.; Murphy, E. J.; Roussel, H.; Sheth, K.; Staudaher, S.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.; Malhotra, S.

    2009-03-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm-3 on ~23'' × 15'' scales and 500-600 cm-3 using ~11'' × 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  13. Spitzer Makes Invisible Visible

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. http://photojournal.jpl.nasa.gov/catalog/PIA05734

  14. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  15. Last chance at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.

    1992-01-01

    By the fall of 1971, it was known that only two more Apollos would land on the Moon. Most geoscientists agreed that both should concentrate on the previously neglected terrae (highlands). In June 1991, the Apollo Site Selection Board (ASSB) had chosen Descartes as the site of the Apollo 16 terra landing, scheduled for April 1972. Therefore, we had to assess how many pre-Apollo objectives the first four landings had met, how many Apollo 16 was likely to meet, and how to meet the remaining ones with Apollo 17. Geologists convened at Caltech in November 1971 and formulated a list of major lunar problems. An edited version of the list is presented, and how the remaining problems influenced the Apollo 16 and 17 landing site selection process is discussed with particular emphasis on the selection of Taurus-Littrow as the landing site for Apollo 17. Apollo 17 returned a fine collection from the massifs, bright mantle, Sculptured Hills, subfloor basalt, and dark mantle of Taurus-Littrow. They answered many of 1971's questions, showed others to have been wrongly asked, and left others for us to ponder still today. A brief discussion of the problems solved and the questions raised by the Apollo Program are presented.

  16. Apollo 17: At Taurus Littrow

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1973-01-01

    A summation, with color illustrations, is presented on the Apollo 17 mission. The height, weight, and thrust specifications are given on the launch vehicle. Presentations are given on: the night launch; earth to moon ascent; separation and descent; EVA, the sixth lunar surface expedition; ascent from Taurus-Littrow; the America to Challenger rendezvous; return, reentry, and recovery; the scientific results of the mission; background information on the astronauts; and the future projects.

  17. VizieR Online Data Catalog: 14 unusual IR transients with Spitzer (SPRITEs) (Kasliwal+, 2017)

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Bally, J.; Masci, F.; Cody, A. M.; Bond, H. E.; Jencson, J. E.; Tinyanont, S.; Cao, Yi; Contreras, C.; Dykhoff, D. A.; Amodeo, S.; Armus, L.; Boyer, M.; Cantiello, M.; Carlon, R. L.; Cass, A. C.; Cook, D.; Corgan, D. T.; Faella, J.; Fox, O. D.; Green, W.; Gehrz, R. D.; Helou, G.; Hsiao, E.; Johansson, J.; Khan, R. M.; Lau, R. M.; Langer, N.; Levesque, E.; Milne, P.; Mohamed, S.; Morrell, N.; Monson, A.; Moore, A.; Ofek, E. O.; O'Sullivan, D.; Parthasarathy, M.; Perez, A.; Perley, D. A.; Phillips, M.; Prince, T. A.; Shenoy, D.; Smith, N.; Surace, J.; van Dyk, S. D.; Whitelock, P. A.; Williams, R.

    2017-11-01

    The SPitzer InfraRed Intensive Transients Survey (SPIRITS) survey uses the IRAC instrument (FoV 5'x5') on board the warm Spitzer telescope to search for IR transients at 3.6um ([3.6]) and 4.5um ([4.5]). SPIRITS is a five-year survey from 2014 to 2018 (Kasliwal+ 2013sptz.prop10136K, 2016sptz.prop13053K). We are undertaking concomitant ground-based surveys to monitor the SPIRITS galaxy sample in the near-IR and the optical at roughly a monthly cadence. At the University of Minnesota's Mt. Lemmon Observing Facility (MLOF), we use the three-channel Two Micron All Sky Survey cameras mounted on the 1.52m IR telescope. At Las Campanas, we undertake near-IR monitoring with the Retrocam on Dupont 100 inch telescope and optical monitoring using the CCD on the Swope 40 inch telescope. At Palomar, we use the Samuel Oschin 48 inch (primarily gr-band) and Palomar 60 inch telescopes (gri-bands) for optical monitoring. Using the LCOGT network, we obtain additional optical monitoring in gri-bands. In addition, a follow-up of discovered transients was undertaken by a myriad of facilities including Keck, Magellan, Palomar 200 inch, SALT, and RATIR. Following non-detections from the ground, we were able to set even deeper magnitude limits for two transients based on a small HST Director's Discretionary program (GO/DD-13935, PI H. Bond). We imaged SPIRITS 14aje (in M101) and SPIRITS 14axa (in M81) with the Wide Field Camera 3 (WFC3) in 2014 September. (5 data files).

  18. VizieR Online Data Catalog: Young star forming region NGC 2264 Spitzer sources (Rapson+, 2014)

    NASA Astrophysics Data System (ADS)

    Rapson, V. A.; Pipher, J. L.; Gutermuth, R. A.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2017-05-01

    We utilize 3.6-8.0 um images of Mon OB1 East obtained with the Spitzer Space Telescope Infrared Array Camera (IRAC; Fazio et al. 2004ApJS..154...10F), 24 um images obtained with the Multi-Band Imaging Photometer (MIPS; Rieke et al. 2004ApJS..154...25R), along with 1-2.5 um NIR data from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) to classify YSOs. These YSOs in Mon OB1 East are classified as either protostars or stars with circumstellar disks by their infrared excess emission above photospheric emission. Spitzer data were gathered as part of two Guaranteed Time Observation programs and one additional program with the goal of studying clustered and distributed star formation throughout Mon OB1 East and comparing the results with those of other molecular clouds. Mon OB1 East was observed by Spitzer in 2004, 2007, and 2008 as part of the Guaranteed Time Observation programs 37 (IRAC data; PI: G. Fazio) and 58 (MIPS data; PI: G. Rieke), as well as program 40006 (IRAC+MIPS data; PI: G. Fazio). (1 data file).

  19. Understanding Nucleosynthesis in Neutron Star Mergers with Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cenko, Brad; Singer, Leo; Goobar, Ariel; Ofek, Eran; Kaplan, David; Andreoni, Igor; Adams, Scott; Perley, Daniel

    2018-05-01

    The discovery of the first electromagnetic counterpart to gravitational waves from merging neutron stars opened a new chapter in multi-messenger astrophysics. The infrared signature was key to unraveling the prolific production of heavy elements by r-process nucleosynthesis. Understanding the nuclear physics in the heavy element production requires observations a few weeks after the merger at longer wavelengths that are only accessible by Spitzer. In particular, Spitzer can address the question of whether or not the heaviest elements in the third abundance peak (such as gold and platinum) were synthesized. Here, we request 30 hours of Target of Opportunity time to undertake Spitzer follow-up of two neutron star mergers.

  20. An assessment of Li abundances in weak-lined and classical T Tauri stars of the Taurus-Auriga association

    NASA Astrophysics Data System (ADS)

    Sestito, P.; Palla, F.; Randich, S.

    2008-09-01

    Context: Accurate measurements of lithium abundances in young low-mass stars provide an independent and reliable age diagnostics. Previous studies of nearby star forming regions have identified significant numbers of Li-depleted stars, often at levels inconsistent with the ages indicated by their luminosity. Aims: We aim at a new and accurate analysis of Li abundances in a sample of ~100 pre-main sequence stars in Taurus-Auriga using a homogeneous and updated set of stellar parameters and model atmospheres appropriate for the spectral types of the sample stars. Methods: We compute Li abundances using published values of the equivalent widths of the Li λ6708 Å doublet obtained from medium/high resolution spectra. Results: We find that the number of significantly Li-depleted stars in Taurus-Auriga is greatly reduced with respect to earlier results. Only 13 stars have abundances lower than the interstellar value by a factor of 5 or greater. All of them are weak-lined T Tauri stars drawn from X-ray surveys; with the exception of four stars located near the L1551 and L1489 dark clouds, all the Li-depleted stars belong to the class of dispersed low-mass stars, distributed around the main sites of current star formation. If located at the distance of Taurus-Auriga, the stellar ages implied by the derived Li abundances are in the range 3-30 Myr, greater than the bulk of the Li-rich population with implication on the star formation history of the region. Conclusions: In order to derive firm conclusions about the fraction of Li-depleted stars of Taurus-Auriga, Li measurements of the remaining members of the association should be obtained, in particular of the group of stars that fall in the Li-burning region of the HR diagram. Table [see full text] is only available in electronic form at http://www.aanda.org

  1. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  2. Exoplanet Characterization With Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  3. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  4. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity.

    PubMed

    Beatty, D T; Barnes, A; Taylor, E; Pethick, D; McCarthy, M; Maloney, S K

    2006-04-01

    Two experiments were conducted to investigate the physiological responses of Bos taurus (Angus cross, n = 6) and Bos indicus (Brahman, n = 6) cattle to prolonged heat and humidity, as can occur during live export by sea. Each experiment was carried out in climate-controlled rooms, where heifers were exposed to 15 d of sustained heat and humidity. The treatment was designed to be representative of a long-haul, live-export voyage leaving a southern Australian winter and traveling to a Middle Eastern summer. Wet bulb temperature (WBT) was used to give a combined measure of dry bulb temperature and relative humidity and was increased over several days, culminating in 5 d at 32 degrees C WBT between d 7 and 11. By d 11, the respiratory rate and core body temperature increased (P < 0.001) compared with values at lower ambient temperature on d 1 and 2 when climate-controlled rooms were not operating. Feed intake of Bos taurus was reduced (P < 0.001) by d 11, whereas that of Bos indicus did not change (P = 0.14). Despite no diurnal variation in climatic conditions, core body temperature of both Bos taurus and Bos indicus continued to show a circadian amplitude of approximately 1 degrees C throughout the hottest period. This amplitude increased during the recovery period after heat was removed (up to 1.8 degrees C for Bos indicus and 1.6 degrees C for Bos taurus). Water intake for both Bos taurus and Bos indicus increased when WBT increased (P < 0.01 on d 11). Significant acid-base and blood electrolyte imbalances occurred in both Bos taurus and Bos indicus, with changes in Bos taurus being more substantial and prolonged. The increase in respiratory rate coincided with a decrease in the partial pressures of carbon dioxide and bicarbonate in venous blood. However, during the hottest period, average daily venous blood pH remained unchanged. When the heat load was reduced after d 11, the blood pH decreased, indicating metabolic acidosis. Blood pH declined from 7.44 to 7.36 for

  5. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospecmore » on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.« less

  6. New insights on multiplicity and clustering in Taurus.

    NASA Astrophysics Data System (ADS)

    Joncour, Isabelle; Duchene, Gaspard; Moraux, Estelle; Mundy, Lee

    2018-01-01

    Multiplicity and clustering of young stars are critical clues to constraint star formation process. The Taurus molecular complex is the archetype of a quiescent star forming region that may retain primeval signature of star formation.Using statistical and clustering tools such as nearest neighbor statistics, correlation functions and the density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, this work reveals new spatial substructures in Taurus.We have identified unexpected ultra wide pairs (UWPs) candidates of high order multiplicity in Taurus in the 5-60 kAU separation range (Joncour et al 2017), beyond the separation assessed for wide pairs (Kraus & Hillenbrand 2009).Our work reveals 20 local stellar substructures, the Nested Elementary Structures (NESTs). These NESTs contain nearly half the stars of Taurus and 75% of the Class 0/I objects probing that they are the preferred sites of star formation (Joncour et al, sub.). The NESTs size ranges from few kAU up to 80 kAU making a length scale bridge between wide pairs and loose group (few hundreds kAU, Kirk & Myers, 2011). The NESTs mass ranges from 0.5-10 solar mass. The balance between Class I, II and III in NESTs suggests that they may be ordered as an evolutionary temporal scheme, some of them got infertile, while other shelter stars in infancy.The UWPs and the NESTs may be pristine imprints of their spatial configuration at birth. The UWPs population may result from a cascade fragmentation scenario of the natal molecular core. They could be the older counterparts, to the 0.5 Myr prestellar cores/Class 0 multiple objects observed at radio/millimeter wavelengths (Tobin et al 2010, 2016) and the precursors of the large number of UWPs (10–100 kAU) recently identified in older moving groups (Floriano-Alonso et al, 2015 ; Elliot et al 2016). The NESTs may result from the gravitational collapse of a gas clump that fragments to give a tight collection of stars within few millions years

  7. A Search for Companions to Brown Dwarfs in the Taurus and Chamaeleon Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Todorov, K. O.; Luhman, K. L.; Konopacky, Q. M.; McLeod, K. K.; Apai, D.; Ghez, A. M.; Pascucci, I.; Robberto, M.

    2014-06-01

    We have used WFPC2 on board the Hubble Space Telescope to obtain images of 47 members of the Taurus and Chamaeleon I star-forming regions that have spectral types of M6-L0 (M ~ 0.01-0.1 M ⊙). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. In these images, we have identified promising candidate companions to 2MASS J04414489+2301513 (ρ = 0.''105/15 AU), 2MASS J04221332+1934392 (ρ = 0.''05/7 AU), and ISO 217 (ρ = 0.''03/5 AU). We reported the first candidate in a previous study, showing that it has a similar proper motion as the primary in images from WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon I, and Upper Sco (τ ~ 10 Myr), we measure binary fractions of 14/93 = 0.15^{+0.05}_{-0.03} for M4-M6 (M ~ 0.1-0.3 M ⊙) and 4/108 = 0.04^{+0.03}_{-0.01} for >M6 (M <~ 0.1 M ⊙) at separations of >10 AU. Given the youth and low density of these regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon I than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming. Based on observations performed with the NASA/ESA Hubble Space Telescope, Gemini Observatory, and the W. M. Keck Observatory. The Hubble observations are associated with proposal IDs 11203, 11204, and 11983 and were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.

    2017-05-01

    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the

  9. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emissionmore » lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are

  10. A GALEX-BASED SEARCH FOR THE SPARSE YOUNG STELLAR POPULATION IN THE TAURUS-AURIGAE STAR FORMING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez de Castro, Ana I.; Lopez-Santiago, Javier; López-Martínez, Fatima

    2015-02-01

    In this work, we identify 63 bona fide new candidates to T Tauri stars (TTSs) in the Taurus-Auriga region, using its ultraviolet excess as our baseline. The initial data set was defined from the GALEX all sky survey (AIS). The GALEX satellite obtained images in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands where TTSs show a prominent excess compared with main-sequence or giants stars. GALEX AIS surveyed the Taurus-Auriga molecular complex, as well as a fraction of the California Nebula and the Perseus complex; bright sources and dark clouds were avoided. The properties of TTSs in the ultraviolet (GALEX), opticalmore » (UCAC4), and infrared (2MASS) have been defined using the TTSs observed with the International Ultraviolet Explorer reference sample. The candidates were identified by means of a mixed ultraviolet-optical-infrared excess set of colors; we found that the FUV-NUV versus J–K color-color diagram is ideally suited for this purpose. From an initial sample of 163,313 bona fide NUV sources, a final list of 63 new candidates to TTSs in the region was produced. The search procedure has been validated by its ability to detect all known TTSs in the area surveyed: 31 TTSs. Also, we show that the weak-lined TTSs are located in a well-defined stripe in the FUV-NUV versus J–K diagram. Moreover, in this work, we provide a list of TTSs photometric standards for future GALEX-based studies of the young stellar population in star forming regions.« less

  11. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  12. Spitzer Reveals Stellar Family Tree

    NASA Image and Video Library

    2008-08-22

    Generations of stars can be seen in this new infrared portrait from NASA Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities.

  13. Spitzer Space Telescope Research Program for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Daou, D.

    2005-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers also attended a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work on their data with SSC and NOAO scientists. This program allows a team of 12 teachers and their students to utilize up to 3.5 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers.

  14. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novati, S. Calchi; Beichman, C.; Gould, A.

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST,more » implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.« less

  15. Star Formation in Taurus: Preliminary Results from 2MASS

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Jarrett, T.

    1993-01-01

    Data with the 2MASS prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from IRAS observations to contain a number of very young solar type stars.

  16. NASA Spitzer Space Telescope

    Science.gov Websites

    -2016 'Enterprise' Nebulae Seen by Spitzer Credits: NASA, ESA, G. Bacon and A. Feild (STScI), and H . Wakeford (STScI/Univ. of Exeter) 03.01.18 NASA Finds a Large Amount of Water in an Exoplanet's Atmosphere Tweet In the year since NASA announced the seven Earth-sized planets of the TRAPPIST-1 system

  17. The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Neugebauer, G.; Matthews, K.

    1993-01-01

    We present the results of a magnitude limited (K less than = 8.5 mag) speckle imaging survey of 69 T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius. Thirty-three companion stars were found with separations ranging from 0.07 sec to 2.5 sec, nine are new detections. This survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary star distribution is enhanced at the closer separations (less than 50 AU) relative to the CTTS binary star distribution. We suggest that the nearby companion stars shorten the accretion time scale in multiple star systems, thereby accounting for the presence of WTTS that are coeval with many CTTS. The binary star frequency in the projected linear separation range 16 to 252 AU for T Tauri stars (60 (+/- 17)%) is a factor of 4 greater than that of the solar-type main-sequence stars (16(+/- 3)%). Given the limited separation range of this survey, the rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions. We propose that the observed overabundance of companions of T Tauri stars is an evolutionary effect, in which triple and higher order T Tauri stars are disrupted by close encounters with another star or system of stars.

  18. The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the Taurus Star-forming Region

    NASA Astrophysics Data System (ADS)

    Galli, Phillip A. B.; Loinard, Laurent; Ortiz-Léon, Gisela N.; Kounkel, Marina; Dzib, Sergio A.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Hartmann, Lee; Teixeira, Ramachrisna; Torres, Rosa M.; Rivera, Juana L.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.; Heyer, Mark

    2018-05-01

    We present new trigonometric parallaxes and proper motions of young stellar objects in the Taurus molecular cloud complex from observations collected with the Very Long Baseline Array as part of the Gould’s Belt Distances Survey. We detected 26 young stellar objects and derived trigonometric parallaxes for 18 stars with an accuracy of 0.3% to a few percent. We modeled the orbits of six binaries and determined the dynamical masses of the individual components in four of these systems (V1023 Tau, T Tau S, V807 Tau, and V1000 Tau). Our results are consistent with the first trigonometric parallaxes delivered by the Gaia satellite and reveal the existence of significant depth effects. We find that the central portion of the dark cloud Lynds 1495 is located at d =129.5 ± 0.3 pc, while the B216 clump in the filamentary structure connected to it is at d = 158.1 ± 1.2 pc. The closest and remotest stars in our sample are located at d = 126.6 ± 1.7 pc and d = 162.7 ± 0.8 pc, yielding a distance difference of about 36 pc. We also provide a new distance estimate for HL Tau that was recently imaged. Finally, we compute the spatial velocity of the stars with published radial velocity and investigate the kinematic properties of the various clouds and gas structures in this region.

  19. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  20. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent, E-mail: j.sorce@ipnl.in2p3.fr

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program calledmore » Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.« less

  1. Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations.

    PubMed

    Stow, Adam; Zenger, Kyall; Briscoe, David; Gillings, Michael; Peddemors, Victor; Otway, Nicholas; Harcourt, Robert

    2006-06-22

    Anthropogenic impacts are believed to be the primary threats to the eastern Australian population of grey nurse sharks (Carcharias taurus), which is listed as critically endangered, and the most threatened population globally. Analyses of 235 polymorphic amplified fragment length polymorphisms (AFLP) loci and 700 base pairs of mitochondrial DNA control region provide the first account of genetic variation and geographical partitioning (east and west coasts of Australia, South Africa) in C. taurus. Assignment tests, analysis of relatedness and Fst values all indicate that the Australian populations are isolated from South Africa, with negligible migration between the east and west Australian coasts. There are significant differences in levels of genetic variation among regions. Australian C. taurus, particularly the eastern population, has significantly less AFLP variation than the other sampling localities. Further, the eastern Australian sharks possess only a single mitochondrial haplotype, also suggesting a small number of founding individuals. Therefore, historical, rather than anthropogenic processes most likely account for their depauperate genetic variation. These findings have implications for the viability of the eastern Australian population of grey nurse sharks.

  2. VLT/X-shooter Spectroscopy of a dusty planetary nebula discovered with Spitzer/IRS

    NASA Astrophysics Data System (ADS)

    Oliveira, I.; Overzier, R. A.; Pontoppidan, K. M.; van Dishoeck, E. F.; Spezzi, L.

    2011-02-01

    As part of a mid-infrared spectroscopic survey of young stars with the Spitzer Space Telescope, an unclassified red emission line object was discovered. Based on its high ionization state indicated by the Spitzer spectrum, this object could either be a dusty supernova remnant (SNR) or a planetary nebula (PN). In this research note, the object is classified and the available spectroscopic data are presented to the community for further analysis. UV/optical/NIR spectra were obtained during the science verification run of the VLT/X-shooter. A large number of emission lines are identified allowing the determination of the nature of this object. The presence of strong, narrow (Δv ~8 - 74 km s-1) emission lines, combined with very low line ratios of, e.g., [N ii]/Hα and [S ii]/Hα show that the object is a PN that lies at an undetermined distance behind the Serpens Molecular Cloud. This illustrates the potential of X-shooter as an efficient tool for constraining the nature of faint sources with unknown spectral properties or colors.

  3. Spitzer secondary eclipses of Qatar-1b

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  4. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  5. Spitzer Transits of New TESS Planets

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian; Werner, Michael; Dragomir, Diana; Kreidberg, Laura; Benneke, Bjoern; Deming, Drake; Gorjian, Varoujan; Guo, Xueying; Dressing, Courtney; Yu, Liang; Kane, Stephen; Christiansen, Jessie; Berardo, David; Morales, Farisa

    2018-05-01

    TESS will soon begin searching the sky for new transiting planets around the nearest, brightest stars, and JWST will become the world-leading facility in exoplanet atmospheric characterization. A key TESS goal is to provide the best atmospheric targets to JWST. However, many new TESS planets will exhibit just a few transits each, so their transit ephemerides will be only weakly constrained; without additional constraints on the planet orbit, the transits will be quickly "lost" long before JWST transit spectroscopy can commence. Some TESS planets will also be good targets for JWST secondary eclipses observations, but these eclipses will be even harder to pin down from TESS data alone. Spitzer's IR sensitivity and photometric stability can identify the transits and eclipses of the most favorable TESS planets and set the stage for JWST atmospheric characterization on a large scale. We request 550 hr to use Spitzer to measure precise transits and eclipses of new planets from the first year of TESS, refining their properties and ensuring their transits and eclipses can be recovered for many years to come. We will focus on the smaller planets for which ground-based observations are impractical and for which JWST spectroscopy will have a high impact. The time baseline provided by Spitzer will pin down the ephemerides far into the future. Thus our proposed program will secure these planets for future JWST spectroscopy to reveal their atmospheric makeup, chemistry, cloud properties, and formation history in unprecedented detail.

  6. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  7. Stellar Jewels Shine in New Spitzer Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

    Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed.

    This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars.

    Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy.

    This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  8. Spitzer Sees Water Loud and Clear

    NASA Image and Video Library

    2007-08-29

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B. The data were captured by NASA Spitzer Space Telescope.

  9. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    NASA Astrophysics Data System (ADS)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  10. The Seven Sisters Pose for Spitzer

    NASA Image and Video Library

    2007-04-16

    The Seven Sisters, also known as the Pleiades star cluster, seem to float on a bed of feathers in a new infrared image from NASA Spitzer Space Telescope. Clouds of dust sweep around the stars, swaddling them in a cushiony veil.

  11. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  12. Genetic effects on beef tenderness in Bos indicus composite and Bos taurus cattle.

    PubMed

    O'Connor, S F; Tatum, J D; Wulf, D M; Green, R D; Smith, G C

    1997-07-01

    Bos indicus composite and Bos taurus cattle, originating from diverse production environments, were used to quantify genetic variation in marbling, 24-h calpastatin activity, and beef tenderness and to identify strategies for prevention of beef tenderness problems in Bos indicus composite cattle. Comparisons among 3/8 Bos indicus breeds (Braford, Red Brangus, Simbrah) revealed significant differences in marbling and 24-h calpastatin activity, but not in tenderness. Compared with Bos taurus cattle, 3/ 8 Bos indicus cattle had similar marbling scores but higher 24-h calpastatin activities. Also, beef from 3/8 Bos indicus composites aged more slowly from 1 to 7 d and was less tender at 4, 7, 14, 21, and 35 d postmortem than beef from Bos taurus cattle. However, beef from 3/8 Bos indicus cattle was relatively tender if it was aged for a sufficient period of time (21 d). The delayed response to aging and greater toughness of beef from 3/8 Bos indicus cattle was associated with Brahman breed effects and was not related to the Bos taurus germplasm source. Marbling was moderately heritable (.52 +/- .21) but exhibited positive genetic correlations with shear force at d 1 through 14 of aging, suggesting that, in these cattle, selection for increased marbling would have an unfavorable effect on beef tenderness. A low heritability estimate for 24-h calpastatin activity (.15 +/- .15), coupled with low genetic correlations between calpastatin activity and shear force at 7, 14, and 35 d, suggested that selection for low calpastatin activity would have little effect on aged beef tenderness. Panel tenderness and shear force at 7, 14, and 21 d were moderately heritable (.27 to .47), indicating that aged beef tenderness could be improved by direct selection (via progeny testing). Comparisons among Simbrah, Senegus x Simbrah, and Red Angus x Simmental steers showed that inclusion of a tropically adapted Bos taurus breed (Senepol) could be an effective strategy for preventing beef

  13. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trilling, David E.; Mommert, Michael; Hora, Joseph

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. Wemore » present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.« less

  14. Creating a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Daou, D.; Pompea, S.; Thaller, M.

    2004-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have created a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers will also attend a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the SST and work with the SST archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy. During this camp, the teachers and their students will learn about the SST through the vast amount of data available in the Spitzer archives.

  15. Early 2017 observations of TRAPPIST-1 with Spitzer

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  16. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  17. Spitzer's window onto the evolution of young planets

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth; Mann, Andrew; Rizzuto, Aaron; Vanderburg, Andrew

    2018-05-01

    Exoplanets in young associations provide an otherwise inaccessible window into how planetary systems form and evolve. We expect to discover 19 young exoplanets around bright stars through our TESS GI programs, which will provide a critical data set for studying planet formation and evolution into the next decade. Here, we propose to obtain transit observations of these young planets with Spitzer. We seek to use Spitzer because it enables us is to obtain precise photometric observations at wavelengths that will also mitigate the impact of stellar activity, which is expected to be high for these young stars. Using data from Spitzer, we will directly address two questions: how do the atmospheres of sub-Neptune sized planets evolve? And what is the mechanism by which planets migrate onto short orbits? We will do this by measuring minimum eccentricities via the photoeccentric effect and by accurately and precisely constraining the planetary properties. We will additionally improve transit ephemerides, ensuring that the transits of these planets are not lost as the community prepares for future observations with JWST, HST, and ground-based facilities. This is a target of opportunity program.

  18. Pointing History Engine for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Ahmed, Asif; Brugarolas, Paul

    2007-01-01

    The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.

  19. Mare volcanism in the Taurus-Littrow region

    NASA Technical Reports Server (NTRS)

    Delano, J. W.

    1992-01-01

    The products of mare volcanism at Taurus-Littrow occur in the form of crystalline basalts and volcanic glass beads. Both categories of samples define a compositionally diverse, but petrogenetically unrelated, suite of magmas derived by partial melting of a heterogenous, differentiated mantle beneath the region of the Apollo 17 landing site. This is a brief review of what is known and what is not known about mare volcanism at this location on the Moon.

  20. Stellar Jewels Shine in New Spitzer Image

    NASA Image and Video Library

    2004-05-27

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars. Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed. This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars. Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy. This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05989

  1. Spitzer Observations of the New Luminous Red Nova M85 OT2006-1

    NASA Astrophysics Data System (ADS)

    Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L.

    2007-04-01

    M85 OT2006-1 is the latest and most brilliant addition to the small group of known luminous red novae (LRNe). An identifying characteristic of the previously detected events (M31 RV, V4332 Sgr, and V838 Mon) was a spectral redward evolution connected with an emerging infrared component following the optical decay. Here we report on the discovery of a similar feature in Keck NIRC and Spitzer photometry of M85 OT2006-1 6 months posteruption. We find that its 2.1-22 μm spectral energy distribution is best described by a blackbody with effective temperature Teff=950+/-150 K and bolometric luminosity L=2.9+0.4-0.5×105 Lsolar. Assuming spherical geometry, the blackbody effective radius, R=2.0+0.6-0.4×104 Rsolar, and corresponding expansion velocity, v=870+260-180 km s-1, are remarkably similar to the properties of M31 RV 70 days after its eruption. Furthermore, we propose a search strategy for LRNe in the local universe making use of the longevity of their infrared excess emission and discuss the expected number of events in the Spitzer Infrared Nearby Galaxies Survey.

  2. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience

  3. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B.

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay atmore » 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.« less

  4. Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  5. VizieR Online Data Catalog: Spitzer photometry of ~1million stars in M31 & 15 gal. (Khan, 2017)

    NASA Astrophysics Data System (ADS)

    Khan, R.

    2017-03-01

    For M31, we used the IRAC 3.6, 4.5, 5.8, and 8um mosaics produced by Mould+ (2008, J/ApJ/687/230) and the MIPS 24um mosaic produced by Gordon+ (2006ApJ...638L..87G). For the other galaxies, we used the IRAC and MIPS mosaics produced by the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt+ 2003PASP..115..928K) and the Local Volume Legacy Survey (LVL; Dale+ 2009, J/ApJ/703/517). We utilize the full mosaics available for each galaxy. (17 data files).

  6. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Greene, Jenny E.

    2010-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below ~ 106 M⊙. We have obtained Spitzer IRS low-resolution spectra, covering 5-38 μm, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between type 1 and type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. Here we present preliminary results from this project.

  7. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST & Euclid

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  8. Hidden Patterns of Light Revealed by Spitzer

    NASA Image and Video Library

    2012-06-07

    Astronomers have uncovered patterns of light that appear to be from the first stars and galaxies that formed in the universe. The light patterns were hidden within a strip of sky observed by NASA Spitzer Space Telescope.

  9. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dawn E.; Bourke, Tyler L.; Forbrich, Jan

    2011-06-01

    We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg{sup 2} field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literaturemore » are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M{sub sun} Myr{sup -1}, similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface density of 150 pc{sup -2}. In addition, we analyze outflows and jets in CrA by means of new CO and H{sub 2} data. We present 1.3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H{sub 2} maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a CO(2-1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, which is east-west oriented and originates in the SMA 2 region and likely driven by SMA 2 or IRS 7A.« less

  10. Spitzer/IRS spectroscopy of the 12um Seyferts

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.; Houck, J.

    2009-01-01

    The extended 12um galaxy sample is a flux-limited sample of 893 galaxies selected from the IRAS Faint Source Catalog 2. A total of 118 objects from this sample have been classified optically as Seyfert galaxies, providing one of the largest infrared selected unbiased sample of active galactic nuclei (AGN). We present our prelimary results from our analysis of mid-infrared Spitzer/IRS spectra of 102 12um Seyferts (that is 86 % of the 12um Seyfert sample) which have been observed by various Spitzer programs and are available in the Spitzer archive. A number of mid-infared diagnostics have been developed to study the nature of nuclear dust enshrouded emission from AGNs, in order to disentangle the starburst-AGN connection. Since PAH emission is a tracer of star formation activity we have measured the 11.3um PAH feature for our Seyfert sample. We find that as the strength of the radiation field in AGNs increases the PAH molecules are destroyed, while the PAH EWs increase with the IRAS f60/f25 ratios of the host galaxies. We further probe this warm/cold color diagnostic, by contrasting our findings with those of we starbust galaxies, ULIRGs, as well as blue compact dwarf galaxies.

  11. A whole-genome assembly of the domestic cow, Bos taurus

    USDA-ARS?s Scientific Manuscript database

    Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion b...

  12. DUST AROUND R CORONAE BOREALIS STARS. I. SPITZER/INFRARED SPECTROGRAPH OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anibal Garcia-Hernandez, D.; Kameswara Rao, N.; Lambert, David L., E-mail: agarcia@iac.es, E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    2011-09-20

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 {mu}m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 {mu}mmore » and 25 {mu}m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 {mu}m luminosity and [8.0]-[24.0] color index.« less

  13. Frequencies of polymorphisms associated with BSE resistance differ significantly between Bos taurus, Bos indicus, and composite cattle

    PubMed Central

    Brunelle, Brian W; Greenlee, Justin J; Seabury, Christopher M; Brown, Charles E; Nicholson, Eric M

    2008-01-01

    Background Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that affect several mammalian species. At least three factors related to the host prion protein are known to modulate susceptibility or resistance to a TSE: amino acid sequence, atypical number of octapeptide repeats, and expression level. These factors have been extensively studied in breeds of Bos taurus cattle in relation to classical bovine spongiform encephalopathy (BSE). However, little is currently known about these factors in Bos indicus purebred or B. indicus × B. taurus composite cattle. The goal of our study was to establish the frequency of markers associated with enhanced susceptibility or resistance to classical BSE in B. indicus purebred and composite cattle. Results No novel or TSE-associated PRNP-encoded amino acid polymorphisms were observed for B. indicus purebred and composite cattle, and all had the typical number of octapeptide repeats. However, differences were observed in the frequencies of the 23-bp and 12-bp insertion/deletion (indel) polymorphisms associated with two bovine PRNP transcription regulatory sites. Compared to B. taurus, B. indicus purebred and composite cattle had a significantly lower frequency of 23-bp insertion alleles and homozygous genotypes. Conversely, B. indicus purebred cattle had a significantly higher frequency of 12-bp insertion alleles and homozygous genotypes in relation to both B. taurus and composite cattle. The origin of these disparities can be attributed to a significantly different haplotype structure within each species. Conclusion The frequencies of the 23-bp and 12-bp indels were significantly different between B. indicus and B. taurus cattle. No other known or potential risk factors were detected for the B. indicus purebred and composite cattle. To date, no consensus exists regarding which bovine PRNP indel region is more influential with respect to classical BSE. Should one particular indel region and

  14. VizieR Online Data Catalog: Spitzer/IRS obs. of Magellanic carbon stars (Sloan+, 2016)

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Groenewegen, M. A. T.; Wood, P. R.; Zijlstra, A. A.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Srinivasan, S.; van Loon, J. T.; Volk, K.

    2016-09-01

    Table 1 lists the 144 objects in the LMC and 40 in the SMC observed with the IRS (spectral coverage at 5-14um and 14-37um, respectively, with a resolution R~80-120) and identified as carbon stars. A variety of Spitzer observing programs contributed to the present sample of carbon stars (see Note 2 in table 1). We adopt distance moduli for the LMC and SMC of 18.5 and 18.9, respectively. For all of our targets, we have constructed SEDs based on multi-epoch photometry in the optical, near-IR, and mid-IR from several surveys. The mid-IR data come from the SAGE survey of the LMC (Meixner et al. 2006, J/AJ/132/2268) and the SAGE-SMC survey for the SMC (Gordon et al. 2011AJ....142..102G)). The SAGE-VAR survey adds four epochs from the Warm Spitzer Mission at 3.6 and 4.5um for portions of the LMC and SMC (Riebel et al. 2015ApJ...807....1R). We also used additional epochs at 3.4 and 4.6um from the Wide-field Infrared Survey Experiment (WISE; Wright et al. 2010AJ....140.1868W) and the NEOWISE reactivation mission (Mainzer et al. 2014ApJ...792...30M). Near-IR photometry comes from the 2MASS survey, and the deeper 2MASS-6X survey provides a second epoch at J, H, and Ks (Cutri et al. 2012, II/281; Skrutskie et al. 2006, VII/233). Additional epochs come from the Deep Near-IR Survey of the Southern Sky (DENIS) at J and Ks (Cioni et al. 2000, II/228) and the IR Survey Facility (IRSF) at J, H, and Ks (Kato et al. 2007, II/288). In the optical, we relied on the Magellanic Clouds Photometric Survey (MCPS) at U, B, V, and I (Zaritsky et al. 2002, J/AJ/123/855; 2004, J/AJ/128/1606). DENIS adds data at I. Additional mean magnitudes at V and I in the LMC come from the OGLE-III Shallow Survey (Ulaczyk et al. 2013, J/AcA/63/1). Where possible, we replaced the V and I data with mean magnitudes from the OGLE-III surveys of the Magellanic Clouds, which also give pulsation periods and amplitudes (Soszynski et al. 2009, J/AcA/59/335; 2011, J/AcA/61/217). We also consider a Galactic control

  15. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsicmore » index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.« less

  16. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  17. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies.

    PubMed

    Cronin, Matthew A; MacNeil, Michael D; Vu, Ninh; Leesburg, Vicki; Blackburn, Harvey D; Derr, James N

    2013-01-01

    The genetic relationship of American plains bison (Bison bison bison) and wood bison (Bison bison athabascae) was quantified and compared with that among breeds and subspecies of cattle. Plains bison from 9 herds (N = 136), wood bison from 3 herds (N = 65), taurine cattle (Bos taurus taurus) from 14 breeds (N = 244), and indicine cattle (Bos taurus indicus) from 2 breeds (N = 53) were genotyped for 29 polymorphic microsatellite loci. Bayesian cluster analyses indicate 3 groups, 2 of which are plains bison and 1 of which is wood bison with some admixture, and genetic distances do not show plains bison and wood bison as distinct groups. Differentiation of wood bison and plains bison is also significantly less than that of cattle breeds and subspecies. These and other genetic data and historical interbreeding of bison do not support recognition of extant plains bison and wood bison as phylogenetically distinct subspecies.

  18. Swift, INTEGRAL, RXTE, and Spitzer Reveal IGR J16283-4838

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Markwardt, C.; Barthelmy S.; Soldi, S.; Paizis, A.; Mowlavi, N.; Kennca, J. A.; Burrows, D. N.; Chester, M.

    2005-01-01

    We present the first combined study of the recently discovered source IGR J16283-4838 with Swift, INTEGRAL, and RXTE. The source, discovered by INTEGRAL on April 7, 2005, shows a highly absorbed (variable N(sub H) = 0.4-1.7 x 10(exp 23) /sq cm) and flat (Gamma approx. 1) spectrum in the Swift/XRT and RXTE/PCA data. No optical counterpart is detectable (V > 20 mag), but a possible infrared counterpart within the Swift/XRT error radius is detected in the 2MASS and Spitzer/GLIMPSE survey. The observations suggest that IGR J16283-4838 is a high mass X-ray binary containing a neutron star embedded in Compton thick material. This makes IGR J16283-4838 a member of the class of highly absorbed HMXBs, discovered by INTEGRAL.

  19. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST, Euclid, WFIRST

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  20. The Infrared Spectrograph on the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Infrared Spectrograph (IRS) instrument on the Spitzer Space Telescope covered the 5 to 38 micron wavelength range at low and medium spectral resolutions. The instrument was very popular during Spitzers 5.7 year-long cold mission. Every year it attracted the most proposals, and garnered more observing hours, of any of the science instruments. This success was the culmination of a very long development period, where the instrument design changed radically. When the instrument was first selected by NASA in 1984 it was very complicated. As part of the overall reduction of the size of the SIRTF Observatory following its recovery from the missions cancellation in 1991 the IRS became smaller and much, much simpler. The only aspect of the instrument that increased from the original design was the pixel count of the detectors.

  1. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  2. VizieR Online Data Catalog: Spitzer photometric time series of HD 97658 (Van Grootel+, 2014)

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Gillon, M.; Valencia, D.; Madhusudhan, N.; Dragomir, D.; Howe, A. R.; Burrows, A. S.; Demory, B.-O.; Deming, D.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Queloz, D.; Scuflaire, R.; Seager, S.; Segransan, D.; Udry, S.

    2017-07-01

    We monitored HD 97658 with Spitzer's IRAC camera on 2013 August 10 from 13:01:00 to 18:27:00 UT, corresponding to a transit window as computed from the MOST transit ephemeris (Dragomir et al. 2013, J/ApJ/772/L2). These Spitzer data were acquired in the context of the Cycle 9 program 90072 (PI: M. Gillon) dedicated to the search for the transits of RV-detected low-mass planets. They consist of 2320 sets of 64 individual subarray images obtained at 4.5 μm with an integration time of 0.08 s. They are available on the Spitzer Heritage Archive database under the form of 2320 Basic Calibrated Data files calibrated by the standard Spitzer reduction pipeline (version S19.1.0). (1 data file).

  3. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie

    2010-12-01

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  4. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2011-11-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  5. The 2-Year Checkup on 10 SNe IIn Discovered by Spitzer to Exhibit Late-Time (is greater than 100 Day) IR Emission

    NASA Technical Reports Server (NTRS)

    Fox, Ori Dosovitz; Chevalier, R. A.; Skrutskie, A. V.; Filippenko, A. V.; Silverman, J. M.; Ganeshalingam, M.

    2012-01-01

    Two years ago, a warm Spitzer survey of sixty-eight SNe IIn identified between the years 1998-2008 discovered 10 events with unreported late-time infrared (IR) excesses, in some cases more than 5 years post-explosion. These data nearly double the database of existing mid-IR observations of SNe IIn and offer important clues regarding the SN circumstellar.

  6. Spitzer Sees Water Loud and Clear

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B.

    The data were captured by NASA's Spitzer Space Telescope using an instrument called a spectrograph. A spectrograph collects light and sorts it according to color, or wavelength. In this case, infrared light from NGC 1333-IRAS 4B was broken up into the wavelengths listed on the horizontal axis of the plot. The sharp spikes, called spectral lines, occur at wavelengths at which the stellar object is particularly bright. The signature of water vapor is revealed in the pattern of wavelengths at which the spikes appear.

    By comparing the observed data to a model (lower curve), astronomers can also determine the physical and chemical details of the region. For example, astronomers say these data suggest that ice in a cocoon surrounding the forming star is falling inward. The ice then smacks supersonically into a dusty planet-forming disk surrounding the stellar embryo, heats up and vaporizes quickly, releasing the infrared light that Spitzer collected.

  7. Writing a success story: lessons learned from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Roellig, T. L.; Werner, M. W.

    2010-08-01

    A key to the success of the Spitzer Space Telescope (formerly SIRTF) Mission was a unique management structure that promoted open communication and collaboration among scientific, engineering, and contractor personnel at all levels of the project. This helped us to recruit and maintain the very best people to work on Spitzer. We describe the management concept that led to the success of the mission. Specific examples of how the project benefited from the communication and reporting structure, and lessons learned about technology are described.

  8. Spitzer Space Telescope proposal process

    NASA Astrophysics Data System (ADS)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  9. Colors of Ellipticals from GALEX to Spitzer

    NASA Astrophysics Data System (ADS)

    Schombert, James M.

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV, ugri, JHK and 3.6 μm. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  10. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  11. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  12. The relative influence of temperature and humidity on cutaneous function in Bos indicus and Bos taurus females

    NASA Astrophysics Data System (ADS)

    Egbunike, G. N.; Ogunmola, A. L.; Amakiri, S. F.

    1983-09-01

    The relative importance of dry- and wet-bulb temperatures on cutaneous function in Bos indicus and Bos taurus females under humid tropical climatic conditions was evaluated. The parameters investigated were sweating rate and skin temperature, while the species utilised were zebu White Fulani ( Bos indicus) and German Brown and German Black and White ( Bos taurus). The sweating rate, irrespective of breed, differed with the site of sampling and was more influenced by dry-bulb (59%) than by wet-bulb temperature (41%). Skin temperature responded more to wet-bulb temperature in White Fulani and German Black and White cattle, but not in German Brown cattle. It is concluded that the response of the animals, with respect to sweating, was similar but that the efficiency of sweating, judged by the lowering of skin temperature, was higher in Bos indicus than in Bos taurus. This, in part, may explain the higher degree of comfort demonstrated by Bos indicus under tropical conditions.

  13. Genotype x environment interactions for fatty acid profiles in Bos indicus and Bos taurus finished on pasture or grain.

    PubMed

    Bressan, M C; Rossato, L V; Rodrigues, E C; Alves, S P; Bessa, R J B; Ramos, E M; Gama, L T

    2011-01-01

    A study was conducted to characterize lipid profiles in the M. longissimus thoracis of commercial Brazilian beef and to assess how those profiles are influenced by finishing system, genetic group, and their interaction. Intramuscular fat (IMF) and fatty acid (FA) profiles were determined in 160 bulls of the Bos taurus (n = 75) and Bos indicus (n = 85) genetic groups, finished on pasture (n = 46) or with grain supplementation (n = 114) and slaughtered in a commercial abattoir. Finishing system had a major impact on the deposition of IMF, as well as on the concentration of SFA, PUFA, and their ratio, but genetic groups showed important differences in the ability to convert SFA into cis-9 MUFA and to convert 16:0 into 18:0. When compared with pasture-finished animals, those finished with grain had greater content of IMF and SFA (P < 0.01), similar amounts of MUFA (P > 0.05), and about one-half the amount of PUFA (P < 0.01). Except for MUFA, differences in FA profiles among finishing systems were mostly mediated through their effect on IMF, even though the relationship of IMF with groups of FA differed among finishing systems. Under grain finishing, B. taurus had less SFA and greater MUFA than B. indicus (P < 0.01), but no differences were observed in PUFA (P > 0.05). With pasture-finishing, no differences were observed among the 2 genetic groups in SFA and MUFA (P > 0.05), but PUFA were decreased in B. taurus (P < 0.01). When genetic groups were compared in grain-finishing, B. taurus had a decreased ability for elongation and B. indicus had a decreased aptitude for desaturation of FA. On the other hand, with pasture-finishing a greater deposition of intermediate FA from ruminal biohydrogenation was observed in B. indicus than in B. taurus. Overall, FA profiles were affected more by finishing system in B. indicus than in B. taurus.

  14. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less

  15. Planck, Herschel & Spitzer unveil overdense z>2 regions

    NASA Astrophysics Data System (ADS)

    Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve

    2014-12-01

    At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST

  16. OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary

    NASA Astrophysics Data System (ADS)

    Ryu, Y.-H.; Yee, J. C.; Udalski, A.; Bond, I. A.; Shvartzvald, Y.; Zang, W.; Figuera Jaimes, R.; Jørgensen, U. G.; Zhu, W.; Huang, C. X.; Jung, Y. K.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Calchi Novati, S.; Carey, S.; Henderson, C. B.; Beichman, C.; Gaudi, B. S.; Spitzer team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration; Bryden, G.; Howell, S. B.; Jacklin, S.; UKIRT Microlensing Team; Penny, M. T.; Mao, S.; Fouqué, Pascal; Wang, T.; CFHT-K2C9 Microlensing Survey group; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Bachelet, E.; Dominik, M.; Li, Z.; Cross, S.; Cassan, A.; Horne, K.; Schmidt, R.; Wambsganss, J.; Ment, S. K.; Maoz, D.; Snodgrass, C.; Steele, I. A.; RoboNet Team; Bozza, V.; Burgdorf, M. J.; Ciceri, S.; D’Ago, G.; Evans, D. F.; Hinse, T. C.; Kerins, E.; Kokotanekova, R.; Longa, P.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Skottfelt, J.; Southworth, J.; von Essen, C.; MiNDSTEp Team

    2018-01-01

    We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source–lens baseline object. The planet’s mass, M p = 13.4 ± 0.9 M J , places it right at the deuterium-burning limit, i.e., the conventional boundary between “planets” and “brown dwarfs.” Its existence raises the question of whether such objects are really “planets” (formed within the disks of their hosts) or “failed stars” (low-mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M host = 0.89 ± 0.07 M ⊙, and the planet has a semimajor axis a ∼ 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth–Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period.

  17. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Greene, J. E.; Ho, L. C.

    2009-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below 106 solar masses. We have obtained Spitzer IRS low-resolution spectra, covering 5-30 microns, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. We will present preliminary results from this project, including measurements of continuum shapes and dust temperatures, narrow-line region diagnostics, and PAH features, derived using the IDL code PAHFIT (Smith et al. 2007).

  18. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  19. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelluti, N.; Urry, M.; Arendt, R.

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5more » σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.« less

  20. Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Udalski, A.; Calchi Novati, S.; Chung, S.-J.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Gould, A.; Lee, C.-U.; Albrow, M. D.; Yee, J. C.; Han, C.; Hwang, K.-H.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Kim, Y.-H.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Poleski, R.; Mróz, P.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; KozLowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Wibking, B.; Spitzer Team

    2017-11-01

    We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector {{\\boldsymbol{π }}}{{E}}, from which compact constraints on the microlens properties are derived, including ≲25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in {log}q, where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ∼1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.

  1. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schombert, James M., E-mail: jschombe@uoregon.edu

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composedmore » of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.« less

  2. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, B. A.; Forrest, W.; Watson, Dan M.

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seenmore » in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.« less

  3. A Pan-STARRS1 Proper-Motion Survey for Young Brown Dwarfs in the Nearest Star-Forming Regions and a Reddening-Free Classification Method for Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene; Aller, Kimberly

    2018-01-01

    Young brown dwarfs are of prime importance to investigate the universality of the initial mass function (IMF). Based on photometry and proper motions from the Pan-STARRS1 (PS1) 3π survey, we are conducting the widest and deepest brown dwarf survey in the nearby star-forming regions, Taurus–Auriga (Taurus) and Upper Scorpius (USco). Our work is the first to measure proper motions, a robust proxy of membership, for brown dwarf candidates in Taurus and USco over such a large area and long time baseline (≈ 15 year) with such high precision (≈ 4 mas yr-1). Since extinction complicates spectral classification, we have developed a new approach to quantitatively determine reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≈ 100–5 MJup), using low-resolution near-infrared spectra. So far, our IRTF/SpeX spectroscopic follow-up has increased the substellar and planetary-mass census of Taurus by ≈ 50% and almost doubled the substellar census of USco, constituting the largest single increases of brown dwarfs and free-floating planets found in both regions to date. Most notably, our new discoveries reveal an older (> 10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. In addition, the mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes. Upon completion, our survey will establish the most complete substellar and planetary-mass census in both Taurus and USco associations, make a significant addition to the low-mass IMF in both regions, and deliver more comprehensive pictures of star formation histories.

  4. MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS-AURIGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam L.; Ireland, Michael J.; Martinache, Frantz

    2011-04-10

    We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M{sub sun}, raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that {approx}2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other {approx}1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests thatmore » fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M{sub sun}) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M{sub sun}) show a paucity of binary companions with separations of {approx}>200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M{sub B} /M{sub A} ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (free-fall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.« less

  5. Differences of skin morphology in Bos indicus, Bos taurus, and their crossbreds

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Duangjinda, M.; Vajrabukka, C.; Katawatin, Suporn

    2014-08-01

    Cutaneous evaporation is the main avenue by which cattle dissipate heat via the involvement of sweat glands and other skin components. The difference in skin morphology between B. indicus and B. taurus has been recognized, as well as differences in their ability to tolerate heat. The objective of this study was to compare skin morphology between B. indicus, B. taurus, and their crossbreds. Skin samples of Sahiwal ( B. indicus) ( n = 10, reddish brown skin) and Holstein Friesian (HF) ( B. taurus) ( n = 10, black and white skin) and crossbred of HF75% ( n = 10, black and white skin) and HF87.5 % ( n = 10, black and white skin) were biopsied for histological study, followed by measurement of skin components. The results indicated that breed significantly affected sweat gland morphology. The shape of the sweat gland, as indicated by the ratio of length/diameter, in Sahiwal was baggier in shape compared to HF (5.99 and 9.52) while values for crossbreds were intermediate (7.82, 8.45). The density and volume of sweat glands in Sahiwal (1,058 glands/cm2; 1.60 μ3 × 10-6) were higher than in HF (920 glands/cm2; 0.51 μ3x10-6) and crossbreds, both HF 75 % (709 glands/cm2; 0.68 μ3 × 10-6) and HF 87.5 % (691 glands/cm2; 0.61 μ3 × 10-6) respectively. However, capillary surface area was greater for HF (2.07 cm2) compared to Sahiwal (1.79 cm2); accordingly, the lower genetic fraction of HF in crossbred cattle showed less capillary surface area (1.83 and 1.9 cm2 for HF75% and HF87.5 %) ( P < 0.01). Nerve density was not significantly different between Sahiwal and HF but was higher in the crossbred ( P < 0.01) cattle. Moreover, the effect of skin color (black and white) was evaluated and it was found that there was an interaction ( P < 0.01) between breed and skin color on the skin components. This study reveals that there are differences in skin morphology among B. indicus, B. taurus and their crossbreds, with these differences being more or less related to the genetic

  6. Subsurface density structure of Taurus-Littrow Valley using Apollo 17 gravity data

    NASA Astrophysics Data System (ADS)

    Urbancic, N.; Ghent, R.; Johnson, C. L.; Stanley, S.; Hatch, D.; Carroll, K. A.; Garry, W. B.; Talwani, M.

    2017-06-01

    The Traverse Gravimeter Experiment (TGE) from the Apollo 17 mission was the first and only successful gravity survey on the surface of the Moon, revealing the local gravity field at Taurus-Littrow Valley (TLV). TLV is hypothesized to be a basalt-filled graben, oriented radial to Serenitatis basin. We implemented modern 3-D modeling techniques using recent high-resolution Lunar Reconnaisance Orbiter topography and image data sets to reinvestigate the subsurface structure of TLV and constrain the volcanic and tectonic history of the region. Updated topography led to significant improvements in the accuracy of free-air, Bouguer, and terrain corrections. To determine the underlying geometry for TLV, we tested a range of possible thicknesses, dips, and wall positions for the graben fill. We found that the thickness and position previously determined by Talwani et al. (1973) represent our preferred model for the data, but with walls with dips of 30°, rather than 90°. We found large model misfits due to unmodeled 3-D structure and density anomalies, as well as parameter trade-offs. We performed a sensitivity analysis to quantify the parameter trade-offs in an ideal future survey, assuming dominantly 2-D geological structure. At the TGE survey noise level (2.5 mGal), the fill thickness was constrained to ±150 m, the wall angle to ±5∘20∘ and the wall positions to ±1 km of the preferred model. This information can be used to inform the design of future lunar gravimetry experiments in regions similar to TLV.

  7. Spitzer's Complete History of SN 1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Danziger, John; Gehrz, Robert; Park, Sangwook; Woodward, Charles

    2018-05-01

    We propose to use a total of 0.4 hr to obtain 3.6 and 4.5 micron photometry of SNR 1987A at two final epochs between 11666 and 11968 days after the explosion. SN 1987A has been monitored at approximately 6 month intervals throughout the Spitzer mission. The latest IRAC data clearly show that at 3.6 and 4.5 micron, the SN emission has peaked and is now in decline. Continued observation of SN 1987A will allow us to track the decline as the blast wave moves completely past the equatorial ring (ER). The rate at which new dust is swept up should be dropping to zero, and as the presently swept up dust is gradually destroyed (or cools) the emission should continue to fade. The dust traced at these wavelengths is thought to be collisionally-heated by the SN blast wave that also gives rise to the soft X-ray emission from the ER. Early in the mission, the intensity of the mid-IR emission (24 micron) was generally well correlated with that of the X-ray emission. However, the 3.6 and 4.5 micron emission are no longer tracking the brightness of the soft X-ray emission. These differences could stem from a variety of causes, including the sputtering of the dust or changes in the morphology of the ER. Ongoing X-ray observations of the remnant are taking place. Supplementing these with IR observations is essential for determining the spatial distribution, nature, and evolution of this hot dust component. Additionally, the observations may still reveal the appearance of a new emission component from the SN ejecta which are currently interacting with the reverse shock. These observations will complete the record of Spitzer's observations of SN 1987A, spanning more than 16 years from launch to end of mission. They also provide an essential bridge to future monitoring with JWST, which will follow in Spitzer's footsteps.

  8. The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud Observed with IRAC and MIPS

    NASA Technical Reports Server (NTRS)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.; hide

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.

  9. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  10. Hubble Space Telescope,Spitzer Space Telescope

    NASA Image and Video Library

    2018-01-11

    This image showcases both the visible and infrared visualizations of the Orion Nebula. This view from a movie sequence looks down the 'valley' leading to the star cluster at the far end. The left side of the image shows the visible-light visualization, which fades to the infrared-light visualization on the right. These two contrasting models derive from observations by the Hubble and Spitzer space telescopes. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22089

  11. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  12. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  13. Near-Infrared photometry of BOs and Centaurs in support of Spitzer Space Telescope data

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Josh P.; Trilling, David; Mommert, Michael

    2014-08-01

    We propose to measure near-infrared broadband colors of Centaurs and Kuiper Belt objects (KBOs). The proposed ground-based observations will complement 3.6 and 4.5 microns photometry of these bodies obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Extending reflectances past 2.5 micron with Spitzer enables sensitive searches for absorptions in the 3 to 5 micron region, where relevant species (e.g., complex organics, H2O, CO2, CH4, hydrated silicates) have their fundamental absorption bands. In order to assess the presence of absorptions, however, the Spitzer photometry must be tied to shorter wavelength near-infrared reflectances. Recently, Wright et al. (2012) combined IRAC/Spitzer and NIR colors for a sample of cold KBOs and showed how powerful this technique is detecting the presence of volatiles. In semester 2011B we obtained Gemini NIR data for 12 KBOs (results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). In semester 2011B and 2013A we obtained Gemini NIR data for 12 and 7 KBOs respectively (part of these results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). But our sample is not yet completed and we need more time to complete our study and cover a larger number of targets from our sample of Spitzer data. Approximately 54 objects in our sample that lack NIR colors are visible from GEMINI South in 2014B semester, we propose here to observe 16 of these objects.

  14. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  15. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  16. Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies

    PubMed Central

    2013-01-01

    Background The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. Methods Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. Results Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. Conclusions The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in

  17. Bill E. Kunkle Interdisciplinary Beef Symposium: Temperament and acclimation to human handling influence growth, health, and reproductive responses in Bos taurus and Bos indicus cattle.

    PubMed

    Cooke, R F

    2014-12-01

    Temperament in cattle is defined as the fear-related behavioral responses when exposed to human handling. Our group evaluates cattle temperament using 1) chute score on a 1 to 5 scale that increases according to excitable behavior during restraint in a squeeze chute, 2) exit velocity (speed of an animal exiting the squeeze chute), 3) exit score (dividing cattle according to exit velocity into quintiles using a 1 to 5 scale where 1=cattle in the slowest quintile and 5=cattle in the fastest quintile), and 4) temperament score (average of chute and exit scores). Subsequently, cattle are assigned a temperament type of adequate temperament (ADQ; temperament score≤3) or excitable temperament (EXC; temperament score>3). To assess the impacts of temperament on various beef production systems, our group associated these evaluation criteria with productive, reproductive, and health characteristics of Bos taurus and Bos indicus-influenced cattle. As expected, EXC cattle had greater plasma cortisol vs. ADQ cattle during handling, independent of breed type (B. indicus×B. taurus, P<0.01; B. taurus, P<0.01; B. indicus, P=0.04) or age (cows, P<0.01; heifers or steers, P<0.01). In regards to reproduction, EXC females had reduced annual pregnancy rates vs. ADQ cohorts across breed types (B. taurus, P=0.03; B. indicus, P=0.05). Moreover, B. taurus EXC cows also had decreased calving rate (P=0.04), weaning rate (P=0.09), and kilograms of calf weaned/cow exposed to breeding (P=0.08) vs. ADQ cohorts. In regards to feedlot cattle, B. indicus EXC steers had reduced ADG (P=0.02) and G:F (P=0.03) during a 109-d finishing period compared with ADQ cohorts. Bos taurus EXC cattle had reduced weaning BW (P=0.04), greater acute-phase protein response on feedlot entry (P≤0.05), impaired feedlot receiving ADG (P=0.05), and reduced carcass weight (P=0.07) vs. ADQ cohorts. Acclimating B. indicus×B. taurus or B. taurus heifers to human handling improved temperament (P≤0.02), reduced plasma

  18. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16more » μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.« less

  19. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  20. Redshifts for Spitzer-detected galaxies at z 6 - old stars in the first Gyr

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Stanway, Elizabeth; Chiu, Kuenley; Douglas, Laura; Eyles, Laurence; Bunker, Andrew

    2008-02-01

    We have identified a population of star-forming galaxies at z 6 through the i-drop Lyman-break technique using HST/ACS. Using Spitzer/IRAC imaging (tracing the rest-frame optical), we discovered from SED-fitting that some of this population harbour relatively old stars (300-500Myr) with significant Balmer breaks, implying formation epochs of z 10. Our work suggests that UV photons from star formation at z 10 may play a key role in reionizing the Universe. However, these conclusions are drawn from the only field (GOODS-South) which has both deep Spitzer/IRAC imaging and many i-drop spectroscopic redshifts. Hence the global conclusions are compromised by cosmic variance. We have 72-hours on Spitzer to image 6 other sight-lines with deep ACS data; we propose to use GMOS multiobject mode to obtain spectroscopic redshifts, which are crucial to reduce the large uncertainties in fitting the stellar ages and masses, and hence inferring the preceding star formation history and the contribution to reionization.

  1. A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    DTIC Science & Technology

    2006-10-23

    spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust

  2. Spitzer Mission Operation System Planning for IRAC Warm-Instrument Characterization

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Sarrel, Marc A.; Mahoney, William A.

    2010-01-01

    This paper will describe how the Spitzer Mission Operations System planned and executed the characterization phase between Spitzer's cryogenic mission and its warm mission. To the largest extend possible, the execution of this phase was done with existing processing and procedures. The modifications that were made were in response to the differences of the characterization phase compared to normal phases before and after. The primary two categories of difference are: unknown date of execution due to uncertainty of knowledge of the date of helium depletion, and the short cycle time for data analysis and re-planning during execution. In addition, all of the planning and design had to be done in parallel with normal operations, and we had to transition smoothly back to normal operations following the transition. This paper will also describe the re-planning we had to do following an anomaly discovered in the first days after helium depletion.

  3. An Isolated Microlens Observed from K2, Spitzer, and Earth

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Udalski, A.; Huang, C. X.; Calchi Novati, S.; Sumi, T.; Poleski, R.; Skowron, J.; Mróz, P.; Szymański, M. K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Gould, A.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Spitzer Team; Bond, I. A.; Bennett, D. P.; Suzuki, D.; Rattenbury, N. J.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-11-01

    We present the result of microlensing event MOA-2016-BLG-290, which received observations from the two-wheel Kepler (K2), Spitzer, as well as ground-based observatories. A joint analysis of data from K2 and the ground leads to two degenerate solutions of the lens mass and distance. This degeneracy is effectively broken once the (partial) Spitzer light curve is included. Altogether, the lens is found to be an extremely low-mass star or brown dwarf ({77}-23+34 {M}{{J}}) located in the Galactic bulge (6.8+/- 0.4 kpc). MOA-2016-BLG-290 is the first microlensing event for which we have signals from three well-separated (∼1 au) locations. It demonstrates the power of two-satellite microlensing experiment in reducing the ambiguity of lens properties, as pointed out independently by S. Refsdal and A. Gould several decades ago.

  4. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  5. The phylogenomic position of the grey nurse shark Carcharias taurus Rafinesque, 1810 (Lamniformes, Odontaspididae) inferred from the mitochondrial genome.

    PubMed

    Bowden, Deborah L; Vargas-Caro, Carolina; Ovenden, Jennifer R; Bennett, Michael B; Bustamante, Carlos

    2016-11-01

    The complete mitochondrial genome of the grey nurse shark Carcharias taurus is described from 25 963 828 sequences obtained using Illumina NGS technology. Total length of the mitogenome is 16 715 bp, consisting of 2 rRNAs, 13 protein-coding regions, 22 tRNA and 2 non-coding regions thus updating the previously published mitogenome for this species. The phylogenomic reconstruction inferred from the mitogenome of 15 species of Lamniform and Carcharhiniform sharks supports the inclusion of C. taurus in a clade with the Lamnidae and Cetorhinidae. This complete mitogenome contributes to ongoing investigation into the monophyly of the Family Odontaspididae.

  6. VizieR Online Data Catalog: Spitzer solar-type stars list (Meyer+, 2006)

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.; Hillenbrand, L. A.; Backman, D.; Beckwith, S.; Bouwman, J.; Brooke, T.; Carpenter, J.; Cohen, M.; Cortes, S.; Crockett, N.; Gorti, U.; Henning, T.; Hines, D.; Hollenbach, D.; Kim, J. S.; Lunine, J.; Malhotra, R.; Mamajek, E.; Metchev, S.; Moro-Martin, A.; Morris, P.; Najita, J.; Padgett, D.; Pascucci, I.; Rodmann, J.; Schlingman, W.; Silverstone, M.; Soderblom, D.; Stauffer, J.; Stobie, E.; Strom, S.; Watson, D.; Weidenschilling, S.; Wolf, S.; Young, E.

    2008-01-01

    We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of 328 stars ranging in age from 3Myr to 3Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system and its habitable planets a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site. (4 data files).

  7. Dusty Lyman-alpha Emitters As Seen By Spitzer

    NASA Astrophysics Data System (ADS)

    Dolan, Kyle; Scarlata, C.; Colbert, J. W.; Teplitz, H. I.; Hayes, M.

    2013-01-01

    We have used the IRAC and MIPS Spitzer archive to derive the full mid-IR SED for the largest sample of local Lyman-alpha emitters, probing the internal activities of these sources as well as analyzing the role that dust properties play in the Lyman-alpha escape fraction. We utilized all available IRAC and MIPS data for a sample of about 100 local Lyman-alpha emitters at redshift 0.2≤z≤0.4 , originally discovered by Deharveng et al. (2008) and Cowie et al. (2011), to quantify the level of star formation (SF) and AGN activity in these sources, probing into dust-enshrouded regions that block UV and optical photons from escaping. In order to derive the total bolometric IR luminosity from 8μm to 1000μm, we fit the IR data to the template SEDs derived by Chary and Elbaz (2001). Using this information, we quantified the total star formation rate (SFR) of these galaxies and how much SF is missed by optical and UV surveys. We also identified any AGN activity and produced new estimates for AGN contamination within the population of Lyman-alpha emitters. This work has been supported by NASA's Astrophysics Data Analysis Program, Award # NNX11AH84G.

  8. VizieR Online Data Catalog: WASP-31b:HST/Spitzer transmission spectral survey (Sing+, 2015)

    NASA Astrophysics Data System (ADS)

    Sing, D. K.; Wakeford, H. R.; Showman, A. P.; Nikolov, N.; Fortney, J. J.; Burrows, A. S.; Ballester, G. E.; Deming, D.; Aigrain, S.; Desert, J.-M.; Gibson, N. P.; Henry, G. W.; Knutson, H.; Lecavelier Des Etangs, A.; Pont, F.; Vidal-Madjar, A.; Williamson, M. W.; Wilson, P. A.

    2017-11-01

    We observed two transits of WASP-31b with the HST STIS G430L grating during 2012 June 13 and 26, as well as one transit with the STIS G750L during 2012 July 10. In addition to the STIS data, observations of WASP-31b were also conducted in the infrared with WFC3 on the HST. Observations began on 2012 May 13 at 12:53 using the IR G141 grism in forward spatial scan mode over five HST orbits. We analyse two transit observations obtained using the Infrared Array Camera (IRAC) instrument (Programme 90092 with P.I. Desert) on the Spitzer space telescope in the 3.6 μm and 4.5 μm channels in subarray mode (32x32 pixel, or 39 centred on the planets host). The 3.6 μm observation was performed on UT 2013 March 9 (between 06:59 and 11:37) and the 4.5 observation was performed on UT 2013 March 19 (between 12:19 and 16:58). (1 data file).

  9. VizieR Online Data Catalog: Spitzer Atlas of Stellar Spectra (SASS) (Ardila+, 2010)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D.; Makowiecki, W.; Stauffer, J.; Song, I.; Rho, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2010-11-01

    From IRS Staring observations in the Spitzer archive we selected those stellar targets that had been observed with all the low-resolution IRS modules. We did not include known young stars with circumstellar material, stars known to harbor debris disks, or objects classified in SIMBAD as RS CVn, Be stars, or eclipsing binaries. We have also avoided classes already fully described with IRAS, ISO, or Spitzer, such as Asymptotic Giant Branch stars and rejected targets presenting IR excesses. However, note that in the case of very massive and/or evolved stars there are few objects presenting a pure photospheric spectrum. A few stars are specifically selected for their intrinsic interest regardless of their IR excess and even if the Atlas already contained another star with the same spectral type. The spectral coverage only reaches to 14um in the case of very late spectral classes (late M, L and T dwarfs) and some WR stars for which the long wavelength modules are unusable or not present in the archive. The spectral types have been taken from (in order of priority): * NStED (http://nsted.ipac.caltech.edu/), * NStars (http://nstars.nau.edu/nau_nstars/about.htm), * the Tycho-2 Spectral Type Catalog (Cat. III/231) * SIMBAD. For certain types of objects, we have used specialized catalogs as the source of the spectral types. The data were processed with the Spitzer Science Center S18.7.0 pipelined and corrected for teardrop effects, slit position uncertainties, residual flat-field errors, residual model errors, 24um flux deficit (1), fringing, and order mismatches. The Atlas files contain an error value for each wavelength, intended to represent the random 1sig error at that wavelength. This is the error provided by the SSC's S18.7.0 pipeline and propagated along the reduction procedure. The treatment of errors remains incomplete in this pipeline (2). The errors provided here should be considered carefully, before propagating them into further calculations. However, the

  10. FINDING {eta} CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S., E-mail: khan@astronomy.ohio-state.edu, E-mail: kstanek@astronomy.ohio-state.edu, E-mail: ckochanek@astronomy.ohio-state.edu

    The late-stage evolution of the most massive stars such as {eta} Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of {eta} Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby ({approx}< 4 Mpc) galaxies to search for such analogs. We find 34 candidates with a flat or rising mid-IR spectral energy distributions toward longer mid-infrared wavelengths that emit >10{sup 5} L{sub Sun} in the IRAC bands (3.6 to 8.0more » {mu}m) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 {+-} 6 surviving candidates. Since we would detect true analogs of {eta} Car for roughly 200 years post-eruption, this implies that the rate of eruptions like {eta} Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M{sub Sun} star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 {mu}m, allowing identification of {eta} Car analogs for millennia rather than centuries post-eruption.« less

  11. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  12. Reconciling the Census of Forming Stars in Gould's Belt

    NASA Astrophysics Data System (ADS)

    Gutermath, Robert

    We seek funding to construct a set of new, publicly available, value-enhanced data products for the 37 deg2 of archival Spitzer IRAC 3-8 micron and MIPS 24 micron imaging from the Spitzer Legacy surveys From Molecular Cores to Planet-forming Disks (PI Evans) and the subsequent Gould's Belt: Star Formation in the Solar Neighborhood (PI Allen; c2d/GB hereafter). These surveys comprise our canonical view of low-mass star formation, encompassing most of the nearest (<400pc) molecular clouds other than Taurus. From the proposed c2d/GB reprocessing, we will produce and deliver the following products to the Infrared Science Archive (IRSA) at IPAC for community access: - Artifact-mitigated, astrometrically-refined Spitzer mosaics at 3.6, 4.5, 5.8, 8.0, and 24 microns for all 18 clouds in c2d/GB; - Complete, band-merged, point source catalogs in all five Spitzer bands considered, combined with 2MASS and WISE photometry where available, and a census of young stellar objects (YSOs) with excess infrared emission that are selected via the Gutermuth et al. (2009; G09) YSO identification and classification techniques from the full catalogs; - Point source completeness decay data cubes at 30'' resolution for all Spitzer mosaics, and midIR luminosity completeness images built from the five-band completeness cubes for a wide range of mid-IR spectral energy distribution (SED) shapes. Our overarching goal is to provide a precise observational product that contains the means to test ever more detailed simulations of star formation and guide and supplement future observations of nearby star-forming regions and clouds at all wavelengths. A complete, internally consistent census of all YSOs exhibiting excess infrared emission and a detailed mapping of the limits of non-detections by YSO evolutionary stage for all molecular clouds and star-forming complexes observed by Spitzer within 2 kpc will have incredible value for both goals. With a full YSO census and a clearer understanding of how

  13. The Brain of the Domestic Bos taurus: Weight, Encephalization and Cerebellar Quotients, and Comparison with Other Domestic and Wild Cetartiodactyla.

    PubMed

    Ballarin, Cristina; Povinelli, Michele; Granato, Alberto; Panin, Mattia; Corain, Livio; Peruffo, Antonella; Cozzi, Bruno

    2016-01-01

    The domestic bovine Bos taurus is raised worldwide for meat and milk production, or even for field work. However the functional anatomy of its central nervous system has received limited attention and most of the reported data in textbooks and reviews are derived from single specimens or relatively old literature. Here we report information on the brain of Bos taurus obtained by sampling 158 individuals, 150 of which at local abattoirs and 8 in the dissecting room, these latter subsequently formalin-fixed. Using body weight and fresh brain weight we calculated the Encephalization Quotient (EQ), and Cerebellar Quotient (CQ). Formalin-fixed brains sampled in the necropsy room were used to calculate the absolute and relative weight of the major components of the brain. The data that we obtained indicate that the domestic bovine Bos taurus possesses a large, convoluted brain, with a slightly lower weight than expected for an animal of its mass. Comparisons with other terrestrial and marine members of the order Cetartiodactyla suggested close similarity with other species with the same feeding adaptations, and with representative baleen whales. On the other hand differences with fish-hunting toothed whales suggest separate evolutionary pathways in brain evolution. Comparison with the other large domestic herbivore Equus caballus (belonging to the order Perissodactyla) indicates that Bos taurus underwent heavier selection of bodily traits, which is also possibly reflected in a comparatively lower EQ than in the horse. The data analyzed suggest that the brain of domestic bovine is potentially interesting for comparative neuroscience studies and may represents an alternative model to investigate neurodegeneration processes.

  14. Impact of Parental Bos taurus and Bos indicus Origins on Copy Number Variation in Traditional Chinese Cattle Breeds

    PubMed Central

    Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong

    2015-01-01

    Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. PMID:26260653

  15. VizieR Online Data Catalog: Spitzer obs. of warm dust in 83 debris disks (Ballering+, 2017)

    NASA Astrophysics Data System (ADS)

    Ballering, N. P.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.

    2018-04-01

    For our sample, we used the systems with a warm component found by Ballering+ (2013, J/ApJ/775/55), where "warm" was defined as warmer than 130K. All of these systems have data available from the Multiband Imaging Photometer for Spitzer (MIPS) at 24 and 70um and from the Spitzer Infrared Spectrograph (IRS). The selected 83 targets used for our analysis are listed in Table 1. (5 data files).

  16. Possible maternal offloading of metals in the plasma, uterine and capsule fluid of pregnant ragged-tooth sharks (Carcharias taurus) on the east coast of South Africa.

    PubMed

    Naidoo, Kristina; Chuturgoon, Anil; Cliff, Geremy; Singh, Sanil; Ellis, Megan; Otway, Nicholas; Vosloo, Andre; Gregory, Michael

    2017-07-01

    We studied the possible metal offloading onto the progeny of three pregnant female ragged-tooth sharks (Carcharias taurus) (C. taurus). The presences of five metals, i.e. aluminium (Al), arsenic (As), cadmium (Cd), lead (Pb) and selenium (Se) were validated by mass spectrometry in the maternal plasma as well as the intracapsular and uterine fluids (UF) in which embryos develop. Metals were ranked in a decreasing concentration as follows: Plasma: As > Al > Se > Pb > Cd; ICF: As > Se > Al > Cd > Pb and UF: As > Se > Al > Cd > Pb. As was present in the highest concentration in all three sharks. Al, Pb and Cd were found to be the highest within the plasma, while concentrations of Se were similar in all three fluids. These results indicate that C. taurus embryos are exposed to metals during early development, but the impact of this exposure remains unknown. To the best of our knowledge, this is the first investigation to confirm the presence of metals in the fluids that surround the developing C. taurus embryos, a species that is already listed as vulnerable.

  17. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  18. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  19. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  20. Determining the 3D Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    NASA Technical Reports Server (NTRS)

    Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-01-01

    Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.

  1. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical

  2. Report of Class III Survey and Testing of Cultural Resources at Cuchillo, New Mexico.

    DTIC Science & Technology

    1986-04-01

    7.1). Domestic fauna observed during survey included numerous cattle (Bos taurus), horses (Euus caballus), and dogs (Canis familiaris). Feral forms...included honeybee (Apis mellivora); a large hive was observed in a cave within the Cuchillo Box. Wild forms seen included deer (Odocoileus hemionus

  3. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  4. Limits of operationalization: a critique of Spitzer and Endicott's (1978) proposed operational criteria for mental disorder.

    PubMed

    Wakefield, J C

    1993-02-01

    Spitzer and Endicott (1978) proposed an operational definition of mental disorder that is a more rigorous version of the brief definitions that appeared in the 3rd and revised 3rd editions of the Diagnostic and Statistical Manual of Mental Disorders. The heart of their proposal is a translation of the concept of dysfunction into operational terms. I argue that their definition fails to capture the concept of dysfunction and is subject to many counterexamples. I use my harmful dysfunction account of disorder (Wakefield, 1992a, 1992b), which interprets dysfunction in evolutionary terms, to explain both the appeal and the problems of Spitzer and Endicott's definition and to provide support for the harmful dysfunction view. I conclude that the failure of Spitzer and Endicott's sophisticated attempt at operationalization indicates that nonoperational definitions that use functional concepts must play a role in formulating valid diagnostic criteria.

  5. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysismore » of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.« less

  6. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

    NASA Astrophysics Data System (ADS)

    Karasev, D. I.; Lutovinov, A. A.

    2018-04-01

    The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = -0.20 ± 0.04, M Y = -0.470 ± 0.045, M [3.6] = -1.70 ± 0.03, M [4.5] = -1.60 ± 0.03, M [5.8] = -1.67 ± 0.03, and M [8.0] = -1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [ M/H] ≃ 0.40 ( Z ≃ 0.038) with an error of [ M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9-10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of 8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200-8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

  7. Spitzer Spectroscopy of the Transition Object TW Hya

    DTIC Science & Technology

    2010-02-24

    results bear on our understanding of the evolutionary state of the TW Hya disk . Subject headings: (stars:) circumstellar matter — (stars:) planetary systems... protoplanetary disks — stars: pre-main sequence — (stars: individual) TW Hya 1. Introduction Spectroscopy with the Spitzer Space Telescope has...region of the disk . (2) If a planet has formed with a mass sufficient to open a gap (∼ 1MJ), gas will be cleared in the vicinity of its orbit, but gap

  8. Catalogue of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Herrera-Endoqui, M.; Díaz-García, S.; Laurikainen, E.; Salo, H.

    2015-10-01

    Context. A catalogue of the features for the complete Spitzer Survey of Stellar Structure in Galaxies (S4G), including 2352 nearby galaxies, is presented. The measurements are made using 3.6 μm images, largely tracing the old stellar population; at this wavelength the effects of dust are also minimal. The measured features are the sizes, ellipticities, and orientations of bars, rings, ringlenses, and lenses. Measured in a similar manner are also barlenses (lens-like structures embedded in the bars), which are not lenses in the usual sense, being rather the more face-on counterparts of the boxy/peanut structures in the edge-on view. In addition, pitch angles of spiral arm segments are measured for those galaxies where they can be reliably traced. More than one pitch angle may appear for a single galaxy. All measurements are made in a human-supervised manner so that attention is paid to each galaxy. Aims: We create a catalogue of morphological features in the complete S4G. Methods: We used isophotal analysis, unsharp masking, and fitting ellipses to measured structures. Results: We find that the sizes of the inner rings and lenses normalized to barlength correlate with the galaxy mass: the normalized sizes increase toward the less massive galaxies; it has been suggested that this is related to the larger dark matter content in the bar region in these systems. Bars in the low mass galaxies are also less concentrated, likely to be connected to the mass cut-off in the appearance of the nuclear rings and lenses. We also show observational evidence that barlenses indeed form part of the bar, and that a large fraction of the inner lenses in the non-barred galaxies could be former barlenses in which the thin outer bar component has dissolved. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A86

  9. The Brain of the Domestic Bos taurus: Weight, Encephalization and Cerebellar Quotients, and Comparison with Other Domestic and Wild Cetartiodactyla

    PubMed Central

    Ballarin, Cristina; Povinelli, Michele; Granato, Alberto; Panin, Mattia; Corain, Livio; Peruffo, Antonella; Cozzi, Bruno

    2016-01-01

    The domestic bovine Bos taurus is raised worldwide for meat and milk production, or even for field work. However the functional anatomy of its central nervous system has received limited attention and most of the reported data in textbooks and reviews are derived from single specimens or relatively old literature. Here we report information on the brain of Bos taurus obtained by sampling 158 individuals, 150 of which at local abattoirs and 8 in the dissecting room, these latter subsequently formalin-fixed. Using body weight and fresh brain weight we calculated the Encephalization Quotient (EQ), and Cerebellar Quotient (CQ). Formalin-fixed brains sampled in the necropsy room were used to calculate the absolute and relative weight of the major components of the brain. The data that we obtained indicate that the domestic bovine Bos taurus possesses a large, convoluted brain, with a slightly lower weight than expected for an animal of its mass. Comparisons with other terrestrial and marine members of the order Cetartiodactyla suggested close similarity with other species with the same feeding adaptations, and with representative baleen whales. On the other hand differences with fish-hunting toothed whales suggest separate evolutionary pathways in brain evolution. Comparison with the other large domestic herbivore Equus caballus (belonging to the order Perissodactyla) indicates that Bos taurus underwent heavier selection of bodily traits, which is also possibly reflected in a comparatively lower EQ than in the horse. The data analyzed suggest that the brain of domestic bovine is potentially interesting for comparative neuroscience studies and may represents an alternative model to investigate neurodegeneration processes. PMID:27128674

  10. Artist's concept of topographical layout of Taurus-Littrow landing site

    NASA Image and Video Library

    1972-10-01

    S72-49761 (October 1972) --- An artist's concept illustrating the topographical layout of the Taurus-Littrow landing site of the Apollo 17 lunar landing mission. The Lunar Module touchdown point is in the center of the smooth area in the middle of the picture. The imposing mountain in the center is South Massif. A portion of North Massif is in the lower right corner of the photograph. Note the ridge-like feature extending from South Massif to North Massif. The southern portion of the ridge is called Lee Scarp and the northerly portion Lincoln Scarp. (This concept is by JSC artist Jerry Elmore).

  11. Analysis of Bos taurus and Sus scrofa X and Y chromosome transcriptome highlights reproductive driver genes

    PubMed Central

    Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang

    2017-01-01

    The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability. PMID:28903352

  12. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    NASA Astrophysics Data System (ADS)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  13. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  14. Impact of Parental Bos taurus and Bos indicus Origins on Copy Number Variation in Traditional Chinese Cattle Breeds.

    PubMed

    Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong

    2015-08-10

    Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Chemical composition of rocks and soils at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Rose, H. J., Jr.; Cuttitta, F.; Berman, S.; Brown, F. W.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.

    1974-01-01

    Seventeen soils and seven rock samples were analyzed for major elements, minor elements, and trace elements. Unlike the soils at previous Apollo sites, which showed little difference in composition at each collection area, the soils at Taurus-Littrow vary widely. Three soil types are evident, representative of (1) the light mantle at the South Massif, (2) the dark mantle in the valley, and (3) the surface material at the North Massif. The dark-mantle soils are chemically similar to those at Tranquillitatis. Basalt samples from the dark mantle are chemically similar although they range from fine to coarse grained. It is suggested that they originated from the same source but crystallized at varying depths from the surface.

  16. OGLE-2017-BLG-1130: The First Binary Gravitational Microlens Detected from Spitzer Only

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Calchi Novati, S.; Udalski, A.; Gould, A.; Mao, Shude; Zang, W.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Spitzer Team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the binary gravitational microlensing event OGLE-2017-BLG-1130 (mass ratio q ∼ 0.45), the first published case in which the binary anomaly was detected only by the Spitzer Space Telescope. This event provides strong evidence that some binary signals can be missed by observations from the ground alone but detected by Spitzer. We therefore invert the normal procedure, first finding the lens parameters by fitting the space-based data and then measuring the microlensing parallax using ground-based observations. We also show that the normal four-fold space-based degeneracy in the single-lens case can become a weak eight-fold degeneracy in binary-lens events. Although this degeneracy is resolved in event OGLE-2017-BLG-1130, it might persist in other events.

  17. Sarcocystis heydorni, n. sp. (Apicomplexa: Protozoa) with cattle (Bos taurus) and human (Homo sapiens) cycle

    USDA-ARS?s Scientific Manuscript database

    Cattle (Bos taurus) are intermediate hosts for four species of Sarcocystis, S. cruzi, S. hirsuta, S. hominis, and S. rommeli. Of these four species, mature sarcocysts of S. cruzi are thin-walled (< 1µm) whereas S. hirsuta, S. hominis, and S. rommeli have thick walls (4 µm or more). Here we describe ...

  18. VizieR Online Data Catalog: Dense cores in Taurus L1495 cloud (Marsh+, 2016)

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Kirk, J. M.; Andre, P.; Griffin, M. J.; Konyves, V.; Palmeirim, P.; Men'shchikov, A.; Ward-Thompson, D.; Benedettini, M.; Bresnahan, D. W.; di, Francesco J.; Elia, D.; Motte, F.; Peretto, N.; Pezzuto, S.; Roy, A.; Sadavoy, S.; Schneider, N.; Spinoglio, L.; White, G. J.

    2017-04-01

    The observational data on which the present catalogue is based consists of a set of images of the L1495 cloud in the Taurus star-forming region, made as part of the HGBS (Andre et al. 2010). The data were taken using PACS at 70, 160, 250, 350 and 500 microns in fast-scanning (60"/s) parallel mode. (2 data files).

  19. Advanced Optimal Extraction for the Spitzer/IRS

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Bernard-Salas, J.; Sloan, G. C.; Barry, D. J.

    2010-02-01

    We present new advances in the spectral extraction of pointlike sources adapted to the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we created a supersampled point-spread function of the low-resolution modules. We describe how to use the point-spread function to perform optimal extraction of a single source and of multiple sources within the slit. We also examine the case of the optimal extraction of one or several sources with a complex background. The new algorithms are gathered in a plug-in called AdOpt which is part of the SMART data analysis software.

  20. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.

    2010-06-10

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtainmore » total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We

  1. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy

  2. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    NASA Technical Reports Server (NTRS)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  3. Cosmic-ray exposure history at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Drozd, R. J.; Hohenberg, C. M.; Morgan, C. J.; Podosek, F. A.; Wroge, M. L.

    1977-01-01

    Recent surface history at Taurus-Littrow is dominated by emplacement of the Central Cluster and Bright Mantle morphological units, both believed to have resulted from arrival of ejecta from a large primary crater, probably Tycho. This paper reports new noble gas data for eight Apollo 17 rocks. Kr-81 - Kr cosmic ray exposure ages for these rocks affirm the observation of a pronounced grouping of ages, reinforcing the photogeologic evidence for the site-wide nature of the Central Cluster event. The consequences of post-cratering shielding changes are considered and it is concluded that the differences can reasonably be attributed to these changes, particularly because of the greater likelihood of rollover and impact fragmentation of the relatively smaller rocks from which most age data have been obtained. These considerations also lead to a more refined age estimate of 109 plus or minus 4 m.y. for Central Cluster, the Bright Mantle, and Tycho.

  4. Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; van Dokkum, Pieter; Egami, Eiichi; Fazio, Giovanni; Franx, Marijn; Gawiser, Eric; Herrera, David; Huang, Jiasheng; Labbé, Ivo; Lira, Paulina; Marchesini, Danilo; Maza, José; Quadri, Ryan; Rudnick, Gregory; van der Werf, Paul

    2006-01-01

    We present Spitzer 24 μm imaging of 1.5Survey by Yale-Chile. We detect 65% of the DRGs with KAB<23.2 mag at S24μm>~40 μJy and conclude that the bulk of the DRG population is dusty active galaxies. A mid-infrared (MIR) color analysis with IRAC data suggests that the MIR fluxes are not dominated by buried AGNs, and we interpret the high detection rate as evidence for a high average star formation rate of =130+/-30 Msolar yr-1. From this, we infer that DRGs are important contributors to the cosmic star formation rate density at z~2, at a level of ~0.02 Msolar yr-1 Mpc-3 to our completeness limit of KAB=22.9 mag.

  5. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  6. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  7. Spitzer Secondary Eclipses of HAT-P-13b

    NASA Astrophysics Data System (ADS)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  8. Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.

    2016-02-01

    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the

  9. Spitzer-IRS Spectroscopic Studies of Oxygen-Rich Asymptotic Giant Branch Star and Red Supergiant Star Dust Properties

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret

    2015-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  10. From Hot Jupiters to Super-Earths: Characterizing the Atmospheres of Extrasolar Planets with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2009-05-01

    The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.

  11. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  12. The Great Exoplanet Eclipse: Spitzer Observations of the Benchmark Sub-Saturn-Mass Planet KELT-11b

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Beatty, Thomas; Line, Michael; Kreidberg, Laura; Lopez, Eric; Stassun, Keivan; Rodriguez, Joseph; Pepper, Joshua; James, David

    2017-10-01

    KELT-11b is a unique sub-Saturn-mass planet with a super-Jupiter radius that is in orbit around a bright, metal-rich, sub-giant star. We propose to observe a single eclipse of KELT-11b with Spitzer in IRAC Channel 2, which will allow us to precisely constrain the orbital eccentricity of the planet, study atmospheric circulation in an as yet unexplored regime of planetary surface gravity and temperature, and perform comparative science with other exoplanets in order to explore the correlation between surface gravity and thermal structure. Spitzer is the only active facility capable of providing the high precision, continuous infrared eclipse photometry of KELT-11b that is required to reach these objectives. The Spitzer infrared eclipse combined with near-infrared transmission spectroscopy that we will obtain with WFC3 on the Hubble Space Telescope will ultimately enable a detailed investigation of the atmospheric properties of KELT-11b and will provide a benchmark for planning thermal observations of exoplanets with the James Webb Space Telescope.

  13. Identification and Classification of Infrared Excess Sources in the Spitzer Enhanced Imaging Products (SEIP) Catalog

    NASA Astrophysics Data System (ADS)

    Strasburger, David; Gorjian, Varoujan; Burke, Todd; Childs, Linda; Odden, Caroline; Tambara, Kevin; Abate, Antoinette; Akhtar, Nadir; Beach, Skyler; Bhojwani, Ishaan; Brown, Caden; Dear, AnnaMaria; Dumont, Theodore; Harden, Olivia; Joli-Coeur, Laurent; Nahirny, Rachel; Nakahira, Andie; Nix, Sabine; Orgul, Sarp; Parry, Johnny; Picken, John; Taylor, Isabel; Toner, Emre; Turner, Aspen; Xu, Jessica; Zhu, Emily

    2015-01-01

    The Spitzer Space Telescope's original cryogenic mission imaged roughly 42 million sources, most of which were incidental and never specifically targeted for research. These have now been compiled in the publicly accessible Spitzer Enhanced Imaging Products (SEIP) catalog. The SEIP stores millions of never before examined sources that happened to be in the same field of view as objects specifically selected for study. This project examined the catalog to isolate previously unknown infrared excess (IRXS) candidates. The culling process utilized four steps. First, we considered only those objects with signal to noise ratios of at least 10 to 1 in the following five wavelengths: 3.6, 4.5, 5.8, 8 and 24 microns, which narrowed the source list to about one million. Second, objects were removed from highly studied regions, such as the galactic plane and previously conducted infrared surveys. This further reduced the population of sources to 283,758. Third, the remaining sources were plotted using a [3.6]-[4.5] vs. [8]-[24] color-color diagram to isolate IRXS candidates. Fourth, multiple images of sixty-three outlier points from the extrema of the color-color diagram were examined to verify that the sources had been cross matched correctly and to exclude any candidate sources that may have been compromised due to image artifacts or field crowding. The team will ultimately provide statistics for the prevalence of IRXS sources in the SEIP catalog and provide analysis of those extreme outliers from the main locus of points. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  14. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  15. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    PubMed

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus).

    PubMed

    Kantanen, J; Edwards, C J; Bradley, D G; Viinalass, H; Thessler, S; Ivanova, Z; Kiselyova, T; Cinkulov, M; Popov, R; Stojanović, S; Ammosov, I; Vilkki, J

    2009-11-01

    Maternally inherited mitochondrial DNA (mtDNA) has been used extensively to determine origin and diversity of taurine cattle (Bos taurus) but global surveys of paternally inherited Y-chromosome diversity are lacking. Here, we provide mtDNA information on previously uncharacterised Eurasian breeds and present the most comprehensive Y-chromosomal microsatellite data on domestic cattle to date. The mitochondrial haplogroup T3 was the most frequent, whereas T4 was detected only in the Yakutian cattle from Siberia. The mtDNA data indicates that the Ukrainian and Central Asian regions are zones where hybrids between taurine and zebu (B. indicus) cattle have existed. This zebu influence appears to have subsequently spread into southern and southeastern European breeds. The most common Y-chromosomal microsatellite haplotype, termed here as H11, showed an elevated frequency in the Eurasian sample set compared with that detected in Near Eastern and Anatolian breeds. The taurine Y-chromosomal microsatellite haplotypes were found to be structured in a network according to the Y-haplogroups Y1 and Y2. These data do not support the recent hypothesis on the origin of Y1 from the local European hybridization of cattle with male aurochsen. Compared with mtDNA, the intensive culling of breeding males and male-mediated crossbreeding of locally raised native breeds has accelerated loss of Y-chromosomal variation in domestic cattle, and affected the contribution of genetic drift to diversity. In conclusion, to maintain diversity, breeds showing rare Y-haplotypes should be prioritised in the conservation of cattle genetic resources.

  17. COMPLETE2: Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbe, Ivo; Caputi, Karina; Bouwens, Rychard; Oesch, Pascal; Ashby, Matthew; Dunlop, James; Franx, Marijn; Fynbo, Johan; Illingworth, Garth; Le Fevre, Olivier; Marchesini, Danilo; McCracken, Henry Joy; Milvang Jensen, Bo; Muzzin, Adam; van Dokkum, Pieter

    2018-05-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. We were previously awarded only half of the requested 3000 hours in cycle 13 to complete this legacy (due to scheduling constraints), and here we propose for the second half. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/ near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of re-ionization at z=6-8 with about 10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multi-wavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  18. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  19. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  20. PSF subtraction to search for distant Jupiters with SPITZER

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles

    2015-12-01

    In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.

  1. Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.

    2017-12-01

    Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.

  2. New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database

    NASA Technical Reports Server (NTRS)

    Laher, Russ; Rector, John

    2004-01-01

    Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.

  3. Spitzer Telescope Sends Rose for Valentine Day

    NASA Image and Video Library

    2004-02-12

    A cluster of newborn stars herald their birth in this interstellar Valentine Day commemorative picture obtained with NASA Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped and rose-colored nebulosity known as NGC 7129. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus. A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon. As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons. The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are

  4. Kepler Supernova Remnant: A View from Spitzer Space Telescope

    NASA Image and Video Library

    2004-10-06

    This Spitzer false-color image is a composite of data from the 24 micron channel of Spitzer's multiband imaging photometer (red), and three channels of its infrared array camera: 8 micron (yellow), 5.6 micron (blue), and 4.8 micron (green). Stars are most prominent in the two shorter wavelengths, causing them to show up as turquoise. The supernova remnant is most prominent at 24 microns, arising from dust that has been heated by the supernova shock wave, and re-radiated in the infrared. The 8 micron data shows infrared emission from regions closely associated with the optically emitting regions. These are the densest regions being encountered by the shock wave, and probably arose from condensations in the surrounding material that was lost by the supernova star before it exploded. The composite above (PIA06908, PIA06909, and PIA06910) represent views of Kepler's supernova remnant taken in X-rays, visible light, and infrared radiation. Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images. http://photojournal.jpl.nasa.gov/catalog/PIA06910

  5. The X-Ray Properties of Five Galactic Supernova Remnants Detected by the Spitzer GLIMPSE Survey

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas G.; Rho, Jeonghee; Heinke, Craig O.; Moffitt, William P.

    2014-03-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5-0.3, G346.6-0.2, CTB 37A (G348.5+0.1), and G348.5-0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5-0.3, and G346.6-0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5-0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5-0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5-0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ~ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5-383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density ne , radiative age t rad and swept-up mass MX for each of the four X-ray-detected SNRs. Each of these values are comparable to

  6. Spitzer Space Telescope Observations of Polars

    NASA Astrophysics Data System (ADS)

    Howell, S. B.; Brinkworth, C.; Chun, H.; Thomas, B.; Stefaniak, L.; Hoard, D. W.

    2005-12-01

    We have obtained the first Spitzer Space telescope observations of short orbital period polars. Using the Infrared Array Camera (IRAC), observations have been made in four broadband filters centered at 3.6, 4.5, 5.8, and 8.0 microns of the polars V347 Pav, GG Leo, RX J0154, and EF Eri. Spectral energy distributions have been produced for all four stars and in each case indicate excess emission in the longest wavebands. We examine our observations with respect to these binaries containing late M or brown dwarf type secondaries. We discuss the implications of the observed long wavelength emission excess in terms of the presence of dust and/or other possible emission mechanisms. The impact of this finding on the evolution of polars is also presented.

  7. Detection and Identification of Sarcocystis cruzi (Protozoa: Apicomplexa) by Molecular and Ultrastructural Studies in Naturally Infected Korean Cattle (Bos taurus coreanae) from Daejeon, Korea.

    PubMed

    Choi, Tong-Il; Hong, Eui-Ju; Ryu, Si-Yun; Sim, Cheolho; Chae, Joon-Seok; Kim, Hyeon-Cheol; Park, Jinho; Choi, Kyoung-Seong; Yu, Do-Hyeon; Yoo, Jae-Gyu; Park, Bae-Keun

    2018-04-01

    To survey the prevalence of Sarcocystis infections, 210 heart samples were collected from Korean native cattle ( Bos taurus coreanae ) at an abattoir in Daejeon Metropolitan City, Republic of Korea. Sarcocysts were detected form 31 specimens (14.8%) and identified as Sarcocystis cruzi via transmission electron microscopy. The wall of S. cruzi has flattened protrusions that did not contain fibrils or microfilaments. The protrusions arose irregularly from the base, contained a fine granular substance, lacked internal microfilaments, and measured approximately 0.21-1.25 μm in length and 0.05-0.07 μm in width. Sequence analysis revealed 99.5% homology to S. cruzi . This is the first report on the prevalence of S. cruzi in native cattle from the Republic of Korea.

  8. The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.; Hillenbrand, Lynne A.; Backman, Dana; Beckwith, Steve; Bouwman, Jeroen; Brooke, Tim; Carpenter, John; Cohen, Martin; Cortes, Stephanie; Crockett, Nathan; Gorti, Uma; Henning, Thomas; Hines, Dean; Hollenbach, David; Kim, Jinyoung Serena; Lunine, Jonathan; Malhotra, Renu; Mamajek, Eric; Metchev, Stanimir; Moro-Martin, Amaya; Morris, Pat; Najita, Joan; Padgett, Deborah; Pascucci, Ilaria; Rodmann, Jens; Schlingman, Wayne; Silverstone, Murray; Soderblom, David; Stauffer, John; Stobie, Elizabeth; Strom, Steve; Watson, Dan; Weidenschilling, Stuart; Wolf, Sebastian; Young, Erick

    2006-12-01

    We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system-and its habitable planet-is a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site.

  9. SpS1-The Spitzer atlas of stellar spectra

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Makowiecki, W.; van Dyk, S.; Song, I.; Stauffer, J.; Rho, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2010-11-01

    We present Spitzer Space Telescope spectra of 147 stars (R~64 - 128, λλ = 5 - 35 μm, S/N~100) covering most spectral and luminosity classes within the HR diagram. The spectra are available from the NASA/IPAC Infrared Science Archive (IRSA) and from the first author's webpage (http://web.ipac.caltech.edu/staff/ardila/Atlas/). The Atlas contains spectra of ‘typical’ stars, which may serve to refine galactic synthesis models, study stellar atmospheres, and establish a legacy for future IR missions, such as JWST.

  10. Impact of parental Bos taurus and Bos indicus origins on copy number variation in traditional Chinese cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution o...

  11. VizieR Online Data Catalog: z=4.5 and z=5.7 LAEs properties with Spitzer (Finkelstein+, 2015)

    NASA Astrophysics Data System (ADS)

    Finkelstein, K. D.; Finkelstein, S. L.; Tilvi, V.; Malhotra, S.; Rhoads, J. E.; Grogin, N. A.; Pirzkal, N.; Dey, A.; Jannuzi, B. T.; Mobasher, B.; Pakzad, S.; Salmon, B.; Wang, J.

    2017-10-01

    The LAEs targeted by the Spitzer survey were discovered by the Large Area Lyman Alpha (LALA) Survey (Rhoads et al. 2000ApJ...545L..85R), which includes the Bootes field and has accompanying deep broadband imaging in B, V, R, I, and z' bands taken with the MOSAIC camera on the 4 m Mayall telescope at the Kitt Peak National Observatory. To select the z=4.5 and 5.7 LAE candidates the following criteria were used: (1) a secure detection (>5σ) in the narrowband filter; (2) a strong narrowband excess, i.e., the flux density in the narrowband should exceed that in the broadband at the 4σ level, this is done by requiring a narrowband-broadband color <-0.75 mag; and (3) no flux at wavelengths shorter than the expected Lyman break. The last condition implies that at z=4.5, sources are undetected in the B-band, while for z=5.7 sources, they are undetected in both the B-band and V-band. (5 data files).

  12. WATER IN COMETS 71P/CLARK AND C/2004 B1 (LINEAR) WITH SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelee-Morvan, Dominique; Woodward, Charles E.; Kelley, Michael S.

    2009-05-10

    We present 5.5-7.6 {mu}m spectra of comets 71P/Clark (2006 May 27.56 UT, r{sub h} = 1.57 AU pre-perihelion) and C/2004 B1 (LINEAR) (2005 October 15.22 UT, r{sub h} = 2.21 AU pre-perihelion and 2006 May 16.22 UT, r{sub h} = 2.06 AU post-perihelion) obtained with the Spitzer Space Telescope. The {nu}{sub 2} vibrational band of water is detected with a signal-to-noise ratio of 11-50. Fitting the spectra using a fluorescence model of water emission yields a water rotational temperature of < 18 K for 71P/Clark and {approx_equal}14 {+-} 2 K (pre-perihelion) and 23 {+-} 4 K (post-perihelion) for C/2004 B1more » (LINEAR). The water ortho-to-para ratio in C/2004 B1 (LINEAR) is measured to be 2.31 {+-} 0.18, which corresponds to a spin temperature of 26{sup +3} {sub -2} K. Water production rates are derived. The agreement between the water model and the measurements is good, as previously found for Spitzer spectra of C/2003 K4 (LINEAR). The Spitzer spectra of these three comets do not show any evidence for emission from polycyclic aromatic hydrocarbons and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp)« less

  13. MAMBO observations at 240GHz of optically obscured Spitzer sources: source clumps and radio activity at high redshift

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Magliocchetti, M.; de Zotti, G.

    2010-01-01

    Optically very faint (R > 25.5) sources detected by the Spitzer Space Telescope at 24μm represent a very interesting population at redshift z ~ (1.5-3). They exhibit strong clustering properties, implying that they are hosted by very massive haloes, and their mid-infrared emission could be powered by either dust-enshrouded star formation and/or by an obscured active galactic nucleus (AGN). We report observations carried out with the Max Planck Millimetre Bolometer (MAMBO) array at the IRAM 30-m antenna on Pico Veleta of a candidate protocluster with five optically obscured sources selected from the 24-μm Spitzer sample of the First-Look Survey. Interestingly, these sources appear to lie on a high-density filament aligned with the two radio jets of an AGN. Four out of five of the observed sources were detected. We combine these measurements with optical, infrared and radio observations to probe the nature of the candidate protocluster members. Our preliminary conclusions can be summarized as follows: the spectral energy distributions (SEDs) of all sources include both AGN and starburst contributions; the AGN contribution to the bolometric luminosities ranges between 14 and 26 per cent of the total. Such a contribution is enough for the AGN to dominate the emission at 5.8, 8 and 24μm, while the stellar component, inferred from SED fitting, prevails at 1.25mm and at λ < 4.5μm. The present analysis suggests a coherent interplay at high z between extended radio activity and the development of filamentary large-scale structures.

  14. RR Lyrae period luminosity relations with Spitzer

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian R.; Marengo, Massimo; CRRP Team

    2017-01-01

    RR Lyrae variable stars have long been known to be valuable distance indicators, but only recently has a well defined period luminosity relationship been utilized at infrared wavelengths. In my thesis, I am combining Spitzer Space Telescope data of RR Lyrae stars obtained as part of the Carnegie RR Lyrae Program with ground based NIR data to characterize the period-luminosity-metallicity (PLZ) relation and provide an independent Population II calibration of the cosmic distance scale. I will discuss the ongoing efforts to calibrate this relation using objects such as M4 and NGC 6441 and how the first data release from the Gaia mission impacts our findings. I will also compare my preliminary empirical relations to theoretical PLZ relations derived from stellar pulsation models.

  15. Spitzer-IRS Spectroscopic Studies of the Properties of Dust from Oxygen-Rich Asymptotic Giant Branch and Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Speck, A.; Volk, K.; Kemper, C.; Reach, W. T.; Lagadec, E.; Bernard, J.; McDonald, I.; Meixner, M.; Srinivasan, S.

    2014-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  16. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.

    2004-01-01

    PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.

  17. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope Using Hubble Space Telescope Flux Standards

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.

    2011-05-01

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.

  18. Modeling IR SED of AGN with Spitzer and Herschel data

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2012-12-01

    One of the remaining open issues in the context of the analysis of Active Galactic Nuclei (AGN) is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst (SB) activity. What is, in this picture, the role played by the obscur- ing dust around the nucleus and what do the state of the art AGN torus models have to say? Can the IR data provided by Spitzer and Herschel help us in extensively investigate both phenomena and, if so, how and with what limitations? In this paper we present our contribution to the efforts of answering these questions. We show some of the main results coming from a comparative study of various AGN SED modeling approaches, focusing mostly on the much-debated issue about the morphology of the dust distribution in the toroidal structure surrounding the AGN. We found that the properties of dust in AGN as measured by matching observations (be it broad band IR photometry or IR spectra) with models, strongly depend on the choice of the dust distribution. Then, we present the spec- tral energy distribution (SED) fitting procedure we developed, making make the best use of Spitzer and Herschel SPIRE mid- and far-IR observations, to dig into the role played by the possible presence of an AGN on the host galaxy's properties.

  19. Hubble and Spitzer Space Telescope Observations of the Debris Disk around the nearby K Dwarf HD 92945

    NASA Astrophysics Data System (ADS)

    Golimowski, D. A.; Krist, J. E.; Stapelfeldt, K. R.; Chen, C. H.; Ardila, D. R.; Bryden, G.; Clampin, M.; Ford, H. C.; Illingworth, G. D.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.

    2011-07-01

    We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2farcs0-3farcs0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3farcs0-5farcs1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to lsim180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a min = 4.5 μm and a size distribution proportional to a -3.7 throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M ⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low

  20. The Spitzer Survey of Stellar Structure in Galaxies (S4G): Precise Stellar Mass Distributions from Automated Dust Correction at 3.6 μm

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Meidt, Sharon E.; Schinnerer, Eva; Cisternas, Mauricio; Muñoz-Mateos, Juan Carlos; Sheth, Kartik; Knapen, Johan; van de Ven, Glenn; Norris, Mark A.; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne W.; Athanassoula, E.; Bosma, Albert; Groves, Brent; Ho, Luis C.; Gadotti, Dimitri A.; Zaritsky, Dennis; Regan, Michael; Hinz, Joannah; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Mizusawa, Trisha; Kim, Taehyun; Erroz-Ferrer, Santiago; Laine, Jarkko; Comerón, Sébastien

    2015-07-01

    The mid-infrared is an optimal window to trace stellar mass in nearby galaxies and the 3.6 μ {{m}} IRAC band has been exploited to this effect, but such mass estimates can be biased by dust emission. We present our pipeline to reveal the old stellar flux at 3.6 μm and obtain stellar mass maps for more than 1600 galaxies available from the Spitzer Survey of Stellar Structure in Galaxies (S4G). This survey consists of images in two infrared bands (3.6 and 4.5 μ {{m}}), and we use the Independent Component Analysis (ICA) method presented in Meidt et al. to separate the dominant light from old stars and the dust emission that can significantly contribute to the observed 3.6 μ {{m}} flux. We exclude from our ICA analysis galaxies with low signal-to-noise ratio ({{S}}/{{N}}\\lt 10) and those with original [3.6]-[4.5] colors compatible with an old stellar population, indicative of little dust emission (mostly early Hubble types, which can directly provide good mass maps). For the remaining 1251 galaxies to which ICA was successfully applied, we find that as much as 10%-30% of the total light at 3.6 μ {{m}} typically originates from dust, and locally it can reach even higher values. This contamination fraction shows a correlation with specific star formation rates, confirming that the dust emission that we detect is related to star formation. Additionally, we have used our large sample of mass estimates to calibrate a relationship of effective mass-to-light ratio (M/L) as a function of observed [3.6]-[4.5] color: {log}({\\text{}}M/L) = -0.339(+/- 0.057) × ([3.6]-[4.5])-0.336(+/- 0.002). Our final pipeline products have been made public through IRSA, providing the astronomical community with an unprecedentedly large set of stellar mass maps ready to use for scientific applications.

  1. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.

    2016-01-15

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc{sup −2} to over 10,000 pc{sup −2}, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifyingmore » clusters and groups as continuous regions with surface densities ≥10 pc{sup −2}, we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions.« less

  2. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  3. A Spitzer Search for Activity in Dormant Comets

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  4. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  5. Alcelaphine gammaherpesvirus 1-induced malignant catarrhal fever in a Watusi (bos taurus africanus) steer in a North American game park

    USDA-ARS?s Scientific Manuscript database

    A 10 year-old Watusi (Bos taurus africanus) steer housed at a drive-through game park in Winston, Oregon developed severe clinical illness including: fever, marked nasal discharge, injected scleral and conjunctival membranes, plus oral hemorrhages and erosions. The animal responded poorly to support...

  6. The Chandra Xbootes Survey - IV: Mid-Infrared and Submillimeter Counterparts

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Mitchell-Wynne, Ketron; Cooray, Asantha R.; Nayyeri, Hooshang

    2016-06-01

    In this work, we use a Bayesian technique to identify mid-IR and submillimeter counterparts for 3,213 X-ray point sources detected in the Chandra XBoötes Survey so as to characterize the relationship between black hole activity and star formation in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey (NDWFS), a survey imaged from the optical to the near-IR. We use a likelihood ratio analysis on Spitzer-IRAC data taken from The Spitzer Deep, Wide-Field Survey (SDWFS) to determine mid-IR counterparts, and a similar method on Herschel-SPIRE sources detected at 250µm from The Herschel Multi-tiered Extragalactic Survey to determine the submillimeter counterparts. The likelihood ratio analysis (LRA) provides the probability that a(n) IRAC or SPIRE point source is the true counterpart to a Chandra source. The analysis is comprised of three parts: the normalized magnitude distributions of counterparts and background sources, and the radial probability distribution of the separation distance between the IRAC or SPIRE source and the Chandra source. Many Chandra sources have multiple prospective counterparts in each band, so additional analysis is performed to determine the identification reliability of the candidates. Identification reliability values lie between 0 and 1, and sources with identification reliability values ≥0.8 are chosen to be the true counterparts. With these results, we will consider the statistical implications of the sample's redshifts, mid-IR and submillimeter luminosities, and star formation rates.

  7. SMA Continuum Survey of Circumstellar Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  8. VizieR Online Data Catalog: High quality Spitzer/MIPS obs. of F4-K2 stars (Sierchio+, 2014)

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.

    2016-11-01

    We used specific criteria to draw samples of stars from the entire Spitzer Debris Disk Database (see section 2.1.1). V magnitudes were taken from Hipparcos and transformed to Johnson V. All stars were also required to have observations on the Two Micron All Sky Survey (2MASS) Ks system. Additional measurements were obtained at SAAO on the 0.75m telescope using the MarkII Infrared Photometer (transformed as described by Koen et al. 2007MNRAS.380.1433K), and at the Steward Observatory 61 in telescope using a NICMOS2-based camera with a 2MASS filter set and a neutral density filter to avoid saturation. These measurements will be described in a forthcoming paper (K. Y. L. Su et al., in preparation). The original programs in which our sample stars were measured are identified in Table 1. A large majority (93%) come from seven Spitzer programs: (1) the MIPS Guaranteed Time Observer (GTO) Sun-like star observations (Trilling+ 2008ApJ...674.1086T); (2) Formation and Evolution of Planetary Systems (FEPS; Meyer+ 2006, J/PASP/118/1690); (3) Completing the Census of Debris Disks (Koerner+ 2010ApJ...710L..26K); (4) potential Space Interferometry Mission/Terrestrial Planet Finder (SIM/TPF) targets (Beichman+ 2006ApJ...652.1674B); (5) an unbiased sample of F-stars (Trilling+ 2008ApJ...674.1086T); and (6) two coordinated programs selecting stars on the basis of indicators of youth (Low+ 2005ApJ...631.1170L; Plavchan+ 2009ApJ...698.1068P). See section 2.1.2. (1 data file).

  9. Stability of Stellar Periods in the Hyades and Taurus

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Stauffer, John R.; K2 Clusters Team

    2018-06-01

    K2 has opened to us the study of high-precision light curves from which we can derive stellar rotation periods. We have presented period distributions for the Pleiades, Praesepe, Upper Sco and Rho Oph. But, how stable are the periods we are deriving from them? Early ground-based work in Orion (Rebull 2001) suggested that, for the youngest stars, about half the stars had sufficiently different spot distributions in two consecutive years such that periods could not be recovered in the second year. However, now that we have K2, precision and diurnal windowing functions are no longer really much of a concern. For a handful of stars in Hyades and Taurus, the K2 spacecraft monitored them for two non-consecutive 70d windows (campaigns 4, 2015 Feb and 13, 2017 Mar). In this poster, we examine whether or not the light curves are similar in the two epochs, and how accurately the same period can be recovered.

  10. The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.

  11. The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-12-01

    As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.

  12. Protoplanetary disks in Taurus: Probing the role of multiplicity with ALMA observations

    NASA Astrophysics Data System (ADS)

    Laos, Stefan; Akeson, Rachel L.; Jensen, Eric L. N.

    2017-01-01

    We present results from an ALMA survey of single and multiple young systems in Taurus designed to probe how protoplanetary disk mass depends on both stellar mass and multiplicity. In observations taken in Cycles 0 and 2, we detect over 25 new disks. These detections include disks around stars in both single and multiple systems and are predominantly around lower mass stars with spectral types from M0 to M6. Combined with previous detections, these observations reveal a wide range of disk mass around both primary and companion stars, and allow us to test if the relation previously seen between disk and stellar mass continues at lower stellar masses. We find that within multiple systems the ratio of primary to secondary stellar mass is not correlated with the ratio of primary to secondary disk mass. In some cases, the secondary star hosts the more massive disk, contrary to theoretical predictions. We will discuss the implications of these results for the process of planet formation in multiple systems.This work makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. and ADS/JAO.ALMA#2013.1.00105.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  13. Transits and Eclipses of the Best of the Best: 23 Hot Jupiters for Atmospheric Characterization by Spitzer, Hubble, and JWST

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Kataria, Tiffany; Knutson, Heather; Lewis, Nikole; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter; Sheppard, Kyle; Sing, David; Stevenson, Kevin; Todorov, Kamen; Wakeford, Hannah; Wilkins, Ashlee; Burrows, Adam

    2016-08-01

    We propose a program of Spitzer transit and secondary eclipse observations for 23 of the 'best of the best' hot giant planets (R > 0.8 Jupiters). We focus on planets that are already observed by HST, proposed to be observed by HST, or candiates for JWST Early Release Science observations. Our eclipse observations will measure day side temperatures that are needed for HST spectroscopy, and temperatures of the hottest and most favorable planets for JWST spectroscopy and possible phase curve observations. Several of our planets are extremely inflated, with atmospheric scale heights exceeding a thousand kilometers, yielding large atmospheric signatures during transit. Our transit photometry has the potential to detect molecular absorption by comparing transit radii and eclipse depths in the two Spitzer bands. Moreover, our precise transit depths will help to evaluate the magnitude of continuous opacity in the exoplanetary atmospheres, breaking the degeneracy between composition and cloud opacity, as recently demonstrated by Sing et al. We will thereby find the hottest and clearest giant exoplanetary atmospheres, with the largest molecular signatures, for HST and JWST spectroscopy. This will complete the Spitzer hot Jupiter legacy by providing a uniform set of transit and eclipse observations for the most favorable members of the intriguing population of close-in highly-irradiated giant planets. This unique Spitzer data set will guide efforts toward detailed atmospheric characterization of individual hot Jupiters for years to come.

  14. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  15. Differences in Beef Quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) Cattle through a Proteomic and Phosphoproteomic Approach.

    PubMed

    Rodrigues, Rafael Torres de Souza; Chizzotti, Mario Luiz; Vital, Camilo Elber; Baracat-Pereira, Maria Cristina; Barros, Edvaldo; Busato, Karina Costa; Gomes, Rafael Aparecido; Ladeira, Márcio Machado; Martins, Taiane da Silva

    2017-01-01

    Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (P<0.05). Nellore had higher phosphorylation of myosin regulatory light chain-2, alpha actin-1, triosephosphate isomerase and 14-3-3 protein epsilon. However, Angus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (P<0.05). Therefore, proteins involved in contraction and muscle organization, myofilaments expressed in fast or slow-twitch fibers and heat shock proteins localized in mitochondria or sarcoplasmic reticulum and involved in cell flux of calcium and apoptosis might be associated with differences in beef quality between Angus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force

  16. Differences in Beef Quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) Cattle through a Proteomic and Phosphoproteomic Approach

    PubMed Central

    Chizzotti, Mario Luiz; Vital, Camilo Elber; Baracat-Pereira, Maria Cristina; Barros, Edvaldo; Busato, Karina Costa; Gomes, Rafael Aparecido; Ladeira, Márcio Machado; Martins, Taiane da Silva

    2017-01-01

    Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (P<0.05). Nellore had higher phosphorylation of myosin regulatory light chain-2, alpha actin-1, triosephosphate isomerase and 14-3-3 protein epsilon. However, Angus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (P<0.05). Therefore, proteins involved in contraction and muscle organization, myofilaments expressed in fast or slow-twitch fibers and heat shock proteins localized in mitochondria or sarcoplasmic reticulum and involved in cell flux of calcium and apoptosis might be associated with differences in beef quality between Angus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force

  17. SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Kevin M.; Herbst, William; DeMarchi, Lindsay

    Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring inmore » ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.« less

  18. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, R. D.; Srinivasan, S.; Kemper, F.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amountsmore » of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.« less

  19. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongmore » the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not

  20. Conservation of the critically endangered eastern Australian population of the grey nurse shark (Carcharias taurus) through cross-jurisdictional management of a network of marine-protected areas.

    PubMed

    Lynch, Tim P; Harcourt, Robert; Edgar, Graham; Barrett, Neville

    2013-12-01

    Between 2001 and 2009, 26 marine-protected areas (MPA) were established on the east Australian seaboard, at least in part, to manage human interactions with a critically endangered population of grey nurse shark, Carcharias taurus. This network is spread across six MPA systems and includes all 19 sites outlined in the National Recovery Plan for C. taurus, though five sites remain open to some forms of fishing. The reserve network has complex cross-jurisdictional management, as the sharks occur in waters controlled by the Australian states of New South Wales (NSW) and Queensland, as well as by the Commonwealth (Federal) government. Jurisdiction is further complicated by fisheries and conservation departments both engaging in management activities within each state. This has resulted in protected area types that include IUCN category II equivalent zones in NSW, Queensland, and Commonwealth marine parks that either overlay or complement another large scaled network of protected sites called critical habitats. Across the network, seven and eight rule permutations for diving and fishing, respectively, are applied to this population of sharks. Besides sites identified by the recovery plan, additional sites have been protected as part of the general development of MPA networks. A case study at one of these sites, which historically was known to be occupied by C. taurus but had been abandoned, appears to shows re-establishment of an aggregation of juvenile and sub-adult sharks. Concurrent with the re-establishment of the aggregation, a local dive operator increased seasonal dive visitation rates at the site fourfold. As a precautionary measure, protection of abandoned sites, which includes nursery and gestating female habitats are options that may assist recovery of the east coast population of C. taurus.

  1. Conservation of the Critically Endangered Eastern Australian Population of the Grey Nurse Shark ( Carcharias taurus) Through Cross-Jurisdictional Management of a Network of Marine-Protected Areas

    NASA Astrophysics Data System (ADS)

    Lynch, Tim P.; Harcourt, Robert; Edgar, Graham; Barrett, Neville

    2013-12-01

    Between 2001 and 2009, 26 marine-protected areas (MPA) were established on the east Australian seaboard, at least in part, to manage human interactions with a critically endangered population of grey nurse shark, Carcharias taurus. This network is spread across six MPA systems and includes all 19 sites outlined in the National Recovery Plan for C. taurus, though five sites remain open to some forms of fishing. The reserve network has complex cross-jurisdictional management, as the sharks occur in waters controlled by the Australian states of New South Wales (NSW) and Queensland, as well as by the Commonwealth (Federal) government. Jurisdiction is further complicated by fisheries and conservation departments both engaging in management activities within each state. This has resulted in protected area types that include IUCN category II equivalent zones in NSW, Queensland, and Commonwealth marine parks that either overlay or complement another large scaled network of protected sites called critical habitats. Across the network, seven and eight rule permutations for diving and fishing, respectively, are applied to this population of sharks. Besides sites identified by the recovery plan, additional sites have been protected as part of the general development of MPA networks. A case study at one of these sites, which historically was known to be occupied by C. taurus but had been abandoned, appears to shows re-establishment of an aggregation of juvenile and sub-adult sharks. Concurrent with the re-establishment of the aggregation, a local dive operator increased seasonal dive visitation rates at the site fourfold. As a precautionary measure, protection of abandoned sites, which includes nursery and gestating female habitats are options that may assist recovery of the east coast population of C. taurus.

  2. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection

    PubMed Central

    O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N

    2010-01-01

    The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of ‘production diseases’ in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment. PMID:25567936

  3. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection.

    PubMed

    O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N

    2010-09-01

    The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of 'production diseases' in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment.

  4. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  5. Spitzer Science operations: the good, the bad, and the ugly

    NASA Astrophysics Data System (ADS)

    Levine, Deborah A.

    2008-07-01

    We review the Spitzer Space Telescope Science Center operations teams and processes and their interfaces with other Project elements -- what we planned early in the development of the science center, what we had at a launch and what we have now and why. We also explore the checks and balances behind building an organizational structure that supports constructive airing of conflicts and a timely resolution that balances the inputs and provides for very efficient on-orbit operations. For example, what organizational roles are involved in reviewing observing schedules, what constituency do they represent and who has authority to approve or disapprove the schedule.

  6. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  7. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.

    2010-01-01

    We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.

  8. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  9. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our

  10. Artist's concept of topographical layout of Taurus-Littrow landing site

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An artist's concept illustrating the topographical layout of the Taurus-Littrow landing site, depicting the traverses planned on the Apollo 17 lunar landing mission using the Lunar Roving Vehicle. The Roman numerals indicate the three periods of extravehicular activity (EVA). The Arabic numbers represent the station stops. The mountain in the center of the picture is South Massif. A portion of North Massif is in the lower right corner of the photograph. The names of some of the craters are: Camelot (at Station 5); Emory (nearest Station 1); Sherlock (at station 10); Steno (between Emory and Sherlock); Amundsen (at Station 2); Lara (at Station 3); Henry (nearest Station 6); Shakespeare (nearest Station 9); Cochise (nearest Station 8); and Powell (halfway between Camelot and Emory). Note the ridge-like feature extending from Station 2 to North Massif. The southern portion of the ridge is called Lee Scarp; and the Northerly portion is Lincoln Scarp. This concept is by MSC artist Jerry Elm

  11. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NASA Technical Reports Server (NTRS)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  12. Spitzer Observations of the North Ecliptic Pole

    NASA Astrophysics Data System (ADS)

    Nayyeri, H.; Ghotbi, N.; Cooray, A.; Bock, J.; Clements, D. L.; Im, M.; Kim, M. G.; Korngut, P.; Lanz, A.; Lee, H. M.; Lee, D. H.; Malkan, M.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Pearson, C.; Serjeant, S.; Smidt, J.; Tsumura, K.; Wada, T.; Zemcov, M.

    2018-02-01

    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A. = 18h00m00s, decl. = 66d33m38.ˢ552). The observations are conducted with IRAC in the 3.6 and 4.5 μm bands over an area of 7.04 deg2, reaching 1σ depths of 1.29 μJy and 0.79 μJy in the 3.6 μm and 4.5 μm bands, respectively. The photometric catalog contains 380,858 sources with 3.6 and 4.5 μm band photometry over the full-depth NEP mosaic. Point-source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be used for constraining the physical properties of extragalactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extragalactic infrared background light.

  13. Spitzer Opens New Path to Break Classic Degeneracy for Jupiter-mass Microlensing Planet OGLE-2017-BLG-1140Lb

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Skowron, J.; Jung, Y. K.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Spitzer Team; Udalski, A.; Szymański, M. K.; Mróz, P.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Ryu, Y.-H.; Shin, I.-G.; Zang, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class ({m}p≃ 1.6 {M}{{J}{{u}}{{p}}}) planet orbiting a mid-late M dwarf (M≃ 0.2 {M}ȯ ) that lies {D}LS}≃ 1.0 {kpc} in the foreground of the microlensed Galactic-bar source star. The planet–host projected separation is {a}\\perp ≃ 1.0 {au}, i.e., well beyond the snow line. By measuring the source proper motion {{\\boldsymbol{μ }}}s from ongoing long-term OGLE imaging and combining this with the lens-source relative proper motion {{\\boldsymbol{μ }}}rel} derived from the microlensing solution, we show that the lens proper motion {{\\boldsymbol{μ }}}l={{\\boldsymbol{μ }}}rel}+{{\\boldsymbol{μ }}}s is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens (2L1S)) and binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favors the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.

  14. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  15. Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    NASA Astrophysics Data System (ADS)

    Urbancic, N.; Ghent, R. R.; Johnson, C.; Stanley, S.; Hatch, D.; Carroll, K. A.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-12-01

    The Traverse Gravimeter Experiment (TGE) from the Apollo 17 mission was the first and only successful gravity survey on the surface of the Moon, revealing the local gravity field at Taurus Littrow Valley (TLV). Satellite surveys are resolution-limited due to their altitudes, making the TGE dataset a novel tool to probe the near-surface, fine-scale (<1 km) subsurface density structure of the Moon. TLV is hypothesized to be a basalt-filled graben oriented radial to Serenitatis basin. Talwani et al. [Apollo 17 Preliminary Science Report, 13 (1973)] used 2D correction and modelling techniques to derive a 1 km thickness for the subsurface basalt, assuming a rectangular geometry and densities derived from Apollo samples. We used modern 3D correction and modelling techniques and recent high-resolution Lunar Reconnaisance Orbiter topographic and image datasets to reinvestigate the subsurface structure of TLV, assuming a trapezoidal geometry for the valley. Updated topographic maps led to significant improvements in the accuracy of free-air, Bouguer and terrain corrections applied to the data. To determine the underlying geometry for TLV, we tested a range of possible thicknesses (T), dips (θ) and positions for the graben fill. We found that the thickness and position used by Talwani et al. represent the best fit to the data, but with walls that dip 30°. From sensitivity analyses we quantified the effect that different noise levels have on determining the correct model parameters. We found that less than 4 mgal noise in the gravity measurements is required to determine the valley position to within 1 km. At the noise level from the TGE data of ˜3.1 mgal, for an input model with θ=90° and a T=1 km, there will be a range in model dips and thicknesses, with θ=45-90° and T=0.9-1.1 km. Even for noise levels of 1 mgal, the range in parameters is θ=72-90° and T=0.95-1.05 km. These noise constraints are crucial for informing the design of future lunar gravimetry

  16. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  17. Physiology and Endocrinology Symposium: influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature.

    PubMed

    Paula-Lopes, F F; Lima, R S; Satrapa, R A; Barros, C M

    2013-03-01

    High environmental temperatures during the hot months of the year reduce reproductive performance in cattle. Summer heat stress depression in fertility is a multifactorial problem; however, there is evidence that the bovine germinal vesicle and maturing oocyte, as well as the early embryo, are major targets of the deleterious effects of heat stress. Such adverse effects are less pronounced in heat-tolerant breeds (Bos indicus) than heat-sensitive breeds (Bos taurus). This genetic variation results from the greater thermoregulatory ability and cellular thermoresistance of heat-tolerant breeds. Heat-induced oocyte cellular damage occurs in both cytoplasmic and nuclear compartments. Heat shock has been shown to reduce oocyte nuclear maturation, induce apoptosis, compromise oocyte cytoskeleton, and impair oocyte mitochondrial function and developmental competence. However, the oocyte cytoplasm is more susceptible to heat shock than the nucleus. This effect is greater for Bos taurus than Bos indicus oocytes. The detrimental effects of heat shock are also critical during the first cleavage divisions when most of the embryonic genome is inactive; however, the bovine embryo becomes more resistant to increased temperature as it proceeds through development. Several studies demonstrated that Bos indicus embryos are more thermotolerant than Bos taurus embryos. Adaptive changes involved in acquisition of thermotolerance are likely derived from changes in gene expression and (or) activity of biochemical molecules that control cellular functions against stress. Recently, molecules such as IGF-I and caspase inhibitor z-DEVD-fmk have been shown to exert a thermoprotective role, rescuing heat-induced oocyte and embryo cellular damage and developmental competence. Therefore, cattle genotype and thermoprotective molecules can be considered as an alternative to modulate the effects of increased temperature in reproductive function.

  18. Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain.

    PubMed

    Gama, L T; Bressan, M C; Rodrigues, E C; Rossato, L V; Moreira, O C; Alves, S P; Bessa, R J B

    2013-01-01

    Physicochemical properties and fatty acid profiles of meat from Bos indicus, Bos taurus and crossbred B. taurus×B. indicus bullocks (n=216), finished on pasture or grain, were used to estimate the effects of heterosis. Meat quality and fatty acid profiles generally benefited with crossbreeding, but the advantages from heterosis differed among finishing systems. The Warner-Bratzler shear-force in fresh and aged meat was reduced due to heterosis in pasture-finishing, but the effect was minor under grain-finishing. With pasture-finishing, heterosis caused an increase of 5% in CLA concentration, but few other changes in fatty acid profiles. In grain-finishing, heterosis caused a reduction in intramuscular fat and cholesterol, increased amounts of PUFA, n-6 fatty acids and PUFA/SFA ratio, and a decline in atherogenic index. The Δ(9) desaturase estimated activity in crossbreds showed a behavior close to B. indicus, suggesting the existence of few loci and a dominance genetic effect on enzymes involved in fatty acid synthesis and metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. YSOVAR II: Mapping YSO Inner Disk Structure in NGC 2264 with Simultaneous Spitzer and CoRoT Time Series Photometry

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2011-05-01

    We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).

  20. How to restore the fiduciary relationship. An interview with Eliot Spitzer. Interview by Louise O'Brien.

    PubMed

    Spitzer, Eliot

    2004-05-01

    Eliot Spitzer's investigations into the mutual fund and investment-banking industries have made the New York State attorney general the de facto flag bearer of corporate reform. His exposure of conflicts of interest between investment bankers and research analyst in Wall Street firms led to the $1.4 billion global settlement between regulators and banking houses in 2003. In this interview, Spitzer describes the challenge of protecting public markets from conflicts of interest, paying particular attention to how such conflicts get institutionalized in an industry. "The cases that have gotten me and my fellow regulators most upset are the ones where we've seen senior management being tolerant of rank abuses," he says. "Because then you know that the entire structure is rotten." He also points the finger squarely at boards, maintaining that board members are drawn from pools of company and industry insiders. He cites "a void in values in a lot of boardrooms," holding up executive compensation as a powerful example. "Board compensation committees ... are self-selected and interwoven--it's a rigged marketplace." He continues, "It would be interesting to see what the world would look like if CEO pay packages had to be submitted to shareholder votes." Spitzer suggests that what's really needed is for all business leaders to reinstill throughout their organizations the critical notion of a fiduciary duty--whether it is to the shareholder or to the customer. Using the mutual fund industry as an example, he also contrasts the value of enforcement with that of regulation and articulates an important--and surprisingly limited--role for government in protecting free markets.

  1. Pregnancy rate and birth rate of calves from a large-scale IVF program using reverse-sorted semen in Bos indicus, Bos indicus-taurus, and Bos taurus cattle.

    PubMed

    Morotti, F; Sanches, B V; Pontes, J H F; Basso, A C; Siqueira, E R; Lisboa, L A; Seneda, M M

    2014-03-15

    Obtaining sexed sperm from previously frozen doses (reverse-sorted semen [RSS]) provides an important advantage because of the possibility of using the semen of bulls with desired genetic attributes that have died or have become infertile but from whom frozen semen is available. We report the efficiency of RSS on the pregnancy rate and birth rate of calves in a large-scale program using ovum pick-up and in vitro embryo production (IVEP) from Bos indicus, Bos indicus-taurus, and Bos taurus cattle. From 645 ovum pick-up procedures (Holstein, Gir, and Nelore), 9438 viable oocytes were recovered. A dose of frozen semen (Holstein, Nelore, Brahman, Gir, and Braford) was thawed, and the sperm were sex-sorted and cooled for use in IVF. Additionally, IVF with sperm from three Holstein bulls with freeze-thawed, sex-sorted (RSS) or sex-sorted, freeze-thawed (control) was tested. A total of 2729 embryos were produced, exhibiting a mean blastocyst rate of 29%. Heifers and cows selected for adequate body condition, estrus, and health received 2404 embryos, and 60 days later, a 41% average pregnancy rate was observed. A total of 966 calves were born, and 910 were of a predetermined sex, with an average of 94% accuracy in determining the sex. Despite the lower blastocyst rate with freeze-thawed, sex-sorted semen compared with sex-sorted semen, (P < 0.05), the pregnancy rate (bull I, 45% vs. 40%; II, 35% vs. 50%; and III, 47% vs. 48% for RSS and control, respectively; P > 0.05) and sex-sorted efficiency (bull I, 93% vs. 98%; II, 96% vs. 94%; and III, 96% vs. 97% for RSS and control, respectively; P > 0.05) were similar for each of the three bulls regardless of the sperm type used in the IVF. The sexing of previously frozen semen, associated with IVEP, produces viable embryos with a pregnancy rate of up to 40%, and calves of the desired sex are born even if the paternal bull has acquired some infertility, died, or is located a long distance from the sexing laboratory. Furthermore

  2. Identity of Sarcocystis species of the water buffalo (Bubalus bubalis) and cattle (Bos taurus) and the suppression of Sarcocystis sinensis as a nomen nudum

    USDA-ARS?s Scientific Manuscript database

    There are uncertainties concerning the identity and host species specificity of Sarcocystis species of the water buffalo (Bubalus bubalis) and cattle (Bos taurus). Currently, in cattle three species are recognized with known endogenous stages, viz.: S. cruzi (with canine definitive host), S. hirsuta...

  3. [Detection of hydrodynamically operative tissue in the substantia spongiosa of the femoral head in Bos taurus and Ovis aries].

    PubMed

    Copf, F; Czarnetzki, A; Lierse, W; Dolenc, A

    1990-12-01

    The authors show the presence of CC-Tensulae in Bos taurus and Ovis aries. They define CC-Tensulae as tense membranes in openings between the trabeculae of spongy bone. These structures were interpreted in man as a hydrodynamic subsystem which serves the flow and the impulses of mechanical forces. The authors point especially to the similarity that exists between their findings and what has been seen in man.

  4. Close-up of lunar roving vehicle at Apollo 17 Taurus-Littrow landing site

    NASA Image and Video Library

    1972-12-12

    AS17-137-20979 (12 Dec. 1972) --- A close-up view of the lunar roving vehicle (LRV) at the Taurus-Littrow landing site photographed during Apollo 17 lunar surface extravehicular activity. Note the makeshift repair arrangement on the right rear fender of the LRV. During EVA-1 a hammer got underneath the fender and a part of it was knocked off. Astronauts Eugene A. Cernan and Harrison H. Schmitt were reporting a problem with lunar dust because of the damage fender. Following a suggestion from astronaut John W. Young in the Mission Control Center at Houston the crewmen repaired the fender early in EVA-2 using lunar maps and clamps from the optical alignment telescope lamp. Schmitt is seated in the rover. Cernan took this picture.

  5. VizieR Online Data Catalog: Spectroscopy of candidate members in Taurus (Luhman+, 2017)

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.; Loutrel, N. P.

    2017-06-01

    We have obtained optical and near-infrared spectra of candidate members of Taurus. The spectra were collected with the Gemini Near-Infrared Imager (NIRI) using the K-band grism and 0.47'' slit (1.9-2.5μm, R=700), the Gemini Multi-Object Spectrograph (GMOS) using the 400line/mm grating and 0.75'' slit (0.56-1μm, R=1500), the Marcario Low-Resolution Spectrograph (LRS) on the Hobby-Eberly Telescope (HET) using the G3 grism and 2'' slit (0.63-0.91μm, R=1100), and SpeX at the NASA Infrared Telescope Facility (IRTF) using either the prism or SXD mode (R=150/750) and 0.8'' slit (0.8-2.5μm). (7 data files).

  6. The Near and Far-IR SEDs of Spitzer GTO ULIRGs

    NASA Astrophysics Data System (ADS)

    Marshall, Jason; Armus, Lee; Spoon, Henrik

    2008-03-01

    Spectra of a sample of 109 ultraluminous infrared galaxies (ULIRGs) have been obtained as part of the Spitzer IRS GTO program, providing a dataset with which to study the underlying obscured energy source(s) (i.e., AGN and/or starburst activity) powering ULIRGs in the local universe, and providing insight into the high-redshift infrared-luminous galaxies responsible for the bulk of the star-formation energy density at z = 2-3. As part of this effort, we have developed the CAFE spectral energy distribution decomposition tool to analyze the UV to sub-mm SEDs of these galaxies (including their IRS spectra). Sufficient photometry for these decompositions exists for approximately half of the GTO ULIRGs. However, we lack crucial data for the other half of the sample in either or both the 2-5 micron gap between the near-IR passbands and the start of the IRS wavelength coverage and the far-IR beyond 100 microns. These spectral regions provide critical constraints on the amount of hot dust near the dust sublimation temperature (indicating the presence of an AGN) and the total luminosity and mass of dust in the galaxy (dominated by the coldest dust emitting at far-IR wavelengths). We therefore propose to obtain IRAC observations in all channels and MIPS observations at 70 and 160 microns for the 37 and 17 GTO ULIRGs lacking data in these wavelength ranges, respectively. Considering its very low cost of 7.3 total hours of observation, the scientific return from this program is enormous: nearly doubling the number of GTO ULIRGs with full spectral coverage, and completing a dataset that is sure to be an invaluable resource well beyond the lifetime of Spitzer.

  7. Continuing Long Term Optical and Infrared Reverberation Mapping of 17 Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling

    2018-05-01

    Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.

  8. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  9. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  10. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  11. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  12. Milliarcsecond resolution infrared observations of young stars in Taurus and Ophiuchus

    NASA Astrophysics Data System (ADS)

    Simon, M.; Howell, R. R.; Longmore, A. J.; Wilking, B. A.; Peterson, D. M.; Chen, W.-P.

    1987-09-01

    The paper reports K-band lunar occultation observations of 18 stars in the Taurus and Ophiuchus star-forming regions. Four of the systems, HQ Tau, FF Tau, and SR 12 and ROX 31 in Ophiuchus, are binaries. Their separations, as observed in the projection along the directions of their occultations, range from about 5 to 186 milliarcseconds (mas). SR 12 was also observed by the technique of speckle interferometry in the J, H, and K bands. These observations, taken together with the lunar occultation results, show that SR 12 is an about 0.30 arcsec binary system whose components are late-type stars still approaching the main sequence. The lunar occultation observations reveal extended structure associated with two objects. Elias 29 in Ophiuchus contains a central component about 7 mas in diameter, that radiates most of the flux, and a much larger diffuse component. YLW 16A, also in Ophiuchus, is an extended object about 0.5 arcsec in diameter.

  13. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    PubMed Central

    2010-01-01

    Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle. PMID:20433753

  14. Detections of CO Molecular Gas in 24 μm Bright ULIRGs at z ~ 2 in the Spitzer First Look Survey

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Tacconi, L. J.; Fiolet, N.; Sajina, A.; Omont, A.; Lutz, D.; Zamojski, M.; Neri, R.; Cox, P.; Dasyra, K. M.

    2010-05-01

    We present CO observations of nine ultra-luminous infrared galaxies (ULIRGs) at z ~ 2 with f ν(24 μm) gsim 1 mJy, previously confirmed with the mid-IR spectra in the Spitzer First Look Survey. All targets are required to have accurate redshifts from Keck/GEMINI near-IR spectra. Using the Plateau de Bure millimeter-wave Interferometer at the Institute for Radioastronomy at Millimeter Wavelengths, we detect CO J(3-2) (seven objects) or J(2-1) (one object) line emission from eight sources with integrated intensities Ic ~ 5σ-9σ. The CO-detected sources have a variety of mid-IR spectra, including strong polycyclic aromatic hydrocarbon, deep silicate absorption, and power-law continuum, implying that these molecular gas-rich objects at z ~ 2 could be either starbursts or dust-obscured active galactic nuclei (AGNs). The measured line luminosity L'CO is (1.28-3.77) × 1010 K km/s pc2. The averaged molecular gas mass M_H_2 is 1.7 × 1010 M sun, assuming CO-to-H2 conversion factor of 0.8 M sun (K km/s pc2)-1. Three sources (33%)—MIPS506, MIPS16144, and MIPS8342—have double peak velocity profiles. The CO double peaks in MIPS506 and MIPS16144 show spatial separations of 45 kpc and 10.9 kpc, allowing the estimates of the dynamical masses of 3.2 × 1011 sin-2(i) M sun and 5.4 × 1011 sin-2(i) M sun, respectively. The implied gas fraction, M gas/M dyn, is 3% and 4%, assuming an average inclination angle. Finally, the analysis of the Hubble Space Telescope/NIC2 images, mid-IR spectra, and IR spectral energy distribution revealed that most of our sources are mergers, containing dust-obscured AGNs dominating the luminosities at (3-6) μm. Together, these results provide some evidence suggesting submillimeter galaxies, bright 24 μm, z ~ 2 ULIRGs, and QSOs could represent three different stages of a single evolutionary sequence, however, a complete physical model would require much more data, especially high spatial resolution spectroscopy. Based on observations obtained at

  15. Spitzer Observations of MF 16 Nebula and the Associated Ultraluminous X-Ray Source

    DTIC Science & Technology

    2012-06-01

    reserved. Printed in the U.S.A. SPITZER OBSERVATIONS OF MF 16 NEBULA AND THE ASSOCIATED ULTRALUMINOUS X-RAY SOURCE C. T. Berghea and R. P. Dudik United...associated nebula MF 16. This ULX has very similar properties to the famous Holmberg II ULX, the first ULX to show a prominent infrared [O iv] emission...the most interesting developments in ULX history is the discovery in recent years of large ionized bubble nebulae around some of the most famous ULXs

  16. VizieR Online Data Catalog: Tori in AGNs through Spitzer/IRS spectra (Gonzalez-Martin+, 2017)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, O.; Masegosa, J.; Hernan-Caballero, A.; Marquez, I.; Almeida, C. R.; Alonso-Herrero, A.; Aretxaga, I.; Rodriguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Hernandez-Garcia, L.; Esparza-Arredondo, D.; Martinez-Paredes, M.; Bonfini, P.; Pasetto, A.; Dultzin, D.

    2018-01-01

    The sample was originally presented by Gonzalez-Martin+ (2015, J/A+A/578/A74). The LINER sample is selected as those objects with reported X-ray luminosities from Gonzalez-Martin+ (2009A&A...506.1107G) with full coverage of the 5-30um range with the InfraRed Spectrograph (Spitzer/IRS) spectra. This guarantees that all of the LINERs have LX(2-10keV) measurements. Among the 48 LINERs with Spitzer/IRS spectra, 40 mid-infrared spectra were taken from the CASSIS atlas (Lebouteiller+ 2011ApJS..196....8L) and 8 from the SINGS database (Kennicutt+ 2003PASP..115..928K). We have included in our analysis mid-infrared spatially resolved images taken with CanariCam/GTC using the filter "Si6" centered at 11.5um. These observations are part of proprietary data of a sample of faint and Compton-thick LINERs observed with CanariCam/GTC (proposal ID GTC10-14A, P.I. Gonzalez-Martin). The summary of the observations used in this paper is reported in Table 4. See section 3.2 for further explanations. (5 data files).

  17. Spitzer Trigonometric Parallaxes of L, T, and Y Dwarfs: Complementing Gaia's Optically-selected Census of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Smart, Richard; Marocco, Federico; Martin, Emily; Faherty, Jacqueline; Tinney, Christopher; Cushing, Michael; Beichman, Charles; Gelino, Christopher; Schneider, Adam; Wright, Edward; Lowrance, Patrick; Ingalls, James

    2018-05-01

    We now find ourselves at a moment in history where a parallax-selected census of nearby objects from the hottest A stars to the coldest Y dwarfs is almost a reality. With the release of Gaia DR2 in April of this year, we will be able to extract a volume-limited sample of stars out to 20 pc down to a spectral type of L5. Extending the census to colder types is much more difficult but nonetheless possible and essential. Ground-based astrometric monitoring of some of these colder dwarfs can be done with deep infrared detections on moderate to large (4+ meter) telescopes, but given the amount of time needed, only a portion of the colder objects believed to lie within 20 pc has been monitored. Our prior Spitzer observations have already enabled direct distance measures for T6 through Y dwarfs, but many 20-pc objects with spectral types between L5 and T5.5 have still not been astrometrically monitored, leaving a hole in our knowledge of this important all-sky sample. Spitzer Cycle 14 observations of modest time expenditure can rectify this problem by providing parallaxes for the 150+ objects remaining. Analysis of the brown dwarfs targeted by Spitzer is particularly important because it will provide insight into the low-mass cutoff of star formation, the shape of the mass function as inferred from the observed temperature distribution, the binary fraction of near-equal mass doubles, and the prevalence of extremely young (low-gravity) and extremely old (low metallicity) objects within the sample - all of which can be used to test and further refine model predictions of the underlying mass function.

  18. History of the Spitzer Mission

    NASA Astrophysics Data System (ADS)

    Rieke, George

    2006-12-01

    The Spitzer Telescope was launched more than 20 years after the original announcement of opportunity was released. During this long gestation period, the mission took a wide variety of forms and had to survive many political and managerial environments within NASA and in the US Government generally. Finally, approval to build the telescope was won at the height of the faster-better-cheaper era, but completing it extended beyond this phase. This poster shows the key steps in preserving the mission and why decision makers viewed it positively at critical points when it might have been killed. In the end, the scope of the mission was reduced by a factor of about five while still preserving much of its science capabilities. This reduction required a new way to streamline the science objectives by adopting a limited number of key programs and requiring that all features be justified in terms of those programs. This philosophy provided decision rules to carry out necessary descopes while preserving a coherent set of capabilities. In addition, the faster-better-cheaper guidelines requires use of a small launch vehicle, which was only possible by the invention of a new “warm launch” telescope concept, in which the telescope would cool primarily by radiation into space after launch. Both of these concepts are critical to the approach to future missions such as JWST. This work is partially supported by contract 1255094 from JPL/Caltech to the University of Arizona.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less

  20. Rock elastic properties and near-surface structure at Taurus-Littrow. [strain measurement of lunar basalt and breccia

    NASA Technical Reports Server (NTRS)

    Trice, R.; Warren, N.; Anderson, O. L.

    1974-01-01

    Linear strain measurements are presented for two lunar basalts, 14310,82 and 71055,15 and one breccia, 15498,23 to 5 kb hydrostatic pressure. Compressional and shear acoustic velocities to 5 kb are also presented for the basalts, 14310,82 and 71055,15. These elastic properties, along with geological, seismological and rock mechanics considerations are consistent with a model of the structure of the Taurus-Littrow valley as follows, a thin surface regolith overlying a fractured mixture of basalt flows and ejecta material which in turn overlies a coherent breccia of highland ejecta debris.

  1. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  2. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Technical Reports Server (NTRS)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  3. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Yee, J. C.; Carey, S.; Poleski, R.; Skowron, J.; Kozłowski, S.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Albrow, M.; Beaulieu, J. P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Lončarić, K.; McDougall, A.; Morales, J. C.; Ranc, C.; Zhu, W.; PLANET Collaboration; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Fukunaga, D.; Inayama, K.; Koshimoto, N.; Namba, S.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Collaboration; Maoz, D.; Kaspi, S.; Friedmann, M.; Wise Group; Bachelet, E.; Figuera Jaimes, R.; Bramich, D. M.; Tsapras, Y.; Horne, K.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Kains, N.; RoboNet Collaboration; Bozza, V.; Dominik, M.; Jørgensen, U. G.; Alsubai, K. A.; Ciceri, S.; D'Ago, G.; Haugbølle, T.; Hessman, F. V.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Skottfelt, J.; Southworth, J.; Starkey, D.; Surdej, J.; Wertz, O.; Zarucki, M.; MiNDSTEp Consortium; Gaudi, B. S.; Pogge, R. W.; DePoy, D. L.; μFUN Collaboration

    2015-05-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ˜1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun’s galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  4. Herschel - PACS Survey Of Protoplanetary Disks In Taurus - Auriga Observations Of [O I] And [C Ii], And Far-Infrared Continuum

    NASA Technical Reports Server (NTRS)

    Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol; hide

    2013-01-01

    The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.

  5. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    NASA Astrophysics Data System (ADS)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  6. Brood Ball-Mediated Transmission of Microbiome Members in the Dung Beetle, Onthophagus taurus (Coleoptera: Scarabaeidae)

    PubMed Central

    Estes, Anne M.; Hearn, David J.; Snell-Rood, Emilie C.; Feindler, Michele; Feeser, Karla; Abebe, Tselotie

    2013-01-01

    Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The

  7. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independentmore » of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.« less

  8. The Carla Survey: Insights From The Densest Carla Structures At 1.4 < Z < 2.8.

    NASA Astrophysics Data System (ADS)

    Noirot, Gaël; Stern, Daniel; Wylezalek, Dominika; Cooke, Elizabeth A.; Mei, Simona; De Breuck, Carlos; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Galametz, Audrey; Gonzalez, Anthony H.; Hatch, Nina A.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.

    2017-06-01

    Radio-loud AGN (RLAGN) tend to reside in the most massive dark matter halos, and have a long history of being used to efficiently identify rich high-z structures (i.e., clusters and protoclusters). Our team contributed to this effort with a targeted 400hr Spitzer program surveying 420 RLAGN (radio-loud quasars and high-z radio galaxies) at z=1.3-3.2 across the full sky: Clusters Around RLAGN (CARLA; Wylezalek+2013,2014). The CARLA Survey identified 200 cluster candidates at z=1.3-3.2 as 2-8σ overdensities of red color-selected Spitzer/IRAC galaxies around the targeted powerful RLAGN. We present results from our follow-up 40-orbit HST program on the 20 densest CARLA cluster candidates at z=1.4-2.8 (Noirot+2016,2017). We spectroscopically confirm 16/20 distant structures associated with the RLAGN, up to z=2.8. For the first time at these redshifts, we statistically investigate the star-formation content of a large sample of galaxies in dense structures. We show that >10^(10) M⊙ cluster galaxies form significantly fewer stars than their field star-forming counterparts at all redshifts within 1.4 ≤ z ≤ 2. This survey represents a unique and large homogenous sample of spectroscopically confirmed clusters at high redshifts, ideal to investigate quenching mechanisms in dense environments.

  9. THE SPITZER-IRAC POINT-SOURCE CATALOG OF THE VELA-D CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strafella, F.; Elia, D.; Campeggio, L., E-mail: francesco.strafella@le.infn.i, E-mail: loretta.campeggio@le.infn.i, E-mail: eliad@oal.ul.p

    2010-08-10

    This paper presents the observations of Cloud D in the Vela Molecular Ridge, obtained with the Infrared Array Camera (IRAC) camera on board the Spitzer Space Telescope at the wavelengths {lambda} = 3.6, 4.5, 5.8, and 8.0 {mu}m. A photometric catalog of point sources, covering a field of approximately 1.2 deg{sup 2}, has been extracted and complemented with additional available observational data in the millimeter region. Previous observations of the same region, obtained with the Spitzer MIPS camera in the photometric bands at 24 {mu}m and 70 {mu}m, have also been reconsidered to allow an estimate of the spectral slopemore » of the sources in a wider spectral range. A total of 170,299 point sources, detected at the 5{sigma} sensitivity level in at least one of the IRAC bands, have been reported in the catalog. There were 8796 sources for which good quality photometry was obtained in all four IRAC bands. For this sample, a preliminary characterization of the young stellar population based on the determination of spectral slope is discussed; combining this with diagnostics in the color-magnitude and color-color diagrams, the relative population of young stellar objects (YSOs) in different evolutionary classes has been estimated and a total of 637 candidate YSOs have been selected. The main differences in their relative abundances have been highlighted and a brief account for their spatial distribution is given. The star formation rate has also been estimated and compared with the values derived for other star-forming regions. Finally, an analysis of the spatial distribution of the sources by means of the two-point correlation function shows that the younger population, constituted by the Class I and flat-spectrum sources, is significantly more clustered than the Class II and III sources.« less

  10. The Spitzer-IRAC Point-source Catalog of the Vela-D Cloud

    NASA Astrophysics Data System (ADS)

    Strafella, F.; Elia, D.; Campeggio, L.; Giannini, T.; Lorenzetti, D.; Marengo, M.; Smith, H. A.; Fazio, G.; De Luca, M.; Massi, F.

    2010-08-01

    This paper presents the observations of Cloud D in the Vela Molecular Ridge, obtained with the Infrared Array Camera (IRAC) camera on board the Spitzer Space Telescope at the wavelengths λ = 3.6, 4.5, 5.8, and 8.0 μm. A photometric catalog of point sources, covering a field of approximately 1.2 deg2, has been extracted and complemented with additional available observational data in the millimeter region. Previous observations of the same region, obtained with the Spitzer MIPS camera in the photometric bands at 24 μm and 70 μm, have also been reconsidered to allow an estimate of the spectral slope of the sources in a wider spectral range. A total of 170,299 point sources, detected at the 5σ sensitivity level in at least one of the IRAC bands, have been reported in the catalog. There were 8796 sources for which good quality photometry was obtained in all four IRAC bands. For this sample, a preliminary characterization of the young stellar population based on the determination of spectral slope is discussed; combining this with diagnostics in the color-magnitude and color-color diagrams, the relative population of young stellar objects (YSOs) in different evolutionary classes has been estimated and a total of 637 candidate YSOs have been selected. The main differences in their relative abundances have been highlighted and a brief account for their spatial distribution is given. The star formation rate has also been estimated and compared with the values derived for other star-forming regions. Finally, an analysis of the spatial distribution of the sources by means of the two-point correlation function shows that the younger population, constituted by the Class I and flat-spectrum sources, is significantly more clustered than the Class II and III sources.

  11. Internal artificial vagina (IAV) to assess breeding behavior of young Bos taurus and Bos indicus bulls.

    PubMed

    Cruz, F B; Lohn, L; Marinho, L S R; Mezzalira, J C; Neto, S Gaudencio; Martins, L T; Vieira, A D; Barth, A; Mezzalira, A

    2011-07-01

    Bull breeding soundness evaluation (BBSE) usually neglects the libido and mating ability evaluation. The internal artificial vagina (IAV) permits semen sampling, as well as mating ability evaluation. Few studies have been performed using IAV with young bulls and there are none with Bos indicus bulls. The present study evaluated sexual behavior, mating ability and semen quality in young Bos taurus (Devon) and B. indicus (Nellore) bulls using the IAV device. In the first experiment, 52 Devon bulls, 18-25 months old were observed, and the behavior and mating ability recorded over a 10-min period within a restrained mount-cow with an IAV inserted. In the second experiment, 20 Nellore bulls, 20-30 months old were evaluated over a 20 min period. Of the 52 Devon bulls, 45 (86.5%) had semen recovered with the IAV, 31 (69.0%) were considered satisfactory. Nellore bulls exhibited a different sexual behavior, with 10 bulls not showing any interest in the females. Four bulls demonstrated sexual interest only once, e.g., sniffing, two showed interest on more than one occasion, and four had more than two mounts or mounting attempts. None out of the Nellore bulls was collected with IAV. The IAV was an effective and welfare-promoting animal technology for the evaluation of semen quality and mating ability of B. taurus bulls. However, the IAV was not adequate for young Nellore bulls, probably due to their quiescent sexual behavior and delayed sexual maturity. Further studies are needed to evaluate the performance of the IAV for older Nellore bulls. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Star Formation as Seen by the Infrared Array Camera on Spitzer

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Allen, L.; Megeath, T.; Barmby, P.; Calvet, N.; Fazio, G.; Hartmann, L.; Myers, P.; Marengo, M.; Gutermuth, R.

    2004-01-01

    The Infrared Array Camera (IRAC) onboard Spitzer has imaged regions of star formation (SF) in its four IR bands with spatial resolutions of approximately 2"/pixel. IRAC is sensitive enough to detect very faint, embedded young stars at levels of tens of Jy, and IRAC photometry can categorize their stages of development: from young protostars with infalling envelopes (Class 0/1) to stars whose infrared excesses derive from accreting circumstellar disks (Class 11) to evolved stars dominated by photospheric emission. The IRAC images also clearly reveal and help diagnose associated regions of shocked and/or PDR emission in the clouds; we find existing models provide a good start at explaining the continuum of the SF regions IRAC observes.

  13. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-01-01

    Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.

  14. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less

  15. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2012-12-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.

  16. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2013-10-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.

  17. Spectroscopic Confirmation of a Massive Red-sequence Selected Galaxy Cluster at Z=1.34 in the SpARCS-South Cluster Survey

    NASA Technical Reports Server (NTRS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.

  18. Future Extragalactic Surveys

    NASA Astrophysics Data System (ADS)

    Blain, Andrew

    2007-12-01

    The technology for mega-pixel mm/submm-wave cameras is being developed, and 10,000-pixel cameras are close to being deployed. These parameters correspond to degree-sized fields, and challenge the optical performance of current telescopes. Next-generation cameras will enable a survey of a large fraction of the sky, to detect active and star-forming dust-enshrouded galaxies. However, to avoid being limited by confusion, and finding only `monsters' it is necessary to push to large telescopes and short wavelengths. The CCAT project will enable the necessary performance to survey the sky to detect ultraluminous galaxies at z>2, each of which can then be imaged in detail with ALMA. The combination of image quality, collecting area and field-of-view will also enable CCAT to probe much deeper, to detect all the sources in legacy fields from the Spitzer and Herschel Space Telescopes. Unlike ALMA, CCAT will still be limited to detecting `normal' galaxies at z 3-5; however, by generating huge catalogs, CCAT will enable a dramatic increase in ALMA's efficiency, and almost completely remove the need for ALMA to conduct its own imaging survey. I will discuss the nature of galaxy surveys that will be enabled by CCAT, the issues of prioritizing and executing follow-up imaging spectroscopy with ALMA, and the links with the forthcoming NASA WISE mission, and future space-based far-infrared missions.

  19. Apollo 17 lunar module "Challenger" liftoff from Taurus-Littrow landing site

    NASA Image and Video Library

    1972-12-14

    S72-55421 (14 Dec. 1972) --- The Apollo 17 Lunar Module (LM) "Challenger" ascent stage leaves the Taurus-Littrow landing site as it makes its spectacular liftoff from the lunar surface, as seen in this reproduction taken from a color television transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle (LRV). The LRV-mounted TV camera, remotely controlled from the Mission Control Center (MCC) in Houston, made it possible for people on Earth to watch the fantastic event. The LM liftoff was at 188:01:36 ground elapsed time, 4:54:36 p.m. (CST), Thursday, Dec. 14, 1972. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, returned from the lunar surface to rejoin the Command and Service Modules (CSM) orbiting the moon. Astronaut Ronald E. Evans remained with the CSM in lunar orbit while Cernan and Schmitt explored the moon. The LM descent stage is used as a launching platform and remains behind on the moon. Here, the two stages have completely separated and the ascent stage is headed skyward.

  20. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

    1985-04-01

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutivemore » models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations.« less

  1. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  2. The Feedback of Star Formation Based on Large-scale Spectroscopic Mapping Technology

    NASA Astrophysics Data System (ADS)

    Li, H. X.

    2017-05-01

    Star Formation is a fundamental topic in astrophysics. Although there is a popular model of low-mass star formation, every step of the process is full of physical and chemical complexity. One of the key questions is the dynamical feedback during the process of star formation. The answer of this question will help us to understand the star formation and the evolution of molecular clouds. We have identified outflows and bubbles in the Taurus molecular cloud based on the ˜ 100 deg2 Five College Radio Astronomy Observatory 12CO(1-0) and 13CO(1-0) maps and the Spitzer young stellar object (YSO) catalog. In the main 44 deg2 area of Taurus, we found 55 outflows, of which 31 were previously unknown. We also found 37 bubbles in the entire 100 deg2 area of Taurus, all of which had not been identified before. After visual inspection, we developed an interactive IDL pipeline to confirm the outflows and bubbles. This sample covers a contiguous region with a linear spatial dynamic range of ˜ 1000. Among the 55 outflows, we found that bipolar, monopolar redshifted, and monopolar blueshifted outflows account for 45%, 44%, and 11%, respectively. There are more red lobes than blue ones. The occurrence of more red lobes may result from the fact that Taurus is thin. Red lobes tend to be smaller and younger. The total mass and energy of red lobes are similar to blue lobes on average. There are 3 expanding bubbles and 34 broken bubbles among all the bubbles in Taurus. There are more outflow-driving YSOs in Class I, Flat, and Class II while few outflow-driving YSOs in Class III, which indicates that outflows more likely appear in the earlier stage (Class I) than in the later phase (Class III) of star formation. There are more bubble-driving YSOs of Class II and Class III while there are few bubble-driving YSOs of Class I and Flat, implying that the bubble structures are more likely to occur in the later stage of star formation. The total kinetic energy of the identified outflows is

  3. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coil, Alison L.; Moustakas, John; Aird, James

    2011-11-01

    We present the PRIsm MUlti-object Survey (PRIMUS), a spectroscopic faint galaxy redshift survey to z {approx} 1. PRIMUS uses a low-dispersion prism and slitmasks to observe {approx}2500 objects at once in a 0.18 deg{sup 2} field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5 m telescope at Las Campanas Observatory. PRIMUS covers a total of 9.1 deg{sup 2} of sky to a depth of i{sub AB} {approx} 23.5 in seven different deep, multi-wavelength fields that have coverage from the Galaxy Evolution Explorer, Spitzer, and either XMM or Chandra, as well asmore » multiple-band optical and near-IR coverage. PRIMUS includes {approx}130,000 robust redshifts of unique objects with a redshift precision of {sigma}{sub z}/(1 + z) {approx} 0.005. The redshift distribution peaks at z {approx} 0.6 and extends to z = 1.2 for galaxies and z = 5 for broad-line active galactic nuclei. The motivation, observational techniques, fields, target selection, slitmask design, and observations are presented here, with a brief summary of the redshift precision; a forthcoming paper presents the data reduction, redshift fitting, redshift confidence, and survey completeness. PRIMUS is the largest faint galaxy survey undertaken to date. The high targeting fraction ({approx}80%) and large survey size will allow for precise measures of galaxy properties and large-scale structure to z {approx} 1.« less

  4. Physical characterization of Warm Spitzer-observed near-Earth objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbó, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling, D.E. et al. [2010]. Astron. J. 140, 770-784. http://dx.doi.org/10.1088/0004-6256/140/3/770). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (˜0.7-2.5 μm) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with Band Area Ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a

  5. Characterizing the Protostars in the Herschel Survey of Cygnus-X

    NASA Astrophysics Data System (ADS)

    Kirk, James; Hora, J. L.; Smith, H. A.; Herschel Cygnus-X Group

    2014-01-01

    The Cygnus-X complex is an extremely active region of massive star formation at a distance of ~1.4 kpc which can be studied with higher sensitivity and less confusion than more distant regions. The study of this region is important in improving our understanding of the formation processes and protostellar phases of massive stars. A previous Spitzer Legacy survey of Cygnus-X mapped the distributions of Class I and Class II YSOs within the region and studied the interaction between massive young stars and clusters of YSOs. Using data from the recent Herschel survey of the region, taken with the PACS and SPIRE instrument (70-500 microns), we are expanding this study of star formation to the youngest and most deeply embedded objects. Using these data we will expand the sample of massive protostars and YSOs in Cygnus-X, analyze the population of infrared dark clouds and their embedded objects, construct Spectral Energy Distributions (SEDs) using pre-existing Spitzer and near-IR data sets (1-500 microns), and fit these sources with models of protostars to derive luminosities and envelope masses. The derived luminosities and masses will enable us to create evolutionary diagrams and test models of high-mass star formation. We will also investigate what role OB associations, such as Cyg OB2, play in causing subsequent star formation in neighboring clouds, providing us with a comprehensive picture of star formation within this extremely active complex.

  6. Spitzer Observations of the X-ray Sources of NGC 4485/90

    NASA Astrophysics Data System (ADS)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  7. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  8. Spitzer observations of two mission-accessible, tiny asteroids

    NASA Astrophysics Data System (ADS)

    Mommert, M.; Hora, J.; Farnocchia, D.; Chesley, S.; Vokrouhlicky, D.; Trilling, D.; Mueller, M.; Harris, A.; Smith, H.; Fazio, G.

    2014-07-01

    Small asteroids are most likely collisional fragments of larger objects and make up a large fraction of the near-Earth-object (NEO) population. Despite their abundance, little is known about the physical properties of these objects, which is mainly due to their faintness, which also impedes their discovery. We report on Spitzer Space Telescope observations of two small NEOs, both of which are of interest as potential spacecraft targets. We observed NEOs 2009 BD using 25 hrs and 2011 MD using ˜20 hrs of Spitzer Infrared Array Camera Channel 2 time. For each target, we have combined the data into maps in the moving frame of the target, minimizing the background confusion. We did not detect 2009 BD and place an upper limit on its flux density, but we detected 2011 MD as a 2.2σ detection. We have analyzed the data on both objects in a combined model approach, using an asteroid thermophysical model and a model of non-gravitational forces acting on the object. As a result, we are able to constrain the physical properties of both objects. In the case of 2009 BD (Mommert et al. 2014), a wealth of existing astrometry data significantly constrains the physical properties of the object. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9±0.3 m-sized massive rock body (bulk density ρ=2.9±0.5 g cm^{-3}) with an extremely high albedo of 0.85_{-0.10}^{+0.20} that is covered with regolith-like material, causing it to exhibit a low thermal inertia (thermal inertia Γ=30_{-10}^{+20} SI units). The second solution suggests 2009 BD to be a 4±1 m-sized asteroid with p_{V}=0.45_{-0.15}^{+0.35} that consists of a collection of individual bare rock slabs (Γ = 2000±1000 SI units, ρ = 1.7_{-0.4}^{+0.7} g cm^{-3}). We are unable to rule out either solution based on physical reasoning. The preliminary analysis of 2011 MD shows this object as a ˜6 m-sized asteroid with an albedo of ˜0.3. Additional constraints on the physical properties of these

  9. A Spitzer search for transits of radial velocity detected super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less

  10. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  11. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. Anmore » error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.« less

  12. Mid-ir Properties Of Seyferts: Spitzer/irs Spectroscopy Of The Iras 12µM Seyfert Sample

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Charmandaris, V.; Huang, J.

    2009-05-01

    The study of Seyfert galaxies is of particular interest as they trace the build up of SMBH at the centers of galaxies and they are responsible for the most of the cosmic X-ray background at redshift z 0.8. Given the high obscuration of their nuclei by dust extinction, a large fraction of their emitted radiation is absorbed and reemitted in the infrared. It has been recently demonstrated that mid-infrared spectroscopy, in particular with ISO and Spitzer, is a powerful tool to probe the physics of the radiation field of deeply enshrouded galactic nuclei. Here we present our analysis on the properties of Seyfert galaxies based mostly on our uniformly extracted low-resolution Spitzer/IRS 5.5-35micron spectra for 103 Seyfert galaxies, nearly 90% of the local 12 µm IRAS Seyfert sample. We find that we are able to disentangle the AGN/starburst contribution of the mid-IR emission, and estimate the circumnuclear star formation rate using typical mid-IR tracers. We also find that the mid-IR properties of Type 1 and Type 2 Seyferts are indistinguishable at a given luminosiry range, placing constrains both on the infrared optical depth to their nuclei galaxies as well as to the applicability of the unified AGN model.

  13. Spitzer Observations of a 24 μm Shadow: Bok Globule CB 190

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Bieging, John H.; Rieke, George H.; Shirley, Yancy L.; Balog, Zoltan; Gordon, Karl D.; Green, Elizabeth M.; Keene, Jocelyn; Kelly, Brandon C.; Rubin, Mark; Werner, Michael W.

    2007-08-01

    We present Spitzer observations of the dark globule CB 190 (LDN 771). We observe a roughly circular 24 μm shadow with a 70" radius. The extinction profile of this shadow matches the profile derived from 2MASS photometry at the outer edges of the globule and reaches a maximum of ~32 visual magnitudes at the center. The corresponding mass of CB 190 is ~10 Msolar. Our 12CO and 13CO J=2-1 data over a 10'×10' region centered on the shadow show a temperature ~10 K. The thermal continuum indicates a similar temperature for the dust. The molecular data also show evidence of freezeout onto dust grains. We estimate a distance to CB 190 of 400 pc using the spectroscopic parallax of a star associated with the globule. Bonnor-Ebert fits to the density profile, in conjunction with this distance, yield ξmax=7.2, indicating that CB 190 may be unstable. The high temperature (56 K) of the best-fit Bonnor-Ebert model is in contradiction with the CO and thermal continuum data, leading to the conclusion that the thermal pressure is not enough to prevent free-fall collapse. We also find that the turbulence in the cloud is inadequate to support it. However, the cloud may be supported by the magnetic field, if this field is at the average level for dark globules. Since the magnetic field will eventually leak out through ambipolar diffusion, it is likely that CB 190 is collapsing or in a late precollapse stage. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  14. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphael; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy; Hofstadter, Mark; Sandell, Goran; Dowell, Charles

    2014-05-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the atmosphere the homopause is much higher pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 10 μbar being H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of 'programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  15. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphel; Encrenaz, Therese; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Cavalie, Thibault; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy K.; Hofstadter, Mark; Sandell, Goran H.; Dowell, C. Darren; Pantin, Eric; Fujiyoshi, Takuya

    2014-11-01

    Photometric and spectroscopic observations of Uranus in the thermal infrared were combined to create self-consistent models of its global-mean temperature profile and vertical distribution of gases. These were derived from a suite of observations from Spitzer and Herschel, together with ground-based observations from UKIRT, CSO, Gemini, VLT and Subaru. Observations of the collision-induced absorption and quadrupoles of H2 have constrained the temperature structure for pressures of nearly 2 bars down to 0.1 millibars. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in such a way to be consistent with the mixing ratios of hydrocarbons. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the homopause is at much higher atmospheric pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 30 µbar being H2O and CO2. The ratio of the oxygen-bearing molecules is consistent with exogenic origins in KBOs or comets. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. This model is of ‘programmatic’ interest because it serves as a standard calibration source; the cross-comparison of its spectrum with model spectra for Mars and Neptune shows consistency to within 3%. Near equinox, the IRS spectra at different longitudes showed rotationally variable stratospheric emission that is consistent with a temperature anomaly ≤10 K near ~0.1-0.2 mbar. Spatial variability of tropospheric temperatures observed in ground-based observations from 2006 to 2011 is generally consistent with Voyager infrared (IRIS) results.

  16. A Survey of Stellar Populations in Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Pandya, Viraj; Brodie, Jean; Glaccum, Bill; van Dokkum, Pieter; Alabi, Busola; Cohen, Yotam; Danieli, Shany; Abraham, Bob; Martinez-Delgado, David; Greco, Johnny; Greene, Jenny

    2018-05-01

    Ultra-diffuse galaxies (UDGs) are a recently identified, mysterious class of galaxies with luminosities like dwarfs, but sizes like giants. Quiescent UDGs are found in all environments from cluster to isolated, and intensive study has revealed three very distinctive sub-types: low surface brightness dwarfs, 'failed galaxies', and low-dark-matter UDGs. Following up on our recent, successful Spitzer pilot work to characterize the stellar populations (ages and metallicities) of UDGs, we propose a survey of 25 UDGs with a range of optical properties and environments, in order to understand the formation histories of different the different UDG sub-types.

  17. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  18. Spitzer observatory operations: increasing efficiency in mission operations

    NASA Astrophysics Data System (ADS)

    Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.

    2006-06-01

    This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.

  19. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    NASA Technical Reports Server (NTRS)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  20. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model ismore » used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.« less

  1. Confronting models of star formation quenching in galaxy clusters with archival Spitzer data

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory

    Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine

  2. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue.

    PubMed

    Vuta, Vlad; Picard-Meyer, Evelyne; Robardet, Emmanuelle; Barboi, Gheorghe; Motiu, Razvan; Barbuceanu, Florica; Vlagioiu, Constantin; Cliquet, Florence

    2016-09-22

    Rabies is a fatal neuropathogenic zoonosis caused by the rabies virus of the Lyssavirus genus, Rhabdoviridae family. The oral vaccination of foxes - the main reservoir of rabies in Europe - using a live attenuated rabies virus vaccine was successfully conducted in many Western European countries. In July 2015, a rabies vaccine strain was isolated from the brain tissues of a clinically suspect cow (Bos taurus) in Romania. The nucleotide analysis of both N and G gene sequences showed 100% identity between the rabid animal, the GenBank reference SAD B19 strain and five rabies vaccine batches used for the national oral vaccination campaign targeting foxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin

    2018-04-01

    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

  4. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  5. Solar System Studies in the Infrared with the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Stansberry, J. A.; Cleve, J. Van; Burgdorf, M. J.; Fernandez, Y. R.; Meadows, V. S.; Reach, W. T.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is a cryogenic telescope (85 cm diameter) operating in a heliocentric orbit trailing the Earth. Its three instruments provide capabilities for spectroscopy, wide-field and small-field imaging at many wavelengths in the range 3.5-160 microns. Observations to be executed in the first two years in programs defined by the Guaranteed Time Observer (GTO) group (the authors of this presentation) consist of photometry, spectroscopy, and radiometry of many Solar System objects, including Titan and other satellites of the outer planets, Pluto, Centaurs, trans-Neptunian objects, comers, asteroids, Uranus, and Neptune. At the time of the preparation of this abstract, some preliminary observations have been made, but the final calibration and reduction of the data are still in progress. The latest results of the Solar System investigations will be presented here.

  6. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  7. A Comparison of BLISS and PLD on Low-SNR WASP-29b Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Deming, Drake; Hellier, Coel

    2018-01-01

    We present an analysis of Spitzer secondary eclipse observations of exoplanet WASP-29b. WASP-29b is a Saturn-sized, short-period exoplanet with mass 0.24 ± 0.02 Jupiter masses and radius 0.84 ± 0.06 Jupiter radii (Hellier et al., 2010). We measure eclipse depths and midpoints using our Photometry for Orbits, Eclipses, and Transits (POET) code, which does photometry and light-curve modeling with a BiLinearly Interpolated Subpixel Sensitivity (BLISS) map, and our Zen Eliminates Noise (ZEN) code, which takes POET photometry and applies Pixel-Level Decorrelation (PLD). BLISS creates a physical map of pixel gain variations, and is thereby independent of any astrophysical effects. PLD takes a mathematical approach, using relative variations in pixel values near the target to eliminate position-correlated noise. The results are consistent between the methods, except in one outlier observation where neither model could effectively remove correlated noise in the light curve. Using the eclipse timings, along with previous transit observations and radial velocity data, we further refine the orbit of WASP-29b, and, when excluding the outlier, determine an eccentricity between 0.037 and 0.056. We performed atmospheric retrieval with our Bayesian Atmospheric Radiative Transfer (BART) code but find that, when the outlier is discarded, the planet is consistent with a blackbody, and molecular abundances cannot be constrained. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  8. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique; Bouy, Hervé; Andrews, Sean; Calvet, Nuria; Naylor, David A.; Riviere-Marichalar, Pablo; van der Wiel, Matthijs H. D.; Wilner, David

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β. We find the fluxes at 70 μm to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  10. VizieR Online Data Catalog: AzTEC survey of the SHADES fields. II. (Michalowski+, 2012)

    NASA Astrophysics Data System (ADS)

    Michalowski, M. J.; Dunlop, J. S.; Ivison, R. J.; Cirasuolo, M.; Caputi, K. I.; Aretxaga, I.; Arumugam, V.; Austermann, J. E.; Chapin, E. L.; Chapman, S. C.; Coppin, K. E. K.; Egami, E.; Hughes, D. H.; Ibar, E.; Mortier, A. M. J.; Schael, A. M.; Scott, K. S.; Smail, I.; Targett, T. A.; Wagg, J.; Wilson, G. W.; Xu, L.; Yun, M.

    2013-04-01

    We utilized the JCMT/AzTEC 1.1mm maps and catalogues from Austermann et al. (2010, Cat. J/MNRAS/401/160). These data cover 0.7deg2 to an rms depth of 0.9-1.7mJy/beam. We selected all 148 sources presented by Austermann et al. (2010, Cat. J/MNRAS/401/160) with signal-to-noise ratios (S/Ns) > 3.5, and adopted the statistically deboosted 1.1mm flux densities. The VLA 1.4GHz and GMRT 0.61GHz radio data were taken from Ivison et al. (2005MNRAS.364.1025I, 2007, Cat. J/MNRAS/380/199) and Ibar et al. (2009, Cat. J/MNRAS/397/281, 2010MNRAS.401L..53I), respectively. The mid-IR Spitzer data in the Lockman Hole East field are from programmes PID 81 (PI: G. Rieke) and PID 50249 (PI: E. Egami), described in Egami et al. (2004ApJS..154..130E) and Dye et al. (2008MNRAS.386.1107D), whereas in the UDS field the mid-IR data are from the Spitzer Public Legacy Survey of the UKIDSS UDS (PI: J. Dunlop, http://ssc.spitzer.caltech.edu/spitzermission/observingprograms/ legacy/spuds/) described in Caputi et al. (2011MNRAS.413..162C). The optical data in both fields were obtained with Subaru/SuprimeCam, as described in Dye et al. (2006MNRAS.372.1227D) and Furusawa et al. (2008, Cat. J/ApJS/176/1). The near-IR data in both fields are provided by the UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007, Cat. II/314) with the SXDF/UDS field benefitting from the ultradeep J, H, K coverage provided by the UDS (e.g. Cirasuolo et al. 2010MNRAS.401.1166C), while the Lockman Hole East field is part of the somewhat shallower UKIDSS DXS (Warren et al., 2007MNRAS.375..213W). (5 data files).

  11. Correlations of capture, transport, and nutrition with spinal deformities in sandtiger sharks, Carcharias taurus, in public aquaria.

    PubMed

    Anderson, Paul A; Huber, Daniel R; Berzins, Ilze K

    2012-12-01

    A number of captive sandtiger sharks (Carcharias taurus) in public aquaria have developed spinal deformities over the past decade, ranging in severity from mild curvature to spinal fracture and severe subluxation. To determine the frequency and etiologic basis of this disease, U.S. public aquaria participated in a two-stage epidemiologic study of resident sharks: 1) a history and husbandry survey and 2) hematology, clinical chemistry, and radiography conducted during health exams. Eighteen aquaria submitted data, samples, or both from 73 specimens, including 19 affected sharks (26%). Sharks caught off the Rhode Island coast or by pound net were smaller at capture and demonstrated a higher prevalence of deformity than did larger sharks caught from other areas via hook and line. Relative to healthy sharks, affected sharks were deficient in zinc, potassium, and vitamins C and E. Capture and transport results lead to two likely etiologic hypotheses: 1) that the pound-net capture process induces spinal trauma that becomes exacerbated over time in aquarium environments or 2) that small (and presumably young) sharks caught by pound net are exposed to disease-promoting conditions (including diet or habitat deficiencies) in aquaria during the critical growth phase of their life history. The last hypothesis is further supported by nutrient deficiencies among affected sharks documented in this study; potassium, zinc, and vitamin C play critical roles in proper cartilage-collagen development and maintenance. These correlative findings indicate that public aquaria give careful consideration to choice of collection methods and size at capture and supplement diets to provide nutrients required for proper development and maintenance of cartilaginous tissue.

  12. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  13. HST hot-Jupiter transmission spectral survey: from clear to cloudy exoplanets

    NASA Astrophysics Data System (ADS)

    Sing, David K.; Fortney, Jonathan J.; Nikolov, Nikolay; Wakeford, Hannah; Kataria, Tiffany; Evans, Tom M.; Aigrain, Suzanne; Ballester, Gilda E.; Burrows, Adam Seth; Deming, Drake; Desert, Jean-Michel; Gibson, Neale; Henry, Gregory W.; Huitson, Catherine; Knutson, Heather; Lecavelier des Etangs, Alain; Pont, Frederic; Showman, Adam P.; Vidal-Madjar, Alfred; Williamson, Michael W.; Wilson, Paul A.

    2016-01-01

    The large number of transiting exoplanets has prompted a new era of atmospheric studies, with comparative exoplanetology now possible. Here we present the comprehensive results from a Large program with the Hubble Space Telecope, which has recently obtained optical and near-IR transmission spectra for eight hot-Jupiter exoplanets in conjunction with warm Spitzer transit photometry. The spectra show a wide range of spectral behavior, which indicates diverse cloud and haze properties in their atmospheres. We will discuss the overall findings from the survey, comment on common trends observed in the exoplanet spectra, and remark on their theoretical implications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less

  15. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  16. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  17. A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Correia, S.; Zinnecker, H.; Ratzka, Th.; Sterzik, M. F.

    2006-12-01

    Aims.This paper describes a systematic search for high-order multiplicity among wide visual Pre-Main Sequence (PMS) binaries. Methods: .We conducted an Adaptive Optics survey of a sample of 58 PMS wide binaries from various star-forming regions, which include 52 T Tauri systems with mostly K- and M-type primaries, with the NIR instrument NACO at the VLT. Results: .Of these 52 systems, 7 are found to be triple (2 new) and 7 quadruple (1 new). The new close companions are most likely physically bound based on their probability of chance projection and, for some of them, on their position on a color-color diagram. The corresponding degree of multiplicity among wide binaries (number of triples and quadruples divided by the number of systems) is 26.9 ± 7.2% in the projected separation range ~0.07 arcsec -12'', with the largest contribution from the Taurus-Auriga cloud. We also found that this degree of multiplicity is twice in Taurus compared to Ophiuchus and Chamaeleon for which the same number of sources are present in our sample. Considering a restricted sample composed of systems at distance 140-190 pc, the degree of multiplicity is 26.8 ± 8.1%, in the separation range 10/14 AU-1700/2300 AU (30 binaries, 5 triples, 6 quadruples). The observed frequency agrees with results from previous multiplicity surveys within the uncertainties, although a significant overabundance of quadruple systems compared to triple systems is apparent. Tentatively including the spectroscopic pairs in our restricted sample and comparing the multiplicity fractions to those measured for solar-type main-sequence stars in the solar neighborhood leads to the conclusion that both the ratio of triples to binaries and the ratio of quadruples to triples seems to be in excess among young stars. Most of the current numerical simulations of multiple star formation, and especially smoothed particles hydrodynamics simulations, over-predict the fraction of high-order multiplicity when compared to our

  18. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  19. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  20. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    NASA Technical Reports Server (NTRS)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.; Novati, S.Calchi; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymanski, M. K.; hide

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  1. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    PubMed

    Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C

    2015-08-28

    The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts

  2. A Systematic Mid-Infrared Survey of A Sample of Tidal Disruption Events Discovered by ZTF

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Van, Sjoert; Kulkarni, Shri; Kasliwal, Mansi; Gezari, Suvi; Cenko, Brad; Blagorodnova, Nadia; Hung, Tiara

    2017-12-01

    Zwicky Transient Facility (ZTF) saw its first light (press release on Nov 14, 2017) and is currently in the commissioning phase. The science operation is scheduled to start on Feb 1, 2018. Based on the data from Palomar Transient Factory (PTF), ZTF is expected to discover 30 new tidal disruption events (TDE) in the centers of galaxies containing supermassive blackholes. TDEs are rare transient events, and have only been discovered in recent years by large area transient surveys. Observations of optically discovered TDEs appear to show common characteristics, including blackbody temperatures of a few 10,000K, derived bolometric peak luminosities of several 10^43 - 10^44 erg/s, and photospheric radius of 10^15 - 10^16 cm. These properties are in conflict with the classic TDE model predictions, which suggest an order of magnitude higher temperature and peak luminosity. One proposed explanation is the possible existence of a reprocessing gas layer which absorbs X-ray, UV/optical photons and produces a cooler spectral energy distribution (SED). So far, there are only two published mid-IR light curves of TDEs, each with two epochal data. To solve this mystery, we require higher cadence Spitzer observations of a sample of uniformly selected TDEs. Next year is the only opportunity to obtain the critical observations because Spitzer is expected to operate only to March 2019. We request 24.1 hours of Spitzer time to observe 7 ZTF TDEs. This will produce a unique legacy dataset for many future studies of physics of TDEs.

  3. Managing the On-Board Data Storage, Acknowledgment and Retransmission System for Spitzer

    NASA Technical Reports Server (NTRS)

    Sarrel, Marc A.; Carrion, Carlos; Hunt, Joseph C., Jr.

    2006-01-01

    The Spitzer Space Telescope has a two-phase downlink system. Data are transmitted during one telecom session. Then commands are sent during the next session to delete those data that were received and to retransmit those data that were missed. We must build sequences that are as efficient as possible to make the best use of our finite supply of liquid helium, One way to improve efficiency is to use only the minimum time needed during telecom sessions to transmit the predicted volume of data. But, we must also not fill the onboard storage and must allow enough time margin to retransmit missed data. We describe tools and procedures that allow us to build observatory sequences that are single-fault tolerant in this regard and that allow us to recover quickly and safely from anomalies that affect the receipt or acknowledgment of data.

  4. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  5. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  6. THE PANCHROMATIC STARBURST IRREGULAR DWARF SURVEY (STARBIRDS): OBSERVATIONS AND DATA ARCHIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D., E-mail: kmcquinn@astro.umn.edu

    2015-06-22

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The datamore » sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging.« less

  7. A Chandra Survey of high-redshift (0.7 < z < 0.8) clusters selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  8. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida.

    PubMed

    Hammond, A C; Olson, T A; Chase, C C; Bowers, E J; Randel, R D; Murphy, C N; Vogt, D W; Tewolde, A

    1996-02-01

    Two trials were conducted with heifers to determine heat tolerance among temperate Bos taurus (Angus, Hereford), Bos indicus (Brahman), tropical Bos taurus (Senepol, Romosinuano), and the reciprocal crosses of Hereford and Senepol. Differences among breeds in temperament score, circulating concentrations of cortisol, and blood packed cell volume were also investigated. Trial 1 used 43 Angus, 28 Brahman, 12 Hereford, 23 Romosinuano, 16 Senepol, 5 Hereford x Senepol (H x S), and 5 Senepol x Hereford (S x H) heifers. Trial 2 used 36 Angus, 31 Brahman, 9 Hereford, 14 Senepol, 19 H x S, and 10 S x H heifers. On the hottest summer date in Trial 1, rectal temperature of Angus was greater (P < .001) than that of Brahman, Senepol, or Romosinuano. Rectal temperature and plasma cortisol were significantly less in Senepol than in Brahman, suggesting that the differences in rectal temperature between these breeds may be due to differences in stress response possibly related to differences in temperament. Reciprocal crosses of Hereford and Senepol had rectal temperatures nearly as low as that of Senepol and displayed substantial heterosis (-9.4%, P < .05) in log10 rectal temperature on the hottest summer date. On both the hottest and coolest dates in Trial 1, Angus heifers had significantly faster respiration rates than Brahman, Romosinuano, or Senepol heifers, and Brahman had significantly slower respiration rates than Romosinuano or Senepol. On the hottest summer date in Trial 2, rectal temperature in Angus heifers was greater (P < .001) than in Brahman or Senepol had rectal temperatures similar to that of Senepol, or heterosis for log10 rectal temperature was similar to that in Trial 1 (-9.8%, P < .05). Considering rank order among breeds, Brahman always had the slowest respiration rate and greatest packed cell volume. Brahman had significantly greater temperament scores and plasma cortisol concentrations than Angus or Senepol, except that plasma cortisol was not different

  9. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  10. A Search to Uncover the Infrared Excess (IRXS) Sources in the Spitzer Enhanced Imaging Products (SEIP) Catalog

    NASA Astrophysics Data System (ADS)

    Rowe, Jamie Lynn; Duranko, Gary; Gorjian, Varoujan; Lineberger, Howard; Orr, Laura; Adewole, Ayomikun; Bradford, Eric; Douglas, Alea; Kohl, Steven; Larson, Lillia; Lascola, Gus; Orr, Quinton; Scott, Mekai; Walston, Joseph; Wang, Xian

    2018-01-01

    The Spitzer Enhanced Imaging Products catalog (SEIP) is a collection of nearly 42 million point sources obtained by the Spitzer Space Telescope during its 5+ year cryogenic mission. Strasburger et al (2014) isolated sources with a signal-to-noise ratio (SNR) >10 in five infrared (IR) wavelength channels (3.6, 4.5, 5.8, 8 and 24 microns) to begin a search for sources with infrared excess (IRXS). They found 76 objects that were never catalogued before. Based on this success, we intend to dig deeper into the catalog in an attempt to find more IRXS sources, specifically by lowering the SNR on the 3.6, 4.5, and 24 micron channels. The ultimate goal is to use this large sample to seek rare astrophysical sources that are transitional in nature and evolutionarily very important.Our filtering of the database at SNR > 5 yielded 461,000 sources. This was further evaluated and reduced to only the most interesting based on source location on a [3.6]-[4.5] vs [4.5]-[24] color-color diagram. We chose a sample of 985 extreme IRXS sources for further inspection. All of these candidate sources were visually inspected and cross-referenced against known sources in existing databases, resulting in a list of highly reliable IRXS sources.These sources will prove important in the study of galaxy and stellar evolution, and will serve as a starting point for further investigation.

  11. WIRED for EC: New White Dwarfs with WISE Infrared Excesses and New Classification Schemes from the Edinburgh–Cape Blue Object Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.

    We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh–Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sightmore » object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.« less

  12. A Chandra Survey of low-mass clusters at 0.8 < z < 0.9 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.8 < z < 0.9. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  13. A Chandra Survey of low-mass clusters at 0.7 < z < 0.8 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  14. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  15. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution

  16. The Evolution of Dusty Star formation in Galaxy Clusters to z = 1: Spitzer Infrared Observations of the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster

  17. The BUFFALO HST Survey

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  18. Managing the On-Board Data Storage, Acknowledgement and Retransmission System for Spitzer

    NASA Technical Reports Server (NTRS)

    Sarrel, Marc A.; Carrion, Carlos; Hunt, Joseph C., Jr.

    2006-01-01

    The Spitzer Space Telescope has a two-phase downlink system. Recorded data are transmitted during one telecom session. Then commands are sent during the next session to delete those data that were received on the ground and to retransmit those data that were missed. We must build science sequences that are as efficient as possible to make the best use of our supply of liquid helium. One way to improve efficiency is to use only the minimum time needed during telecom sessions to transmit the predicted volume of data. But, we must also not fill the on-board storage and must allow enough time margin to retransmit missed data. We describe tools and procedures that allow us to build science sequences that are single-fault tolerant in this regard and that allow us to recover quickly and safely from anomalies that affect the receipt or acknowledgment (i.e. deletion) of data.

  19. The CO2 Abundance in Comets C2012 K1 (PanSTARRS), C2012 K5 (LINEAR), and 290P Jager as Measured with Spitzer

    NASA Technical Reports Server (NTRS)

    McKay, Adam J.; Kelley, Michael S.P.; Cochran, Anita L.; Bodewits, Dennis; DiSanti, Michael A.; Dello Russo, Neil; Lisse, Carey M.

    2015-01-01

    Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometary composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of approximately 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances

  20. Effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females.

    PubMed

    Cooke, R F; Bohnert, D W; Cappellozza, B I; Mueller, C J; Delcurto, T

    2012-10-01

    Two experiments evaluated the effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females. In Exp. 1, 433 multiparous, lactating Angus × Hereford cows were sampled for blood and evaluated for temperament before the breeding season. Cow temperament was assessed by chute score and exit velocity. Chute score was assessed on a 5-point scale according to behavioral responses during chute restraining. Exit score was calculated by dividing exit velocity into quintiles and assigning cows with a score from 1 to 5 (1 = slowest, 5 = fastest cows). Temperament score was calculated by averaging chute and exit scores. Cows were classified for temperament type according to temperament score (≤ 3 = adequate, > 3 = aggressive). Plasma cortisol concentrations were greater (P < 0.01) in cows with aggressive vs. adequate temperament. Cows with aggressive temperament had reduced (P ≤ 0.05) pregnancy and calving rate and tended to have reduced (P = 0.09) weaning rate compared with cows with adequate temperament. Hence, kilogram of calf born per cow was reduced (P = 0.05) and kilogram of calf weaned per cow tended to be reduced (P = 0.08) in aggressive cows. In Exp. 2, 88 Angus × Hereford heifers (initial age = 206 ± 2 d) were weighed (d 0 and 10) and evaluated for temperament score (d 10). On d 11, heifers were ranked by these variables and assigned to receive or not (control) an acclimation treatment. Acclimated heifers were processed through a handling facility 3 times weekly for 4 wk (d 11 to 39; Mondays, Wednesdays, and Fridays), whereas control heifers remained undisturbed on pasture. Heifer puberty status, evaluated via plasma progesterone concentrations, was assessed on d 0 and 10, d 40 and 50, 70 and 80, 100 and 110, 130 and 140, 160 and 170, and 190 and 200. Blood samples collected on d 10 and 40 were also analyzed for plasma concentrations of cortisol and haptoglobin. Temperament score was assessed again on d 40 and d 200

  1. VizieR Online Data Catalog: Spitzer IRAC events observed in crowded fields (Calchi+, 2015)

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Yee, J. C.; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; Wibking, B.; Zhu, W.; Spitzer Team; Udalski, A.; Poleski, R.; Pawlak, M.; Szymanski, M. K.; Skowron, J.; Mroz, P.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; OGLE Group

    2017-10-01

    In Table 1 we list the 170 events monitored in 2015. For each, we report the event name, the coordinates, the first and last day of observation, and the number of observed epochs. The events were chosen based on the microlensing alerts provided by the OGLE (Udalski et al. 2015AcA....65....1U) and MOA (Bond et al. 2004ApJ...606L.155B) collaborations. The current analysis is based on the preliminary reduced data made available by the Spitzer Science Center almost in real time (on average, 2-3 days after the observations). The final reduction of the data is now publicly available at the NASA/IPAC Infrared Science Database (IRSA, http://irsa.ipac.caltech.edu/frontpage/). (1 data file).

  2. Spitzer Photometry of Approximately 1 Million Stars in M31 and 15 Other Galaxies

    NASA Technical Reports Server (NTRS)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6-8 micrometer and Multiband Imaging Photometer 24 micrometer point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances approximately 3.5-14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain approximately 1 million sources including approximately 859,000 in M31 and approximately 116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of pointspread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6-24 micrometer) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope.

  3. New SPIRITS discoveries of Infrared Transients and Variables

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2017-10-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488).

  4. Probing Cosmic Star Formation Using Long Gamma-Ray Bursts: New Constraints from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, William J.; Mirabel, I. Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on IRAC 4.5 μm, IRAC 8.0 μm, and MIPS 24 μm deep observations of 16 gamma-ray burst (GRB) host galaxies performed with the Spitzer Space Telescope, and we investigate in the thermal infrared the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with these objects. Our sample is derived from GRBs that were identified with subarcsecond localization between 1997 and 2001, and only a very small fraction (~20%) of the targeted sources are detected down to f4.5μm~3.5 μJy and f24μm~85 μJy (3 σ). This likely argues against a population dominated by massive and strongly starbursting (i.e., SFR>~100 Msolar yr-1) galaxies as has been recently suggested from submillimeter/radio and optical studies of similarly selected GRB hosts. Furthermore, we find evidence that some GRBs do not occur in the most infrared luminous regions-hence the most actively star-forming environments-of their host galaxies. Should the GRB hosts be representative of all star-forming galaxies at high redshift, models of infrared galaxy evolution indicate that >~50% of GRB hosts should have f24μm>~100 μJy. Unless the identification of GRBs prior to 2001 was prone to strong selection effects biasing our sample against dusty galaxies, we infer in this context that the GRBs identified with the current techniques cannot be directly used as unbiased probes of the global and integrated star formation history of the universe. Based on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory under NASA contract 1407.

  5. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  6. Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and the Early Spread of Bos taurus from the Near East.

    PubMed

    Olivieri, Anna; Gandini, Francesca; Achilli, Alessandro; Fichera, Alessandro; Rizzi, Ermanno; Bonfiglio, Silvia; Battaglia, Vincenza; Brandini, Stefania; De Gaetano, Anna; El-Beltagi, Ahmed; Lancioni, Hovirag; Agha, Saif; Semino, Ornella; Ferretti, Luca; Torroni, Antonio

    2015-01-01

    Genetic studies support the scenario that Bos taurus domestication occurred in the Near East during the Neolithic transition about 10 thousand years (ky) ago, with the likely exception of a minor secondary event in Italy. However, despite the proven effectiveness of whole mitochondrial genome data in providing valuable information concerning the origin of taurine cattle, until now no population surveys have been carried out at the level of mitogenomes in local breeds from the Near East or surrounding areas. Egypt is in close geographic and cultural proximity to the Near East, in particular the Nile Delta region, and was one of the first neighboring areas to adopt the Neolithic package. Thus, a survey of mitogenome variation of autochthonous taurine breeds from the Nile Delta region might provide new insights on the early spread of cattle rearing outside the Near East. Using Illumina high-throughput sequencing we characterized the mitogenomes from two cattle breeds, Menofi (N = 17) and Domiaty (N = 14), from the Nile Delta region. Phylogenetic and Bayesian analyses were subsequently performed. Phylogenetic analyses of the 31 mitogenomes confirmed the prevalence of haplogroup T1, similar to most African cattle breeds, but showed also high frequencies for haplogroups T2, T3 and Q1, and an extremely high haplotype diversity, while Bayesian skyline plots pointed to a main episode of population growth ~12.5 ky ago. Comparisons of Nile Delta mitogenomes with those from other geographic areas revealed that (i) most Egyptian mtDNAs are probably direct local derivatives from the founder domestic herds which first arrived from the Near East and the extent of gene flow from and towards the Nile Delta region was limited after the initial founding event(s); (ii) haplogroup Q1 was among these founders, thus proving that it underwent domestication in the Near East together with the founders of the T clades.

  7. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  8. Taurus Littrow Pyroclastic Deposit-An Optimum Feedstock for Lunar Oxygen

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2014-01-01

    Future human habitation of the Moon will likely require the use of locally derived materials because of the high cost of transportation from Earth. Oxygen, extracted from oxides and silicates, is a potentially abundant lunar resource vital for life support and spacecraft propulsion. The anticipated costs of supplying all oxygen needs for a lunar base from Earth are high enough to warrant serious study of oxygen production from local resources. Over 20 different processes have been proposed for oxygen production on the Moon. Among the simplest and best studied of these processes is the reduction of oxides in lunar minerals and glass using hydrogen gas. Oxygen can be extracted from lunar soils and pyroclastic glass beads by exposing the samples to flowing hydrogen at subsolidus temperatures (approx. 1050 C). Total oxygen yield is directly correlated to the sample's abundance of FeO, but is not correlated to the abundance of any other oxide. Oxygen is extracted predominantly from FeO, with lesser contributions from TiO2 and SiO2. Oxygen yield is independent of soil maturity. All major FeO-bearing phases contribute oxygen, with extraction from ilmenite and glass significantly more efficient than from olivine and pyroxene. This study demonstrates that the optimum location for a lunar resources demonstration mission can be identified, and that the oxygen yield can be predicted, using a combination of high-resolution imaging and thermal-infrared data. A mission to Taurus Littrow will encounter a deposit at least 10 m in depth with few landing hazards, a uniform composition, and a predicted oxygen yield of approximately 3 wt. %, among the highest values on the Moon.

  9. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  10. VizieR Online Data Catalog: Spitzer MIR AGN survey. I. (Lacy+, 2013)

    NASA Astrophysics Data System (ADS)

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Nielsen, D. M.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    A wide range of optical facilities and instruments were used for spectroscopic follow-up of our AGN candidates. Most of the bright samples were followed up with 3-5m telescopes and longslit spectroscopy (Hale with COSMIC, SOAR with Goodman, and Shane with Kast), whereas the fainter samples were followed up with multifiber and/or 6-8m class telescopes (Blanco with Hydra, MMT with Hectospec, and Gemini-South with GMOS (program GS-2008B-C4)). We also obtained spectra of some of the bright candidates with a successful poor weather (scheduling band 4) program at Gemini-South (program GS-2008B-Q86). Some objects had spectra available in archives from the SDSS, 2dF, (Colless et al. 2001, Cat. VII/250) or 6dF (Jones et al. 2009, Cat. VII/259) surveys and some have redshifts and classifications in the literature, all found using the NASA Extragalactic Database (NED). Table 2 gives details of the spectroscopic observations or literature references as appropriate. For some high-redshift candidates with ambiguous or low signal-to-noise optical spectra, we were able to obtain near-infrared spectra with the IRTF using SpeX (2007 June), Gemini with NIRI (program GN2009B-C-8), and Triplespec (2008 July and 2011 July) on Palomar. (5 data files).

  11. Surface electrical properties experiment. [for Taurus-Littrow region of the moon on Apollo 17

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1974-01-01

    The Surface Electrical Properties Experiment (SEP) was flown to the moon in December 1972 on Apollo 17 and used to explore a portion of the Taurus-Littrow region. SEP used a relatively new technique, termed radio frequency interferometry (RFI). Electromagnetic waves were radiated from two orthogonal, horizontal electric dipole antennas on the surface of the moon at frequencies of 1, 2, 4, 8, 16, and 32 Mhz. The field strength of the EM waves was measured as a function of distance with a receiver mounted on the Lunar Roving Vehicle and using three orthogonal, electrically small, loops. The interference pattern produced by the waves that travelled above the moon's surface and those that travelled below the surface was recorded on magnetic tape. The tape was returned to earth for analysis and interpretation. Several reprints, preprints, and an initial draft of the first publication of the SEP results are included. These documents provide a rather complete account of the details of the theory of the RFI technique, of the terrestrial tests of the technique, and of the present state of our interpretation of the Apollo 17 data.

  12. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Christine H.; Bitner, Martin; Pecaut, Mark

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members.more » We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.« less

  13. Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Possibilities for the Presence of Dust in Polars

    NASA Astrophysics Data System (ADS)

    Brinkworth, C. S.; Hoard, D. W.; Wachter, S.; Howell, S. B.; Ciardi, David R.; Szkody, P.; Harrison, T. E.; van Belle, G. T.; Esin, A. A.

    2007-04-01

    We present Spitzer photometry of six short-period polars, EF Eri, V347 Pav, VV Pup, V834 Cen, GG Leo, and MR Ser. We have combined the Spitzer IRAC (3.6-8.0 μm) data with the 2MASS JHKs photometry to construct the SEDs of these systems from the near- to mid-IR (1.235-8 μm). We find that five out of the six polars have flux densities in the mid-IR that are substantially in excess of the values expected from the stellar components alone. We have modeled the observed SEDs with a combination of contributions from the white dwarf, secondary star, and either cyclotron emission or a cool, circumbinary dust disk to fill in the long-wavelength excess. We find that a circumbinary dust disk is the most likely cause of the 8 μm excess in all cases, but we have been unable to rule out the specific (but unlikely) case of completely optically thin cyclotron emission as the source of the observed 8 μm flux density. While both model components can generate enough flux at 8 μm, neither dust nor cyclotron emission alone can match the excess above the stellar components at all wavelengths. A model combining both cyclotron and dust contributions, possibly with some accretion-generated flux in the near-IR, is probably required, but our observed SEDs are not sufficiently well sampled to constrain such a complicated model. If the 8 μm flux density is caused by the presence of a circumbinary dust disk, then our estimates of the masses of these disks are many orders of magnitude below the mass required to affect CV evolution.

  14. Observations of Disks around Brown Dwarfs in the TW Hydra Association with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Morrow, A. L.; Luhman, K. L.; Espaillat, C.; D'Alessio, P.; Adame, L.; Calvet, N.; Forrest, W. J.; Sargent, B.; Hartmann, L.; Watson, D. M.; Bohac, C. J.

    2008-04-01

    Using SpeX at the NASA Infrared Telescope Facility and the Spitzer Infrared Spectrograph, we have obtained infrared spectra from 0.7 to 40 μm for three young brown dwarfs in the TW Hydra association (τ ~ 10 Myr), 2MASSW J1207334-393254, 2MASSW J1139511-315921, and SSSPM J1102-3431. The spectral energy distribution for 2MASSW J1139511-315921 is consistent with a stellar photosphere for the entire wavelength range of our data, whereas the other two objects exhibit significant excess emission at λ > 5μm. We are able to reproduce the excess emission from each brown dwarf using our models of irradiated accretion disks. According to our model fits, both disks have experienced a high degree of dust settling. We also find that silicate emission at 10 and 20 μm is absent from the spectra of these disks, indicating that grains in the upper disk layers have grown to sizes larger than ~5 μm. Both of these characteristics are consistent with previous observations of decreasing silicate emission with lower stellar masses and older ages. These trends suggest that either (1) the growth of dust grains, and perhaps planetesimal formation, occurs faster in disks around brown dwarfs than in disks around stars or (2) the radii of the mid-IR-emitting regions of disks are smaller for brown dwarfs than for stars, and grains grow faster at smaller disk radii. Finally, we note the possible detection of an unexplained emission feature near 14 μm in the spectra of both of the disk-bearing brown dwarfs. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory at the California Institute of Technology under NASA contract 1407.

  15. The Panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS): Observations and Data Archive

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D.

    2015-06-01

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The data sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  16. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    NASA Astrophysics Data System (ADS)

    Harsono, D.; Jørgensen, J. K.; van Dishoeck, E. F.; Hogerheijde, M. R.; Bruderer, S.; Persson, M. V.; Mottram, J. C.

    2014-02-01

    Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date. Aims: We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures. Methods: Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient. Results: Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses

  17. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  18. Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.

    2007-09-01

    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.

  19. Beastly Stars and a Bubble

    NASA Image and Video Library

    2010-07-28

    A star-forming region shines from the considerable distance of more than 30,000 light-years away in the upper left of this image from NASA Spitzer Space Telescope. This image is a combination of data from Spitzer and the Two Micron All Sky Survey.

  20. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.

    2013-12-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  1. VizieR Online Data Catalog: YSO candidates in the Magellanic Bridge (Chen+, 2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.-H. R.; Indebetouw, R.; Muller, E.; Kawamura, A.; Gordon, K. D.; Sewilo, M.; Whitney, B. A.; Fukui, Y.; Madden, S. C.; Meade, M. R.; Meixner, M.; Oliveira, J. M.; Robitaille, T. P.; Seale, J. P.; Shiao, B.; van Loon, J. Th.

    2017-06-01

    The Spitzer observations of the Bridge were obtained as part of the Legacy Program "Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low-Metallicity Small Magellanic Cloud" (SAGE-SMC; Gordon et al. 2011AJ....142..102G). These observations included images taken at 3.6, 4.5, 5.8, and 8.0 um bands with the InfraRed Array Camera (IRAC) and at 24, 70, and 160 um bands with the Multiband Imaging Photometer for Spitzer (MIPS). The details of data processing are given in Gordon et al. (2011AJ....142..102G). To construct multi-wavelength SEDs for sources in the Spitzer catalog, we have expanded it by adding photometry from optical and NIR surveys covering the Bridge, i.e., BRI photometry from the Super COSMOS Sky Surveys (SSS; Hambly et al. 2001MNRAS.326.1279H) and JHKs photometry from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233). (5 data files).

  2. NASA’s Spitzer Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around a Single Star

    NASA Image and Video Library

    2017-02-22

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the Spitzer Space Telescope of seven Earth-sized planets around a tiny, nearby, ultra-cool dwarf star. Three of these planets are in the habitable zone, the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone, and the first time so many Earth-sized planets have been found around the same star. The finding of this planetary system, called TRAPPIST-1, is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds

  3. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme

    2014-01-01

    Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  4. RELICS: Reionization Lensing Cluster Survey - Discovering Brightly Lensed Distant Galaxies for JWST

    NASA Astrophysics Data System (ADS)

    Coe, Dan; Bradley, Larry; Salmon, Brett; Avila, Roberto J.; Ogaz, Sara; Bradac, Marusa; Huang, Kuang-Han; Strait, Victoria; Hoag, Austin; Sharon, Keren q.; Cerny, Catherine; Paterno-Mahler, Rachel; Johnson, Traci Lin; Mahler, Guillaume; Zitrin, Adi; Sendra Server, Irene; Acebron, Ana; Cibirka, Nathália; Rodney, Steven; Strolger, Louis; Riess, Adam; Dawson, William; Jones, Christine; Andrade-Santos, Felipe; Lovisari, Lorenzo; Czakon, Nicole; Umetsu, Keiichi; Trenti, Michele; Vulcani, Benedetta; Carrasco, Daniela; Livermore, Rachael; Stark, Daniel P.; Mainali, Ramesh; Frye, Brenda; Oesch, Pascal; Lam, Daniel; Toft, Sune; Ryan, Russell; Peterson, Avery; Past, Matthew; Kikuchihara, Shotaro; Ouchi, Masami; Oguri, Masamune

    2018-01-01

    The Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program has completed observations of 41 massive galaxy clusters with 188 orbits of HST ACS and WFC3/IR imaging and 390 hours of Spitzer IRAC imaging. This poster presents an overview of the program and data releases. Reduced images, catalogs, and lens models for all clusters are now available on MAST. RELICS is studying the clusters, supernovae, and lensed high-redshift galaxies. A companion poster presents our high-redshift results: over 300 lensed z ~ 6 - 10 candidates, including some of the brightest known at these redshifts (Salmon et al. 2018). These will be excellent targets for detailed follow-up study in JWST Cycle 1 GO proposals.

  5. Evaluation of two progestogen-based estrous synchronization protocols in yearling heifers of Bos indicus × Bos taurus breeding.

    PubMed

    McKinniss, E N; Esterman, R D; Woodall, S A; Austin, B R; Hersom, M J; Thatcher, W W; Yelich, J V

    2011-06-01

    Yearling Bos indicus × Bos taurus heifers (n = 410) from three locations, were synchronized with either the Select Synch/CIDR+timed-AI (SSC+TAI) or 7-11+timed-AI (7-11+TAI) treatments. On Day 0 of the experiment, within each location, heifers were equally distributed to treatments by reproductive tract score (RTS; Scale 1-5: 1 = immature, 5 = estrous cycling) and body condition score. The 7-11+TAI treatment consisted of melengestrol acetate (0.5 mg/head/d) from Days 0 to 7, with PGF(2α) (25 mg im) on Day 7, GnRH (100 μg im) on Day 11, and PGF(2α) (25 mg im) on Day 18. The SSC+TAI heifers received the same carrier supplement (without MGA) from Days 0 to 7, and on Day 11 they were given 100 μg GnRH and an intravaginal CIDR (containing 1.38 g progesterone). The CIDR were removed on Day 18, concurrent with 25 mg PGF(2α) im For both treatments, estrus was visually detected for 1 h twice daily (0700 and 1600 h) for 72 h after PGF(2α), with AI done 6 to 12 h after a detected estrus. Non-responders were timed-AI and received GnRH (100 μg im) 72 to 76 h post PGF(2α). The 7-11+TAI heifers had a greater (P < 0.05) estrous response (55.2 vs 41.9%), conception rate (47.0 vs 31.3%), and synchronized pregnancy rate (33.5 vs 24.8%) compared to SSC+TAI heifers, respectively. Heifers exhibiting estrus at 60 h (61.7%) had a greater (P < 0.05) conception rate compared to heifers that exhibited estrus at ≤ 36 (35.3%), 48 (31.6%), and 72 h (36.2%), which were similar (P > 0.05) to each other. As RTS increased from ≤ 2 to ≥ 3, estrous response, conception rate, synchronized pregnancy rate, and 30 d pregnancy rate all increased (P < 0.05), irrespective of synchronization treatment. In conclusion, the 7-11+TAI treatment yielded greater synchronized pregnancy rates compared to SSC+TAI treatment in yearling Bos indicus × Bos taurus heifers. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. An AZTEC/ASTE 1.1mm Survey Of The Young, Dense, Nearby Star-forming Region, Serpens South

    NASA Astrophysics Data System (ADS)

    Gutermuth, Robert A.; Bourke, T.; Matthews, B.; Dunham, M.; Allen, L.; Myers, P.; Jorgensen, J.; Wilson, G.; Yun, M.; Hughes, D.; Aretxaga, I.; Ryohei, K.; Kotaro, K.; Scott, K.; Austermann, J.

    2010-01-01

    The Serpens South embedded cluster, recently discovered by the Spitzer Gould Belt Legacy Survey, stands out among over 100 clusters and groups surveyed by Spitzer as the densest (>430 pc-2) and youngest (77% Class I protostars) clustered star forming region known within the nearest 400 pc. In order to better characterize the primordial structure of the cluster's natal cloud, we have made a 1.1mm dust continuum map of Serpens South from the AzTEC instrument on the 10m Atacama Submillimeter Telescope Experiment (ASTE). The projected morphology of the emission is best described by a central dense hub with numerous 0.5 pc-long filaments radiating away from the center. Large scale flux features that are typically removed via modern sky subtraction techniques are recovered using a novel iterative flux retrieval algorithm. Using standard assumptions (emissivity, dust-to-gas ratio, and T=10K), we compute the total mass of the Serpens South cloud core and filaments to be 480 Msun. We construct separate large and small scale structure maps via wavelet decomposition, and deploy a watershed structure isolation technique separately to each map in order to isolate all empirically observed substructure. This technique confirms our qualitative observation that the filaments north of the hub are notably less clumpy than those to the south, while the total mass is similar between the two regions. Both regions have relatively small numbers of young stellar objects, thus we speculate that we have caught this cloud in the act of fragmenting into pre-stellar cores.

  7. Elemental Abundances of Blue Compact Dwarfs from Mid-Infrared Spectroscopy with Spitzer

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Bernard-Salas, J.; Charmandaris, V.; Lebouteiller, V.; Hao, Lei; Brandl, B. R.; Houck, J. R.

    2008-01-01

    We present a study of elemental abundances in a sample of 13 blue compact dwarf (BCD) galaxies, using the ~10-37 μm high-resolution spectra obtained with Spitzer IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, although sulfur is underabundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon and sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, and oxygen) studies reveals a good overall agreement for sulfur, while the infrared-derived neon abundances are slightly higher than the optical values. This indicates either that the metallicities of dust-enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.

  8. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  9. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  10. Spitzer MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+12

    NASA Technical Reports Server (NTRS)

    Bryden, G.; Beichman, C. A.; Rieke, G. H.; Stansberry, J. A.; Stapelfeldt, K. R.; Trilling, D. E.; Turner, N. J.; Wolszczan, A.

    2006-01-01

    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR B1257+12. With accuracies of 0.05 mJy at 24 microns and 1.5 mJy at 70 microns, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3 x 10(exp -5) of the pulsar's spin-down luminosity, 3 orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the solar system's cannot be ruled out.

  11. SHARDS: Survey for High-z Absorption Red & Dead Sources

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  12. Spitzer Observations of M33 & M83 and the Hot Star, Hii Region Connection

    NASA Astrophysics Data System (ADS)

    Rubin, R.; Simpson, J.; Colgan, S.; Dufour, R.; Citron, R.; Ray, K.; Erickson, E.; Haas, M.; Pauldrach, A.

    2007-05-01

    H II regions play a crucial role in the measurement of current interstellar abundances. They also serve as laboratories for atomic physics and provide fundamental data about heavy element abundances that serve to constrain models of galactic chemical evolution. We observed emission lines of [S IV] 10.5, H (7-6) 12.4, [Ne II] 12.8, [Ne III] 15.6, & [S III] 18.7 micron cospatially with the Spitzer Space Telescope using the Infrared Spectrograph (IRS) in short-high mode (SH). Here we concentrate on the galaxy M33 and compare the results with our earlier similar study of M83. In each of these substantially face-on spirals, we observed ˜25 H II regions, covering a full range of galactocentric radii (RG). For most of the M33 H II regions, we were able to measure the H (7-6) line while none were detectable in M83. This limited our M83 study to a determination of the Ne++/Ne+, /, and S3+/S++ abundance ratios vs. RG. Angular brackets denote fractional ionizations. As well as having the addition of fluxes for the H(7-6) line, the M33 H II regions are generally of much higher ionization than those in M83, resulting in larger Ne++/Ne+ and S3+/ S++ abundance ratios. For M33, in addition to what we derived for those nebulae in M83, we are also able to derive Ne/H, S/H and Ne/S vs. RG. Important advantages compared with prior optical studies are: 1) the IR lines have a weak and similar electron temperature (Te) dependence while optical lines vary exponentially with Te and 2) the IR lines suffer far less from interstellar extinction. Additionally, these data may be used as constraints on the ionizing spectral energy distribution for the stars exciting these nebulae by comparing the above ionic ratios with predictions using stellar atmosphere models from several different non-LTE model sets. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract

  13. The Extreme Star Formation Activity of Arp 299 Revealed by Spitzer IRS Spectral Mapping

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Pereira-Santaella, Miguel; García-Marín, Macarena; Smith, J.-D. T.; Brandl, Bernhard; Charmandaris, Vassilis; Armus, Lee

    2009-05-01

    We present Spitzer/IRS spectral mapping observations of the luminous infrared galaxy Arp 299 (IC 694 + NGC 3690) covering the central ~45'' ~ 9 kpc. The integrated mid-IR spectrum of Arp 299 is similar to that of local starbursts despite its strongly interacting nature and high-IR luminosity, L IR ~ 6 × 1011 L sun. This is explained because the star formation (probed by, e.g., high [Ne III]15.56 μm/[Ne II]12.81 μm line ratios) is spread across at least 6-8 kpc. Moreover, a large fraction of this star formation is taking place in young regions of moderate mid-IR optical depths such as the C+C' complex in the overlap region between the two galaxies and in H II regions in the disks of the galaxies. It is only source A, the nuclear region of IC 694, which shows the typical mid-IR characteristics of ultraluminous infrared galaxies (ULIRGs; L IR > 1012 L sun), that is, very compact (less than 1 kpc) and dust-enshrouded star formation resulting in a deep silicate feature and moderate equivalent widths of the polycyclic aromatic hydrocarbons. The nuclear region of NGC 3690, known as source B1, hosts a low-luminosity active galactic nucleus (AGN) and is surrounded by regions of star formation. Although the high-excitation [Ne V]14.32 μm line typical of AGN is not detected in B1, its upper limit is consistent with the value expected from the X-ray luminosity. The AGN emission is detected in the form of a strong hot-dust component that accounts for 80%-90% of the 6 μm luminosity of B1. The similarity between the Arp 299 integrated mid-IR spectrum and those of high-z ULIRGs suggests that Arp 299 may represent a local example, albeit with lower IR luminosity and possibly higher metallicity, of the star formation processes occurring at high-z. Based on observations obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  14. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combinemore » TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.« less

  15. Nova V2362 Cygni (Nova Cygni 2006): Spitzer, Swift, and Ground-Based Spectral Evolution

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Venturini, Catherine C.; Mazuk, S.; Woodward, Charles; Gehrz, Robert; Rayner, John; Helton, L.A.; Ness, Jan-Uwe; Starrfield, Sumner; Rudy, Richard J.; hide

    2008-01-01

    Nova V2362 Cygni has undergone a number of very unusual changes. Ground-based spectroscopy initially revealed a normal sequence of events: the object faded and its near-infrared emission lines gradually shifted to higher excitation conditions until about day 100 when the optical fading reversed and the object slowly brightened. This was accompanied by a rise in the Swift X-ray telescope flux and a sudden shift in excitation of the visible and IR spectrum back to low levels. The new lower excitation spectrum revealed broad line widths and many P-Cygni profiles, all indicative of the ejection of a second shell. Eventually, dust formed, the X-ray brightness -- apparently unaffected by dust formation -- peaked and then declined, and the object faded at all wavelengths. The Spitzer dust spectra revealed a number of solid-state emission features that, at this time, are not identified.

  16. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less

  17. X-ray and IR Surveys of the Orion Molecular Clouds and the Cepheus OB3b Cluster

    NASA Astrophysics Data System (ADS)

    Megeath, S. Thomas; Wolk, Scott J.; Pillitteri, Ignazio; Allen, Tom

    2014-08-01

    X-ray and IR surveys of molecular clouds between 400 and 700 pc provide complementary means to map the spatial distribution of young low mass stars associated with the clouds. We overview an XMM survey of the Orion Molecular Clouds, at a distance of 400 pc. By using the fraction of X-ray sources with disks as a proxy for age, this survey has revealed three older clusters rich in diskless X-ray sources. Two are smaller clusters found at the northern and southern edges of the Orion A molecular cloud. The third cluster surrounds the O-star Iota Ori (the point of Orion's sword) and is in the foreground to the Orion molecular cloud. In addition, we present a Chandra and Spitzer survey of the Cep OB3b cluster at 700 pc. These data show a spatially variable disk fraction indicative of age variations within the cluster. We discuss the implication of these results for understanding the spread of ages in young clusters and the star formation histories of molecular clouds.

  18. THE TOP 10 SPITZER YOUNG STELLAR OBJECTS IN 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Barba, Rodolfo H.; Sewilo, Marta M., E-mail: walborn@stsci.edu, E-mail: rbarba@dfuls.cl, E-mail: mmsewilo@pha.jhu.edu

    2013-04-15

    The most luminous Spitzer point sources in the 30 Doradus triggered second generation are investigated coherently in the 3-8 {mu}m region. Remarkable diversity and complexity in their natures are revealed. Some are also among the brightest JHK sources, while others are not. Several of them are multiple when examined at higher angular resolutions with Hubble Space Telescope NICMOS and WFPC2/WFC3 as available, or with VISTA/VMC otherwise. One is a dusty compact H II region near the far northwestern edge of the complex, containing a half-dozen bright I-band sources. Three others appear closely associated with luminous WN stars and causal connectionsmore » are suggested. Some are in the heads of dust pillars oriented toward R136, as previously discussed from the NICMOS data. One resides in a compact cluster of much fainter sources, while another appears monolithic at the highest resolutions. Surprisingly, one is the brighter of the two extended ''mystery spots'' associated with Knot 2 of Walborn et al. Masses are derived from young stellar object models for unresolved sources and lie in the 10-30 M{sub Sun} range. Further analysis of the IR sources in this unique region will advance understanding of triggered massive star formation, perhaps in some unexpected and unprecedented ways.« less

  19. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    NASA Astrophysics Data System (ADS)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  20. The VLT-FLAMES Tarantula Survey. I. Introduction and observational overview

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; Taylor, W. D.; Hénault-Brunet, V.; Sana, H.; de Koter, A.; Simón-Díaz, S.; Carraro, G.; Bagnoli, T.; Bastian, N.; Bestenlehner, J. M.; Bonanos, A. Z.; Bressert, E.; Brott, I.; Campbell, M. A.; Cantiello, M.; Clark, J. S.; Costa, E.; Crowther, P. A.; de Mink, S. E.; Doran, E.; Dufton, P. L.; Dunstall, P. R.; Friedrich, K.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Izzard, R. G.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Ramirez, O. H.; Sabín-Sanjulián, C.; Smartt, S. J.; Stroud, V. E.; van Loon, J. Th.; Vink, J. S.; Walborn, N. R.

    2011-06-01

    The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution. Figures 10-12, Tables 5 and 6, and Appendix A are available in electronic form at http://www.aanda.org

  1. SPITZER IRAC OBSERVATIONS OF IR EXCESS IN HOLMBERG IX X-1: A CIRCUMBINARY DISK OR A VARIABLE JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudik, R. P.; Berghea, C. T.; Roberts, T. P.

    2016-11-01

    We present Spitzer Infrared Array Camera photometric observations of the ultraluminous X-ray source (ULX, X-1) in Holmberg IX. We construct a spectral energy distribution (SED) for Holmberg IX X-1 based on published optical, UV, and X-ray data combined with the IR data from this analysis. We modeled the X-ray and optical data with disk and stellar models; however, we find a clear IR excess in the ULX SED that cannot be explained by fits or extrapolations of any of these models. Instead, further analysis suggests that the IR excess results from dust emission, possibly a circumbinary disk, or a variablemore » jet.« less

  2. A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    NASA Astrophysics Data System (ADS)

    Lanotte, A. A.; Gillon, M.; Demory, B.-O.; Fortney, J. J.; Astudillo, N.; Bonfils, X.; Magain, P.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Neves, V.; Pepe, F.; Queloz, D.; Santos, N.; Udry, S.

    2014-12-01

    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims: We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods: We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 μm. Adding the high-precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results: We present a refined radius estimate of RP = 4.10 ± 0.16 R⊕ , mass MP = 25.4 ± 2.1 M⊕, and eccentricity e = 0.162 ± 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 μm that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 μm that are shallower than in previous works, in particular at 3.6 μm. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We could not detect a significant orbital modulation in the 8 μm phase curve. We find no evidence of a potential planetary companion, stellar activity, or a stellar spin-orbit misalignment. Conclusions: Recent theoretical

  3. A Spitzer Spectroscopic Survey of Low-Ionization Nuclear Emission-Line Regions: Characterization of the Central Source

    DTIC Science & Technology

    2009-02-01

    All Sky Survey ( 2MASS ) coordinates of the nucleus were used to verify the coordinates of each observation. The SH and LH staring observations include...isolate the nuclear region in the mapping obser- vations, fluxes were extracted from a single slit coinciding with the radio or 2MASS nuclear...presence of a hard X-ray point source coin- cident with either the radio or 2MASS nucleus and log(LX) 38 erg s−1. The resulting subsample consists of

  4. Spitzer Spectroscopy of Low-Mass Dwarfs - Clouds and Chemistry at the Bottom of the IMF

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2006-01-01

    Brown dwarfs and low-mass stars show evidence of complicated atmospheres, including a variety of molecular species and clouds. Infrared observations are one of the best probes of the physics of these objects, but up until recently these observations have been limited in studies from ground-based telescopes by atmospheric absorption and insufficient sensitivity. With the launch of the Spitzer Space Telescope with its Infrared Spectrograph (IRS) instrument we now have the capability to undertake a systematic study of the atmospheric structure and chemistry in these cool objects. The IRS Dim Suns team has compiled spectra from objects ranging from M1 dwarfs with effective temperatures 3,800K of down to T8 dwarfs with effective temperatures of 700. This talk will present these results and discuss their implications for our understanding of cool dwarf atmospheric physics and structure.

  5. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  6. VizieR Online Data Catalog: ALMA survey of protoplanetary disks in sigma Ori (Ansdell+, 2017)

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Manara, C. F.; Miotello, A.; Facchini, S.; van der Marel, N.; Testi, L.; van Dishoeck, E. F.

    2017-08-01

    Our sample consists of the 92 Young Stellar Objects (YSOs) in σ Orionis with infrared excesses consistent with the presence of a protoplanetary disk. hese sources are identified by cross-matching the Class II and transition disk (TD) candidates from the Spitzer survey of Hernandez et al. 2007 (Cat. J/ApJ/662/1067) with the Mayrit catalog (Caballero 2008, Cat. J/A+A/478/667). Both catalogs are expected to be complete down to the brown dwarf limit. Disk classifications are based on the Spitzer/Infrared Array Camera (IRAC) Spectral Energy Distribution (SED) slope, as described in Hernandez et al. 2007 (Cat. J/ApJ/662/1067). We also include in our sample a Class I disk (source 1153), as it is located near the Spitzer/IRAC color cutoff for Class II disks. Our Band 6 Atacama Large Millimeter/sub-millimeter Array (ALMA) observations were obtained on 2016 July 30 and 31 during Cycle 3 (Project ID: 2015.1.00089.S; PI: Williams). The array configuration used 36 and 37 12m antennas on July 30 and 31, respectively, with baselines of 15-1124m on both runs. The correlator setup included two broadband continuum windows centered on 234.293 and 216.484GHz with bandwidths of 2.000 and 1.875GHz and channel widths of 15.625 and 0.976MHz, respectively. The bandwidth-weighted mean continuum frequency was 225.676GHz (1.33mm). The spectral windows covered the 12CO (230.538GHz), 13CO (220.399GHz), and C18O (219.560GHz) J=2-1 transitions at velocity resolutions of 0.16-0.17km/s. These spectral windows were centered on 230.531, 220.392, and 219.554GHz with bandwidths of 11.719MHz and channel widths of 0.122MHz. On-source integration times were 1.2 minutes per object for an average continuum rms of 0.15mJy/beam (Table1). This sensitivity was based on the James Clerk Maxwell Telescope (JCMT)/Submillimeter Common User Bolometer Array (SCUBA)-2 survey of σ Orionis disks by Williams et al. 2013 (Cat. J/MNRAS/435/1671), who found that stacking their individual non-detections revealed a mean 850

  7. Pre-discovery detections and progenitor candidate for SPIRITS17pc in NGC 4388

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report detections of pre-discovery outbursts of SPIRITS17pc, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  8. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  9. Massive and Distant Clusters of WISE Survey (MaDCoWS)

    NASA Astrophysics Data System (ADS)

    Brodwin, Mark; MaDCoWS Collaboration

    2018-06-01

    The Massive and Distant Clusters of WISE Survey (MaDCoWS) is a comprehensive program to detect and characterize the most massive galaxy clusters in the Universe at z ~ 1, and is the only all-sky survey sensitive to galaxy clusters at this epoch. The foundation for this program is data from the NASA Wide-field Infrared Survey Explorer (WISE). The primary goal is to study the evolution of massive galaxies in the most overdense environments at z > 1 when star formation and AGN activity may be peaking in these structures. Spitzer follow-up imaging of 2000 MaDCoWS clusters has allowed us to select the richest and/or most distant clusters for detailed study. To date we have spectroscopically confirmed over 35 MaDCoWS clusters, spanning a wide range of masses (2-11 x 10^14 Msun), out to z = 1.5. This includes the discovery of the most massive z > 1.15 cluster found to date, as well as a cluster at z = 1.23 that is lensing a z = 2.22 supernova Ia. Multiwavelength follow-up observations of these distant clusters, currently underway, will permit several novel studies of galaxy evolution in rich cluster environments at z > 1.

  10. Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and the Early Spread of Bos taurus from the Near East

    PubMed Central

    Olivieri, Anna; Gandini, Francesca; Achilli, Alessandro; Fichera, Alessandro; Rizzi, Ermanno; Bonfiglio, Silvia; Battaglia, Vincenza; Brandini, Stefania; De Gaetano, Anna; El-Beltagi, Ahmed; Lancioni, Hovirag; Agha, Saif; Semino, Ornella; Ferretti, Luca; Torroni, Antonio

    2015-01-01

    Background Genetic studies support the scenario that Bos taurus domestication occurred in the Near East during the Neolithic transition about 10 thousand years (ky) ago, with the likely exception of a minor secondary event in Italy. However, despite the proven effectiveness of whole mitochondrial genome data in providing valuable information concerning the origin of taurine cattle, until now no population surveys have been carried out at the level of mitogenomes in local breeds from the Near East or surrounding areas. Egypt is in close geographic and cultural proximity to the Near East, in particular the Nile Delta region, and was one of the first neighboring areas to adopt the Neolithic package. Thus, a survey of mitogenome variation of autochthonous taurine breeds from the Nile Delta region might provide new insights on the early spread of cattle rearing outside the Near East. Methodology Using Illumina high-throughput sequencing we characterized the mitogenomes from two cattle breeds, Menofi (N = 17) and Domiaty (N = 14), from the Nile Delta region. Phylogenetic and Bayesian analyses were subsequently performed. Conclusions Phylogenetic analyses of the 31 mitogenomes confirmed the prevalence of haplogroup T1, similar to most African cattle breeds, but showed also high frequencies for haplogroups T2, T3 and Q1, and an extremely high haplotype diversity, while Bayesian skyline plots pointed to a main episode of population growth ~12.5 ky ago. Comparisons of Nile Delta mitogenomes with those from other geographic areas revealed that (i) most Egyptian mtDNAs are probably direct local derivatives from the founder domestic herds which first arrived from the Near East and the extent of gene flow from and towards the Nile Delta region was limited after the initial founding event(s); (ii) haplogroup Q1 was among these founders, thus proving that it underwent domestication in the Near East together with the founders of the T clades. PMID:26513361

  11. CSO CO (2–1) and Spitzer IRAC observations of a bipolar outflow in high-mass star-forming region IRAS 22506+5944

    NASA Astrophysics Data System (ADS)

    Xie, Ze-Qiang; Qiu, Ke-Ping

    2018-02-01

    We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.

  12. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  13. VizieR Online Data Catalog: Spitzer h and {chi} Persei candidate members (Cloutier+, 2014)

    NASA Astrophysics Data System (ADS)

    Cloutier, R.; Currie, T.; Rieke, G. H.; Kenyon, S. J.; Balog, Z.; Jayawardhana, R.

    2017-08-01

    The IRAC (Fazio et al. 2004ApJS..154...39F) observed h and {chi} Persei on October 30, 2008 (AOR IDs 2182740, 21828608, 21828096, 21828864, 21828352, and 2182912). Solar activity was normal to below average. Zodical emission ranged between ~0.02 and 2 MJy/sr from 3.6 um to 8 um. Image processing and photometry were performed separately for the short-exposure and long-exposure frames. The MIPS (Rieke et al. 2004ApJS..154...25R) imaged h and {chi} Persei on 2008 March 15-16, 2008 October 25-26, and 2009 March 26 and 29 as a part of General Observation Programs 40690 and 50664 (PI: Scott Kenyon). To identify and characterize disks surrounding h and {chi} Persei stars, we combine Spitzer data with optical/near-IR data for likely cluster members, updating the list from Currie et al. (2010, J/ApJS/186/191) with a more accurate one of 13956 stars (Table 1). (3 data files).

  14. Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands

    NASA Astrophysics Data System (ADS)

    Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Wada, T.; Armus, L.; Baes, M.; Charmandaris, V.; Czerny, B.; Efstathiou, A.; Fernández-Ontiveros, J. A.; Ferrara, A.; González-Alfonso, E.; Griffin, M.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Kohno, K.; Kwon, J.; Nakagawa, T.; Onaka, T.; Pozzi, F.; Scott, D.; Smith, J.-D. T.; Spinoglio, L.; Suzuki, T.; van der Tak, F.; Vaccari, M.; Vignali, C.; Wang, L.

    2017-11-01

    The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.

  15. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Tracy M. A.; Bonaventura, Nina; Muzzin, Adam

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. Themore » luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.« less

  16. Pre-discovery detections and progenitor candidate for SPIRITS17qm in NGC 1365

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report the detection of a pre-discovery outburst of SPIRITS17qm, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  17. Ultrastructure of spermatozoa of Onthophagus taurus (Coleoptera, Scarabaeidae) exhibits heritable variation

    NASA Astrophysics Data System (ADS)

    Werner, Michael; Simmons, Leigh W.

    2011-03-01

    Sperm competition is thought to be an important selective pressure shaping sperm form and function. However, few studies have moved beyond gross examinations of sperm morphology. Sperm length is subject to sexual selection via sperm competition in the scarab beetle Onthophagus taurus. Here, the structure and ultrastructure of spermatozoa in this species were investigated using light and electron microscopy. Spermatozoa were found to be filiform, measuring about 1,200 mm in length. The sperm head consists of a three-layered acrosome and a nuclear region bearing the anterior extension of the centriole adjunct. Acrosome and nuclear regions are bilaterally symmetric, with their axes of symmetry being orthogonal to each other. Head and flagellar structures are connected by a well-developed centriole adjunct. The sperm heads are asymmetrically surrounded by accessory material and embedded into the cytoplasm of the spermatocyst cell. The accessory material is produced inside the spermatids and then transferred to the outside due to a new membrane formed around the sperm's organelles. The old spermatid membrane separates the accessory material from the cyst cell. The flagellum contains a 9+9+2 axoneme, two accessory bodies, and two mitochondrial derivatives of unequal size. The major mitochondrial derivative is significantly larger than the minor one. The axoneme is arranged in a sinusoidal manner parallel along the major mitochondrial derivative. The spermatozoa show no progressive motility when released in buffer solution which is likely to be the result of the flagellar arrangement and the structure of the major mitochondrial derivative. The cross-sectional area of the minor and the major mitochondrial derivatives show different patterns of genetic variation. The data provide the first estimates of genetic variation in sperm ultrastructure for any species, and give evidence for the persistence of genetic variation in ultrastructure required for the rapid and divergent

  18. VizieR Online Data Catalog: Spitzer and VRIJHK photometry of V582 Mon (Arulanantham+, 2016)

    NASA Astrophysics Data System (ADS)

    Arulanantham, N. A.; Herbst, W.; Cody, A. M.; Stauffer, J. R.; Rebull, L. M.; Agol, E.; Windemuth, D.; Marengo, M.; Winn, J. N.; Hamilton, C. M.; Mundt, R.; Johns-Krull, C. M.; Gutermuth, R. A.

    2016-07-01

    We have continued to obtain ground-based optical and near-infrared photometry over the last two years using A Novel Dual Imaging CAMera (ANDICAM) on the 1.3m telescope at Cerro-Tololo Inter-American Observatory (CTIO) in Chile. The instrument is operated by the SMARTS consortium. Data were collected almost nightly from 2013 October through 2014 April. Observations were resumed in 2014 September and continued until 2015 April. Each night, four 150s exposures were obtained in each of the three optical bands (VRI) along with 10-15 dithered exposures (30s each) in the near-infrared bands (JHK). All images have a 10.2'*10.2' field of view. The data acquisition and reduction processes are discussed briefly in Appendix A, and a more complete description is given by Windemuth & Herbst 2014 (cat. J/AJ/147/9). The VRIJHK magnitudes from the last two observing seasons have been added to the entire set of CCD data obtained since 1995, which is presented here as Table1. Images of KH 15D were collected with the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during six observational runs with five separate PI's spanning three distinct epochs since 2004 (2004 Mar 6 and 2004 Oct 08, PI Giovanni Fazio, Program ID=37; 2004 Oct 5-12 and 2005 Oct 21-29, PI Massimo Marengo, Program ID=3441; 2006 Mar 23-27, PI Eric Agol, Program ID=3469; 2008 Nov 1-2, PI Lucas A. Cieza, Program ID=50773). The fifth set of observations was obtained by the CSI 2264 team (PI=John R. Stauffer, Program ID=61027, 80040) as part of a large campaign to monitor young variable objects in NGC2264 (Cody et al. 2014, cat. J/AJ/147/82). These data were obtained over 28 consecutive days of observation in 2011 December (2011 Dec 3-2012 Jan 1). A final set of observations was obtained on eight nights between 2013 December and 2014 January (2013 Dec 22-2014 Jan 20, PI William Herbst, Program ID=90154, 90098). The full set of Spitzer photometry at all epochs is given in Table3. (2 data files).

  19. VLT/SINFONI Observations of SPITZER/MIPSGAL 24 μm Circumstellar Shells: Revealing the Natures of Their Central Sources

    NASA Astrophysics Data System (ADS)

    Silva, K. M.; Flagey, N.; Noriega-Crespo, A.; Carey, S.; Ingallinera, A.

    2017-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.

  20. VLT/SINFONI Observations of Spitzer /MIPSGAL 24 μ m Circumstellar Shells: Revealing the Natures of Their Central Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, K. M.; Flagey, N.; Noriega-Crespo, A.

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H - and K -band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer /MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. Wemore » also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf–Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.« less