Sample records for taxonomic approach phylogenetic

  1. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation

  2. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or

  3. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages

    PubMed Central

    Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional

  4. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.

    PubMed

    Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional

  5. Effectiveness of protected areas for vertebrates based on taxonomic and phylogenetic diversity.

    PubMed

    Quan, Qing; Che, Xianli; Wu, Yongjie; Wu, Yuchun; Zhang, Qiang; Zhang, Min; Zou, Fasheng

    2018-04-01

    Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1-43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity. © 2017 Society for Conservation Biology.

  6. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)

    PubMed Central

    Mateus, Octávio; Benson, Roger B.J.

    2015-01-01

    Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., ‘Diplodocus’ hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae. The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters. The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus

  7. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue?

    PubMed

    Bryant, Harold N; Cantino, Philip D

    2002-02-01

    The proposal to implement a phylogenetic nomenclatural system governed by the PhyloCode), in which taxon names are defined by explicit reference to common descent, has met with strong criticism from some proponents of phylogenetic taxonomy (taxonomy based on the principle of common descent in which only clades and species are recognized). We examine these criticisms and find that some of the perceived problems with phylogenetic nomenclature are based on misconceptions, some are equally true of the current rank-based nomenclatural system, and some will be eliminated by implementation of the PhyloCode. Most of the criticisms are related to an overriding concern that, because the meanings of names are associated with phylogenetic pattern which is subject to change, the adoption of phylogenetic nomenclature will lead to increased instability in the content of taxa. This concern is associated with the fact that, despite the widespread adoption of the view that taxa are historical entities that are conceptualized based on ancestry, many taxonomists also conceptualize taxa based on their content. As a result, critics of phylogenetic nomenclature have argued that taxonomists should be free to emend the content of taxa without constraints imposed by nomenclatural decisions. However, in phylogenetic nomenclature the contents of taxa are determined, not by the taxonomist, but by the combination of the phylogenetic definition of the name and a phylogenetic hypothesis. Because the contents of taxa, once their names are defined, can no longer be freely modified by taxonomists, phylogenetic nomenclature is perceived as limiting taxonomic freedom. We argue that the form of taxonomic freedom inherent to phylogenetic nomenclature is appropriate to phylogenetic taxonomy in which taxa are considered historical entities that are discovered through phylogenetic analysis and are not human constructs.

  8. Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae)

    USDA-ARS?s Scientific Manuscript database

    An extensive phylogenetic analysis and genus-level taxonomic revision of Paranoplocephala Lühe, 1910 -like cestodes (Cyclophyllidea, Anoplocephalidae) are presented. The phylogenetic analysis is based on DNA sequences of two partial mitochondrial genes, i.e. cytochrome c oxidase subunit 1 (cox1) and...

  9. Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance.

    PubMed

    de Sousa Costa, Robherson Wector; da Silva, Giovanni Lucca França; de Carvalho Filho, Antonio Oseas; Silva, Aristófanes Corrêa; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2018-05-23

    Lung cancer presents the highest cause of death among patients around the world, in addition of being one of the smallest survival rates after diagnosis. Therefore, this study proposes a methodology for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Mean phylogenetic distance (MPD) and taxonomic diversity index (Δ) were used as texture descriptors. Finally, the genetic algorithm in conjunction with the support vector machine were applied to select the best training model. The proposed methodology was tested on computed tomography (CT) images from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), with the best sensitivity of 93.42%, specificity of 91.21%, accuracy of 91.81%, and area under the ROC curve of 0.94. The results demonstrate the promising performance of texture extraction techniques using mean phylogenetic distance and taxonomic diversity index combined with phylogenetic trees. Graphical Abstract Stages of the proposed methodology.

  10. AST: An Automated Sequence-Sampling Method for Improving the Taxonomic Diversity of Gene Phylogenetic Trees

    PubMed Central

    Zhou, Chan; Mao, Fenglou; Yin, Yanbin; Huang, Jinling; Gogarten, Johann Peter; Xu, Ying

    2014-01-01

    A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php. PMID:24892935

  11. AST: an automated sequence-sampling method for improving the taxonomic diversity of gene phylogenetic trees.

    PubMed

    Zhou, Chan; Mao, Fenglou; Yin, Yanbin; Huang, Jinling; Gogarten, Johann Peter; Xu, Ying

    2014-01-01

    A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php.

  12. Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

    PubMed Central

    2013-01-01

    Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting

  13. Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests

    PubMed Central

    Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian

    2016-01-01

    Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021

  14. Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests

    NASA Astrophysics Data System (ADS)

    Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian

    2016-10-01

    Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.

  15. A Phylogenetic, Biogeographic, and Taxonomic study of all Extant Species of Anolis (Squamata; Iguanidae).

    PubMed

    Poe, Steven; Nieto-Montes de Oca, Adrián; Torres-Carvajal, Omar; De Queiroz, Kevin; Velasco, Julián A; Truett, Brad; Gray, Levi N; Ryan, Mason J; Köhler, Gunther; Ayala-Varela, Fernando; Latella, Ian

    2017-09-01

    Anolis lizards (anoles) are textbook study organisms in evolution and ecology. Although several topics in evolutionary biology have been elucidated by the study of anoles, progress in some areas has been hampered by limited phylogenetic information on this group. Here, we present a phylogenetic analysis of all 379 extant species of Anolis, with new phylogenetic data for 139 species including new DNA data for 101 species. We use the resulting estimates as a basis for defining anole clade names under the principles of phylogenetic nomenclature and to examine the biogeographic history of anoles. Our new taxonomic treatment achieves the supposed advantages of recent subdivisions of anoles that employed ranked Linnaean-based nomenclature while avoiding the pitfalls of those approaches regarding artificial constraints imposed by ranks. Our biogeographic analyses demonstrate complexity in the dispersal history of anoles, including multiple crossings of the Isthmus of Panama, two invasions of the Caribbean, single invasions to Jamaica and Cuba, and a single evolutionary dispersal from the Caribbean to the mainland that resulted in substantial anole diversity. Our comprehensive phylogenetic estimate of anoles should prove useful for rigorous testing of many comparative evolutionary hypotheses. [Anoles; biogeography; lizards; Neotropics; phylogeny; taxonomy]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    PubMed

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  17. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa

    PubMed Central

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  18. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity

    USGS Publications Warehouse

    Strecker, A.L.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.

    2011-01-01

    To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential tradeoffs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity;contemporary threats to biodiversity (including interactions with nonnative species);and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities;however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple

  19. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity

    USGS Publications Warehouse

    Strecker, Angela L.; Olden, Julian D.; Whittier, Joanna B.; Paukert, Craig P.

    2011-01-01

    To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade-offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities; however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates

  20. Contrasting Taxonomic and Phylogenetic Diversity Responses to Forest Modifications: Comparisons of Taxa and Successive Plant Life Stages in South African Scarp Forest

    PubMed Central

    Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina

    2015-01-01

    The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different

  1. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies

    NASA Astrophysics Data System (ADS)

    Cucchi, T.; Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.

    2017-04-01

    The Plio-Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys.

  2. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies

    PubMed Central

    Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.

    2017-01-01

    The Plio–Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys. PMID:28484618

  3. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  4. New Approaches to Systematics of Trypanosomatidae: Criteria for Taxonomic (Re)description.

    PubMed

    Votýpka, Jan; d'Avila-Levy, Claudia M; Grellier, Philippe; Maslov, Dmitri A; Lukeš, Julius; Yurchenko, Vyacheslav

    2015-10-01

    While dixenous trypanosomatids represent one of the most dangerous pathogens for humans and domestic animals, their monoxenous relatives have frequently become model organisms for studies of diversity of parasitic protists and host-parasite associations. Yet, the classification of the family Trypanosomatidae is not finalized and often confusing. Here we attempt to make a blueprint for future studies in this field. We would like to elicit a discussion about an updated procedure, as traditional taxonomy was not primarily designed to be used for protists, nor can molecular phylogenetics solve all the problems alone. The current status, specific cases, and examples of generalized solutions are presented under conditions where practicality is openly favored over rigid taxonomic codes or blind phylogenetic approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A review of bioinformatics platforms for comparative genomics. Recent developments of the EDGAR 2.0 platform and its utility for taxonomic and phylogenetic studies.

    PubMed

    Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A

    2017-11-10

    The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence

  7. Conservation Action Based on Threatened Species Capture Taxonomic and Phylogenetic Richness in Breeding and Wintering Populations of Central Asian Birds

    PubMed Central

    Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias

    2014-01-01

    Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. PMID:25337861

  8. Phylogenetic diversity measures based on Hill numbers.

    PubMed

    Chao, Anne; Chiu, Chun-Huo; Jost, Lou

    2010-11-27

    We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on 'effective number of species' or Hill numbers) to take into account species relatedness, and also generalizes the traditional phylogenetic approach (based on 'total phylogenetic length') to incorporate species abundances. The proposed measure quantifies 'the mean effective number of species' over any time interval of interest, or the 'effective number of maximally distinct lineages' over that time interval. The product of the measure and the interval length quantifies the 'branch diversity' of the phylogenetic tree during that interval. The new measures generalize and unify many existing measures and lead to a natural definition of taxonomic diversity as a special case. The replication principle (or doubling property), an important requirement for species-neutral diversity, is generalized to PD. The widely used Rao's quadratic entropy and the phylogenetic entropy do not satisfy this essential property, but a simple transformation converts each to our measures, which do satisfy the property. The proposed approach is applied to forest data for interpreting the effects of thinning.

  9. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process

    PubMed Central

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-01-01

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient. PMID:27272407

  10. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process.

    PubMed

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-06-08

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient.

  11. Analysing taxonomic structures and local ecological processes in temperate forests in North Eastern China.

    PubMed

    Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus

    2017-10-30

    One of the core issues of forest community ecology is the exploration of how ecological processes affect community structure. The relative importance of different processes is still under debate. This study addresses four questions: (1) how is the taxonomic structure of a forest community affected by spatial scale? (2) does the taxonomic structure reveal effects of local processes such as environmental filtering, dispersal limitation or interspecific competition at a local scale? (3) does the effect of local processes on the taxonomic structure vary with the spatial scale? (4) does the analysis based on taxonomic structures provide similar insights when compared with the use of phylogenetic information? Based on the data collected in two large forest observational field studies, the taxonomic structures of the plant communities were analyzed at different sampling scales using taxonomic ratios (number of genera/number of species, number of families/number of species), and the relationship between the number of higher taxa and the number of species. Two random null models were used and the "standardized effect size" (SES) of taxonomic ratios was calculated, to assess possible differences between the observed and simulated taxonomic structures, which may be caused by specific ecological processes. We further applied a phylogeny-based method to compare results with those of the taxonomic approach. As expected, the taxonomic ratios decline with increasing grain size. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. With the exception of the family-species relationship in the Jiaohe study area, the exponents of the genus/family-species relationships did not show any scale dependent effects. The taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of two null models at almost all scales. Null Model 2 which

  12. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of

  13. Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi.

    PubMed

    Liyanage, K K; Khan, Sehroon; Brooks, Siraprapa; Mortimer, Peter E; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D

    2017-04-01

    Powdery mildew is a fungal disease that infects a wide range of plants, including rubber trees, which results in a reduction of latex yields of up to 45%. The causal agent of powdery mildew of rubber was first described as Oidium heveae, but later morpho-molecular research suggested that in the past, O. heveae has been confused with Erysiphe quercicola. However, it is still under debate whether the causal agent should be classified as a species of the genus Erysiphe emend. or Golovinomyces and Podosphaera, respectively. Therefore, the aim of this study was to undertake the morpho-molecular characterization of powdery mildew species associated with rubber trees, thus resolving these taxonomic issues. Morphological observation under light and scanning electron microscopes (SEM) clearly identified two morphotypes of the rubber powdery mildew. With the support of morphological and phylogenetic data, one of the two morphotypes was identified as the asexual morph of E. quercicola, while the second morphotype is still insufficiently known and according to the morphological results obtained we assume that it might belong to the genus Golovinomyces. More collections and additional molecular data are required for final conclusions regarding the exact taxonomic position of the second morphotype of rubber powdery mildew and its relation to the name O. heveae. The haplotype analysis identified eight haplotype groups of E. quercicola indicating the high genetic diversity of the species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Re-Visiting Phylogenetic and Taxonomic Relationships in the Genus Saga (Insecta: Orthoptera)

    PubMed Central

    Kolics, Balázs; Ács, Zoltán; Chobanov, Dragan Petrov; Orci, Kirill Márk; Qiang, Lo Shun; Kovács, Balázs; Kondorosy, Előd; Decsi, Kincső; Taller, János; Specziár, András; Orbán, László; Müller, Tamás

    2012-01-01

    Twelve of the 13 bushcricket species of the Saga genus are bisexuals and diploids, except the parthenogenetic and tetraploid bush cricket, Saga pedo. Despite a continuous research effort stretching through the 1900s, the taxonomic relationships of the Saga species are still disputed. In this study, our primary aim was to reveal natural relationships of the European Saga species and three of their Asian relatives, with special attention to the problematic taxonomy of two subspecies: S. campbelli campbelli and S. c. gracilis. Following a phylogenetic analysis of eight species, a comprehensive study was carried out on the above three taxa by using acoustic and morphometric approaches in parallel. Our phylogenetic data showed that European Saga species evolved from a monophyletic lineage. The geographical transitional species S. cappadocica was positioned between European and Asian lineages supporting the idea that the European Saga lineage originated phylogeographically from the Asian clade. The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only. After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies. S. c. gracilis shares the same ITS2 haplotype with S. pedo, indicating that the latter could have evolved from populations of the former, probably through whole genome duplication. Based on acoustic and morphometric differences, we propose to elevate the two subspecies, S. campbelli campbelli and S. c. gracilis, to species level status, as Saga gracilis Kis 1962, and Saga campbelli Uvarov 1921. The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species. PMID:22912691

  15. Re-visiting phylogenetic and taxonomic relationships in the genus Saga (Insecta: Orthoptera).

    PubMed

    Kolics, Balázs; Ács, Zoltán; Chobanov, Dragan Petrov; Orci, Kirill Márk; Qiang, Lo Shun; Kovács, Balázs; Kondorosy, Előd; Decsi, Kincső; Taller, János; Specziár, András; Orbán, László; Müller, Tamás

    2012-01-01

    Twelve of the 13 bushcricket species of the Saga genus are bisexuals and diploids, except the parthenogenetic and tetraploid bush cricket, Saga pedo. Despite a continuous research effort stretching through the 1900s, the taxonomic relationships of the Saga species are still disputed. In this study, our primary aim was to reveal natural relationships of the European Saga species and three of their Asian relatives, with special attention to the problematic taxonomy of two subspecies: S. campbelli campbelli and S. c. gracilis. Following a phylogenetic analysis of eight species, a comprehensive study was carried out on the above three taxa by using acoustic and morphometric approaches in parallel. Our phylogenetic data showed that European Saga species evolved from a monophyletic lineage. The geographical transitional species S. cappadocica was positioned between European and Asian lineages supporting the idea that the European Saga lineage originated phylogeographically from the Asian clade. The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only. After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies. S. c. gracilis shares the same ITS2 haplotype with S. pedo, indicating that the latter could have evolved from populations of the former, probably through whole genome duplication. Based on acoustic and morphometric differences, we propose to elevate the two subspecies, S. campbelli campbelli and S. c. gracilis, to species level status, as Saga gracilis Kis 1962, and Saga campbelli Uvarov 1921. The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species.

  16. Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications.

    PubMed

    Chaara, Dhekra; Ravel, Christophe; Bañuls, Anne- Laure; Haouas, Najoua; Lami, Patrick; Talignani, Loïc; El Baidouri, Fouad; Jaouadi, Kaouther; Harrat, Zoubir; Dedet, Jean-Pierre; Babba, Hamouda; Pratlong, Francine

    2015-04-01

    The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.

  17. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Reasoning over taxonomic change: exploring alignments for the Perelleschus use case.

    PubMed

    Franz, Nico M; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2015-01-01

    Classifications and phylogenetic inferences of organismal groups change in light of new insights. Over time these changes can result in an imperfect tracking of taxonomic perspectives through the re-/use of Code-compliant or informal names. To mitigate these limitations, we introduce a novel approach for aligning taxonomies through the interaction of human experts and logic reasoners. We explore the performance of this approach with the Perelleschus use case of Franz & Cardona-Duque (2013). The use case includes six taxonomies published from 1936 to 2013, 54 taxonomic concepts (i.e., circumscriptions of names individuated according to their respective source publications), and 75 expert-asserted Region Connection Calculus articulations (e.g., congruence, proper inclusion, overlap, or exclusion). An Open Source reasoning toolkit is used to analyze 13 paired Perelleschus taxonomy alignments under heterogeneous constraints and interpretations. The reasoning workflow optimizes the logical consistency and expressiveness of the input and infers the set of maximally informative relations among the entailed taxonomic concepts. The latter are then used to produce merge visualizations that represent all congruent and non-congruent taxonomic elements among the aligned input trees. In this small use case with 6-53 input concepts per alignment, the information gained through the reasoning process is on average one order of magnitude greater than in the input. The approach offers scalable solutions for tracking provenance among succeeding taxonomic perspectives that may have differential biases in naming conventions, phylogenetic resolution, ingroup and outgroup sampling, or ostensive (member-referencing) versus intensional (property-referencing) concepts and articulations.

  19. Reasoning over Taxonomic Change: Exploring Alignments for the Perelleschus Use Case

    PubMed Central

    Franz, Nico M.; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2015-01-01

    Classifications and phylogenetic inferences of organismal groups change in light of new insights. Over time these changes can result in an imperfect tracking of taxonomic perspectives through the re-/use of Code-compliant or informal names. To mitigate these limitations, we introduce a novel approach for aligning taxonomies through the interaction of human experts and logic reasoners. We explore the performance of this approach with the Perelleschus use case of Franz & Cardona-Duque (2013). The use case includes six taxonomies published from 1936 to 2013, 54 taxonomic concepts (i.e., circumscriptions of names individuated according to their respective source publications), and 75 expert-asserted Region Connection Calculus articulations (e.g., congruence, proper inclusion, overlap, or exclusion). An Open Source reasoning toolkit is used to analyze 13 paired Perelleschus taxonomy alignments under heterogeneous constraints and interpretations. The reasoning workflow optimizes the logical consistency and expressiveness of the input and infers the set of maximally informative relations among the entailed taxonomic concepts. The latter are then used to produce merge visualizations that represent all congruent and non-congruent taxonomic elements among the aligned input trees. In this small use case with 6-53 input concepts per alignment, the information gained through the reasoning process is on average one order of magnitude greater than in the input. The approach offers scalable solutions for tracking provenance among succeeding taxonomic perspectives that may have differential biases in naming conventions, phylogenetic resolution, ingroup and outgroup sampling, or ostensive (member-referencing) versus intensional (property-referencing) concepts and articulations. PMID:25700173

  20. Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement

    PubMed Central

    Martínez-Azorín, Mario; Crespo, Manuel B.; Juan, Ana; Fay, Michael F.

    2011-01-01

    Background and Aims The taxonomic arrangement within subfamily Ornithogaloideae (Hyacinthaceae) has been a matter of controversy in recent decades: several new taxonomic treatments have been proposed, based exclusively on plastid DNA sequences, and these have resulted in classifications which are to a great extent contradictory. Some authors have recognized only a single genus Ornithogalum for the whole subfamily, including 250–300 species of variable morphology, whereas others have recognized many genera. In the latter case, the genera are inevitably much smaller and they are better defined morphologically. However, some are not monophyletic as circumscribed. Methods Phylogenetic analyses of Ornithogaloideae were based on nucleotide sequences of four plastid regions (trnL intron, trnL-F spacer, rbcL and matK) and a nuclear region (ITS). Eighty species covering all relevant taxonomic groups previously recognized in the subfamily were sampled. Parsimony and Bayesian analyses were performed. The molecular data were compared with a matrix of 34 morphological characters. Key Results Combinations of plastid and nuclear data yielded phylogenetic trees which are better resolved than those obtained with any plastid region alone or plastid regions in combination. Three main clades are found, corresponding to the previously recognized tribes Albuceae, Dipcadieae and Ornithogaleae. In these, up to 19 clades are described which are definable by morphology and biogeography. These mostly correspond to previously described taxa, though some need recircumscription. Morphological characters are assessed for their diagnostic value for taxonomy in the subfamily. Conclusions On the basis of the phylogenetic analyses, 19 monophyletic genera are accepted within Ornithogaloideae: Albuca, Avonsera, Battandiera, Cathissa, Coilonox, Dipcadi, Eliokarmos, Elsiea, Ethesia, Galtonia, Honorius, Loncomelos, Melomphis, Neopatersonia, Nicipe, Ornithogalum, Pseudogaltonia, Stellarioides and

  1. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion

    PubMed Central

    Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten

    2009-01-01

    Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618

  2. Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure

    PubMed Central

    Escobedo, Víctor M.; Rios, Rodrigo S.; Salgado-Luarte, Cristian; Stotz, Gisela C.

    2017-01-01

    Abstract Background and Aims Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus, measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel’s lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by

  3. A taxonomic wish-list for community ecology.

    PubMed Central

    Gotelli, Nicholas J

    2004-01-01

    Community ecology seeks to explain the number and relative abundance of coexisting species. Four research frontiers in community ecology are closely tied to research in systematics and taxonomy: the statistics of species richness estimators, global patterns of biodiversity, the influence of global climate change on community structure, and phylogenetic influences on community structure. The most pressing needs for taxonomic information in community ecology research are usable taxonomic keys, current nomenclature, species occurrence records and resolved phylogenies. These products can best be obtained from Internet-based phylogenetic and taxonomic resources, but the lack of trained professional systematists and taxonomists threatens this effort. Community ecologists will benefit most directly from research in systematics and taxonomy by making better use of resources in museums and herbaria, and by actively seeking training, information and collaborations with taxonomic specialists. PMID:15253346

  4. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  5. Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis

    PubMed Central

    Trucco, María Inés; Buratti, Claudio César

    2017-01-01

    Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic study using cytochrome c oxidase I (COI) gene sequences taken from the Barcode of Life (FISH-BOL) database. Thus, 76 sequences of S. japonicus, S. colias, S. australasicus and S. scombrus from different regions were used; including 3 from Sarda sarda as outgroup. Among S. japonicus selected sequences are those corresponding to the Argentine mackerels collected in 2007. Phylogenetic trees were obtained by neighbor joining and maximum likelihood methods and a network of haplotypes was reconstructed to analyze the relationship between species. The results showed the clear differentiation of S. australasicus, S. scombrus and S. japonicus from the Pacific while S. japonicus from Argentina was included in the S. colias group, with genetic differences corresponding to conspecific populations (0.1%). Four of the five Argentine specimens shared the same haplotype with S. colias, and none were shared with S. japonicus from the Pacific. These results suggest that the current specific name of Argentine mackerel S. japonicus should be changed to S. colias, in agreement with several genetic studies carried out with species of the genus Scomber. PMID:29071283

  6. Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure.

    PubMed

    Escobedo, Víctor M; Rios, Rodrigo S; Salgado-Luarte, Cristian; Stotz, Gisela C; Gianoli, Ernesto

    2017-03-01

    Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be

  7. Phylogenetic structure of soil bacterial communities predicts ecosystem functioning.

    PubMed

    Pérez-Valera, Eduardo; Goberna, Marta; Verdú, Miguel

    2015-05-01

    Quantifying diversity with phylogeny-informed metrics helps understand the effects of diversity on ecosystem functioning (EF). The sign of these effects remains controversial because phylogenetic diversity and taxonomic identity may interactively influence EF. Positive relationships, traditionally attributed to complementarity effects, seem unimportant in natural soil bacterial communities. Negative relationships could be attributed to fitness differences leading to the overrepresentation of few productive clades, a mechanism recently invoked to assemble soil bacteria communities. We tested in two ecosystems contrasting in terms of environmental heterogeneity whether two metrics of phylogenetic community structure, a simpler measure of phylogenetic diversity (NRI) and a more complex metric incorporating taxonomic identity (PCPS), correctly predict microbially mediated EF. We show that the relationship between phylogenetic diversity and EF depends on the taxonomic identity of the main coexisting lineages. Phylogenetic diversity was negatively related to EF in soils where a marked fertility gradient exists and a single and productive clade (Proteobacteria) outcompete other clades in the most fertile plots. However, phylogenetic diversity was unrelated to EF in soils where the fertility gradient is less marked and Proteobacteria coexist with other abundant lineages. Including the taxonomic identity of bacterial lineages in metrics of phylogenetic community structure allows the prediction of EF in both ecosystems. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Diversity of Phylogenetic Information According to the Locus and the Taxonomic Level: An Example from a Parasitic Mesostigmatid Mite Genus

    PubMed Central

    Roy, Lise; Dowling, Ashley P.G.; Chauve, Claude Marie; Buronfosse, Thierry

    2010-01-01

    Molecular markers for cladistic analyses may perform differently according to the taxonomic group considered and the historical level under investigation. Here we evaluate the phylogenetic potential of five different markers for resolving evolutionary relationships within the ectoparasitic genus Dermanyssus at the species level, and their ability to address questions about the evolution of specialization. COI provided 9–18% divergence between species (up to 9% within species), 16S rRNA 10–16% (up to 4% within species), ITS1 and 2 2–9% (up to 1% within species) and Tropomyosin intron n 8–20% (up to 6% within species). EF-1α revealed different non-orthologous copies within individuals of Dermanyssus and Ornithonyssus. Tropomyosin intron n was shown containing consistent phylogenetic signal at the specific level within Dermanyssus and represents a promising marker for future prospects in phylogenetics of Acari. Phylogenetic analyses revealed that the generalist condition is apomorphic and D. gallinae might represent a complex of hybridized lineages. The split into hirsutus-group and gallinae-group in Dermanyssus does not seem to be appropriate based upon these results and D. longipes appears to be composed of two different entities. PMID:20480038

  9. Increasing numbers of bird species result from taxonomic progress, not taxonomic inflation

    PubMed Central

    Sangster, George

    2009-01-01

    The impact and significance of modern taxonomy on other fields in biology have been subjects of much debate. It has been proposed that increasing numbers of vertebrate species are largely owing to ‘taxonomic inflation’. According to this hypothesis, newly recognized species result from reinterpretations of species limits based on phylogenetic species concepts (PSCs) rather than from new discoveries. Here, I examine 747 proposals to change the taxonomic rank of birds in the period 1950–2007. The trend to recognize more species of birds started at least two decades before the introduction of PSCs. Most (84.6%) newly recognized species were supported by new taxonomic data. Proposals to recognize more species resulted from application of all six major taxonomic criteria. Many newly recognized species (63.4%) were not based exclusively on PSC-based criteria (diagnosability, monophyly and exclusive coalescence of gene trees). Therefore, this study finds no empirical support for the idea that the increase in species is primarily epistemological rather than data-driven. This study shows that previous claims about the causes and effects of taxonomic inflation lack empirical support. I argue that a more appropriate term for the increase in species is ‘taxonomic progress’. PMID:19520805

  10. Evaluating community–environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly

    PubMed Central

    Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191

  11. Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae)

    PubMed Central

    Smith, Neil Adam

    2011-01-01

    Abstract Although flightless alcids from the Miocene and Pliocene of the eastern Pacific Ocean have been known for over 100 years, there is no detailed evaluation of diversity and systematic placement of these taxa. This is the first combined analysis of morphological and molecular data to include all extant alcids, the recently extinct Great Auk Pinguinus impennis, the mancalline auks, and a large outgroup sampling of 29 additional non-alcid charadriiforms. Based on the systematic placement of Mancallinae outside of crown clade Alcidae, the clade name Pan-Alcidae is proposed to include all known alcids. An extensive review of the Mancallinae fossil record resulted in taxonomic revision of the clade, and identification of three new species. In addition to positing the first hypothesis of inter-relationships between Mancallinae species, phylogenetic results support placement of Mancallinae as the sister taxon to all other Alcidae, indicating that flightlessness evolved at least twice in the alcid lineage. Convergent osteological characteristics of Mancallinae, the flightless Great Auk, and Spheniscidae are summarized, and implications of Mancallinae diversity, radiation, and extinction in the context of paleoclimatic changes are discussed. PMID:21594108

  12. Variance Component Selection With Applications to Microbiome Taxonomic Data.

    PubMed

    Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J

    2018-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  13. Phylogenetic classification of bony fishes.

    PubMed

    Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo

    2017-07-06

    Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution

  14. Taxonomic revision and phylogenetic position of Osteocephalus festae (Anura, Hylidae) with description of its larva

    PubMed Central

    Ron, Santiago R.; Toral, Eduardo; Venegas, Pablo J.; Barnes, Charles W.

    2010-01-01

    Abstract Osteocephalus festae is an Amazonian species recently resurrected from a synonymy with Osteocephalus buckleyi. Because few specimens are known, its morphological variation, diagnostic characters, and distribution are poorly understood. Herein we determine its phylogenetic relationships and provide a complete taxonomic account based on recently collected specimens (adults and larvae) from nine localities in Ecuador and Peru. Osteocephalus festae is most similar to Osteocephalus verruciger from which it differs in having less tuberculate dorsal skin on males, smaller tympanum, and more tooth rows in the oral disk of larvae. A phylogeny based on mitochondrial DNA sequences, genes 12S and ND1, shows that Osteocephalus festae is closely related to Osteocephalus buckleyi, Osteocephalus mutabor and Osteocephalus verruciger. A clade consisting of Osteocephalus festae, Osteocephalus verruciger, and Osteocephalus buckleyi is characterized by stream dwelling tadpoles. Surprisingly, we found paraphyly among Ecuadorian populations of Osteocephalus buckleyi and Osteocephalus verruciger. The causes for paraphyly are unknown but in Osteocephalus buckleyi may result from the existence of cryptic species. PMID:21594044

  15. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China

    PubMed Central

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  16. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    PubMed

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  17. A taxonomic and phylogenetic re-appraisal of the genus Curvularia

    USDA-ARS?s Scientific Manuscript database

    Species of Curvularia are important plant and human pathogens worldwide. In this study, the genus Curvularia is re-assessed based on molecular phylogenetic analysis and morphological observations of available isolates and specimens. A multi-gene phylogenetic tree inferred from ITS, TEF and GPDH gene...

  18. Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics

    PubMed Central

    van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW

    2006-01-01

    Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620

  19. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation

    PubMed Central

    Laplante, Karine; Sébastien, Boutin; Derome, Nicolas

    2013-01-01

    Heavy metals released by anthropogenic activities such as mining trigger profound changes to bacterial communities. In this study we used 16S SSU rRNA gene high-throughput sequencing to characterize the impact of a polymetallic perturbation and other environmental parameters on taxonomic networks within five lacustrine bacterial communities from sites located near Rouyn-Noranda, Quebec, Canada. The results showed that community equilibrium was disturbed in terms of both diversity and structure. Moreover, heavy metals, especially cadmium combined with water acidity, induced parallel changes among sites via the selection of resistant OTUs (Operational Taxonomic Unit) and taxonomic dominance perturbations favoring the Alphaproteobacteria. Furthermore, under a similar selective pressure, covariation trends between phyla revealed conservation and parallelism within interphylum interactions. Our study sheds light on the importance of analyzing communities not only from a phylogenetic perspective but also including a quantitative approach to provide significant insights into the evolutionary forces that shape the dynamic of the taxonomic interaction networks in bacterial communities. PMID:23789031

  20. The systematic component of phylogenetic error as a function of taxonomic sampling under parsimony.

    PubMed

    Debry, Ronald W

    2005-06-01

    The effect of taxonomic sampling on phylogenetic accuracy under parsimony is examined by simulating nucleotide sequence evolution. Random error is minimized by using very large numbers of simulated characters. This allows estimation of the consistency behavior of parsimony, even for trees with up to 100 taxa. Data were simulated on 8 distinct 100-taxon model trees and analyzed as stratified subsets containing either 25 or 50 taxa, in addition to the full 100-taxon data set. Overall accuracy decreased in a majority of cases when taxa were added. However, the magnitude of change in the cases in which accuracy increased was larger than the magnitude of change in the cases in which accuracy decreased, so, on average, overall accuracy increased as more taxa were included. A stratified sampling scheme was used to assess accuracy for an initial subsample of 25 taxa. The 25-taxon analyses were compared to 50- and 100-taxon analyses that were pruned to include only the original 25 taxa. On average, accuracy for the 25 taxa was improved by taxon addition, but there was considerable variation in the degree of improvement among the model trees and across different rates of substitution.

  1. Evaluation of the taxonomic status of populations assigned to Phyllomedusa hypochondrialis (Anura, Hylidae, Phyllomedusinae) based on molecular, chromosomal, and morphological approach

    PubMed Central

    2013-01-01

    Background The taxonomic and phylogenetic relationships of the genus Phyllomedusa have been amply discussed. The marked morphological similarities among some species hamper the reliable identification of specimens and may often lead to their incorrect taxonomic classification on the sole basis of morphological traits. Phenotypic variation was observed among populations assigned to either P. azurea or P. hypochondrialis. In order to evaluate whether the variation observed in populations assigned to P. hypochondrialis is related to that in genotypes, a cytogenetic analysis was combined with phylogenetic inferences based on mitochondrial and nuclear sequences. Results The inter- and intra-population variation in the external morphology observed among the specimens analyzed in the present study do not reflect the phylogenetic relationships among populations. A monophyletic clade was recovered, grouping all the specimens identified as P. hypochondrialis and specimens assigned P. azurea from Minas Gerais state. This clade is characterized by conserved chromosomal morphology and a common C-banding pattern. Extensive variation in the nucleolar organizing region (NOR) was observed among populations, with four distinct NOR positions being recognized in the karyotypes. Intra-population polymorphism of the additional rDNA clusters observed in specimens from Barreiras, Bahia state, also highlights the marked genomic instability of the rDNA in the genome of this group. Based on the topology obtained in the phylogenetic analyses, the re-evaluation of the taxonomic status of the specimens from the southernmost population known in Brazil is recommended. Conclusions The results of this study support the need for a thorough revision of the phenotypic features used to discriminate P. azurea and P. hypochondrialis. The phylogenetic data presented here also contribute to an extension of the geographic range of P. hypochondrialis, which is known to occur in the Amazon basin and

  2. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    PubMed

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a

  3. A Deliberate Practice Approach to Teaching Phylogenetic Analysis

    PubMed Central

    Hobbs, F. Collin; Johnson, Daniel J.; Kearns, Katherine D.

    2013-01-01

    One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or “one-shot,” in-class activities. Using a deliberate practice instructional approach, we designed a set of five assignments for a 300-level plant systematics course that incrementally introduces the concepts and skills used in phylogenetic analysis. In our assignments, students learned the process of constructing phylogenetic trees through a series of increasingly difficult tasks; thus, skill development served as a framework for building content knowledge. We present results from 5 yr of final exam scores, pre- and postconcept assessments, and student surveys to assess the impact of our new pedagogical materials on student performance related to constructing and interpreting phylogenetic trees. Students improved in their ability to interpret relationships within trees and improved in several aspects related to between-tree comparisons and tree construction skills. Student feedback indicated that most students believed our approach prepared them to engage in tree construction and gave them confidence in their abilities. Overall, our data confirm that instructional approaches implementing deliberate practice address student misconceptions, improve student experiences, and foster deeper understanding of difficult scientific concepts. PMID:24297294

  4. Functional & phylogenetic diversity of copepod communities

    NASA Astrophysics Data System (ADS)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  5. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    PubMed

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic

  6. Genomic insights into the taxonomic status of the Bacillus cereus group

    PubMed Central

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-01-01

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441

  7. The problem and promise of scale dependency in community phylogenetics.

    PubMed

    Swenson, Nathan G; Enquist, Brian J; Pither, Jason; Thompson, Jill; Zimmerman, Jess K

    2006-10-01

    The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.

  8. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  9. Predicting taxonomic and functional structure of microbial communities in acid mine drainage

    PubMed Central

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-01-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  10. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    PubMed

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  11. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    PubMed

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies. © 2014 John Wiley & Sons Ltd.

  12. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  13. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial

  14. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  15. Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities

    PubMed Central

    Gray, Claudia L.; Wearn, Oliver R.; Owen, Nisha R.

    2018-01-01

    The scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. As extinction is non-random across the tree of life, it is important to prioritise threatened species which represent large amounts of evolutionary history. The EDGE metric prioritises species based on their Evolutionary Distinctiveness (ED), which measures the relative contribution of a species to the total evolutionary history of their taxonomic group, and Global Endangerment (GE), or extinction risk. EDGE prioritisations rely on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic trees of large taxonomic groups are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to estimate missing ED scores for species absent from a phylogenetic tree whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogenetic tree, the new method provided the closest estimates of their “true” ED score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous methods. The previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogenetic tree. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst

  16. Treetrimmer: a method for phylogenetic dataset size reduction.

    PubMed

    Maruyama, Shinichiro; Eveleigh, Robert J M; Archibald, John M

    2013-04-12

    With rapid advances in genome sequencing and bioinformatics, it is now possible to generate phylogenetic trees containing thousands of operational taxonomic units (OTUs) from a wide range of organisms. However, use of rigorous tree-building methods on such large datasets is prohibitive and manual 'pruning' of sequence alignments is time consuming and raises concerns over reproducibility. There is a need for bioinformatic tools with which to objectively carry out such pruning procedures. Here we present 'TreeTrimmer', a bioinformatics procedure that removes unnecessary redundancy in large phylogenetic datasets, alleviating the size effect on more rigorous downstream analyses. The method identifies and removes user-defined 'redundant' sequences, e.g., orthologous sequences from closely related organisms and 'recently' evolved lineage-specific paralogs. Representative OTUs are retained for more rigorous re-analysis. TreeTrimmer reduces the OTU density of phylogenetic trees without sacrificing taxonomic diversity while retaining the original tree topology, thereby speeding up downstream computer-intensive analyses, e.g., Bayesian and maximum likelihood tree reconstructions, in a reproducible fashion.

  17. Phenotypic Microdiversity and Phylogenetic Signal Analysis of Traits Related to Social Interaction in Bacillus spp. from Sediment Communities.

    PubMed

    Rodríguez-Torres, María Dolores; Islas-Robles, África; Gómez-Lunar, Zulema; Delaye, Luis; Hernández-González, Ismael; Souza, Valeria; Travisano, Michael; Olmedo-Álvarez, Gabriela

    2017-01-01

    Understanding the relationship between phylogeny and predicted traits is important to uncover the dimension of the predictive power of a microbial composition approach. Numerous works have addressed the taxonomic composition of bacteria in communities, but little is known about trait heterogeneity in closely related bacteria that co-occur in communities. We evaluated a sample of 467 isolates from the Churince water system of the Cuatro Cienegas Basin (CCB), enriched for Bacillus spp. The 16S rRNA gene revealed a random distribution of taxonomic groups within this genus among 11 sampling sites. A subsample of 141 Bacillus spp. isolates from sediment, with seven well-represented species was chosen to evaluate the heterogeneity and the phylogenetic signal of phenotypic traits that are known to diverge within small clades, such as substrate utilization, and traits that are conserved deep in the lineage, such as prototrophy, swarming and biofilm formation. We were especially interested in evaluating social traits, such as swarming and biofilm formation, for which cooperation is needed to accomplish a multicellular behavior and for which there is little information from natural communities. The phylogenetic distribution of traits, evaluated by the Purvis and Fritz's D statistics approached a Brownian model of evolution. Analysis of the phylogenetic relatedness of the clusters of members sharing the trait using consenTRAIT algorithm, revealed more clustering and deeper phylogenetic signal for prototrophy, biofilm and swimming compared to the data obtained for substrate utilization. The explanation to the observed Brownian evolution of social traits could be either loss due to complete dispensability or to compensated trait loss due to the availability of public goods. Since many of the evaluated traits can be considered to be collective action traits, such as swarming, motility and biofilm formation, the observed microdiversity within taxonomic groups might be explained

  18. A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Etnoyer, Peter J.; Doughty, Cheryl; English, Lisa; Falco, Rosalia; Remon, Natasha; Rittinghouse, Matthew; Cordes, Erik E.

    2014-01-01

    Deep-sea communities are becoming increasingly vulnerable to anthropogenic disturbances, as fishing, hydrocarbon exploration and extraction, and mining activities extend into deeper water. Negative impacts from such activities were recently documented in the Gulf of Mexico (GoM), where the Deepwater Horizon oil spill caused substantial damage to a deep-water octocoral community. Although a faunal checklist and numerous museum records are currently available for the entire GoM, local-scale diversity and assemblage structure of octocoral communities remains unknown, particularly in deep water. On a series of recent cruises (2008-2011) using remotely operated vehicles, 435 octocorals were collected from 33 deep-water sites (250-2500 m) in the northern GoM. To elucidate species boundaries, the extended mitochondrial barcode (COI+igr1+msh) was successfully amplified and sequenced for 422 of these specimens, yielding a total of 64 haplotypes representing at least 52 species. Further, at least 29% of the species collected were either previously not known to occur in the GoM (12 species) or represent new species (at least three species). Overall, species richness at each site was fairly low (1-12 spp.). The greatest species richness occurred at the shallowest (<325 m: GC140, n=8 spp.) and the deepest (2100-2500 m: DC673, n=12 spp., DC583, n=10 spp.) sites, and minimum taxonomic and phylogenetic (Faith's Index) diversity was evident at 600-950 m. This pattern is the opposite of the typical pattern of deep-sea diversity in the GoM, which normally peaks at mid-slope depths. Sorensen's Index of taxonomic β-diversity indicated that six distinct (65-95% dissimilarity) species assemblages corresponded with five depth breaks at ~325, 425, 600, 1100, and 2100 m. Further assemblage structure was observed within certain depth zones. Of note, within the 425-600 m depth range, species assemblages at the West Florida Slope differed from the other sites, corresponding to an established

  19. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  20. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  1. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.

  2. A Taxonomic Search Engine: Federating taxonomic databases using web services

    PubMed Central

    Page, Roderic DM

    2005-01-01

    Background The taxonomic name of an organism is a key link between different databases that store information on that organism. However, in the absence of a single, comprehensive database of organism names, individual databases lack an easy means of checking the correctness of a name. Furthermore, the same organism may have more than one name, and the same name may apply to more than one organism. Results The Taxonomic Search Engine (TSE) is a web application written in PHP that queries multiple taxonomic databases (ITIS, Index Fungorum, IPNI, NCBI, and uBIO) and summarises the results in a consistent format. It supports "drill-down" queries to retrieve a specific record. The TSE can optionally suggest alternative spellings the user can try. It also acts as a Life Science Identifier (LSID) authority for the source taxonomic databases, providing globally unique identifiers (and associated metadata) for each name. Conclusion The Taxonomic Search Engine is available at and provides a simple demonstration of the potential of the federated approach to providing access to taxonomic names. PMID:15757517

  3. Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types.

    PubMed

    Pena, Rodica; Lang, Christa; Lohaus, Gertrud; Boch, Steffen; Schall, Peter; Schöning, Ingo; Ammer, Christian; Fischer, Markus; Polle, Andrea

    2017-04-01

    Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.

  4. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium.

    PubMed

    Quandt, C Alisha; Kepler, Ryan M; Gams, Walter; Araújo, João P M; Ban, Sayaka; Evans, Harry C; Hughes, David; Humber, Richard; Hywel-Jones, Nigel; Li, Zengzhi; Luangsa-Ard, J Jennifer; Rehner, Stephen A; Sanjuan, Tatiana; Sato, Hiroki; Shrestha, Bhushan; Sung, Gi-Ho; Yao, Yi-Jian; Zare, Rasoul; Spatafora, Joseph W

    2014-06-01

    Ophiocordycipitaceae is a diverse family comprising ecologically, economically, medicinally, and culturally important fungi. The family was recognized due to the polyphyly of the genus Cordyceps and the broad diversity of the mostly arthropod-pathogenic lineages of Hypocreales. The other two cordyceps-like families, Cordycipitaceae and Clavicipitaceae, will be revised taxonomically elsewhere. Historically, many species were placed in Cordyceps, but other genera have been described in this family as well, including several based on anamorphic features. Currently there are 24 generic names in use across both asexual and sexual life stages for species of Ophiocordycipitaceae. To reflect changes in Art. 59 in the International Code of Nomenclature for algae, fungi, and plants (ICN), we propose to protect and to suppress names within Ophiocordycipitaceae, and to present taxonomic revisions in the genus Tolypocladium, based on rigorous and extensively sampled molecular phylogenetic analyses. When approaching this task, we considered the principles of priority, monophyly, minimizing taxonomic revisions, and the practical utility of these fungi within the wider biological research community.

  5. Octocoral Mitochondrial Genomes Provide Insights into the Phylogenetic History of Gene Order Rearrangements, Order Reversals, and Cnidarian Phylogenetics

    PubMed Central

    Figueroa, Diego F.; Baco, Amy R.

    2015-01-01

    We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available. PMID:25539723

  6. Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads.

    PubMed

    Schachat, Sandra R; Mulcahy, Daniel G; Mendelson, Joseph R

    2016-02-01

    Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat-risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis' D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context. © 2015 Society for Conservation Biology.

  7. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers.

    PubMed

    Gehrig, H; Heute, V; Kluge, M

    2001-08-01

    To better understand the evolution of the enzyme phosphoenolpyruvate carboxylase (PEPC) and to test its versatility as a molecular character in phylogenetic and taxonomic studies, we have characterized and compared 70 new partial PEPC nucleotide and amino acid sequences (about 1100 bp of the 3' side of the gene) from 50 plant species (24 species of Bryophyta, 1 of Pteridophyta, and 25 of Spermatophyta). Together with previously published data, the new set of sequences allowed us to construct the up to now most complete phylogenetic tree of PEPC, where the PEPC sequences cluster according to both the taxonomic positions of the donor plants and the assumed specific function of the PEPC isoforms. Altogether, the study further strengthens the view that PEPC sequences can provide interesting information for the reconstruction of phylogenetic relations between organisms and metabolic pathways. To avoid confusion in future discussion, we propose a new nomenclature for the denotation of PEPC isoforms. Copyright 2001 Academic Press.

  8. Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics.

    PubMed

    Figueroa, Diego F; Baco, Amy R

    2014-12-24

    We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Phylogenetic diversity and biodiversity indices on phylogenetic networks.

    PubMed

    Wicke, Kristina; Fischer, Mareike

    2018-04-01

    In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses

  11. Phylogenetic approaches reveal biodiversity threats under climate change

    NASA Astrophysics Data System (ADS)

    González-Orozco, Carlos E.; Pollock, Laura J.; Thornhill, Andrew H.; Mishler, Brent D.; Knerr, Nunzio; Laffan, Shawn W.; Miller, Joseph T.; Rosauer, Dan F.; Faith, Daniel P.; Nipperess, David A.; Kujala, Heini; Linke, Simon; Butt, Nathalie; Külheim, Carsten; Crisp, Michael D.; Gruber, Bernd

    2016-12-01

    Predicting the consequences of climate change for biodiversity is critical to conservation efforts. Extensive range losses have been predicted for thousands of individual species, but less is known about how climate change might impact whole clades and landscape-scale patterns of biodiversity. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.

  12. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of New Guinean species.

    PubMed

    Robins, Judith H; Tintinger, Vernon; Aplin, Ken P; Hingston, Melanie; Matisoo-Smith, Elizabeth; Penny, David; Lavery, Shane D

    2014-01-01

    The genus Rattus is highly speciose, the taxonomy is complex, and individuals are often difficult to identify to the species level. Previous studies have demonstrated the usefulness of phylogenetic approaches to identification in Rattus but some species, especially among the endemics of the New Guinean region, showed poor resolution. Possible reasons for this are simple misidentification, incomplete gene lineage sorting, hybridization, and phylogenetically distinct lineages that are unrecognised taxonomically. To assess these explanations we analysed 217 samples, representing nominally 25 Rattus species, collected in New Guinea, Asia, Australia and the Pacific. To reduce misidentification problems we sequenced museum specimens from earlier morphological studies and recently collected tissues from samples with associated voucher specimens. We also reassessed vouchers from previously sequenced specimens. We inferred combined and separate phylogenies from two mitochondrial DNA regions comprising 550 base pair D-loop sequences and both long (655 base pair) and short (150 base pair) cytochrome oxidase I sequences. Our phylogenetic species identification for 17 species was consistent with morphological designations and current taxonomy thus reinforcing the usefulness of this approach. We reduced misidentifications and consequently the number of polyphyletic species in our phylogenies but the New Guinean Rattus clades still exhibited considerable complexity. Only three of our eight New Guinean species were monophyletic. We found good evidence for either incomplete mitochondrial lineage sorting or hybridization between species within two pairs, R. leucopus/R. cf. verecundus and R. steini/R. praetor. Additionally, our results showed that R. praetor, R. niobe and R. verecundus each likely encompass more than one species. Our study clearly points to the need for a revised taxonomy of the rats of New Guinea, based on broader sampling and informed by both morphology and

  13. Phylogenetic Species Identification in Rattus Highlights Rapid Radiation and Morphological Similarity of New Guinean Species

    PubMed Central

    Robins, Judith H.; Tintinger, Vernon; Aplin, Ken P.; Hingston, Melanie; Matisoo-Smith, Elizabeth; Penny, David; Lavery, Shane D.

    2014-01-01

    The genus Rattus is highly speciose, the taxonomy is complex, and individuals are often difficult to identify to the species level. Previous studies have demonstrated the usefulness of phylogenetic approaches to identification in Rattus but some species, especially among the endemics of the New Guinean region, showed poor resolution. Possible reasons for this are simple misidentification, incomplete gene lineage sorting, hybridization, and phylogenetically distinct lineages that are unrecognised taxonomically. To assess these explanations we analysed 217 samples, representing nominally 25 Rattus species, collected in New Guinea, Asia, Australia and the Pacific. To reduce misidentification problems we sequenced museum specimens from earlier morphological studies and recently collected tissues from samples with associated voucher specimens. We also reassessed vouchers from previously sequenced specimens. We inferred combined and separate phylogenies from two mitochondrial DNA regions comprising 550 base pair D-loop sequences and both long (655 base pair) and short (150 base pair) cytochrome oxidase I sequences. Our phylogenetic species identification for 17 species was consistent with morphological designations and current taxonomy thus reinforcing the usefulness of this approach. We reduced misidentifications and consequently the number of polyphyletic species in our phylogenies but the New Guinean Rattus clades still exhibited considerable complexity. Only three of our eight New Guinean species were monophyletic. We found good evidence for either incomplete mitochondrial lineage sorting or hybridization between species within two pairs, R. leucopus/R. cf. verecundus and R. steini/R. praetor. Additionally, our results showed that R. praetor, R. niobe and R. verecundus each likely encompass more than one species. Our study clearly points to the need for a revised taxonomy of the rats of New Guinea, based on broader sampling and informed by both morphology and

  14. Range extension for the common dolphin (Delphinus sp.) to the Colombian Caribbean, with taxonomic implications from genetic barcoding and phylogenetic analyses

    PubMed Central

    Chávez-Carreño, Paula Alejandra; Jiménez-Pinedo, Cristina; Palacios, Daniel M.; Caicedo, Dalila; Trujillo, Fernando; Caballero, Susana

    2017-01-01

    The nearest known population of common dolphins (Delphinus sp.) to the Colombian Caribbean occurs in a fairly restricted range in eastern Venezuela. These dolphins have not been previously reported in the Colombian Caribbean, likely because of a lack of study of the local cetacean fauna. We collected cetacean observations in waters of the Guajira Department, northern Colombia (~11°N, 73°W) during two separate efforts: (a) a seismic vessel survey (December 2009—March 2010), and (b) three coastal surveys from small boats (May—July 2012, May 2013, and May 2014). Here we document ten sightings of common dolphins collected during these surveys, which extend the known range of the species by ~1000 km into the southwestern Caribbean. We also collected nine skin biopsies in 2013 and 2014. In order to determine the taxonomic identity of the specimens, we conducted genetic barcoding and phylogenetic analyses using two mitochondrial markers, the Control Region (mtDNA) and Cytochrome b (Cytb). Results indicate that these specimens are genetically closer to the short-beaked common dolphin (Delphinus delphis) even though morphologically they resemble a long-beaked form (Delphinus sp.). However, the specific taxonomic status of common dolphins in the Caribbean and in the Western Atlantic remains unresolved. It is also unclear whether the distribution of the species between northern Colombia and eastern Venezuela is continuous or disjoined, or whether they can be considered part of the same stock. PMID:28192446

  15. Range extension for the common dolphin (Delphinus sp.) to the Colombian Caribbean, with taxonomic implications from genetic barcoding and phylogenetic analyses.

    PubMed

    Farías-Curtidor, Nohelia; Barragán-Barrera, Dalia C; Chávez-Carreño, Paula Alejandra; Jiménez-Pinedo, Cristina; Palacios, Daniel M; Caicedo, Dalila; Trujillo, Fernando; Caballero, Susana

    2017-01-01

    The nearest known population of common dolphins (Delphinus sp.) to the Colombian Caribbean occurs in a fairly restricted range in eastern Venezuela. These dolphins have not been previously reported in the Colombian Caribbean, likely because of a lack of study of the local cetacean fauna. We collected cetacean observations in waters of the Guajira Department, northern Colombia (~11°N, 73°W) during two separate efforts: (a) a seismic vessel survey (December 2009-March 2010), and (b) three coastal surveys from small boats (May-July 2012, May 2013, and May 2014). Here we document ten sightings of common dolphins collected during these surveys, which extend the known range of the species by ~1000 km into the southwestern Caribbean. We also collected nine skin biopsies in 2013 and 2014. In order to determine the taxonomic identity of the specimens, we conducted genetic barcoding and phylogenetic analyses using two mitochondrial markers, the Control Region (mtDNA) and Cytochrome b (Cytb). Results indicate that these specimens are genetically closer to the short-beaked common dolphin (Delphinus delphis) even though morphologically they resemble a long-beaked form (Delphinus sp.). However, the specific taxonomic status of common dolphins in the Caribbean and in the Western Atlantic remains unresolved. It is also unclear whether the distribution of the species between northern Colombia and eastern Venezuela is continuous or disjoined, or whether they can be considered part of the same stock.

  16. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite

  17. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling

    PubMed Central

    Shin, Junha; Lee, Insuk

    2015-01-01

    Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co

  18. Defining the phylogenetic position of Amanita species from Andean Colombia.

    PubMed

    Vargas, Natalia; Pardo-de La Hoz, Carlos José; Danies, Giovanna; Franco-Molano, Ana Esperanza; Jiménez, Pedro; Restrepo, Silvia; Grajales, Alejandro

    2017-01-01

    Amanita is a worldwide-distributed fungal genus, with approximately 600 known species. Most species within the genus are ectomycorrhizal (ECM), with some saprotrophic representatives. In this study, we constructed the first comprehensive phylogeny including ECM species from Colombia collected in native Quercus humboldtii forests and in introduced Pinus patula plantations. We included 8 species (A. brunneolocularis, A. colombiana, A. flavoconia, A. fuligineodisca, A. muscaria, A. rubescens, A. sororcula, and A. xylinivolva) out of 16 species reported for the country, two new reports: A. citrina and A. virosa, and a new variety A. brunneolocularis var. pallida. Morphological taxonomic keys together with a phylogenetic approach using three nuclear gene regions: partial nuc rDNA 28S nuc rDNA internal transcribed spacers ITS1 and ITS2 and partial translation elongation factor 1-α gene (TEF1), were used to classify the specimens. Several highly supported clades were obtained from the phylogenetic hypotheses obtained by Bayesian inference and maximum likelihood approaches, allowing us to position the Colombian collections in a coherent infrageneric level and to contribute to the knowledge of local Amanita diversity.

  19. Accurate phylogenetic classification of DNA fragments based onsequence composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequencemore » characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.« less

  20. Combining Taxonomic and Functional Approaches to Unravel the Spatial Distribution of an Amazonian Butterfly Community.

    PubMed

    Graça, Márlon B; Morais, José W; Franklin, Elizabeth; Pequeno, Pedro A C L; Souza, Jorge L P; Bueno, Anderson Saldanha

    2016-04-01

    This study investigated the spatial distribution of an Amazonian fruit-feeding butterfly assemblage by linking species taxonomic and functional approaches. We hypothesized that: 1) vegetation richness (i.e., resources) and abundance of insectivorous birds (i.e., predators) should drive changes in butterfly taxonomic composition, 2) larval diet breadth should decrease with increase of plant species richness, 3) small-sized adults should be favored by higher abundance of birds, and 4) communities with eyespot markings should be able to exploit areas with higher predation pressure. Fruit-feeding butterflies were sampled with bait traps and insect nets across 25 km(2) of an Amazonian ombrophilous forest in Brazil. We measured larval diet breadth, adult body size, and wing marking of all butterflies. Our results showed that plant species richness explained most of the variation in butterfly taxonomic turnover. Also, community average diet breadth decreased with increase of plant species richness, which supports our expectations. In contrast, community average body size increased with the abundance of birds, refuting our hypothesis. We detected no influence of environmental gradients on the occurrence of species with eyespot markings. The association between butterfly taxonomic and functional composition points to a mediator role of the functional traits in the environmental filtering of butterflies. The incorporation of the functional approach into the analyses allowed for the detection of relationships that were not observed using a strictly taxonomic perspective and provided an extra insight into comprehending the potential adaptive strategies of butterflies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A Deliberate Practice Approach to Teaching Phylogenetic Analysis

    ERIC Educational Resources Information Center

    Hobbs, F. Collin; Johnson, Daniel J.; Kearns, Katherine D.

    2013-01-01

    One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or "one-shot," in-class activities. Using a deliberate practice instructional approach, we…

  2. An efficient and extensible approach for compressing phylogenetic trees.

    PubMed

    Matthews, Suzanne J; Williams, Tiffani L

    2011-10-18

    Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.

  3. Phylogenetic revision of Minyomerus Horn, 1876 sec. Jansen & Franz, 2015 (Coleoptera, Curculionidae) using taxonomic concept annotations and alignments

    PubMed Central

    Jansen, M. Andrew; Franz, Nico M.

    2015-01-01

    Abstract This contribution adopts the taxonomic concept annotation and alignment approach. Accordingly, and where indicated, previous and newly inferred meanings of taxonomic names are individuated according to one specific source. Articulations among these concepts and pairwise, logically consistent alignments of original and revisionary classifications are also provided, in addition to conventional nomenclatural provenance information. A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876 sec. O’Brien & Wibmer (1982), and Piscatopus Sleeper, 1960 sec. O’Brien & Wibmer (1982) (Curculionidae [non-focal]: Entiminae [non-focal]: Tanymecini [non-focal]) is presented. Prior to this study, Minyomerus sec. O’Brien & Wibmer (1982) contained seven species, whereas the monotypic Piscatopus sec. O’Brien & Wibmer (1982) was comprised solely of Piscatopus griseus Sleeper, 1960 sec. O’Brien & Wibmer (1982). We thoroughly redescribe these recognized species-level entities and furthermore describe ten species as new to science: Minyomerus bulbifrons sec. Jansen & Franz (2015) (henceforth: [JF2015]), sp. n., Minyomerus aeriballux [JF2015], sp. n., Minyomerus cracens [JF2015], sp. n., Minyomerus gravivultus [JF2015], sp. n., Minyomerus imberbus [JF2015], sp. n., Minyomerus reburrus [JF2015], sp. n., Minyomerus politus [JF2015], sp. n., Minyomerus puticulatus [JF2015], sp. n., Minyomerus rutellirostris [JF2015], sp. n., and Minyomerus trisetosus [JF2015], sp. n. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5/17 outgroup/ingroup) yielded a single most-parsimonious cladogram (L = 82, CI = 65, RI = 82). The analysis strongly supports the monophyly of Minyomerus [JF2015] with eight unreversed synapomorphies, and places Piscatopus griseus sec. O’Brien & Wibmer (1982) within the genus as sister to Minyomerus rutellirostris [JF2015]. Accordingly, Piscatopus sec. Sleeper (1960), syn. n. is changed to junior synonymy of

  4. Taxonomic triage and the poverty of phylogeny.

    PubMed Central

    Wheeler, Quentin D

    2004-01-01

    Revisionary taxonomy is frequently dismissed as merely descriptive, which belies its strong intellectual content and hypothesis-driven nature. Funding for taxonomy is inadequate and largely diverted to studies of phylogeny that neither improve classifications nor nomenclature. Phylogenetic classifications are optimal for storing and predicting information, but phylogeny divorced from taxonomy is ephemeral and erodes the accuracy and information content of the language of biology. Taxonomic revisions and monographs are efficient, high-throughput species hypothesis-testing devices that are ideal for the World Wide Web. Taxonomic knowledge remains essential to credible biological research and is made urgent by the biodiversity crisis. Theoretical and technological advances and threats of mass species extinctions indicate that this is the time for a renaissance in taxonomy. Clarity of vision and courage of purpose are needed from individual taxonomists and natural history museums to bring about this evolution of taxonomy into the information age. PMID:15253345

  5. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  6. An improved taxonomic sampling is a necessary but not sufficient condition for resolving inter-families relationships in Caridean decapods.

    PubMed

    Aznar-Cormano, L; Brisset, J; Chan, T-Y; Corbari, L; Puillandre, N; Utge, J; Zbinden, M; Zuccon, D; Samadi, S

    2015-04-01

    During the past decade, a large number of multi-gene analyses aimed at resolving the phylogenetic relationships within Decapoda. However relationships among families, and even among sub-families, remain poorly defined. Most analyses used an incomplete and opportunistic sampling of species, but also an incomplete and opportunistic gene selection among those available for Decapoda. Here we test in the Caridea if improving the taxonomic coverage following the hierarchical scheme of the classification, as it is currently accepted, provides a better phylogenetic resolution for the inter-families relationships. The rich collections of the Muséum National d'Histoire Naturelle de Paris are used for sampling as far as possible at least two species of two different genera for each family or subfamily. All potential markers are tested over this sampling. For some coding genes the amplification success varies greatly among taxa and the phylogenetic signal is highly saturated. This result probably explains the taxon-heterogeneity among previously published studies. The analysis is thus restricted to the genes homogeneously amplified over the whole sampling. Thanks to the taxonomic sampling scheme the monophyly of most families is confirmed. However the genes commonly used in Decapoda appear non-adapted for clarifying inter-families relationships, which remain poorly resolved. Genome-wide analyses, like transcriptome-based exon capture facilitated by the new generation sequencing methods might provide a sounder approach to resolve deep and rapid radiations like the Caridea.

  7. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    PubMed

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  8. An efficient and extensible approach for compressing phylogenetic trees

    PubMed Central

    2011-01-01

    Background Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. Results On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. Conclusions TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community. PMID:22165819

  9. Barcoding snakeheads (Teleostei, Channidae) revisited: Discovering greater species diversity and resolving perpetuated taxonomic confusions

    PubMed Central

    Conte-Grand, Cecilia; Britz, Ralf; Dahanukar, Neelesh; Raghavan, Rajeev; Pethiyagoda, Rohan; Tan, Heok Hui; Hadiaty, Renny K.; Yaakob, Norsham S.

    2017-01-01

    Snakehead fishes of the family Channidae are predatory freshwater teleosts from Africa and Asia comprising 38 valid species. Snakeheads are important food fishes (aquaculture, live food trade) and have been introduced widely with several species becoming highly invasive. A channid barcode library was recently assembled by Serrao and co-workers to better detect and identify potential and established invasive snakehead species outside their native range. Comparing our own recent phylogenetic results of this taxonomically confusing group with those previously reported revealed several inconsistencies that prompted us to expand and improve on previous studies. By generating 343 novel snakehead coxI sequences and combining them with an additional 434 coxI sequences from GenBank we highlight several problems with previous efforts towards the assembly of a snakehead reference barcode library. We found that 16.3% of the channid coxI sequences deposited in GenBank are based on misidentifications. With the inclusion of our own data we were, however, able to solve these cases of perpetuated taxonomic confusion. Different species delimitation approaches we employed (BIN, GMYC, and PTP) were congruent in suggesting a potentially much higher species diversity within snakeheads than currently recognized. In total, 90 BINs were recovered and within a total of 15 currently recognized species multiple BINs were identified. This higher species diversity is mostly due to either the incorporation of undescribed, narrow range, endemics from the Eastern Himalaya biodiversity hotspot or the incorporation of several widespread species characterized by deep genetic splits between geographically well-defined lineages. In the latter case, over-lumping in the past has deflated the actual species numbers. Further integrative approaches are clearly needed for providing a better taxonomic understanding of snakehead diversity, new species descriptions and taxonomic revisions of the group. PMID

  10. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    PubMed

    Nozaki, Hisayoshi; Yang, Yi; Maruyama, Shinichiro; Suzaki, Toshinobu

    2012-01-01

    Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.

  11. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina.

    PubMed

    Wang, Q-M; Begerow, D; Groenewald, M; Liu, X-Z; Theelen, B; Bai, F-Y; Boekhout, T

    2015-06-01

    The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the 'One Fungus = One Name' principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.

  13. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  14. Phylogenetics of the phlebotomine sand fly group Verrucarum (Diptera: Psychodidae: Lutzomyia).

    PubMed

    Cohnstaedt, Lee W; Beati, Lorenza; Caceres, Abraham G; Ferro, Cristina; Munstermann, Leonard E

    2011-06-01

    Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity--the Lutzomyia longiflocosa-Lutzomyia sauroida pair and the Lutzomyia quasitownsendi-Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution.

  15. Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia)

    PubMed Central

    Cohnstaedt, Lee W.; Beati, Lorenza; Caceres, Abraham G.; Ferro, Cristina; Munstermann, Leonard E.

    2011-01-01

    Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity—the Lutzomyia longiflocosa–Lutzomyia sauroida pair and the Lutzomyia quasitownsendi–Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution. PMID:21633028

  16. Milk composition of free-ranging red hartebeest, giraffe, Southern reedbuck and warthog and a phylogenetic comparison of the milk of African Artiodactyla.

    PubMed

    Osthoff, G; Hugo, A; Madende, M; Deacon, F; Nel, P J

    2017-02-01

    The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Taxonomic and systematic revisions to the North American Nimravidae (Mammalia, Carnivora)

    PubMed Central

    2016-01-01

    The Nimravidae is a family of extinct carnivores commonly referred to as “false saber-tooth cats.” Since their initial discovery, they have prompted difficulty in taxonomic assignments and number of valid species. Past revisions have only examined a handful of genera, while recent advances in cladistic and morphometric analyses have granted us additional avenues to answering questions regarding our understanding of valid nimravid taxa and their phylogenetic relationships. To resolve issues of specific validity, the phylogenetic species concept (PSC) was utilized to maintain consistency in diagnosing valid species, while simultaneously employing character and linear morphometric analyses for confirming the validity of taxa. Determined valid species and taxonomically informative characters were then employed in two differential cladistic analyses to create competing hypotheses of interspecific relationships. The results suggest the validity of twelve species and six monophyletic genera. The first in depth reviews of Pogonodon and Dinictis returned two valid species (P. platycopis, P. davisi) for the former, while only one for the latter (D. felina). The taxonomic validity of Nanosmilus is upheld. Two main clades with substantial support were returned for all cladistic analyses, the Hoplophoneini and Nimravini, with ambiguous positions relative to these main clades for the European taxa: Eofelis, Dinailurictis bonali, and Quercylurus major; and the North American taxa Dinictis and Pogonodon. Eusmilus is determined to represent a non-valid genus for North American taxa, suggesting non-validity for Old World nimravid species as well. Finally, Hoplophoneus mentalis is found to be a junior synonym of Hoplophoneus primaevus, while the validity of Hoplophoneus oharrai is reinstated. PMID:26893959

  18. Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae) in a phylogenetic context.

    PubMed

    Martucci, Maria Elvira Poleti; Loeuille, Benoit; Pirani, José Rubens; Gobbo-Neto, Leonardo

    2018-01-01

    Members of the subtribe Lychnophorinae occur mostly within the Cerrado domain of the Brazilian Central Plateau. The relationships between its 11 genera, as well as between Lychnophorinae and other subtribes belonging to the tribe Vernonieae, have recently been investigated upon a phylogeny based on molecular and morphological data. We report the use of a comprehensive untargeted metabolomics approach, combining HPLC-MS and GC-MS data, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. We analyzed 78 species by UHPLC-MS and GC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in MetAlign and in MSClust and the matrices generated were used in SIMCA for hierarchical cluster analyses, principal component analyses and orthogonal partial least square discriminant analysis. The results showed that metabolomic analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels (Lychnophora or Eremanthus). Our results confirm that data generated using metabolomics provide evidence for chemotaxonomical studies, especially for phylogenetic inference of the Lychnophorinae subtribe and insight into the evolution of the secondary metabolites of this group.

  19. Phylogenetic Molecular Species Delimitations Unravel Potential New Species in the Pest Genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae)

    PubMed Central

    Dumas, Pascaline; Barbut, Jérôme; Le Ru, Bruno; Silvain, Jean-François; Clamens, Anne-Laure; d’Alençon, Emmanuelle; Kergoat, Gael J.

    2015-01-01

    Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities. PMID:25853412

  20. Delineating species boundaries using an iterative taxonomic approach: the case of soldierless termites (Isoptera, Termitidae, Apicotermitinae).

    PubMed

    Bourguignon, Thomas; Šobotník, Jan; Hanus, Robert; Krasulová, Jana; Vrkoslav, Vladimír; Cvačka, Josef; Roisin, Yves

    2013-12-01

    Species boundaries are traditionally inferred using morphological characters, although morphology sometimes fails to correctly delineate species. To overcome this limitation, researchers have widely taken advantage of alternative methods such as DNA barcoding or analysis of cuticular hydrocarbons (CHs) profiles, but rarely use them simultaneously in an iterative taxonomic approach. Here, we follow such an approach using morphology, DNA barcoding and CHs profiles to precisely discriminate species of soldierless termites, a diversified clade constituting about one-third of the Neotropical termite species richness, but poorly resolved taxonomically due to the paucity of useful characters. We sampled soldierless termites in various forest types of the Nouragues Nature Reserve, French Guiana. Our results show that morphological species determination generally matches DNA barcoding, which only suggests the existence of three cryptic species in the 31 morphological species. Among them, Longustitermes manni is the only species whose splitting is corroborated by ecological data, other widely distributed species being supported by DNA barcoding. On the contrary, although CHs profiles provide a certain taxonomic signal, they often suggest inconsistent groupings which are not supported by other methods. Overall, our data support DNA barcoding and morphology as two efficient methods to distinguish soldierless termite species. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota).

    PubMed

    Bellanger, J-M; Moreau, P-A; Corriol, G; Bidaud, A; Chalange, R; Dudova, Z; Richard, F

    2015-04-01

    During the last two decades, the unprecedented development of molecular phylogenetic tools has propelled an opportunity to revisit the fungal kingdom under an evolutionary perspective. Mycology has been profoundly changed but a sustained effort to elucidate large sections of the astonishing fungal diversity is still needed. Here we fill this gap in the case of Lyophyllaceae, a species-rich and ecologically diversified family of mushrooms. Assembly and genealogical concordance multigene phylogenetic analysis of a large dataset that includes original, vouchered material from expert field mycologists reveal the phylogenetic topology of the family, from higher (generic) to lower (species) levels. A comparative analysis of the most widely used phylogenetic markers in Fungi indicates that the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) and portions of the genes for RNA polymerase II second largest subunit (RPB2) is the most performing combination to resolve the broadest range of taxa within Lyophyllaceae. Eleven distinct evolutionary lineages are identified, that display partial overlap with traditional genera as well as with the phylogenetic framework previously proposed for the family. Eighty phylogenetic species are delineated, which shed light on a large number of morphological concepts, including rare and poorly documented ones. Probing these novel phylogenetic species to the barcoding method of species limit delineation, indicates that the latter method fully resolves Lyophyllaceae species, except in one clade. This case study provides the first comprehensive phylogenetic overview of Lyophyllaceae, a necessary step towards a taxonomical, ecological and nomenclatural revision of this family of mushrooms. It also proposes a set of methodological guidelines that may be of relevance for future taxonomic works in other groups of Fungi.

  2. Taxonomic status and paleoecology of Rusingoryx atopocranion (Mammalia, Artiodactyla), an extinct Pleistocene bovid from Rusinga Island, Kenya

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler; Choiniere, Jonah N.; Tryon, Christian A.; Peppe, Daniel J.; Fox, David L.

    2011-05-01

    Rusingoryx atopocranion is a poorly known extinct alcelaphine bovid, documented in Pleistocene deposits associated with Middle Stone Age artifacts on Rusinga Island, Kenya. Following its initial description, Rusingoryx was subsumed into Megalotragus, which includes the extinct giant wildebeests, on the basis of its cranial architecture. Renewed investigations of the Pleistocene deposits on Rusinga Island recovered a large sample of Rusingoryx specimens that provide new taxonomic and paleoecological insight. This study (1) reviews the morphological and phylogenetic evidence concerning the taxonomic status of Rusingoryx and (2) evaluates its paleoecology and dietary habits . The morphology and phylogenetic data indicate that Rusingoryx is distinct from Megalotragus; they likely shared a common ancestor in the late Pliocene. Ecomorphology and mesowear analysis point to a specialized grazing adaptation, and its association with arid-adapted ungulates suggests a preference for arid grasslands. The confirmation of Rusingoryx as a valid taxonomic entity, together with the presence of other extinct taxa (including Megalotragus) on Rusinga Island, suggests an increasingly complex pattern of ungulate biogeography and extinctions in the late Quaternary of East Africa. Rusingoryx appears to have been part of an arid-adapted faunal community that potentially persisted in East Africa until the onset of the Holocene.

  3. A taxonomic synopsis of Altingiaceae with nine new combinations

    PubMed Central

    Ickert-Bond, Stefanie M.; Wen, Jun

    2013-01-01

    Abstract A taxonomic synopsis of the Altingiaceae is presented, including the taxonomic enumeration and distribution of 15 recognized species based on studies of 1,500 specimens from 24 herbaria throughout the distributional range of the taxa. Previous phylogenetic analyses based on several molecular markers have shown that Altingia and Semiliquidambar are nested within Liquidambar. All Altingia and Semiliquidambar species are now formally transferred to Liquidambar, which has the nomenclatural priority. The following nine new combinations are herein made: Liquidambar cambodiana(Lecomte) Ickert-Bond & J. Wen, Liquidambar caudata (H. T. Chang) Ickert-Bond & J. Wen, Liquidambar chingii (Metcalf) Ickert-Bond & J. Wen, Liquidambar gracilipes (Hemsl.) Ickert-Bond & J. Wen, Liquidambar multinervis(Cheng) Ickert-Bond & J. Wen, Liquidambar obovata (Merrill & Chun) Ickert-Bond & J. Wen, Liquidambar poilanei (Tardieu) Ickert-Bond & J. Wen, Liquidambar siamensis (Craib) Ickert-Bond & J. Wen, and Liquidambar yunnanensis (Rehder & Wilson) Ickert-Bond & J. Wen. PMID:24399902

  4. Global Taxonomic Diversity of Living Reptiles

    PubMed Central

    Pincheira-Donoso, Daniel; Bauer, Aaron M.; Meiri, Shai; Uetz, Peter

    2013-01-01

    Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world’s diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras (0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species, respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012), the patterns of

  5. Global taxonomic diversity of living reptiles.

    PubMed

    Pincheira-Donoso, Daniel; Bauer, Aaron M; Meiri, Shai; Uetz, Peter

    2013-01-01

    Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world's diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras (0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species, respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012), the patterns of

  6. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    PubMed

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  7. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  8. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act.

    PubMed

    Haig, Susan M; Beever, Erik A; Chambers, Steven M; Draheim, Hope M; Dugger, Bruce D; Dunham, Susie; Elliott-Smith, Elise; Fontaine, Joseph B; Kesler, Dylan C; Knaus, Brian J; Lopes, Iara F; Loschl, Pete; Mullins, Thomas D; Sheffield, Lisa M

    2006-12-01

    The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.

  9. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act

    USGS Publications Warehouse

    Beever, E.A.; Haig, S.M.; Chambers, Steven M.; Draheim, Hope M.; Dugger, Bruce D.; Dunham, Susie; Elliott-Smith, Elise; Fontaine, Joseph B.; Kesler, Dylan C.; Knaus, Brian J.; Lopes, Iara F.; Loschl, Peter J.; Mullins, Thomas D.; Sheffield, Lisa M.

    2006-01-01

    The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.

  10. Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing theory.

    PubMed

    Chao, Anne; Chiu, Chun-Huo; Colwell, Robert K; Magnago, Luiz Fernando S; Chazdon, Robin L; Gotelli, Nicholas J

    2017-11-01

    Estimating the species, phylogenetic, and functional diversity of a community is challenging because rare species are often undetected, even with intensive sampling. The Good-Turing frequency formula, originally developed for cryptography, estimates in an ecological context the true frequencies of rare species in a single assemblage based on an incomplete sample of individuals. Until now, this formula has never been used to estimate undetected species, phylogenetic, and functional diversity. Here, we first generalize the Good-Turing formula to incomplete sampling of two assemblages. The original formula and its two-assemblage generalization provide a novel and unified approach to notation, terminology, and estimation of undetected biological diversity. For species richness, the Good-Turing framework offers an intuitive way to derive the non-parametric estimators of the undetected species richness in a single assemblage, and of the undetected species shared between two assemblages. For phylogenetic diversity, the unified approach leads to an estimator of the undetected Faith's phylogenetic diversity (PD, the total length of undetected branches of a phylogenetic tree connecting all species), as well as a new estimator of undetected PD shared between two phylogenetic trees. For functional diversity based on species traits, the unified approach yields a new estimator of undetected Walker et al.'s functional attribute diversity (FAD, the total species-pairwise functional distance) in a single assemblage, as well as a new estimator of undetected FAD shared between two assemblages. Although some of the resulting estimators have been previously published (but derived with traditional mathematical inequalities), all taxonomic, phylogenetic, and functional diversity estimators are now derived under the same framework. All the derived estimators are theoretically lower bounds of the corresponding undetected diversities; our approach reveals the sufficient conditions under

  11. Phylogenetic relationships and evolutionary history of the Mesoamerican endemic freshwater fish family Profundulidae (Cyprinodontiformes: Actinopterygii).

    PubMed

    Morcillo, Felipe; Ornelas-García, Claudia Patricia; Alcaraz, Lourdes; Matamoros, Wilfredo A; Doadrio, Ignacio

    2016-01-01

    Freshwater fishes of Profundulidae, which until now was composed of two subgenera, represent one of the few extant fish families endemic to Mesoamerica. In this study we investigated the phylogenetic relationships and evolutionary history of the eight recognized extant species (from 37 populations) of Profundulidae using three mitochondrial and one nuclear gene markers (∼2.9 Kbp). We applied a Bayesian species delimitation method as a first approach to resolving speciation patterns within Profundulidae considering two different scenarios, eight-species and twelve-species models, obtained in a previous phylogenetic analysis. Based on our results, each of the two subgenera was resolved as monophyletic, with a remarkable molecular divergence of 24.5% for mtDNA and 7.8% for nDNA uncorrected p distances, and thus we propose that they correspond to separate genera. Moreover, we propose a conservative taxonomic hypothesis with five species within Profundulus and three within Tlaloc, although both eight-species and twelve-species models were highly supported by the bayesian species delimitation analysis, providing additional evidence of higher taxonomic diversity than currently recognized in this family. According to our divergence time estimates, the family originated during the Upper Oligocene 26 Mya, and Profundulus and Tlaloc diverged in the Upper Oligocene or Lower Miocene about 20 Mya. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Enhanced use of phylogenetic data to inform public health approaches to HIV among MSM

    PubMed Central

    German, Danielle; Grabowski, Mary Kate; Beyrer, Chris

    2017-01-01

    The multi-dimensional nature and continued evolution of HIV epidemics among men who have sex with men (MSM) requires innovative intervention approaches. Strategies are needed that recognize the individual, social, and structural factors driving HIV transmission; that can pinpoint networks with heightened transmission risk; and that can help target intervention in real-time. HIV phylogenetics is a rapidly evolving field with strong promise for informing innovative responses to the HIV epidemic among MSM. Currently, HIV phylogenetic insights are providing new understandings of characteristics of HIV epidemics involving MSM, social networks influencing transmission, characteristics of HIV transmission clusters involving MSM, targets for antiretroviral and other prevention strategies, and dynamics of emergent epidemics. Maximizing the potential of HIV phylogenetics for HIV responses among MSM will require attention to key methodological challenges and ethical considerations, as well as resolving key implementation and scientific questions. Enhanced and integrated use of HIV surveillance, socio-behavioral, and phylogenetic data resources are becoming increasingly critical for informing public health approaches to HIV among MSM. PMID:27584826

  13. Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach

    PubMed Central

    Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474

  14. SigTree: A Microbial Community Analysis Tool to Identify and Visualize Significantly Responsive Branches in a Phylogenetic Tree.

    PubMed

    Stevens, John R; Jones, Todd R; Lefevre, Michael; Ganesan, Balasubramanian; Weimer, Bart C

    2017-01-01

    Microbial community analysis experiments to assess the effect of a treatment intervention (or environmental change) on the relative abundance levels of multiple related microbial species (or operational taxonomic units) simultaneously using high throughput genomics are becoming increasingly common. Within the framework of the evolutionary phylogeny of all species considered in the experiment, this translates to a statistical need to identify the phylogenetic branches that exhibit a significant consensus response (in terms of operational taxonomic unit abundance) to the intervention. We present the R software package SigTree , a collection of flexible tools that make use of meta-analysis methods and regular expressions to identify and visualize significantly responsive branches in a phylogenetic tree, while appropriately adjusting for multiple comparisons.

  15. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece.

    PubMed

    Bravakos, Panos; Kotoulas, Georgios; Skaraki, Katerina; Pantazidou, Adriani; Economou-Amilli, Athena

    2016-05-01

    Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Molecular phylogenetics of the Ronnbergia Alliance (Bromeliaceae, Bromelioideae) and insights into their morphological evolution.

    PubMed

    Aguirre-Santoro, Julián; Michelangeli, Fabián A; Stevenson, Dennis W

    2016-07-01

    The tank-epiphytic clade of berry-fruited bromeliads, also known as the Core Bromelioideae, represents a remarkable event of adaptive radiation within the Bromeliaceae; however, the details of this radiation have been difficult to study because this lineage is plagued with generic delimitation problems. In this study, we used a phylogenetic approach to investigate a well supported, albeit poorly understood, lineage nested within the Core Bromelioideae, here called the "Ronnbergia Alliance". In order to assess the monophyly and phylogenetic relationships of this group, we used three plastid and three nuclear DNA sequence markers combined with a broad sampling across three taxonomic groups and allied species of Aechmea expected to comprise the Ronnbergia Alliance. We combined the datasets to produce a well-supported and resolved phylogenetic hypothesis. Our main results indicated that the Ronnbergia Alliance was a well-supported monophyletic group, sister to the remaining Core Bromelioideae, and it was composed by species of the polyphyletic genera Aechmea, Hohenbergia and Ronnbergia. We identified two major internal lineages with high geographic structure within the Ronnbergia Alliance. The first of these lineages, called the Pacific Clade, contained species of Aechmea and Ronnbergia that occur exclusively from southern Central America to northwestern South America. The second clade, called the Atlantic Clade, contained species of Aechmea, Hohenbergia and Ronnbergia mostly limited to the Atlantic Forest and the Caribbean. We also explored the diagnostic and evolutionary importance of 13 selected characters using ancestral character reconstructions on the phylogenetic hypothesis. We found that the combination of tubular corollas apically spreading and unappendaged ovules had diagnostic value for the Ronnbergia Alliance, whereas flower size, length of the corolla tube, and petal pigmentation and apex were important characters to differentiate the Pacific and Atlantic

  17. Advances in the phylogenesis of Agaricales and its higher ranks and strategies for establishing phylogenetic hypotheses§

    PubMed Central

    Zhao, Rui-lin; Desjardin, Dennis E.; Soytong, Kasem; Hyde, Kevin D.

    2008-01-01

    We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized. PMID:18837104

  18. Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae) in a phylogenetic context

    PubMed Central

    Martucci, Maria Elvira Poleti; Loeuille, Benoit; Pirani, José Rubens

    2018-01-01

    Members of the subtribe Lychnophorinae occur mostly within the Cerrado domain of the Brazilian Central Plateau. The relationships between its 11 genera, as well as between Lychnophorinae and other subtribes belonging to the tribe Vernonieae, have recently been investigated upon a phylogeny based on molecular and morphological data. We report the use of a comprehensive untargeted metabolomics approach, combining HPLC-MS and GC-MS data, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. We analyzed 78 species by UHPLC-MS and GC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in MetAlign and in MSClust and the matrices generated were used in SIMCA for hierarchical cluster analyses, principal component analyses and orthogonal partial least square discriminant analysis. The results showed that metabolomic analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels (Lychnophora or Eremanthus). Our results confirm that data generated using metabolomics provide evidence for chemotaxonomical studies, especially for phylogenetic inference of the Lychnophorinae subtribe and insight into the evolution of the secondary metabolites of this group. PMID:29324799

  19. Taxonomic and nomenclatural rearrangements in Artemisia subgen. Tridentatae, including a redefinition of Sphaeromeria (Asteraceae, Anthemideae)

    Treesearch

    Sonia Garcia; Teresa Garnatje; E. Durant McArthur; Jaume Pellicer; Stewart C. Sanderson; Joan Valles

    2011-01-01

    A recent molecular phylogenetic study of all members of Artemisia subgenus Tridentatae, as well as most of the other New World endemic Artemisia and the allied genera Sphaeromeria and Picrothamnus, raised the necessity of revising the taxonomic framework of the North American endemic Artemisia. Composition of the subgenus Tridentatae is enlarged to accommodate other...

  20. PhyloExplorer: a web server to validate, explore and query phylogenetic trees

    PubMed Central

    Ranwez, Vincent; Clairon, Nicolas; Delsuc, Frédéric; Pourali, Saeed; Auberval, Nicolas; Diser, Sorel; Berry, Vincent

    2009-01-01

    Background Many important problems in evolutionary biology require molecular phylogenies to be reconstructed. Phylogenetic trees must then be manipulated for subsequent inclusion in publications or analyses such as supertree inference and tree comparisons. However, no tool is currently available to facilitate the management of tree collections providing, for instance: standardisation of taxon names among trees with respect to a reference taxonomy; selection of relevant subsets of trees or sub-trees according to a taxonomic query; or simply computation of descriptive statistics on the collection. Moreover, although several databases of phylogenetic trees exist, there is currently no easy way to find trees that are both relevant and complementary to a given collection of trees. Results We propose a tool to facilitate assessment and management of phylogenetic tree collections. Given an input collection of rooted trees, PhyloExplorer provides facilities for obtaining statistics describing the collection, correcting invalid taxon names, extracting taxonomically relevant parts of the collection using a dedicated query language, and identifying related trees in the TreeBASE database. Conclusion PhyloExplorer is a simple and interactive website implemented through underlying Python libraries and MySQL databases. It is available at: and the source code can be downloaded from: . PMID:19450253

  1. Climate Change Impacts on the Tree of Life: Changes in Phylogenetic Diversity Illustrated for Acropora Corals

    PubMed Central

    Faith, Daniel P.; Richards, Zoe T.

    2012-01-01

    The possible loss of whole branches from the tree of life is a dramatic, but under-studied, biological implication of climate change. The tree of life represents an evolutionary heritage providing both present and future benefits to humanity, often in unanticipated ways. Losses in this evolutionary (evo) life-support system represent losses in “evosystem” services, and are quantified using the phylogenetic diversity (PD) measure. High species-level biodiversity losses may or may not correspond to high PD losses. If climate change impacts are clumped on the phylogeny, then loss of deeper phylogenetic branches can mean disproportionately large PD loss for a given degree of species loss. Over time, successive species extinctions within a clade each may imply only a moderate loss of PD, until the last species within that clade goes extinct, and PD drops precipitously. Emerging methods of “phylogenetic risk analysis” address such phylogenetic tipping points by adjusting conservation priorities to better reflect risk of such worst-case losses. We have further developed and explored this approach for one of the most threatened taxonomic groups, corals. Based on a phylogenetic tree for the corals genus Acropora, we identify cases where worst-case PD losses may be avoided by designing risk-averse conservation priorities. We also propose spatial heterogeneity measures changes to assess possible changes in the geographic distribution of corals PD. PMID:24832524

  2. Identifying taxonomic and functional surrogates for spring biodiversity conservation.

    PubMed

    Jyväsjärvi, Jussi; Virtanen, Risto; Ilmonen, Jari; Paasivirta, Lauri; Muotka, Timo

    2018-02-27

    Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive. © 2018 Society for Conservation Biology.

  3. Hitting the right target: taxonomic challenges for, and of, plant invasions

    PubMed Central

    Pyšek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarošík, Vojtěch; Richardson, David M.; Suda, Jan; Wilson, John R. U.

    2013-01-01

    This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.

  4. Unbiased Taxonomic Annotation of Metagenomic Samples

    PubMed Central

    Fosso, Bruno; Pesole, Graziano; Rosselló, Francesc

    2018-01-01

    Abstract The classification of reads from a metagenomic sample using a reference taxonomy is usually based on first mapping the reads to the reference sequences and then classifying each read at a node under the lowest common ancestor of the candidate sequences in the reference taxonomy with the least classification error. However, this taxonomic annotation can be biased by an imbalanced taxonomy and also by the presence of multiple nodes in the taxonomy with the least classification error for a given read. In this article, we show that the Rand index is a better indicator of classification error than the often used area under the receiver operating characteristic (ROC) curve and F-measure for both balanced and imbalanced reference taxonomies, and we also address the second source of bias by reducing the taxonomic annotation problem for a whole metagenomic sample to a set cover problem, for which a logarithmic approximation can be obtained in linear time and an exact solution can be obtained by integer linear programming. Experimental results with a proof-of-concept implementation of the set cover approach to taxonomic annotation in a next release of the TANGO software show that the set cover approach further reduces ambiguity in the taxonomic annotation obtained with TANGO without distorting the relative abundance profile of the metagenomic sample. PMID:29028181

  5. Taxonomic minimalism.

    PubMed

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  6. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    PubMed

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Maximizing the phylogenetic diversity of seed banks.

    PubMed

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. © 2014 Society for Conservation Biology.

  8. Greatly reduced phylogenetic structure in the cultivated potato clade of potatoes, Solanum section Petota

    USDA-ARS?s Scientific Manuscript database

    The species boundaries of wild and cultivated potatoes, Solanum section Petota, are controversial with most of the taxonomic problems in a clade containing cultivated potatoes. We here provide the first in-depth phylogenetic study of the cultivated potato clade to explore possible causes of these pr...

  9. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure.

    PubMed

    Si, Xingfeng; Cadotte, Marc W; Zhao, Yuhao; Zhou, Haonan; Zeng, Di; Li, Jiaqi; Jin, Tinghao; Ren, Peng; Wang, Yanping; Ding, Ping; Tingley, Morgan W

    2018-06-26

    Incorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. We used long-term counts of breeding bird species that were detected at least once on islands in a land-bridge island system, and employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies. Our results showed that taxonomic, functional, and phylogenetic diversity were all underestimated significantly as a result of species' imperfect detection, with taxonomic diversity showing the greatest bias. The functional and phylogenetic structure calculated from observed communities were both more clustered than those from the detection-corrected communities due to missed distinct species. The discrepancy between observed and estimated diversity differed according to the measure of biodiversity employed. Our study demonstrates the importance of accounting for species' imperfect detection in biodiversity studies, especially for functional and phylogenetic community ecology, and when attempting to infer community assembly processes. With datasets that allow for detection-corrected community structure, we can better estimate diversity and infer the underlying mechanisms that structure community assembly, and thus make reliable management decisions for the conservation of biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The Role of Integrative Taxonomy in the Conservation Management of Cryptic Species: The Taxonomic Status of Endangered Earless Dragons (Agamidae: Tympanocryptis) in the Grasslands of Queensland, Australia

    PubMed Central

    Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke

    2014-01-01

    Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered ‘species’ of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available. PMID:25076129

  11. The role of integrative taxonomy in the conservation management of cryptic species: the taxonomic status of endangered earless dragons (Agamidae: Tympanocryptis) in the grasslands of Queensland, Australia.

    PubMed

    Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke

    2014-01-01

    Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered 'species' of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available.

  12. A Taxonomic Approach to the Gestalt Theory of Perls

    ERIC Educational Resources Information Center

    Raming, Henry E.; Frey, David H.

    1974-01-01

    This study applied content analysis and cluster analysis to the ideas of Fritz Perls to develop a taxonomy of Gestalt processes and goals. Summaries of the typal groups or clusters were written and the implications of taxonomic research in counseling discussed. (Author)

  13. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    PubMed

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  14. Phylogenetic trees in bioinformatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding themore » best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.« less

  15. The price of conserving avian phylogenetic diversity: a global prioritization approach

    PubMed Central

    Nunes, Laura A.; Turvey, Samuel T.; Rosindell, James

    2015-01-01

    The combination of rapid biodiversity loss and limited funds available for conservation represents a major global concern. While there are many approaches for conservation prioritization, few are framed as financial optimization problems. We use recently published avian data to conduct a global analysis of the financial resources required to conserve different quantities of phylogenetic diversity (PD). We introduce a new prioritization metric (ADEPD) that After Downlisting a species gives the Expected Phylogenetic Diversity at some future time. Unlike other metrics, ADEPD considers the benefits to future PD associated with downlisting a species (e.g. moving from Endangered to Vulnerable in the International Union for Conservation of Nature Red List). Combining ADEPD scores with data on the financial cost of downlisting different species provides a cost–benefit prioritization approach for conservation. We find that under worst-case spending $3915 can save 1 year of PD, while under optimal spending $1 can preserve over 16.7 years of PD. We find that current conservation spending patterns are only expected to preserve one quarter of the PD that optimal spending could achieve with the same total budget. Maximizing PD is only one approach within the wider goal of biodiversity conservation, but our analysis highlights more generally the danger involved in uninformed spending of limited resources. PMID:25561665

  16. The price of conserving avian phylogenetic diversity: a global prioritization approach.

    PubMed

    Nunes, Laura A; Turvey, Samuel T; Rosindell, James

    2015-02-19

    The combination of rapid biodiversity loss and limited funds available for conservation represents a major global concern. While there are many approaches for conservation prioritization, few are framed as financial optimization problems. We use recently published avian data to conduct a global analysis of the financial resources required to conserve different quantities of phylogenetic diversity (PD). We introduce a new prioritization metric (ADEPD) that After Downlisting a species gives the Expected Phylogenetic Diversity at some future time. Unlike other metrics, ADEPD considers the benefits to future PD associated with downlisting a species (e.g. moving from Endangered to Vulnerable in the International Union for Conservation of Nature Red List). Combining ADEPD scores with data on the financial cost of downlisting different species provides a cost-benefit prioritization approach for conservation. We find that under worst-case spending $3915 can save 1 year of PD, while under optimal spending $1 can preserve over 16.7 years of PD. We find that current conservation spending patterns are only expected to preserve one quarter of the PD that optimal spending could achieve with the same total budget. Maximizing PD is only one approach within the wider goal of biodiversity conservation, but our analysis highlights more generally the danger involved in uninformed spending of limited resources.

  17. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites

    Treesearch

    Kirsten A. Copren; Lori J. Nelson; Edward L. Vargo; Michael I. Haverty

    2005-01-01

    Cuticular hydrocarbons (CHCs) are valuable characters for the analysis of cryptic insect species with few discernible morphological characters. Yet, their use in insect systematics, speciWcally in subterranean termites in the genus Reticulitermes (Isoptera: Rhinotermitidae), remains controversial. In this paper, we show that taxonomic designations...

  18. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides

    PubMed Central

    Houbraken, J.; Visagie, C.M.; Meijer, M.; Frisvad, J.C.; Busby, P.E.; Pitt, J.I.; Seifert, K.A.; Louis-Seize, G.; Demirel, R.; Yilmaz, N.; Jacobs, K.; Christensen, M.; Samson, R.A.

    2014-01-01

    Species belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness. PMID:25492984

  19. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  20. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  1. Genome-Based Taxonomic Classification of Bacteroidetes

    PubMed Central

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved. PMID:28066339

  2. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    PubMed

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  3. Biodiversity Analysis of Forest Litter Ant Assemblages in the Wayanad Region of Western Ghats Using Taxonomic and Conventional Diversity Measures

    PubMed Central

    Anu, Anto; Sabu, Thomas K.

    2007-01-01

    The diversity of litter ant assemblages in evergreen, deciduous and Shola evergreen (Shola) forest vegetation types of the Wayanad region of the Western Ghats was assessed employing conventional and taxonomic diversity indices. Non-dependence on quantitative data and the ability to relate the phylogenetic structure of assemblages with ecological conditions of the habitat, and to ascertain priorities for conservation of habitats, makes non-parametric taxonomic diversity measures, such as variation in taxonomic distinctness Λ+ and average taxonomic distinctness Δ+, highly useful tools for assessment of litter ant biodiversity. Although Δ+ values saturated leading to closer values for the 3 litter ant assemblages, Λ+ proved to be a more dependable index. Evenness in taxonomic spread was high in ant assemblages in deciduous forests and low in evergreen forests compared to the regional master list. Low Λ+ of ant assemblage in deciduous forests indicates that among the 3 forest vegetation types, deciduous forests provided the most favorable habitat conditions for litter ants. Low evenness, as is indicated by Λ+ in evergreen forests, was attributed to the presence of a group of taxonomically closely related ant assemblage more adapted to prevail in moist and wet ecological conditions. PMID:20334594

  4. Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications.

    PubMed

    Tóth, Peter; Undas, Anna K; Verstappen, Francel; Bouwmeester, Harro

    2016-01-01

    The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

  5. PhyloTreePruner: A Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for Phylogenomics.

    PubMed

    Kocot, Kevin M; Citarella, Mathew R; Moroz, Leonid L; Halanych, Kenneth M

    2013-01-01

    Molecular phylogenetics relies on accurate identification of orthologous sequences among the taxa of interest. Most orthology inference programs available for use in phylogenomics rely on small sets of pre-defined orthologs from model organisms or phenetic approaches such as all-versus-all sequence comparisons followed by Markov graph-based clustering. Such approaches have high sensitivity but may erroneously include paralogous sequences. We developed PhyloTreePruner, a software utility that uses a phylogenetic approach to refine orthology inferences made using phenetic methods. PhyloTreePruner checks single-gene trees for evidence of paralogy and generates a new alignment for each group containing only sequences inferred to be orthologs. Importantly, PhyloTreePruner takes into account support values on the tree and avoids unnecessarily deleting sequences in cases where a weakly supported tree topology incorrectly indicates paralogy. A test of PhyloTreePruner on a dataset generated from 11 completely sequenced arthropod genomes identified 2,027 orthologous groups sampled for all taxa. Phylogenetic analysis of the concatenated supermatrix yielded a generally well-supported topology that was consistent with the current understanding of arthropod phylogeny. PhyloTreePruner is freely available from http://sourceforge.net/projects/phylotreepruner/.

  6. Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae).

    PubMed

    Mishra, Priyanka; Kumar, Amit; Rodrigues, Vereena; Shukla, Ashutosh K; Sundaresan, Velusamy

    2016-01-01

    The internal transcribed spacer (ITS) region is situated between 18S and 26S in a polycistronic rRNA precursor transcript. It had been proved to be the most commonly sequenced region across plant species to resolve phylogenetic relationships ranging from shallow to deep taxonomic levels. Despite several taxonomical revisions in Cassiinae, a stable phylogeny remains elusive at the molecular level, particularly concerning the delineation of species in the genera Cassia, Senna and Chamaecrista . This study addresses the comparative potential of ITS datasets (ITS1, ITS2 and concatenated) in resolving the underlying morphological disparity in the highly complex genera, to assess their discriminatory power as potential barcode candidates in Cassiinae. A combination of experimental data and an in-silico approach based on threshold genetic distances, sequence similarity based and hierarchical tree-based methods was performed to decipher the discriminating power of ITS datasets on 18 different species of Cassiinae complex. Lab-generated s equences were compared against those available in the GenBank using BLAST and were aligned through MUSCLE 3.8.31 and analysed in PAUP 4.0 and BEAST1.8 using parsimony ratchet, maximum likelihood and Bayesian inference (BI) methods of gene and species tree reconciliation with bootstrapping. DNA barcoding gap was realized based on the Kimura two-parameter distance model (K2P) in TaxonDNA and MEGA. Based on the K2P distance, significant divergences between the inter- and intra-specific genetic distances were observed, while the presence of a DNA barcoding gap was obvious. The ITS1 region efficiently identified 81.63% and 90% of species using TaxonDNA and BI methods, respectively. The PWG-distance method based on simple pairwise matching indicated the significance of ITS1 whereby highest number of variable (210) and informative sites (206) were obtained. The BI tree-based methods outperformed the similarity-based methods producing well

  7. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups

    PubMed Central

    Ord, Terry J.; Garcia-Porta, Joan

    2012-01-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820

  8. Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods

    PubMed Central

    Dröge, J.; Gregor, I.; McHardy, A. C.

    2015-01-01

    Motivation: Metagenomics characterizes microbial communities by random shotgun sequencing of DNA isolated directly from an environment of interest. An essential step in computational metagenome analysis is taxonomic sequence assignment, which allows identifying the sequenced community members and reconstructing taxonomic bins with sequence data for the individual taxa. For the massive datasets generated by next-generation sequencing technologies, this cannot be performed with de-novo phylogenetic inference methods. We describe an algorithm and the accompanying software, taxator-tk, which performs taxonomic sequence assignment by fast approximate determination of evolutionary neighbors from sequence similarities. Results: Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for a range of evolutionary distances and for short as well as for long sequences. In addition to the taxonomic binning of metagenomes, it is well suited for profiling microbial communities from metagenome samples because it identifies bacterial, archaeal and eukaryotic community members without being affected by varying primer binding strengths, as in marker gene amplification, or copy number variations of marker genes across different taxa. Taxator-tk has an efficient, parallelized implementation that allows the assignment of 6 Gb of sequence data per day on a standard multiprocessor system with 10 CPU cores and microbial RefSeq as the genomic reference data. Availability and implementation: Taxator-tk source and binary program files are publicly available at http://algbio.cs.uni-duesseldorf.de/software/. Contact: Alice.McHardy@uni-duesseldorf.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25388150

  9. Phylogenetic Interrelationships of Ginglymodian Fishes (Actinopterygii: Neopterygii)

    PubMed Central

    López-Arbarello, Adriana

    2012-01-01

    The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic

  10. A comparative test of phylogenetic diversity indices.

    PubMed

    Schweiger, Oliver; Klotz, Stefan; Durka, Walter; Kühn, Ingolf

    2008-09-01

    Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence-absence data. A total of 38,000 artificial communities varying in species richness covering 5-95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition-i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by

  11. Phylogenetic interrelationships of ginglymodian fishes (Actinopterygii: Neopterygii).

    PubMed

    López-Arbarello, Adriana

    2012-01-01

    The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and "semionotiforms." In particular, the phylogenetic relationships between the widely distributed "semionotiforms," and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 "semionotiform" genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson's observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic ginglymodians and the re

  12. Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    PubMed Central

    Klassen, Jonathan L.

    2010-01-01

    Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This

  13. TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach

    PubMed Central

    Diaz, Naryttza N; Krause, Lutz; Goesmann, Alexander; Niehaus, Karsten; Nattkemper, Tim W

    2009-01-01

    Background Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning. Results Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained. Conclusion An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference

  14. Is Homo sapiens polytypic? Human taxonomic diversity and its implications.

    PubMed

    Woodley, Michael A

    2010-01-01

    The term race is a traditional synonym for subspecies, however it is frequently asserted that Homo sapiens is monotypic and that what are termed races are nothing more than biological illusions. In this manuscript a case is made for the hypothesis that H. sapiens is polytypic, and in this way is no different from other species exhibiting similar levels of genetic and morphological diversity. First it is demonstrated that the four major definitions of race/subspecies can be shown to be synonymous within the context of the framework of race as a correlation structure of traits. Next the issue of taxonomic classification is considered where it is demonstrated that H. sapiens possesses high levels morphological diversity, genetic heterozygosity and differentiation (F(ST)) compared to many species that are acknowledged to be polytypic with respect to subspecies. Racial variation is then evaluated in light of the phylogenetic species concept, where it is suggested that the least inclusive monophyletic units exist below the level of species within H. sapiens indicating the existence of a number of potential human phylogenetic species; and the biological species concept, where it is determined that racial variation is too small to represent differentiation at the level of biological species. Finally the implications of this are discussed in the context of anthropology where an accurate picture of the sequence and timing of events during the evolution of human taxa are required for a complete picture of human evolution, and medicine, where a greater appreciation of the role played by human taxonomic differences in disease susceptibility and treatment responsiveness will save lives in the future.

  15. Taxonomic revision and molecular phylogenetics of the Idarnes incertus species-group (Hymenoptera, Agaonidae, Sycophaginae)

    PubMed Central

    Cruaud, Astrid; Genson, Gwenaëlle; Rasplus, Jean-Yves; Pereira, Rodrigo A.S.

    2017-01-01

    Sycophaginae is a group of non-pollinating fig wasps considered closely related to the fig pollinators (Agaoninae, Tetrapusiinae, and Kradibiinae) in the most recent phylogenetic analyses. They occur in all tropical regions and are associated with Ficus subgenera Urostigma and Sycomorus. There are six described genera of Sycophaginae, and two are native and confined to the Neotropics, namely Idarnes Walker, 1843 and Anidarnes Bouček, 1993. Genus Idarnes is divided into three morphologically distinct groups that were proven to be monophyletic by recent molecular phylogenetic analyses. In this paper we reviewed the Idarnes incertus species-group and provide detailed morphological descriptions and illustrations for the species belonging to this group. Three previously described species were redescribed: I. brasiliensis (Mayr, 1906) comb. nov., I. hansoni Bouček, 1993, and I. incertus (Ashmead, 1900). Seventeen new species are described by Farache and Rasplus: I. amacayacuensis sp. n., I. amazonicus sp. n., I. americanae sp. n., I. badiovertex sp. n., I. brevis sp. n., I. brunneus sp. n., I. comptoni sp. n., I. cremersiae sp. n., I. dimorphicus sp. n., I. flavicrus sp. n., I. flaviventris sp. n., I. gibberosus sp. n., I. gordhi sp. n., I. maximus sp. n., I. nigriventris sp. n., I. pseudoflavus sp. n. and I. ramirezi sp. n. We provided keys for the identification of the species as well as for recognising the different species-groups of Idarnes and a closely related genus (Sycophaga Westwood, 1840). Additionally, phylogenetic relationships among 13 species of the I. incertus species-group were inferred using four molecular markers and discussed in the light of Ficus taxonomy and host specificity. PMID:28168097

  16. Phylogenetic community structure: temporal variation in fish assemblage

    PubMed Central

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256

  17. Spatial phylogenetics of the native California flora.

    PubMed

    Thornhill, Andrew H; Baldwin, Bruce G; Freyman, William A; Nosratinia, Sonia; Kling, Matthew M; Morueta-Holme, Naia; Madsen, Thomas P; Ackerly, David D; Mishler, Brent D

    2017-10-26

    California is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.39 million herbarium specimens, a phylogeny of 1083 operational taxonomic units (OTUs) and 9 genes, and a spatial randomization test to identify regions of significant phylogenetic diversity, relative phylogenetic diversity, and phylogenetic endemism (PE), as well as to conduct a categorical analysis of neo- and paleo-endemism (CANAPE). We found (1) extensive phylogenetic clustering in the South Coast Ranges, southern Great Valley, and deserts of California; (2) significant concentrations of short branches in the Mojave and Great Basin Deserts and the South Coast Ranges and long branches in the northern Great Valley, Sierra Nevada foothills, and the northwestern and southwestern parts of the state; (3) significant concentrations of paleo-endemism in Northwestern California, the northern Great Valley, and western Sonoran Desert, and neo-endemism in the White-Inyo Range, northern Mojave Desert, and southern Channel Islands. Multiple analyses were run to observe the effects on significance patterns of using different phylogenetic tree topologies (uncalibrated trees versus time-calibrated ultrametric trees) and using different representations of OTU ranges (herbarium specimen locations versus species distribution models). These analyses showed that examining the geographic distributions of branch lengths in a statistical framework adds a new dimension to California floristics that, in comparison with climatic data, helps to illuminate causes of endemism. In particular, the concentration of significant PE in more arid regions of California extends previous ideas

  18. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  19. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae

    PubMed Central

    Karl, Robert; Koch, Marcus A.

    2013-01-01

    Background and Aims Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene. Methods Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time. Key Results A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world. Conclusions Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups. PMID:23904444

  20. Aspergillus niger contains the cryptic phylogenetic species A. awamori.

    PubMed

    Perrone, Giancarlo; Stea, Gaetano; Epifani, Filomena; Varga, János; Frisvad, Jens C; Samson, Robert A

    2011-11-01

    Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger 'aggregate' represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger. Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins β-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1α) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species within this population, A. awamori. Morphological, physiological, ecological and chemical data overlap occurred between A. niger and the cryptic A. awamori, however the splitting of these two species was also supported by AFLP analysis of the full genome. Isolates in both phylospecies can produce the mycotoxins ochratoxin A and fumonisin B₂, and they also share the production of pyranonigrin A, tensidol B, funalenone, malformins, and naphtho-γ-pyrones. In addition, sequence analysis of four putative A. awamori strains from Japan, used in the koji industrial fermentation, revealed that none of these strains belong to the A. awamori phylospecies. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.

    PubMed

    Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar

    2015-10-01

    Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales

    PubMed Central

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-01-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. PMID:24824667

  3. Constructing phylogenetic trees using interacting pathways.

    PubMed

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  4. Enhanced use of phylogenetic data to inform public health approaches to HIV among men who have sex with men.

    PubMed

    German, Danielle; Grabowski, Mary Kate; Beyrer, Chris

    2017-02-01

    The multidimensional nature and continued evolution of HIV epidemics among men who have sex with men (MSM) requires innovative intervention approaches. Strategies are needed that recognise the individual, social and structural factors driving HIV transmission; that can pinpoint networks with heightened transmission risk; and that can help target intervention in real time. HIV phylogenetics is a rapidly evolving field with strong promise for informing innovative responses to the HIV epidemic among MSM. Currently, HIV phylogenetic insights are providing new understandings of characteristics of HIV epidemics involving MSM, social networks influencing transmission, characteristics of HIV transmission clusters involving MSM, targets for antiretroviral and other prevention strategies and dynamics of emergent epidemics. Maximising the potential of HIV phylogenetics for HIV responses among MSM will require attention to key methodological challenges and ethical considerations, as well as resolving key implementation and scientific questions. Enhanced and integrated use of HIV surveillance, sociobehavioural and phylogenetic data resources are becoming increasingly critical for informing public health approaches to HIV among MSM.

  5. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.

    PubMed

    Posada, David; Buckley, Thomas R

    2004-10-01

    Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).

  6. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.

    PubMed

    Ahrens, Heather E

    2014-12-01

    Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology. © 2014 Wiley Periodicals, Inc.

  7. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics.

    PubMed

    Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A

    2011-01-01

    Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.

  8. Targeted Amplicon Sequencing (TAS): A Scalable Next-Gen Approach to Multilocus, Multitaxa Phylogenetics

    PubMed Central

    Bybee, Seth M.; Bracken-Grissom, Heather; Haynes, Benjamin D.; Hermansen, Russell A.; Byers, Robert L.; Clement, Mark J.; Udall, Joshua A.; Wilcox, Edward R.; Crandall, Keith A.

    2011-01-01

    Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach. PMID:22002916

  9. Phylogenetic relationships, character evolution, and taxonomic implications within the slipper lobsters (Crustacea: Decapoda: Scyllaridae).

    PubMed

    Yang, Chien-Hui; Bracken-Grissom, Heather; Kim, Dohyup; Crandall, Keith A; Chan, Tin-Yam

    2012-01-01

    The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes.

    PubMed

    D'agata, Stéphanie; Mouillot, David; Kulbicki, Michel; Andréfouët, Serge; Bellwood, David R; Cinner, Joshua E; Cowman, Peter F; Kronen, Mecki; Pinca, Silvia; Vigliola, Laurent

    2014-03-03

    Beyond the loss of species richness, human activities may also deplete the breadth of evolutionary history (phylogenetic diversity) and the diversity of roles (functional diversity) carried out by species within communities, two overlooked components of biodiversity. Both are, however, essential to sustain ecosystem functioning and the associated provision of ecosystem services, particularly under fluctuating environmental conditions. We quantified the effect of human activities on the taxonomic, phylogenetic, and functional diversity of fish communities in coral reefs, while teasing apart the influence of biogeography and habitat along a gradient of human pressure across the Pacific Ocean. We detected nonlinear relationships with significant breaking points in the impact of human population density on phylogenetic and functional diversity of parrotfishes, at 25 and 15 inhabitants/km(2), respectively, while parrotfish species richness decreased linearly along the same population gradient. Over the whole range, species richness decreased by 11.7%, while phylogenetic and functional diversity dropped by 35.8% and 46.6%, respectively. Our results call for caution when using species richness as a benchmark for measuring the status of ecosystems since it appears to be less responsive to variation in human population densities than its phylogenetic and functional counterparts, potentially imperiling the functioning of coral reef ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Phylogenetic analysis of Haemaphysalis erinacei Pavesi, 1884 (Acari: Ixodidae) from China, Turkey, Italy and Romania.

    PubMed

    Hornok, Sándor; Wang, Yuanzhi; Otranto, Domenico; Keskin, Adem; Lia, Riccardo Paolo; Kontschán, Jenő; Takács, Nóra; Farkas, Róbert; Sándor, Attila D

    2016-12-15

    Haemaphysalis erinacei is one of the few ixodid tick species for which valid names of subspecies exist. Despite their disputed taxonomic status in the literature, these subspecies have not yet been compared with molecular methods. The aim of the present study was to investigate the phylogenetic relationships of H. erinacei subspecies, in the context of the first finding of this tick species in Romania. After morphological identification, DNA was extracted from five adults of H. e. taurica (from Romania and Turkey), four adults of H. e. erinacei (from Italy) and 17 adults of H. e. turanica (from China). From these samples fragments of the cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes were amplified via PCR and sequenced. Results showed that cox1 and 16S rRNA gene sequence divergences between H. e. taurica from Romania and H. e. erinacei from Italy were below 2%. However, the sequence divergences between H. e. taurica from Romania and H. e. turanica from China were high (up to 7.3% difference for the 16S rRNA gene), exceeding the reported level of sequence divergence between closely related tick species. At the same time, two adults of H. e. taurica from Turkey had higher 16S rRNA gene similarity to H. e. turanica from China (up to 97.5%) than to H. e. taurica from Romania (96.3%), but phylogenetically clustered more closely to H. e. taurica than to H. e. turanica. This is the first finding of H. erinacei in Romania, and the first (although preliminary) phylogenetic comparison of H. erinacei subspecies. Phylogenetic analyses did not support that the three H. erinacei subspecies evaluated here are of equal taxonomic rank, because the genetic divergence between H. e. turanica from China and H. e. taurica from Romania exceeded the usual level of sequence divergence between closely related tick species, suggesting that they might represent different species. Therefore, the taxonomic status of the subspecies of H. erinacei needs to be revised based on a larger

  12. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae).

    PubMed

    Nakao, Minoru; Lavikainen, Antti; Yanagida, Tetsuya; Ito, Akira

    2013-11-01

    Echinococcosis is a serious helminthic zoonosis in humans, livestock and wildlife. The pathogenic organisms are members of the genus Echinococcus (Cestoda: Taeniidae). Life cycles of Echinococcus spp. are consistently dependent on predator-prey association between two obligate mammalian hosts. Carnivores (canids and felids) serve as definitive hosts for adult tapeworms and their herbivore prey (ungulates, rodents and lagomorphs) as intermediate hosts for metacestode larvae. Humans are involved as an accidental host for metacestode infections. The metacestodes develop in various internal organs, particularly in liver and lungs. Each metacestode of Echinococcus spp. has an organotropism and a characteristic form known as an unilocular (cystic), alveolar or polycystic hydatid. Recent molecular phylogenetic studies have demonstrated that the type species, Echinococcus granulosus, causing cystic echinococcosis is a cryptic species complex. Therefore, the orthodox taxonomy of Echinococcus established from morphological criteria has been revised from the standpoint of phylogenetic systematics. Nine valid species including newly resurrected taxa are recognised as a result of the revision. This review summarises the recent advances in the phylogenetic systematics of Echinococcus, together with the historical backgrounds and molecular epidemiological aspects of each species. A new phylogenetic tree inferred from the mitochondrial genomes of all valid Echinococcus spp. is also presented. The taxonomic nomenclature for Echinococcus oligarthrus is shown to be incorrect and this name should be replaced with Echinococcus oligarthra. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Cnidarian phylogenetic relationships as revealed by mitogenomics.

    PubMed

    Kayal, Ehsan; Roure, Béatrice; Philippe, Hervé; Collins, Allen G; Lavrov, Dennis V

    2013-01-09

    Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in

  14. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa)

    PubMed Central

    Maronna, Maximiliano M.; Miranda, Thaís P.; Peña Cantero, Álvaro L.; Barbeitos, Marcos S.; Marques, Antonio C.

    2016-01-01

    Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective. PMID:26821567

  15. PESI - a taxonomic backbone for Europe.

    PubMed

    de Jong, Yde; Kouwenberg, Juliana; Boumans, Louis; Hussey, Charles; Hyam, Roger; Nicolson, Nicola; Kirk, Paul; Paton, Alan; Michel, Ellinor; Guiry, Michael D; Boegh, Phillip S; Pedersen, Henrik Ærenlund; Enghoff, Henrik; von Raab-Straube, Eckhard; Güntsch, Anton; Geoffroy, Marc; Müller, Andreas; Kohlbecker, Andreas; Berendsohn, Walter; Appeltans, Ward; Arvanitidis, Christos; Vanhoorne, Bart; Declerck, Joram; Vandepitte, Leen; Hernandez, Francisco; Nash, Róisín; Costello, Mark John; Ouvrard, David; Bezard-Falgas, Pascale; Bourgoin, Thierry; Wetzel, Florian Tobias; Glöckler, Falko; Korb, Günther; Ring, Caroline; Hagedorn, Gregor; Häuser, Christoph; Aktaç, Nihat; Asan, Ahmet; Ardelean, Adorian; Borges, Paulo Alexandre Vieira; Dhora, Dhimiter; Khachatryan, Hasmik; Malicky, Michael; Ibrahimov, Shaig; Tuzikov, Alexander; De Wever, Aaike; Moncheva, Snejana; Spassov, Nikolai; Chobot, Karel; Popov, Alexi; Boršić, Igor; Sfenthourakis, Spyros; Kõljalg, Urmas; Uotila, Pertti; Olivier, Gargominy; Dauvin, Jean-Claude; Tarkhnishvili, David; Chaladze, Giorgi; Tuerkay, Michael; Legakis, Anastasios; Peregovits, László; Gudmundsson, Gudmundur; Ólafsson, Erling; Lysaght, Liam; Galil, Bella Sarah; Raimondo, Francesco M; Domina, Gianniantonio; Stoch, Fabio; Minelli, Alessandro; Spungis, Voldermars; Budrys, Eduardas; Olenin, Sergej; Turpel, Armand; Walisch, Tania; Krpach, Vladimir; Gambin, Marie Therese; Ungureanu, Laurentia; Karaman, Gordan; Kleukers, Roy M J C; Stur, Elisabeth; Aagaard, Kaare; Valland, Nils; Moen, Toril Loennechen; Bogdanowicz, Wieslaw; Tykarski, Piotr; Węsławski, Jan Marcin; Kędra, Monika; M de Frias Martins, Antonio; Abreu, António Domingos; Silva, Ricardo; Medvedev, Sergei; Ryss, Alexander; Šimić, Smiljka; Marhold, Karol; Stloukal, Eduard; Tome, Davorin; Ramos, Marian A; Valdés, Benito; Pina, Francisco; Kullander, Sven; Telenius, Anders; Gonseth, Yves; Tschudin, Pascal; Sergeyeva, Oleksandra; Vladymyrov, Volodymyr; Rizun, Volodymyr Bohdanovych; Raper, Chris; Lear, Dan; Stoev, Pavel; Penev, Lyubomir; Rubio, Ana Casino; Backeljau, Thierry; Saarenmaa, Hannu; Ulenberg, Sandrine

    2015-01-01

    Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists. The solution is in dynamic, expertly curated web-based taxonomic tools. The Pan-European Species-directories Infrastructure (PESI) worked to solve this key issue by providing a taxonomic e-infrastructure for Europe. It strengthened the relevant social (expertise) and information (standards, data and technical) capacities of five major community networks on taxonomic indexing in Europe, which is essential for proper biodiversity assessment and monitoring activities. The key objectives of PESI were: 1) standardisation in taxonomic reference systems, 2) enhancement of the quality and completeness of taxonomic data sets and 3) creation of integrated access to taxonomic information. This paper describes the results of PESI and its future prospects, including the involvement in major European biodiversity informatics initiatives and programs.

  16. SWPhylo - A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees.

    PubMed

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.

  17. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.

    PubMed

    Ren, Youhua; Niu, Jiaojiao; Huang, Wenkun; Peng, Deliang; Xiao, Yunhua; Zhang, Xian; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-06-14

    The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and environmental changes still remains controversial. By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination gradient, we found that both sedimentary composition and function shifted significantly along contamination gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient (from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger link between functional composition and environmental drivers, while stochasticity played an important role in formation and succession of phylogenetic composition demonstrated by null model test. Overall our research suggested that the responses of functional traits depended more on environmental changes, while stochasticity played an important role in formation and succession of phylogenetic composition for microbial communities. So profiling microbial functional composition seems more appropriate to study the relationship between microbial communities and environment, as well as explore the adaptation and remediation mechanism of microbial communities to heavy metal contamination.

  18. Improved data retrieval from TreeBASE via taxonomic and linguistic data enrichment

    PubMed Central

    Anwar, Nadia; Hunt, Ela

    2009-01-01

    Background TreeBASE, the only data repository for phylogenetic studies, is not being used effectively since it does not meet the taxonomic data retrieval requirements of the systematics community. We show, through an examination of the queries performed on TreeBASE, that data retrieval using taxon names is unsatisfactory. Results We report on a new wrapper supporting taxon queries on TreeBASE by utilising a Taxonomy and Classification Database (TCl-Db) we created. TCl-Db holds merged and consolidated taxonomic names from multiple data sources and can be used to translate hierarchical, vernacular and synonym queries into specific query terms in TreeBASE. The query expansion supported by TCl-Db shows very significant information retrieval quality improvement. The wrapper can be accessed at the URL The methodology we developed is scalable and can be applied to new data, as those become available in the future. Conclusion Significantly improved data retrieval quality is shown for all queries, and additional flexibility is achieved via user-driven taxonomy selection. PMID:19426482

  19. Next-generation systematics: An innovative approach to resolve the structure of complex prokaryotic taxa

    NASA Astrophysics Data System (ADS)

    Sangal, Vartul; Goodfellow, Michael; Jones, Amanda L.; Schwalbe, Edward C.; Blom, Jochen; Hoskisson, Paul A.; Sutcliffe, Iain C.

    2016-12-01

    Prokaryotic systematics provides the fundamental framework for microbiological research but remains a discipline that relies on a labour- and time-intensive polyphasic taxonomic approach, including DNA-DNA hybridization, variation in 16S rRNA gene sequence and phenotypic characteristics. These techniques suffer from poor resolution in distinguishing between closely related species and often result in misclassification and misidentification of strains. Moreover, guidelines are unclear for the delineation of bacterial genera. Here, we have applied an innovative phylogenetic and taxogenomic approach to a heterogeneous actinobacterial taxon, Rhodococcus, to identify boundaries for intrageneric and supraspecific classification. Seven species-groups were identified within the genus Rhodococcus that are as distantly related to one another as they are to representatives of other mycolic acid containing actinobacteria and can thus be equated with the rank of genus. It was also evident that strains assigned to rhodococcal species-groups are underspeciated with many misclassified using conventional taxonomic criteria. The phylogenetic and taxogenomic methods used in this study provide data of theoretical value for the circumscription of generic and species boundaries and are also of practical significance as they provide a robust basis for the classification and identification of rhodococci of agricultural, industrial and medical/veterinary significance.

  20. A glimpse on the pattern of rodent diversification: a phylogenetic approach

    PubMed Central

    2012-01-01

    Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In

  1. Phylogenetic Insights into Chinese Rubus (Rosaceae) from Multiple Chloroplast and Nuclear DNAs

    PubMed Central

    Wang, Yan; Chen, Qing; Chen, Tao; Tang, Haoru; Liu, Lin; Wang, Xiaorong

    2016-01-01

    Rubus L. is a large and taxonomically complex genus, species of which exhibit apomixis, polyploidy, and frequent hybridization. Most of Chinese Rubus are assigned in two major sections, Idaeobatus and Malachobatus. To explore the phylogenetic relationships within Chinese Rubus, inferences upon three chloroplast DNA (rbcL, rpl20-rps12, and trnG-trnS), nuclear ribosomal ITS, and two low-copy nuclear markers (GBSSI-2 and PEPC) were deduced in 142 Rubus taxa from 17 subsections in 6 sections. nrITS and GBSSI-2 were the most informative among the six DNA regions assessed. Phylogenetic relationships within Rubus were well-resolved by combined nuclear datasets rather than chloroplast markers. The phylogenetic inferences strongly supported that section Idaeobatus was a polyphyletic group with four distant clades. All samples of sect. Malachobatus formed a monophyletic clade, in which R. tsangorum and R. amphidasys of sect. Dalibardastrum, and R. peltatus from subsection Peltati of sect. Idaeobatus were always nested. Rubus pentagonus (2n = 2x = 14) from subsect. Alpestres of sect. Idaeobatus was a sister group to the polyploid sect. Malachobatus, as well as the polytomy of three sect. Cyalctis members. This suggests that some polyploids of Malachobatus might originate from common ancestors, via polyploidization of hybrids between R. pentagonus and sect. Cylactis species. They had experienced species explosion in a short time. Section Dalibardastrum species have potential parental lineages from subsects. Moluccani and Stipulosi of sect. Malachobatus. Based on molecular phylogenies, we also provided recommendations for the taxonomic treatments of four taxa. In addition, our results showed certain incongruence between chloroplast and nuclear markers, which might be due to hybridization and introgression. PMID:27446191

  2. PESI - a taxonomic backbone for Europe

    PubMed Central

    Kouwenberg, Juliana; Boumans, Louis; Hussey, Charles; Hyam, Roger; Nicolson, Nicola; Kirk, Paul; Paton, Alan; Michel, Ellinor; Guiry, Michael D.; Boegh, Phillip S.; Pedersen, Henrik Ærenlund; Enghoff, Henrik; von Raab-Straube, Eckhard; Güntsch, Anton; Geoffroy, Marc; Müller, Andreas; Kohlbecker, Andreas; Berendsohn, Walter; Appeltans, Ward; Arvanitidis, Christos; Vanhoorne, Bart; Declerck, Joram; Vandepitte, Leen; Hernandez, Francisco; Nash, Róisín; Costello, Mark John; Ouvrard, David; Bezard-Falgas, Pascale; Bourgoin, Thierry; Wetzel, Florian Tobias; Glöckler, Falko; Korb, Günther; Ring, Caroline; Hagedorn, Gregor; Häuser, Christoph; Aktaç, Nihat; Asan, Ahmet; Ardelean, Adorian; Borges, Paulo Alexandre Vieira; Dhora, Dhimiter; Khachatryan, Hasmik; Malicky, Michael; Ibrahimov, Shaig; Tuzikov, Alexander; De Wever, Aaike; Moncheva, Snejana; Spassov, Nikolai; Chobot, Karel; Popov, Alexi; Boršić, Igor; Sfenthourakis, Spyros; Kõljalg, Urmas; Uotila, Pertti; Olivier, Gargominy; Dauvin, Jean-Claude; Tarkhnishvili, David; Chaladze, Giorgi; Tuerkay, Michael; Legakis, Anastasios; Peregovits, László; Gudmundsson, Gudmundur; Ólafsson, Erling; Lysaght, Liam; Galil, Bella Sarah; Raimondo, Francesco M.; Domina, Gianniantonio; Stoch, Fabio; Minelli, Alessandro; Spungis, Voldermars; Budrys, Eduardas; Olenin, Sergej; Turpel, Armand; Walisch, Tania; Krpach, Vladimir; Gambin, Marie Therese; Ungureanu, Laurentia; Karaman, Gordan; Kleukers, Roy M.J.C.; Stur, Elisabeth; Aagaard, Kaare; Valland, Nils; Moen, Toril Loennechen; Bogdanowicz, Wieslaw; Tykarski, Piotr; Węsławski, Jan Marcin; Kędra, Monika; M. de Frias Martins, Antonio; Abreu, António Domingos; Silva, Ricardo; Medvedev, Sergei; Ryss, Alexander; Šimić, Smiljka; Marhold, Karol; Stloukal, Eduard; Tome, Davorin; Ramos, Marian A.; Valdés, Benito; Pina, Francisco; Kullander, Sven; Telenius, Anders; Gonseth, Yves; Tschudin, Pascal; Sergeyeva, Oleksandra; Vladymyrov, Volodymyr; Rizun, Volodymyr Bohdanovych; Raper, Chris; Lear, Dan; Stoev, Pavel; Penev, Lyubomir; Rubio, Ana Casino; Backeljau, Thierry; Saarenmaa, Hannu; Ulenberg, Sandrine

    2015-01-01

    Abstract Background Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists. The solution is in dynamic, expertly curated web-based taxonomic tools. The Pan-European Species-directories Infrastructure (PESI) worked to solve this key issue by providing a taxonomic e-infrastructure for Europe. It strengthened the relevant social (expertise) and information (standards, data and technical) capacities of five major community networks on taxonomic indexing in Europe, which is essential for proper biodiversity assessment and monitoring activities. The key objectives of PESI were: 1) standardisation in taxonomic reference systems, 2) enhancement of the quality and completeness of taxonomic data sets and 3) creation of integrated access to taxonomic information. New information This paper describes the results of PESI and its future prospects, including the involvement in major European biodiversity informatics initiatives and programs. PMID:26491393

  3. TREE2FASTA: a flexible Perl script for batch extraction of FASTA sequences from exploratory phylogenetic trees.

    PubMed

    Sauvage, Thomas; Plouviez, Sophie; Schmidt, William E; Fredericq, Suzanne

    2018-03-05

    The body of DNA sequence data lacking taxonomically informative sequence headers is rapidly growing in user and public databases (e.g. sequences lacking identification and contaminants). In the context of systematics studies, sorting such sequence data for taxonomic curation and/or molecular diversity characterization (e.g. crypticism) often requires the building of exploratory phylogenetic trees with reference taxa. The subsequent step of segregating DNA sequences of interest based on observed topological relationships can represent a challenging task, especially for large datasets. We have written TREE2FASTA, a Perl script that enables and expedites the sorting of FASTA-formatted sequence data from exploratory phylogenetic trees. TREE2FASTA takes advantage of the interactive, rapid point-and-click color selection and/or annotations of tree leaves in the popular Java tree-viewer FigTree to segregate groups of FASTA sequences of interest to separate files. TREE2FASTA allows for both simple and nested segregation designs to facilitate the simultaneous preparation of multiple data sets that may overlap in sequence content.

  4. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus

    Treesearch

    Radka Muhlsteinova; Jeffrey R. Johansen; Nicole Pietrasiak; Michael P. Martin; Karina Osorio-Santos; Steven D. Warren

    2014-01-01

    Little is known about the taxonomic diversity of cyanobacteria in deserts, despite their important ecological roles in these ecosystems. In this study, cyanobacterial strains from the Atacama, Colorado, and Mojave Deserts were isolated and characterized using molecular, morphological, and ecological information. Phylogenetic placement of these strains was revealed...

  5. Nonbinary Tree-Based Phylogenetic Networks.

    PubMed

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  6. Beyond barcoding: a mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae).

    PubMed

    Nelson, Leigh A; Lambkin, Christine L; Batterham, Philip; Wallman, James F; Dowton, Mark; Whiting, Michael F; Yeates, David K; Cameron, Stephen L

    2012-12-15

    Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117-200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister

  7. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data

    PubMed Central

    Spring, Stefan; Scheuner, Carmen; Göker, Markus; Klenk, Hans-Peter

    2015-01-01

    In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov. PMID:25914684

  8. Taxonomic Approach to the Tachinid Flies Dinera carinifrons (Fallén) (Diptera: Tachinidae) and Dinera fuscata Zhang and Shima using Molecular and Morphometric Data

    PubMed Central

    Lutovinovas, Erikas; Malenovský, Igor; Tóthová, Andrea; Ziegler, Joachim; Vaňhara, Jaromír

    2013-01-01

    Molecular phylogenetic and traditional morphometric methods were applied to examine six Palaearctic taxa of the taxonomically difficult tachinid fly genus Dinera Robineau-Desvoidy (Diptera: Tachinidae), with particular reference to D. carinifrons (Fallén) and D. fuscata Zhang and Shima. Results of a phylogenetic analysis based on the mitochondrial markers 12S and 16S rDNA and multivariate statistical analyses of 19 morphometric characters were used to delimit both species. A lectotype was designated for D. carinifrons to stabilize the nomenclature in the group. Dinera carinifrons has a transpalaearctic distribution and is present in Central Europe, especially in high altitudes of the Alps. It differs from the similar and closely related D. fuscata in that it has a slightly larger body size, a dense greyish microtrichosity on the body, and different head proportions. Dinera fuscata, as delimited here, is widespread in the Palaearctic region, including Europe. Slight differences in both molecular and morphometric characters were found between western (Europe and Iran) and eastern (China and Japan) populations of D. fuscata, which are interpreted as an intraspecific variation. Differential diagnosis between D. carinifrons and D. fuscata is provided in the form of a revised portion of the determination key to the Palaearctic Dinera by Zhang and Shima (2006). PMID:24787238

  9. SWPhylo – A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees

    PubMed Central

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354

  10. Phylogenetic Analysis and Molecular Characterization of Xanthium sibiricum Using DNA Barcoding, PCR-RFLP, and Specific Primers.

    PubMed

    Tomasello, Salvatore; Heubl, Günther

    2017-07-01

    The fruits of Xanthium sibiricum have been widely used in traditional Chinese medicine for the treatment of nasal sinusitis and headaches. The genus Xanthium (cocklebur) is a taxonomically complex genus. Different taxonomic concepts have been proposed, some including several species, others lumping the different taxa in a few extremely polymorphic species. Due to the morphological similarities between species, the correct authentication of X. sibiricum is very difficult. Therefore, we established a polymerase chain reaction-restriction fragment length polymorphism method and diagnostic PCR based on nuclear internal transcribed spacer and chloroplast trnQ-rps16 barcodes to differentiate X. sibirium from related species.Results from the phylogenetic analyses based on sequence information from four marker regions (plastidal psbA-trnH and trnQ-rps16 and nuclear ITS and D35 ) support those taxonomic concepts accepting a reduced number of species, as four to five major clades are revealed in the phylogenetic reconstructions. X. sibiricum , together with some accessions from closely related taxa, is always supported as monophyletic, constituting a well-defined genetic entity. Allele-specific primer pairs for ITS and trnQ-rps16 were designed to amplify diagnostic products from the genomic DNA of X. sibiricum . Specific PCR in combination with digestion using the restriction enzyme Mse I allowed for the identification of X. sibiricum by producing specific restriction patterns. The results demonstrate that the applied techniques provide effective and accurate authentication of X. sibiricum . Georg Thieme Verlag KG Stuttgart · New York.

  11. Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis.

    PubMed

    Davolos, Domenico; Pietrangeli, Biancamaria; Persiani, Anna Maria; Maggi, Oriana

    2012-02-01

    The morphology of three phenetically identical Penicillium isolates, collected from the bioaerosol in a restoration laboratory in Italy, displayed macro- and microscopic characteristics that were similar though not completely ascribable to Penicillium raistrickii. For this reason, a phylogenetic approach based on DNA sequencing analysis was performed to establish both the taxonomic status and the evolutionary relationships of these three peculiar isolates in relation to previously described species of the genus Penicillium. We used four nuclear loci (both rRNA and protein coding genes) that have previously proved useful for the molecular investigation of taxa belonging to the genus Penicillium at various evolutionary levels. The internal transcribed spacer region (ITS1-5.8S-ITS2), domains D1 and D2 of the 28S rDNA, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and sequenced. Analysis of the rRNA genes and of the benA and cmd sequence data indicates the presence of three isogenic isolates belonging to a genetically distinct species of the genus Penicillium, here described and named Penicillium simile sp. nov. (ATCC MYA-4591(T)  = CBS 129191(T)). This novel species is phylogenetically different from P. raistrickii and other related species of the genus Penicillium (e.g. Penicillium scabrosum), from which it can be distinguished on the basis of morphological trait analysis.

  12. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape.

    PubMed

    Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F

    2014-01-01

    Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (<2% relative to before-fragmentation values) but widespread throughout the study landscape, occurring in 32 of 40 1-ha plots. Consistent with this loss in phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.

  13. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive

  14. The phylogenetic significance of colour patterns in marine teleost larvae

    PubMed Central

    Baldwin, Carole C

    2013-01-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic

  15. Controlled recovery of phylogenetic communities from an evolutionary model using a network approach

    NASA Astrophysics Data System (ADS)

    Sousa, Arthur M. Y. R.; Vieira, André P.; Prado, Carmen P. C.; Andrade, Roberto F. S.

    2016-04-01

    This works reports the use of a complex network approach to produce a phylogenetic classification tree of a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation through random mutations and population growth, but purposefully omits other realistic ingredients that are not strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set of parameters, controlling the mutation probability and the population of different species. Our results indicate that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the actual evolutionary history with a very high average degree of accuracy. This includes parameter values where the species originated by the evolutionary dynamics have modular structures. In the more general context of community identification in complex networks, our model offers a simple setting for evaluating the effects, on the efficiency of community formation and identification, of the underlying dynamics generating the network itself.

  16. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Global Biodiversity and Phylogenetic Evaluation of Remipedia (Crustacea)

    PubMed Central

    Neiber, Marco T.; Hartke, Tamara R.; Stemme, Torben; Bergmann, Alexandra; Rust, Jes; Iliffe, Thomas M.; Koenemann, Stefan

    2011-01-01

    Remipedia is one of the most recently discovered classes of crustaceans, first described in 1981 from anchialine caves in the Bahamas Archipelago. The class is divided into the order Enantiopoda, represented by two fossil species, and Nectiopoda, which contains all known extant remipedes. Since their discovery, the number of nectiopodan species has increased to 24, half of which were described during the last decade. Nectiopoda exhibit a disjunct global distribution pattern, with the highest abundance and diversity in the Caribbean region, and isolated species in the Canary Islands and in Western Australia. Our review of Remipedia provides an overview of their ecological characteristics, including a detailed list of all anchialine marine caves, from which species have been recorded. We discuss alternative hypotheses of the phylogenetic position of Remipedia within Arthropoda, and present first results of an ongoing molecular-phylogenetic analysis that do not support the monophyly of several nectiopodan taxa. We believe that a taxonomic revision of Remipedia is absolutely essential, and that a comprehensive revision should include a reappraisal of the fossil record. PMID:21625553

  18. Frugivores bias seed-adult tree associations through nonrandom seed dispersal: a phylogenetic approach.

    PubMed

    Razafindratsima, Onja H; Dunham, Amy E

    2016-08-01

    Frugivores are the main seed dispersers in many ecosystems, such that behaviorally driven, nonrandom patterns of seed dispersal are a common process; but patterns are poorly understood. Characterizing these patterns may be essential for understanding spatial organization of fruiting trees and drivers of seed-dispersal limitation in biodiverse forests. To address this, we studied resulting spatial associations between dispersed seeds and adult tree neighbors in a diverse rainforest in Madagascar, using a temporal and phylogenetic approach. Data show that by using fruiting trees as seed-dispersal foci, frugivores bias seed dispersal under conspecific adults and under heterospecific trees that share dispersers and fruiting time with the dispersed species. Frugivore-mediated seed dispersal also resulted in nonrandom phylogenetic associations of dispersed seeds with their nearest adult neighbors, in nine out of the 16 months of our study. However, these nonrandom phylogenetic associations fluctuated unpredictably over time, ranging from clustered to overdispersed. The spatial and phylogenetic template of seed dispersal did not translate to similar patterns of association in adult tree neighborhoods, suggesting the importance of post-dispersal processes in structuring plant communities. Results suggest that frugivore-mediated seed dispersal is important for structuring early stages of plant-plant associations, setting the template for post-dispersal processes that influence ultimate patterns of plant recruitment. Importantly, if biased patterns of dispersal are common in other systems, frugivores may promote tree coexistence in biodiverse forests by limiting the frequency and diversity of heterospecific interactions of seeds they disperse. © 2016 by the Ecological Society of America.

  19. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.

    PubMed

    Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver

    2017-09-30

    Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.

  20. Taxonomic revision of Israeli snakes belonging to the Platyceps rhodorachis species complex (Reptilia: Squamata: Colubridae).

    PubMed

    Sinaiko, Guy; Magory-Cohen, Tali; Meiri, Shai; Dor, Roi

    2018-02-15

    The Platyceps rhodorachis species complex encompasses a widespread group of morphologically similar colubrid snakes. The number and identities of species from this complex in Israel have recently been debated. Studies from the previous decade concluded that there are two species in Israel and its vicinity (compared with one previously recognized), but their identity remained contested. We estimated the number of species and their taxonomic identity using morphological and molecular data. We found some evidence for clinal variation in many of the characters used to differentiate the species, and a great overlap in traits of putative species. Genetic data revealed very low sequence divergence, with all putative species being paraphyletic. Platyceps rogersi emerged as genetically closer to Platyceps saharicus rather than to its putative conspecific, P. karelini. The phylogenetic and taxonomic results thus indicate that the Israeli populations of the P. rhodorachis complex all belong to a single species, Platyceps saharicus (Schätti McCarthy 2004).

  1. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    PubMed

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    PubMed Central

    Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.

    2011-01-01

    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275

  3. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    PubMed

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  4. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  5. Assessment of trophic ecomorphology in non-alligatoroid crocodylians and its adaptive and taxonomic implications.

    PubMed

    Iijima, Masaya

    2017-08-01

    Although the establishment of trophic ecomorphology in living crocodylians can contribute to estimating feeding habits of extinct large aquatic reptiles, assessment of ecomorphological traits other than the snout shape has scarcely been conducted in crocodylians. Here, I tested the validity of the proposed trophic ecomorphological traits in crocodylians by examining the correlation between those traits and the snout shape (an established trophic ecomorphology), using 10 non-alligatoroid crocodylian species with a wide range of snout shape. I then compared the ontogenetic scaling of trophic ecomorphology to discuss its adaptive and taxonomic significance. The results demonstrated that degree of heterodonty, tooth spacing, size of supratemporal fenestra (STF), ventral extension of pterygoid flange and length of lower jaw symphysis are significantly correlated with snout shape by both non-phylogenetic and phylogenetic regression analyses. Gavialis gangeticus falls outside of 95% prediction intervals for the relationships of some traits and the snout shape, suggesting that piscivorous specialization involves the deviation from the typical transformation axis of skull characters. The comparative snout shape ontogeny revealed a universal trend of snout widening through growth in the sampled crocodylians, implying the existence of a shared size-dependent biomechanical constraint in non-alligatoroid crocodylians. Growth patterns of other traits indicated that G. gangeticus shows atypical trends for degree of heterodonty, size of STF, and symphysis length, whereas the same trends are shared for tooth spacing and ventral extension of pterygoid flange among non-alligatoroid crocodylians. These suggest that some characters are ontogenetically labile in response to prey preference shifts through growth, but other characters are in keeping with the conserved biomechanics among non-alligatoroid crocodylians. Some important taxonomic characters such as the occlusal pattern are

  6. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    PubMed

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans.

    PubMed

    Gingras, Bruno; Mohandesan, Elmira; Boko, Drasko; Fitch, W Tecumseh

    2013-07-01

    Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran's I, Mantel, and Blomberg's K) and three models of genetic distance (pairwise distances, Abouheif's proximities, and the variance-covariance matrix derived from the phylogenetic tree). A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and acoustic similarity in the

  8. SUNPLIN: simulation with uncertainty for phylogenetic investigations.

    PubMed

    Martins, Wellington S; Carmo, Welton C; Longo, Humberto J; Rosa, Thierson C; Rangel, Thiago F

    2013-11-15

    Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.

  9. Solution to the phylogenetic enigma of Tetraplatia, a worm-shaped cnidarian

    PubMed Central

    Collins, Allen G; Bentlage, Bastian; Matsumoto, George I; Haddock, Steven H.D; Osborn, Karen J; Schierwater, Bernd

    2005-01-01

    Tetraplatia is a genus containing two species of pelagic cnidarians of curious morphology. Their vermiform shape and four swimming flaps are difficult to relate to the features of other cnidarians, thus obscuring their phylogenetic affinities. Since their discovery in the mid-1800s, a number of prominent cnidarian workers have weighed in on this conundrum, some arguing that they are aberrant hydrozoans and others concluding that they are unusual scyphozoans. Current taxonomic practice conforms to the latter view. However, data presented here from the large and small subunits of the nuclear ribosome leave little doubt that Tetraplatia is in fact a hydrozoan genus. Indeed, its precise phylogenetic position is within Narcomedusae, as some authors had previously deduced based on structural characters. The distinctive body plan of Tetraplatia is remarkable because it appears to have a recent origin, in contrast to the prevailing pattern of metazoan history. PMID:17148343

  10. MICCA: a complete and accurate software for taxonomic profiling of metagenomic data.

    PubMed

    Albanese, Davide; Fontana, Paolo; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio

    2015-05-19

    The introduction of high throughput sequencing technologies has triggered an increase of the number of studies in which the microbiota of environmental and human samples is characterized through the sequencing of selected marker genes. While experimental protocols have undergone a process of standardization that makes them accessible to a large community of scientist, standard and robust data analysis pipelines are still lacking. Here we introduce MICCA, a software pipeline for the processing of amplicon metagenomic datasets that efficiently combines quality filtering, clustering of Operational Taxonomic Units (OTUs), taxonomy assignment and phylogenetic tree inference. MICCA provides accurate results reaching a good compromise among modularity and usability. Moreover, we introduce a de-novo clustering algorithm specifically designed for the inference of Operational Taxonomic Units (OTUs). Tests on real and synthetic datasets shows that thanks to the optimized reads filtering process and to the new clustering algorithm, MICCA provides estimates of the number of OTUs and of other common ecological indices that are more accurate and robust than currently available pipelines. Analysis of public metagenomic datasets shows that the higher consistency of results improves our understanding of the structure of environmental and human associated microbial communities. MICCA is an open source project.

  11. Cnidarian phylogenetic relationships as revealed by mitogenomics

    PubMed Central

    2013-01-01

    Background Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that

  12. Taxonomic turmoil down-under: recent developments in Australian orchid systematics

    PubMed Central

    Hopper, Stephen D.

    2009-01-01

    Background The issue of determining the most appropriate rank for each accepted taxon fuels ongoing controversy throughout systematics. The particularly marked escalation of such issues in modern Australian orchid systematics merits examination, not only because of wider implications in taxonomy but also because of direct effects on studies of comparative biology and conservation management. Scope This paper briefly reviews the causes of recent taxonomic turmoil for Australian orchids and outlines new research opportunities and conservation implications arising from an improved understanding of their molecular phylogenetics. Conclusions DNA sequencing and intensified field work have contributed towards a much improved understanding of Australian orchid systematics. Great progress has been made in discerning monophyletic groups or clades. Fresh interpretations of morphological evolution have been made possible by comparisons with the results of DNA analyses. Significant conceptual shifts from polymorphic species concepts to biological and phylogenetic concepts have also elevated the discovery and description of new species. Consequently, over the past decade, the number of Australian orchid species recognized by taxonomists has risen from approx. 900 to 1200. Similarly, the number of genera recognized by some taxonomists has increased from 110 to 192, resulting in 45% of Australian species/subspecies being assigned a new generic epithet since 2000. At higher taxonomic levels, much of the recent controversy in Australian orchid systematics reflects a divergence in views about where to split and assign formal names within unequivocally monophyletic groups. Differences regarding typification in the case of Caladenia have added additional confusion and complexity. However, new insights into and research opportunities concerning speciation processes in orchids have arisen from the wealth of new data and discrimination of species. Robustly supported molecular analyses of

  13. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities.

    PubMed

    Parks, Donovan H; Beiko, Robert G

    2013-01-01

    High-throughput sequencing techniques have made large-scale spatial and temporal surveys of microbial communities routine. Gaining insight into microbial diversity requires methods for effectively analyzing and visualizing these extensive data sets. Phylogenetic β-diversity measures address this challenge by allowing the relationship between large numbers of environmental samples to be explored using standard multivariate analysis techniques. Despite the success and widespread use of phylogenetic β-diversity measures, an extensive comparative analysis of these measures has not been performed. Here, we compare 39 measures of phylogenetic β diversity in order to establish the relative similarity of these measures along with key properties and performance characteristics. While many measures are highly correlated, those commonly used within microbial ecology were found to be distinct from those popular within classical ecology, and from the recently recommended Gower and Canberra measures. Many of the measures are surprisingly robust to different rootings of the gene tree, the choice of similarity threshold used to define operational taxonomic units, and the presence of outlying basal lineages. Measures differ considerably in their sensitivity to rare organisms, and the effectiveness of measures can vary substantially under alternative models of differentiation. Consequently, the depth of sequencing required to reveal underlying patterns of relationships between environmental samples depends on the selected measure. Our results demonstrate that using complementary measures of phylogenetic β diversity can further our understanding of how communities are phylogenetically differentiated. Open-source software implementing the phylogenetic β-diversity measures evaluated in this manuscript is available at http://kiwi.cs.dal.ca/Software/ExpressBetaDiversity.

  14. Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta).

    PubMed

    Rindi, Fabio; Lam, Daryl W; López-Bautista, Juan M

    2009-08-01

    Subaerial green microalgae represent a polyphyletic complex of organisms, whose genetic diversity is much higher than their simple morphologies suggest. The order Trentepohliales is the only species-rich group of subaerial algae belonging to the class Ulvophyceae and represents an ideal model taxon to investigate evolutionary patterns of these organisms. We studied phylogenetic relationships in two common genera of Trentepohliales (Trentepohlia and Printzina) by separate and combined analyses of the rbcL and 18S rRNA genes. Trentepohlia and Printzina were not resolved as monophyletic groups. Three main clades were recovered in all analyses, but none corresponded to any trentepohlialean genus as defined based on morphological grounds. The rbcL and 18S rRNA datasets provided congruent phylogenetic signals and similar topologies were recovered in single-gene analyses. Analyses performed on the combined 2-gene dataset inferred generally higher nodal support. The results clarified several taxonomic problems and showed that the evolution of these algae has been characterized by considerable morphological convergence. Trentepohlia abietina and T. flava were shown to be separate species from T. aurea; Printzina lagenifera, T. arborum and T. umbrina were resolved as polyphyletic taxa, whose vegetative morphology appears to have evolved independently in separate lineages. Incongruence between phylogenetic relationships and traditional morphological classification was demonstrated, showing that the morphological characters commonly used in the taxonomy of the Trentepohliales are phylogenetically irrelevant.

  15. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest.

    PubMed

    Arnan, Xavier; Arcoverde, Gabriela B; Pie, Marcio R; Ribeiro-Neto, José D; Leal, Inara R

    2018-08-01

    Anthropogenic disturbance and climate change are major threats to biodiversity. The Brazilian Caatinga is the world's largest and most diverse type of seasonally dry tropical forest. It is also one of the most threatened, but remains poorly studied. Here, we analyzed the individual and combined effects of anthropogenic disturbance (three types: livestock grazing, wood extraction, and miscellaneous use of forest resources) and increasing aridity on taxonomic, phylogenetic and functional ant diversity in the Caatinga. We found no aridity and disturbance effects on taxonomic diversity. In spite of this, functional diversity, and to a lesser extent phylogenetic diversity, decreased with increased levels of disturbance and aridity. These effects depended on disturbance type: livestock grazing and miscellaneous resource use, but not wood extraction, deterministically filtered both components of diversity. Interestingly, disturbance and aridity interacted to shape biodiversity responses. While aridity sometimes intensified the negative effects of disturbance, the greatest declines in biodiversity were in the wettest areas. Our results imply that anthropogenic disturbance and aridity interact in complex ways to endanger biodiversity in seasonally dry tropical forests. Given global climate change, neotropical semi-arid areas are habitats of concern, and our findings suggest Caatinga conservation policies must prioritize protection of the wettest areas, where biodiversity loss stands to be the greatest. Given the major ecological relevance of ants, declines in both ant phylogenetic and functional diversity might have downstream effects on ecosystem processes, insect populations, and plant populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Designing and conducting in silico analysis for identifying of Echinococcus spp. with discrimination of novel haplotypes: an approach to better understanding of parasite taxonomic.

    PubMed

    Spotin, Adel; Gholami, Shirzad; Nasab, Abbas Najafi; Fallah, Esmaeil; Oskouei, Mahmoud Mahami; Semnani, Vahid; Shariatzadeh, Seyyed Ali; Shahbazi, Abbas

    2015-04-01

    The definitive identification of Echinococcus species is currently carried out by sequencing and phylogenetic strategies. However, the application of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns is not broadly used as a result of heterogeneity traits of Echinococcus genome in different regions of the world. Therefore, designing and conducting a standardized pattern should indigenously be considered in under-studied areas. In this investigation, an in silico mapping was designed and developed for eight Echinococcus spp. on the basis of regional sequences in Iran and the world. The numbers of 60 Echinococcus isolates were collected from the liver and lungs of 15 human, 15 sheep, 15 cattle, and 15 camel cases in Semnan province, Central Iran. DNA samples were extracted and examined by polymerase chain reaction of ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) and PCR-RFLP via Rsa1 endonuclease enzyme. Moreover, 15 amplicons of cytochrome oxidase 1 (Cox1) were directly sequenced in order to identify the strains/haplotypes. PCR-RFLP and phylogenetic analyses revealed firmly the presence of the G1 and G6 genotypes with heterogeneity (three novel haplotypes) of Cox1 gene although no other expected genotypes were found in the region. Finding shows that the identification of novel haplotypes along with discrimination of Echinococcus spp. through regional patterns can unambiguously illustrate the real taxonomic status of parasite in Central Iran.

  17. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota.

    PubMed

    Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile

    2016-01-01

    Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.

  18. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    PubMed Central

    Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile

    2016-01-01

    Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota. PMID:26140533

  19. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific

    PubMed Central

    Larkin, Alyse A; Blinebry, Sara K; Howes, Caroline; Lin, Yajuan; Loftus, Sarah E; Schmaus, Carrie A; Zinser, Erik R; Johnson, Zackary I

    2016-01-01

    The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some ‘sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function. PMID:26800235

  20. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  1. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  2. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    PubMed

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  3. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus

    Treesearch

    Daniel L. Lindner; Mark T. Banik

    2011-01-01

    Regions of rDNA are commonly used to infer phylogenetic relationships among fungal species and as DNA barcodes for identification. These regions occur in large tandem arrays, and concerted evolution is believed to reduce intragenomic variation among copies within these arrays, although some variation still might exist. Phylogenetic studies typically use consensus...

  4. Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy.

    PubMed

    Durand, J-D; Shen, K-N; Chen, W-J; Jamandre, B W; Blel, H; Diop, K; Nirchio, M; Garcia de León, F J; Whitfield, A K; Chang, C-W; Borsa, P

    2012-07-01

    The family Mugilidae comprises mainly coastal marine species that are widely distributed in all tropical, subtropical and temperate seas. Mugilid species are generally considered to be ecologically important and they are a major food resource for human populations in certain parts of the world. The taxonomy and systematics of the Mugilidae are still much debated and based primarily on morphological characters. In this study, we provide the first comprehensive molecular systematic account of the Mugilidae using phylogenetic analyses of nucleotide sequence variation at three mitochondrial loci (16S rRNA, cytochrome oxidase I, and cytochrome b) for 257 individuals from 55 currently recognized species. The study covers all 20 mugilid genera currently recognized as being valid. The family comprises seven major lineages that radiated early on from the ancestor to all current forms. All genera that were represented by two species or more, except Cestraeus, turned out to be paraphyletic or polyphyletic. Thus, the present phylogenetic results generally disagree with the current taxonomy at the genus level and imply that the anatomical characters used for the systematics of the Mugilidae may be poorly informative phylogenetically. The present results should provide a sound basis for a taxonomic revision of the mugilid genera. A proportion of the species with large distribution ranges (including Moolgarda seheli, Mugil cephalus and M. curema) appear to consist of cryptic species, thus warranting further taxonomic and genetic work at the infra-generic level. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Taxonomic position of Hormaphis similibetulae Qiao & Zhang, 2004 (Hemiptera, Aphididae): molecular and biological evidences

    PubMed Central

    Chen, Jing; Jiang, Li-Yun; Qiao, Ge-Xia

    2011-01-01

    Abstract The taxonomic position of Hormaphis similibetulae Qiao & Zhang, 2004 has been reexamined. The phylogenetic position of Hormaphis similibetulae was inferred by maximum parsimony, maximum likelihood and Bayesian analyses on the basis of partial nuclear elongation factor-1α and mitochondrial tRNA leucine/cytochrome oxidase II sequences. The results showed that this species fell into the clade of Hamamelistes species, occupying a basal position, and was clearly distinct from other Hormaphis species. A closer relationship between Hormaphis similibetulae and Hamamelistes species was also revealed by life cycle analysis. Therefore, we conclude that Hormaphis similibetulae should be transferred to the genus Hamamelistes as Hamamelistes similibetulae (Qiao & Zhang), comb. n. PMID:21852935

  6. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE PAGES

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; ...

    2016-12-20

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  7. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  8. Prioritizing Populations for Conservation Using Phylogenetic Networks

    PubMed Central

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O.

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  9. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae).

    PubMed

    Carrizo García, Carolina; Barfuss, Michael H J; Sehr, Eva M; Barboza, Gloria E; Samuel, Rosabelle; Moscone, Eduardo A; Ehrendorfer, Friedrich

    2016-07-01

    Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum A clearly distinct early-diverging clade can be distinguished, centred in western-north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The diversification of Capsicum has culminated in the origin

  10. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae)

    PubMed Central

    Carrizo García, Carolina; Barfuss, Michael H. J.; Sehr, Eva M.; Barboza, Gloria E.; Samuel, Rosabelle; Moscone, Eduardo A.; Ehrendorfer, Friedrich

    2016-01-01

    Background and Aims Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Methods Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Key Results Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. Conclusions New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum. A clearly distinct early-diverging clade can be distinguished, centred in western–north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The

  11. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information

    PubMed Central

    McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash

    2018-01-01

    ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869

  12. MICCA: a complete and accurate software for taxonomic profiling of metagenomic data

    PubMed Central

    Albanese, Davide; Fontana, Paolo; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio

    2015-01-01

    The introduction of high throughput sequencing technologies has triggered an increase of the number of studies in which the microbiota of environmental and human samples is characterized through the sequencing of selected marker genes. While experimental protocols have undergone a process of standardization that makes them accessible to a large community of scientist, standard and robust data analysis pipelines are still lacking. Here we introduce MICCA, a software pipeline for the processing of amplicon metagenomic datasets that efficiently combines quality filtering, clustering of Operational Taxonomic Units (OTUs), taxonomy assignment and phylogenetic tree inference. MICCA provides accurate results reaching a good compromise among modularity and usability. Moreover, we introduce a de-novo clustering algorithm specifically designed for the inference of Operational Taxonomic Units (OTUs). Tests on real and synthetic datasets shows that thanks to the optimized reads filtering process and to the new clustering algorithm, MICCA provides estimates of the number of OTUs and of other common ecological indices that are more accurate and robust than currently available pipelines. Analysis of public metagenomic datasets shows that the higher consistency of results improves our understanding of the structure of environmental and human associated microbial communities. MICCA is an open source project. PMID:25988396

  13. Phylogenetic Pattern, Evolutionary Processes and Species Delimitation in the Genus Echinococcus.

    PubMed

    Lymbery, A J

    2017-01-01

    An accurate and stable alpha taxonomy requires a clear conception of what constitutes a species and agreed criteria for delimiting different species. An evolutionary or general lineage concept defines a species as a single lineage of organisms with a common evolutionary trajectory, distinguishable from other such lineages. Delimiting evolutionary species is a two-step process. In the first step, phylogenetic reconstruction identifies putative species as groups of organisms that are monophyletic (share a common ancestor) and exclusive (more closely related to each other than to organisms outside the group). The second step is to assess whether members of the group possess genetic exchangeability (where cohesion is maintained by gene flow among populations) or ecological exchangeability (where cohesion is maintained because populations occupy the same ecological niche). Recent taxonomic reviews have recognized nine species within the genus Echinococcus. Phylogenetic reconstructions of the relationships between these putative species using mtDNA and nuclear gene sequences show that for the most part these nine species are monophyletic, although there are important incongruences that need to be resolved. Applying the criteria of genetic and ecological exchangeability suggests that seven of the currently recognized species represent evolutionarily distinct lineages. The species status of Echinococcus canadensis and Echinococcus ortleppi could not be confirmed. Coalescent-based analyses represent a promising approach to species delimitation in these closely related taxa. It seems likely, from a comparison of sister species groups, that speciation in the genus has been driven by geographic isolation, but biogeographic scenarios are largely speculative and require further testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  15. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    PubMed

    Brooks, T M; Cuttelod, A; Faith, D P; Garcia-Moreno, J; Langhammer, P; Pérez-Espona, S

    2015-02-19

    'Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326-337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for 'threatened species' to consider 'threatened taxa' and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites.

  16. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    PubMed Central

    Brooks, T. M.; Cuttelod, A.; Faith, D. P.; Garcia-Moreno, J.; Langhammer, P.; Pérez-Espona, S.

    2015-01-01

    ‘Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites. PMID:25561678

  17. Taxonomic indexing--extending the role of taxonomy.

    PubMed

    Patterson, David J; Remsen, David; Marino, William A; Norton, Cathy

    2006-06-01

    Taxonomic indexing refers to a new array of taxonomically intelligent network services that use nomenclatural principles and elements of expert taxonomic knowledge to manage information about organisms. Taxonomic indexing was introduced to help manage the increasing amounts of digital information about biology. It has been designed to form a near basal layer in a layered cyberinfrastructure that deals with biological information. Taxonomic Indexing accommodates the special problems of using names of organisms to index biological material. It links alternative names for the same entity (reconciliation), and distinguishes between uses of the same name for different entities (disambiguation), and names are placed within an indefinite number of hierarchical schemes. In order to access all information on all organisms, Taxonomic indexing must be able to call on a registry of all names in all forms for all organisms. NameBank has been developed to meet that need. Taxonomic indexing is an area of informatics that overlaps with taxonomy, is dependent on the expert input of taxonomists, and reveals the relevance of the discipline to a wide audience.

  18. Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga.

    PubMed

    Ribeiro, Elâine M S; Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Tabarelli, Marcelo; Souza, Gustavo; Leal, Inara R

    2016-06-01

    Chronic disturbances, such as selective logging, firewood extraction and extensive grazing, may lead to the taxonomic and phylogenetic impoverishment of remaining old-growth forest communities worldwide; however, the empirical evidence on this topic is limited. We tested this hypothesis in the Caatinga vegetation--a seasonally dry tropical forest restricted to northeast Brazil. We sampled 11,653 individuals (adults, saplings, and seedlings) from 51 species in 29 plots distributed along a gradient of chronic disturbance. The gradient was assessed using a chronic disturbance index (CDI) based on five recognized indicators of chronic disturbances: proximity to urban center, houses and roads and the density of both people and livestock. We used linear models to test if mean effective number of lineages, mean phylogenetic distance and phylogenetic dispersion decreased with CDI and if such relationships differed among ontogenetic stages. As expected, the mean effective number of lineages and the mean phylogenetic distance were negatively related to CDI, and such diversity losses occurred irrespective of ontogeny. Yet the increase in phylogenetic clustering in more disturbed plots was only evident in seedlings and saplings, mostly because clades with more descendent taxa than expected by chance (e.g., Euphorbiaceae) thrived in more disturbed plots. This novel study indicates that chronic human disturbances are promoting the phylogenetic impoverishment of the irreplaceable woody flora of the Brazilian Caatinga forest. The highest impoverishment was observed in seedlings and saplings, indicating that if current chronic disturbances remain, they will result in increasingly poorer phylogenetically forests. This loss of evolutionary history will potentially limit the capacity of this ecosystem to respond to human disturbances (i.e., lower ecological resilience) and particularly their ability to adapt to rapid climatic changes in the region.

  19. Approaching the taxonomic affiliation of unidentified sequences in public databases--an example from the mycorrhizal fungi.

    PubMed

    Nilsson, R Henrik; Kristiansson, Erik; Ryberg, Martin; Larsson, Karl-Henrik

    2005-07-18

    During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi--a field where species identification often is prohibitively complex--and the much used ITS locus were chosen as test bed. A Perl script package called emerencia is presented. On a regular basis, it downloads select sequences from GenBank, separates the identified sequences from those insufficiently identified, and performs BLAST searches between these two datasets, storing all results in an SQL database. On the accompanying web-service http://emerencia.math.chalmers.se, users can monitor the taxonomic progress of insufficiently identified sequences over time, either through active searches or by signing up for e-mail notification upon disclosure of better matches. Other search categories, such as listing all insufficiently identified sequences (and their present best fully identified matches) publication-wise, are also available. The ever-increasing use of DNA sequences for identification purposes largely falls back on the assumption that public sequence databases

  20. An integrated approach to the Taxonomic identification of prehistoric shell ornaments

    USGS Publications Warehouse

    Demarchi, Beatrice; O'Connor, Sonia; Ponzoni, Andre de Lima; Ponzoni, Raquel de Almeida Roch; Sheridan, Alison; Penkman, Kirsty; Hancock, Y.; Wilson, Julie

    2014-01-01

    Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.

  1. Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group.

    PubMed

    Busquets, Antonio; Gomila, Margarita; Beiki, Farid; Mulet, Magdalena; Rahimian, Heshmat; García-Valdés, Elena; Lalucat, Jorge

    2017-07-01

    In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102 T , FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102 T =CECT 9164 T =CCUG 69273 T ) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. [Taxonomic theory for non-classical systematics].

    PubMed

    Pavlinov, I Ia

    2012-01-01

    Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.

  3. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov.

    PubMed

    Bagchi, Suvendra Nath; Dubey, Neelam; Singh, Prashant

    2017-09-01

    Nostoc is a complex and tough genus to differentiate, and its morphological plasticity makes it taxonomically complicated. Its cryptic diversity and almost no distinguishable morphological characteristics make this genus incredibly heterogeneous to evaluate on taxonomic scales. The strain NOS, isolated from a eutrophic water body, is being described as a new genus Aliinostoc with the strain showing motile hormogonia with gas vesicles as an atypical feature, which is currently considered as the diacritical feature of the genus but should be subjected to critical evaluation in the near future. The phylogenetic placement of Aliinostoc along with some other related sequences of Nostoc clearly separated this clade from Nostoc sensu stricto with high bootstrap support and robust topology in all the methods tested, thus providing strong proof of the taxa being representative of a new genus which morphologically appears to be Nostoc-like. Subsequent phylogenetic assessment using the rbcL, psbA, rpoC1 and tufA genes was done with the aim of facilitating future multi-locus studies on the proposed genus for better taxonomic clarity and resolution. Folding of the 16S-23S internal transcribed spacer region and subsequent comparisons with members of the genera Nostoc, Anabaena, Aulosira, Cylindrospermum, Sphaerospermopsis, Raphidiopsis, Desmonostoc and Mojavia gave entirely new secondary structures for the D1-D1' and box-B helix. Clear and separate clustering from Nostoc sensu stricto supports the establishment of Aliinostoc gen. nov. with the type species being Aliinostoc morphoplasticum sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants.

  4. The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (decapoda: achelata, astacidea, glypheidea, polychelida).

    PubMed

    Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A

    2014-07-01

    Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The

  5. Relation between flower head traits and florivory in Asteraceae: a phylogenetically controlled approach.

    PubMed

    Oguro, Michio; Sakai, Satoki

    2015-03-01

    • While much research has examined the relation between leaf traits and herbivory, very little is known about the interaction between floral traits, particularly biochemical traits, and florivory. We investigated patterns between floral traits and florivory across multiple species using phylogenetic comparative approaches to enhance our understanding of the evolution of plant-florivore interactions.• The relation between the intensity of florivory and five biochemical traits (concentrations of carbon, nitrogen, phosphorus, water, and total phenolics) and two morphological traits (diameter and number of flower heads) were investigated in wild individuals of 18 native species of Asteraceae. The phylogenetic signals in the morphological traits and intensity of florivory were also tested.• We found that species with higher nitrogen, water, and total phenolics and lower phosphorus concentrations in the flower heads and species with a large number and diameter of flower heads tended to be attacked by florivores. In addition, we found significant phylogenetic signals in florivory and morphological traits.• Our results clearly show that biochemical traits also play important roles in plant-florivore interactions, as previously shown in plant-leaf herbivore interactions. The positive relationship between florivory and total phenolics implies that phenolic compounds in flower heads may not act as a defense in the species. In addition, the observed pattern of signals in florivory might not be solely explained by the signals of the measured traits and other plant traits may also play significant roles in plant-florivore interaction in these species. © 2015 Botanical Society of America, Inc.

  6. A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes

    PubMed Central

    Meynard, Christine N.; Mouillot, David; Mouquet, Nicolas; Douzery, Emmanuel J. P.

    2012-01-01

    The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA supermatrix composed of four mitochondrial genes (12S ribosomal DNA, 16S ribosomal DNA, cytochrome c oxidase subunit I and cytochrome b) and two nuclear genes (rhodopsin and recombination activating gene I), including 62% of Mediterranean teleost species plus 9 outgroups. Maximum likelihood and Bayesian phylogenetic and dating analyses were calibrated using 20 fossil constraints. An additional 124 species were grafted onto the chronogram according to their taxonomic affinity, checking for the effects of taxonomic coverage in subsequent diversification analyses. We then interpreted the time-line of teleost diversification in light of Mediterranean historical biogeography, distinguishing non-endemic natives, endemics and exotic species. Results show that the major Mediterranean orders are of Cretaceous origin, specifically ∼100–80 Mya, and most Perciformes families originated 80–50 Mya. Two important clade origin events were detected. The first at 100–80 Mya, affected native and exotic species, and reflects a global diversification period at a time when the Mediterranean Sea did not yet exist. The second occurred during the last 50 Mya, and is noticeable among endemic and native species, but not among exotic species. This period corresponds to isolation of the Mediterranean from Indo-Pacific waters before the Messinian salinity crisis. The Mediterranean fish fauna illustrates well the assembly of regional faunas through origination and immigration, where dispersal and isolation have shaped the emergence of a biodiversity hotspot. PMID:22590545

  7. Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks (Scincidae: Ctenotus).

    PubMed

    Rabosky, Daniel L; Hutchinson, Mark N; Donnellan, Stephen C; Talaba, Amanda L; Lovette, Irby J

    2014-08-01

    Scincid lizards in the genus Ctenotus represent one of Australia's most species-rich vertebrate clades, with more than 100 recognized species. Formal diagnoses of many species have relied on qualitative assessments of adult color pattern, but the validity of many such species has not been tested in a phylogenetic framework. We used mitochondrial and nuclear DNA to perform the first phylogenetic analysis of species in the Ctenotus inornatus group, a complex of at least 11 nominal forms that are distributed widely across the Australian continent. Mitochondrial and nuclear gene phylogenies support the presence of multiple species in the group, but these clades largely fail to match species boundaries as currently defined. Multivariate analyses of color pattern indicate that extreme intraspecific morphological variation in this character has created a significant impediment to understanding taxonomic diversity in the group. Our results suggest that nearly all species in the C. inornatus group require substantial taxonomic revision, and several geographically widespread forms ("C. saxatilis" and "C. robustus") appear to be polyphyletic taxa drawn from phenotypically similar but genetically distinct lineages. We describe one new species and provide redescriptions for three additional species. We synonymize names applied to a number of genetically incoherent or otherwise poorly-defined forms. The results of our study highlight an acute need for population genetic studies of species boundaries in Australian skinks, many of which are recognized by morphological traits that vary greatly within and between populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nuclear markers confirm taxonomic status and relationships among highly endangered and closely related right whale species

    PubMed Central

    Gaines, C.A; Hare, M.P; Beck, S.E; Rosenbaum, H.C

    2005-01-01

    Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite the lack of any diagnostic morphological characters. A phylogenetic analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetic analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nuDNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable. PMID:15846869

  9. Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae).

    PubMed

    Wagner, Warren L; Krakos, Kyra N; Hoch, Peter C

    2013-01-01

    The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri.

  10. treespace: Statistical exploration of landscapes of phylogenetic trees.

    PubMed

    Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline

    2017-11-01

    The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  11. Charting taxonomic knowledge through ontologies and ranking algorithms

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Klump, Jens

    2009-04-01

    Since the inception of geology as a modern science, paleontologists have described a large number of fossil species. This makes fossilized organisms an important tool in the study of stratigraphy and past environments. Since taxonomic classifications of organisms, and thereby their names, change frequently, the correct application of this tool requires taxonomic expertise in finding correct synonyms for a given species name. Much of this taxonomic information has already been published in journals and books where it is compiled in carefully prepared synonymy lists. Because this information is scattered throughout the paleontological literature, it is difficult to find and sometimes not accessible. Also, taxonomic information in the literature is often difficult to interpret for non-taxonomists looking for taxonomic synonymies as part of their research. The highly formalized structure makes Open Nomenclature synonymy lists ideally suited for computer aided identification of taxonomic synonyms. Because a synonymy list is a list of citations related to a taxon name, its bibliographic nature allows the application of bibliometric techniques to calculate the impact of synonymies and taxonomic concepts. TaxonRank is a ranking algorithm based on bibliometric analysis and Internet page ranking algorithms. TaxonRank uses published synonymy list data stored in TaxonConcept, a taxonomic information system. The basic ranking algorithm has been modified to include a measure of confidence on species identification based on the Open Nomenclature notation used in synonymy list, as well as other synonymy specific criteria. The results of our experiments show that the output of the proposed ranking algorithm gives a good estimate of the impact a published taxonomic concept has on the taxonomic opinions in the geological community. Also, our results show that treating taxonomic synonymies as part of on an ontology is a way to record and manage taxonomic knowledge, and thus contribute

  12. Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach

    NASA Astrophysics Data System (ADS)

    Kotaru, Appala Raju; Joshi, Ramesh C.

    Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.

  13. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments.

    PubMed

    Kim, Minseok; Morrison, Mark; Yu, Zhongtang

    2011-09-01

    Phylogenetic analysis was conducted to examine ruminal bacteria in two ruminal fractions (adherent fraction vs. liquid fraction) collected from cattle fed with two different diets: forage alone vs. forage plus concentrate. One hundred forty-four 16S rRNA gene (rrs) sequences were obtained from clone libraries constructed from the four samples. These rrs sequences were assigned to 116 different operational taxonomic units (OTUs) defined at 0.03 phylogenetic distance. Most of these OTUs could not be assigned to any known genus. The phylum Firmicutes was represented by approximately 70% of all the sequences. By comparing to the OTUs already documented in the rumen, 52 new OTUs were identified. UniFrac, SONS, and denaturing gradient gel electrophoresis analyses revealed difference in diversity between the two fractions and between the two diets. This study showed that rrs sequences recovered from small clone libraries can still help identify novel species-level OTUs.

  14. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies.

    PubMed

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M

    2017-04-25

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.

  15. Molecular phylogenetic lineage of Plagiopogon and Askenasia (Protozoa, Ciliophora) revealed by their gene sequences

    NASA Astrophysics Data System (ADS)

    Liu, An; Yi, Zhenzhen; Lin, Xiaofeng; Hu, Xiaozhong; Al-Farraj, Saleh A.; Al-Rasheid, Khaled A. S.

    2015-08-01

    Prostomates and haptorians are two basal groups of ciliates with limited morphological characteristics available for taxonomy. Morphologically, the structures used to identify prostomates and haptorians are similar or even identical, which generate heavy taxonomic and phylogenetic confusion. In present work, phylogenetic positions lineage of two rare genera, Plagiopogon and Askenasia, were investigated. Three genes including small subunit ribosomal RNA gene (hereafter SSU rDNA), internal transcribed spacer region (ITS region), and large subunit ribosomal RNA gene (LSU rDNA) were analyzed, 10 new sequences five species each. Our findings included 1) class Prostomatea and order Haptorida are multiphyletic; 2) it may not be appropriate to place order Cyclotrichiida in subclass Haptoria, and the systematic lineage of order Cyclotrichiida needs to be verified further; 3) genus Plagiopogon branches consistently within a clade covering most prostomes and is basal of clade Colepidae, implying its close lineage to Prostomatea; and 4) Askenasia is phylogenetically distant from the subclass Haptoria but close to classes Prostomatea, Plagiopylea and Oligohymenophorea. We supposed that the toxicyst of Askenasia may be close to taxa of prostomes instead of haptorians, and the dorsal brush is a more typical morphological characteristics of haptorians than toxicysts.

  16. A Framework for Inferring Taxonomic Class of Asteroids.

    NASA Technical Reports Server (NTRS)

    Dotson, J. L.; Mathias, D. L.

    2017-01-01

    Introduction: Taxonomic classification of asteroids based on their visible / near-infrared spectra or multi band photometry has proven to be a useful tool to infer other properties about asteroids. Meteorite analogs have been identified for several taxonomic classes, permitting detailed inference about asteroid composition. Trends have been identified between taxonomy and measured asteroid density. Thanks to NEOWise (Near-Earth-Object Wide-field Infrared Survey Explorer) and Spitzer (Spitzer Space Telescope), approximately twice as many asteroids have measured albedos than the number with taxonomic classifications. (If one only considers spectroscopically determined classifications, the ratio is greater than 40.) We present a Bayesian framework that provides probabilistic estimates of the taxonomic class of an asteroid based on its albedo. Although probabilistic estimates of taxonomic classes are not a replacement for spectroscopic or photometric determinations, they can be a useful tool for identifying objects for further study or for asteroid threat assessment models. Inputs and Framework: The framework relies upon two inputs: the expected fraction of each taxonomic class in the population and the albedo distribution of each class. Luckily, numerous authors have addressed both of these questions. For example, the taxonomic distribution by number, surface area and mass of the main belt has been estimated and a diameter limited estimate of fractional abundances of the near earth asteroid population was made. Similarly, the albedo distributions for taxonomic classes have been estimated for the combined main belt and NEA (Near Earth Asteroid) populations in different taxonomic systems and for the NEA population specifically. The framework utilizes a Bayesian inference appropriate for categorical data. The population fractions provide the prior while the albedo distributions allow calculation of the likelihood an albedo measurement is consistent with a given taxonomic

  17. Bamboo tea: reduction of taxonomic complexity and application of DNA diagnostics based on rbcL and matK sequence data

    PubMed Central

    Häser, Annette

    2016-01-01

    Background Names used in ingredient lists of food products are trivial and in their nature rarely precise. The most recent scientific interpretation of the term bamboo (Bambusoideae, Poaceae) comprises over 1,600 distinct species. In the European Union only few of these exotic species are well known sources for food ingredients (i.e., bamboo sprouts) and are thus not considered novel foods, which would require safety assessments before marketing of corresponding products. In contrast, the use of bamboo leaves and their taxonomic origin is mostly unclear. However, products containing bamboo leaves are currently marketed. Methods We analysed bamboo species and tea products containing bamboo leaves using anatomical leaf characters and DNA sequence data. To reduce taxonomic complexity associated with the term bamboo, we used a phylogenetic framework to trace the origin of DNA from commercially available bamboo leaves within the bambusoid subfamily. For authentication purposes, we introduced a simple PCR based test distinguishing genuine bamboo from other leaf components and assessed the diagnostic potential of rbcL and matK to resolve taxonomic entities within the bamboo subfamily and tribes. Results Based on anatomical and DNA data we were able to trace the taxonomic origin of bamboo leaves used in products to the genera Phyllostachys and Pseudosasa from the temperate “woody” bamboo tribe (Arundinarieae). Currently available rbcL and matK sequence data allow the character based diagnosis of 80% of represented bamboo genera. We detected adulteration by carnation in four of eight tea products and, after adapting our objectives, could trace the taxonomic origin of the adulterant to Dianthus chinensis (Caryophyllaceae), a well known traditional Chinese medicine with counter indications for pregnant women. PMID:27957401

  18. Phylogenetics of modern birds in the era of genomics

    PubMed Central

    Edwards, Scott V; Bryan Jennings, W; Shedlock, Andrew M

    2005-01-01

    In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a ‘community genomics’ approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era—with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters—will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics. PMID:16024355

  19. A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    PubMed Central

    Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.

    2010-01-01

    Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep

  20. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy.

    PubMed

    Liu, Ai-Rong; Chen, Shuang-Chen; Wu, Shang-Ying; Xu, Tong; Guo, Liang-Dong; Jeewon, Rajesh; Wei, Ji-Guang

    2010-11-01

    Previous phylogenetic studies based on DNA sequence data have partially resolved taxonomic relationships among Pestalotiopsis species. There are still some morphological characters whose phylogenetic significance have not been assessed properly due to limited taxon sampling, in particular the degree of pigmentation of median cells. In this study, the stability of pigmentation of median cells of conidia in Pestalotiopsis species was evaluated in subculture, and a molecular phylogenetic analysis was conducted on 45 strains belonging to 26 species in order to reappraise the pigmentation of median cells for its significance in the taxonomy of Pestalotiopsis. Phylogenetic relationships were inferred from nucleotide sequences in ITS regions (ITS1, 5.8S and ITS2) and β-tubulin 2 gene (tub2). The results showed that pigmentation of median cells was stable and it could be a key character in the taxonomy of Pestalotiopsis species. Instead of "concolorous" and "versicolor" proposed by Steyeart (1949), "brown to olivaceous" and "umber to fuliginous" are described and proposed in this paper. Copyright © 2010. Published by Elsevier Inc.

  1. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  2. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework

    PubMed Central

    Slippers, B.; Boissin, E.; Phillips, A.J.L.; Groenewald, J.Z.; Lombard, L.; Wingfield, M.J.; Postma, A.; Burgess, T.; Crous, P.W.

    2013-01-01

    The order Botryosphaeriales represents several ecologically diverse fungal families that are commonly isolated as endophytes or pathogens from various woody hosts. The taxonomy of members of this order has been strongly influenced by sequence-based phylogenetics, and the abandonment of dual nomenclature. In this study, the phylogenetic relationships of the genera known from culture are evaluated based on DNA sequence data for six loci (SSU, LSU, ITS, EF1, BT, mtSSU). The results make it possible to recognise a total of six families. Other than the Botryosphaeriaceae (17 genera), Phyllostictaceae (Phyllosticta) and Planistromellaceae (Kellermania), newly introduced families include Aplosporellaceae (Aplosporella and Bagnisiella), Melanopsaceae (Melanops), and Saccharataceae (Saccharata). Furthermore, the evolution of morphological characters in the Botryosphaeriaceae were investigated via analysis of phylogeny-trait association. None of the traits presented a significant phylogenetic signal, suggesting that conidial and ascospore pigmentation, septation and appendages evolved more than once in the family. Molecular clock dating on radiations within the Botryosphaeriales based on estimated mutation rates of the rDNA SSU locus, suggests that the order originated in the Cretaceous period around 103 (45-188) mya, with most of the diversification in the Tertiary period. This coincides with important periods of radiation and spread of the main group of plants that these fungi infect, namely woody Angiosperms. The resulting host-associations and distribution could have influenced the diversification of these fungi. Taxonomic novelties: New families - Aplosporellaceae Slippers, Boissin & Crous, Melanopsaceae Phillips, Slippers, Boissin & Crous, Saccharataceae Slippers, Boissin & Crous. PMID:24302789

  3. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    PubMed Central

    Zhang, Peng

    2012-01-01

    phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083

  4. Taxonomic relationships among Phenacomys voles as inferred by cytochrome b

    USGS Publications Warehouse

    Bellinger, M.R.; Haig, S.M.; Forsman, E.D.; Mullins, T.D.

    2005-01-01

    Taxonomic relationships among red tree voles (Phenacomys longicaudus longicaudus, P. l. silvicola), the Sonoma tree vole (P. pomo), the white-footed vole (P. albipes), and the heather vole (P. intermedius) were examined using 664 base pairs of the mitochondrial cytochrome b gene. Results indicate specific differences among red tree voles, Sonoma tree voles, white-footed voles, and heather voles, but no clear difference between the 2 Oregon subspecies of red tree voles (P. l. longicaudus and P. l. silvicola). Our data further indicated a close relationship between tree voles and albipes, validating inclusion of albipes in the subgenus Arborimus. These 3 congeners shared a closer relationship to P. intermedius than to other arvicolids. A moderate association between porno and albipes was indicated by maximum parsimony and neighbor-joining phylogenetic analyses. Molecular clock estimates suggest a Pleistocene radiation of the Arborimus clade, which is concordant with pulses of diversification observed in other murid rodents. The generic rank of Arborimus is subject to interpretation of data.

  5. Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae)

    PubMed Central

    Wagner, Warren L.; Krakos, Kyra N.; Hoch, Peter C.

    2013-01-01

    Abstract The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri. PMID:24399892

  6. Treelink: data integration, clustering and visualization of phylogenetic trees.

    PubMed

    Allende, Christian; Sohn, Erik; Little, Cedric

    2015-12-29

    Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .

  7. The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis.

    PubMed

    Raven, Thomas J; Maidment, Susannah C R

    2018-01-01

    The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs characterised by bizarre plates and spines extending from the neck to the tail. This assignment has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla appears superficially similar to that of some ornithopods. The vertebral material has never been described, and since the last description of the specimen, there have been numerous discoveries of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore warranted. This study provides a detailed re-description, including the first description of the vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of Paranthodon is highly labile and subject to change depending on which exemplifier for the clade Stegosauria is used. The results indicate that the use of a basal exemplifier may not result in the correct phylogenetic position of a taxon being recovered if the taxon displays character states more derived than those of the basal exemplifier, and we recommend the use, minimally, of one basal and one derived exemplifier per clade. Paranthodon is most robustly recovered as a stegosaur in our analyses, meaning it is one of the youngest and southernmost stegosaurs.

  8. The phylogenetic distribution of extrafloral nectaries in plants.

    PubMed

    Weber, Marjorie G; Keeler, Kathleen H

    2013-06-01

    Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1-2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in vascular plants. Our current understanding of the

  9. The phylogenetic distribution of extrafloral nectaries in plants

    PubMed Central

    Weber, Marjorie G.; Keeler, Kathleen H.

    2013-01-01

    Background and Aims Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Methods Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. Key Results To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1–2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. Conclusions EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in

  10. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-10-01

    A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

  11. Refuting phylogenetic relationships

    PubMed Central

    Bucknam, James; Boucher, Yan; Bapteste, Eric

    2006-01-01

    Background Phylogenetic methods are philosophically grounded, and so can be philosophically biased in ways that limit explanatory power. This constitutes an important methodologic dimension not often taken into account. Here we address this dimension in the context of concatenation approaches to phylogeny. Results We discuss some of the limits of a methodology restricted to verificationism, the philosophy on which gene concatenation practices generally rely. As an alternative, we describe a software which identifies and focuses on impossible or refuted relationships, through a simple analysis of bootstrap bipartitions, followed by multivariate statistical analyses. We show how refuting phylogenetic relationships could in principle facilitate systematics. We also apply our method to the study of two complex phylogenies: the phylogeny of the archaea and the phylogeny of the core of genes shared by all life forms. While many groups are rejected, our results left open a possible proximity of N. equitans and the Methanopyrales, of the Archaea and the Cyanobacteria, and as well the possible grouping of the Methanobacteriales/Methanoccocales and Thermosplasmatales, of the Spirochaetes and the Actinobacteria and of the Proteobacteria and firmicutes. Conclusion It is sometimes easier (and preferable) to decide which species do not group together than which ones do. When possible topologies are limited, identifying local relationships that are rejected may be a useful alternative to classical concatenation approaches aiming to find a globally resolved tree on the basis of weak phylogenetic markers. Reviewers This article was reviewed by Mark Ragan, Eugene V Koonin and J Peter Gogarten. PMID:16956399

  12. Estimating phylogenetic trees from genome-scale data.

    PubMed

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data. © 2015 New York Academy of Sciences.

  13. Quantifying MCMC exploration of phylogenetic tree space.

    PubMed

    Whidden, Chris; Matsen, Frederick A

    2015-05-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  14. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  15. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  16. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows

    PubMed Central

    Kekkonen, Mari; Hebert, Paul D N

    2014-01-01

    The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies. PMID:24479435

  17. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    PubMed

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  18. Characterizing the Phylogenetic Tree Community Structure of a Protected Tropical Rain Forest Area in Cameroon

    PubMed Central

    Munoz, François; Couteron, Pierre; Hardy, Olivier J.; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world. PMID:24936786

  19. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    PubMed

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Impacts of phylogenetic nomenclature on the efficacy of the U.S. Endangered Species Act.

    PubMed

    Leslie, Matthew S

    2015-02-01

    Cataloging biodiversity is critical to conservation efforts because accurate taxonomy is often a precondition for protection under laws designed for species conservation, such as the U.S. Endangered Species Act (ESA). Traditional nomenclatural codes governing the taxonomic process have recently come under scrutiny because taxon names are more closely linked to hierarchical ranks than to the taxa themselves. A new approach to naming biological groups, called phylogenetic nomenclature (PN), explicitly names taxa by defining their names in terms of ancestry and descent. PN has the potential to increase nomenclatural stability and decrease confusion induced by the rank-based codes. But proponents of PN have struggled with whether species and infraspecific taxa should be governed by the same rules as other taxa or should have special rules. Some proponents advocate the wholesale abandonment of rank labels (including species); this could have consequences for the implementation of taxon-based conservation legislation. I examined the principles of PN as embodied in the PhyloCode (an alternative to traditional rank-based nomenclature that names biological groups based on the results of phylogenetic analyses and does not associate taxa with ranks) and assessed how this novel approach to naming taxa might affect the implementation of species-based legislation by providing a case study of the ESA. The latest version of the PhyloCode relies on the traditional rank-based codes to name species and infraspecific taxa; thus, little will change regarding the main targets of the ESA because they will retain rank labels. For this reason, and because knowledge of evolutionary relationships is of greater importance than nomenclatural procedures for initial protection of endangered taxa under the ESA, I conclude that PN under the PhyloCode will have little impact on implementation of the ESA. © 2014 Society for Conservation Biology.

  1. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  2. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil.

    PubMed

    Azevedo, Márcia Cristina Costa; Gomes-Gonçalves, Rafaela de Sousa; Mattos, Tailan Moretti; Uehara, Wagner; Guedes, Gustavo Henrique Soares; Araújo, Francisco Gerson

    2017-08-01

    Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P < 0.004) were found in the species richness, Δ+ and X+ among the three systems according to PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can.

    PubMed

    Roque, F O; Guimarães, E A; Ribeiro, M C; Escarpinati, S C; Suriano, M T; Siqueira, T

    2014-11-01

    Predicting how anthropogenic activities may influence the various components of biodiversity is essential for finding ways to reduce diversity loss. This challenge involves: a) understanding how environmental factors influence diversity across different spatial scales, and b) developing ways to measure these relationships in a way that is fast, economical, and easy to communicate. In this study, we investigate whether landscape and bioclimatic variables could explain variation in biodiversity indices in macroinvertebrate communities from 39 Atlantic Forest streams. In addition to traditional diversity measures, i.e., species richness, abundance and Shannon index, we used a taxonomic distinctness index that measures the degree of phylogenetic relationship among taxa. The amount of variation in the diversity measures that was explained by environmental and spatial variables was estimated using variation partitioning based on multiple regression. Our study demonstrates that taxonomic distinctness does not respond in the same way as the traditional used in biodiversity studies. We found no evidence that taxonomic distinctness responds predictably to variation in landscape metrics, indicating the need for the incorporation of predictors at multiple scales in this type of study. The lack of congruence between taxonomic distinctness and other indices and its low predictability may be related to the fact that this measure expresses long-term evolutionary adaptation to ecosystem conditions, while the other traditional biodiversity metrics respond to short-term environmental changes.

  4. A Falsification of the Citation Impediment in the Taxonomic Literature

    PubMed Central

    Steiner, Florian M.; Pautasso, Marco; Zettel, Herbert; Moder, Karl; Arthofer, Wolfgang; Schlick-Steiner, Birgit C.

    2015-01-01

    Current science evaluation still relies on citation performance, despite criticisms of purely bibliometric research assessments. Biological taxonomy suffers from a drain of knowledge and manpower, with poor citation performance commonly held as one reason for this impediment. But is there really such a citation impediment in taxonomy? We compared the citation numbers of 306 taxonomic and 2291 non-taxonomic research articles (2009–2012) on mosses, orchids, ciliates, ants, and snakes, using Web of Science (WoS) and correcting for journal visibility. For three of the five taxa, significant differences were absent in citation numbers between taxonomic and non-taxonomic papers. This was also true for all taxa combined, although taxonomic papers received more citations than non-taxonomic ones. Our results show that, contrary to common belief, taxonomic contributions do not generally reduce a journal's citation performance and might even increase it. The scope of many journals rarely featuring taxonomy would allow editors to encourage a larger number of taxonomic submissions. Moreover, between 1993 and 2012, taxonomic publications accumulated faster than those from all biological fields. However, less than half of the taxonomic studies were published in journals in WoS. Thus, editors of highly visible journals inviting taxonomic contributions could benefit from taxonomy's strong momentum. The taxonomic output could increase even more than at its current growth rate if: (i) taxonomists currently publishing on other topics returned to taxonomy and (ii) non-taxonomists identifying the need for taxonomic acts started publishing these, possibly in collaboration with taxonomists. Finally, considering the high number of taxonomic papers attracted by the journal Zootaxa, we expect that the taxonomic community would indeed use increased chances of publishing in WoS indexed journals. We conclude that taxonomy's standing in the present citation-focused scientific landscape could

  5. Genetic characterization of Echinostoma revolutum and Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Thailand and phylogenetic relationships with other isolates inferred by ITS1 sequence.

    PubMed

    Saijuntha, Weerachai; Tantrawatpan, Chairat; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N

    2011-03-01

    Echinostomatidae are common, widely distributed intestinal parasites causing significant disease in both animals and humans worldwide. In spite of their importance, the taxonomy of these echinostomes is still controversial. The taxonomic status of two species, Echinostoma revolutum and Echinoparyphium recurvatum, which commonly infect poultry and other birds, as well as human, is problematical. Previous phylogenetic analyses of Southeast Asian strains indicate that these species cluster as sister taxa. In the present study, the first internal transcribed spacer (ITS1) sequence was used for genetic characterization and to examine the phylogenetic relationships between an isolate from Thailand with other isolates available from GenBank database. Interspecies differences in ITS1 sequence between E. revolutum and E. recurvatum were detected at 6 (3%) of the 203 alignment positions. Of these, nucleotide deletion at positions 25, 26, and 27, pyrimidine transition at 50, 189, and pyrimidine transversion at 118 were observed. Phylogenetic analysis revealed that E. recurvatum from Thailand clustered as a sister taxa with E. revolutum and not with other members of the genus Echinoparyphium. Interestingly, this result confirms a previous report based on allozyme electrophoresis and mitochondrial DNA that E. revolutum and E. recurvatum in Southeast Asia are sister species. Hence, the taxonomic status of E. recurvatum in Thailand, as well as in Southeast Asian countries needs to be confirmed and revised using more comprehensive analyses based on morphology and other molecular techniques.

  6. Homoplasious colony morphology and mito-nuclear phylogenetic discordance among Eastern Pacific octocorals.

    PubMed

    Ament-Velásquez, Sandra L; Breedy, Odalisca; Cortés, Jorge; Guzman, Hector M; Wörheide, Gert; Vargas, Sergio

    2016-05-01

    Octocorals are a diverse and ecologically important group of cnidarians. However, the phylogenetic relationships of many octocoral groups are not well understood and are based mostly on mitochondrial sequence data. In addition, the discovery and description of new gorgonian species displaying unusual or intermediate morphologies and uncertain phylogenetic affinities further complicates the study of octocoral systematics and raises questions about the role played by processes such as plasticity, crypsis, and convergence in the evolution of this group of organisms. Here, we use nuclear (i.e. 28S rDNA) and mitochondrial (mtMutS) markers and a sample of Eastern Pacific gorgonians thought to be remarkable from a morphological point of view to shed light on the morphological diversification among these organisms. Our study reveals the loss of the anastomosed colony morphology in two unrelated lineages of the seafan genus Pacifigorgia and offers strong evidence for the independent evolution of a whip-like morphology in two lineages of Eastern Pacific Leptogorgia. Additionally, our data revealed one instance of mito-nuclear discordance in the genera Leptogorgia and Eugorgia, which may be the results of incomplete lineage sorting or ancient hybridization-introgression events. Our study stresses the importance of comprehensive taxonomic sampling and the use of independent sources of evidence to address the phylogenetic relationships and clarifying the evolution of octocorals. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  8. Phylogenetic relationships of the triassic archaeosemionotus deecke (halecomorphi, ionoscopiformes) from the 'perledo fauna'.

    PubMed

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade.

  9. Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus

    PubMed Central

    Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie

    2011-01-01

    Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419

  10. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution.

    PubMed

    Janky, Rekin's; van Helden, Jacques

    2008-01-23

    The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.

  11. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  12. How does cognition evolve? Phylogenetic comparative psychology.

    PubMed

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  13. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  14. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures.

    PubMed

    Schloss, Patrick D; Handelsman, Jo

    2006-10-01

    The recent advent of tools enabling statistical inferences to be drawn from comparisons of microbial communities has enabled the focus of microbial ecology to move from characterizing biodiversity to describing the distribution of that biodiversity. Although statistical tools have been developed to compare community structures across a phylogenetic tree, we lack tools to compare the memberships and structures of two communities at a particular operational taxonomic unit (OTU) definition. Furthermore, current tests of community structure do not indicate the similarity of the communities but only report the probability of a statistical hypothesis. Here we present a computer program, SONS, which implements nonparametric estimators for the fraction and richness of OTUs shared between two communities.

  16. Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species.

    PubMed

    Singer, David; Kosakyan, Anush; Seppey, Christophe V W; Pillonel, Amandine; Fernández, Leonardo D; Fontaneto, Diego; Mitchell, Edward A D; Lara, Enrique

    2018-04-01

    The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists. © 2018 by the Ecological Society of America.

  17. A Polyglot Approach to Bioinformatics Data Integration: A Phylogenetic Analysis of HIV-1

    PubMed Central

    Reisman, Steven; Hatzopoulos, Thomas; Läufer, Konstantin; Thiruvathukal, George K.; Putonti, Catherine

    2016-01-01

    As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. PMID:26819543

  18. Taxonomic chauvinism revisited: insight from parental care research.

    PubMed

    Stahlschmidt, Zachary R

    2011-01-01

    Parental care (any non-genetic contribution by a parent that appears likely to increase the fitness of its offspring) is a widespread trait exhibited by a broad range of animal taxa. In addition to influencing the fitness of parent(s) and offspring, parental care may be inextricably involved in other evolutionary processes, such as sexual selection and the evolution of endothermy. Yet, recent work has demonstrated that bias related to taxonomy is prevalent across many biological disciplines, and research in parental care may be similarly burdened. Thus, I used parental care articles published in six leading journals of fundamental behavioral sciences (Animal Behaviour, Behavioral Ecology, Behavioral Ecology and Sociobiology, Ethology, Hormones and Behavior, and Physiology & Behavior) from 2001-2010 (n = 712) to examine the year-to-year dynamics of two types of bias related to taxonomy across animals: (1) taxonomic bias, which exists when research output is not proportional to the frequency of organisms in nature, and (2) taxonomic citation bias, which is a proxy for the breadth of a given article-specifically, the proportion of articles cited that refer solely to the studied taxon. I demonstrate that research on birds likely represents a disproportionate amount of parental care research and, thus, exhibits taxonomic bias. Parental care research on birds and mammals also refers to a relatively narrow range of taxonomic groups when discussing its context and, thus, exhibits taxonomic citation bias. Further, the levels of taxonomic bias and taxonomic citation bias have not declined over the past decade despite cautionary messages about similar bias in related disciplines--in fact, taxonomic bias may have increased. As in Bonnet et al. (2002), my results should not be interpreted as evidence of an 'ornithological Mafia' conspiring to suppress other taxonomic groups. Rather, I generate several rational hypotheses to determine why bias persists and to guide future

  19. A Falsification of the Citation Impediment in the Taxonomic Literature.

    PubMed

    Steiner, Florian M; Pautasso, Marco; Zettel, Herbert; Moder, Karl; Arthofer, Wolfgang; Schlick-Steiner, Birgit C

    2015-09-01

    Current science evaluation still relies on citation performance, despite criticisms of purely bibliometric research assessments. Biological taxonomy suffers from a drain of knowledge and manpower, with poor citation performance commonly held as one reason for this impediment. But is there really such a citation impediment in taxonomy? We compared the citation numbers of 306 taxonomic and 2291 non-taxonomic research articles (2009-2012) on mosses, orchids, ciliates, ants, and snakes, using Web of Science (WoS) and correcting for journal visibility. For three of the five taxa, significant differences were absent in citation numbers between taxonomic and non-taxonomic papers. This was also true for all taxa combined, although taxonomic papers received more citations than non-taxonomic ones. Our results show that, contrary to common belief, taxonomic contributions do not generally reduce a journal's citation performance and might even increase it. The scope of many journals rarely featuring taxonomy would allow editors to encourage a larger number of taxonomic submissions. Moreover, between 1993 and 2012, taxonomic publications accumulated faster than those from all biological fields. However, less than half of the taxonomic studies were published in journals in WoS. Thus, editors of highly visible journals inviting taxonomic contributions could benefit from taxonomy's strong momentum. The taxonomic output could increase even more than at its current growth rate if: (i) taxonomists currently publishing on other topics returned to taxonomy and (ii) non-taxonomists identifying the need for taxonomic acts started publishing these, possibly in collaboration with taxonomists. Finally, considering the high number of taxonomic papers attracted by the journal Zootaxa, we expect that the taxonomic community would indeed use increased chances of publishing in WoS indexed journals. We conclude that taxonomy's standing in the present citation-focused scientific landscape could

  20. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects.

    PubMed

    Rainford, James L; Hofreiter, Michael; Mayhew, Peter J

    2016-01-08

    Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda (insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate the link between size and diversity within this ancient and highly diverse lineage. The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes including significant phylogenetic conservatism. Based on our findings we suggest that the use of models derived from well-studied but atypical clades, such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large timescales tend to converge on apparently neutral

  1. Tanglegrams for rooted phylogenetic trees and networks

    PubMed Central

    Scornavacca, Celine; Zickmann, Franziska; Huson, Daniel H.

    2011-01-01

    Motivation: In systematic biology, one is often faced with the task of comparing different phylogenetic trees, in particular in multi-gene analysis or cospeciation studies. One approach is to use a tanglegram in which two rooted phylogenetic trees are drawn opposite each other, using auxiliary lines to connect matching taxa. There is an increasing interest in using rooted phylogenetic networks to represent evolutionary history, so as to explicitly represent reticulate events, such as horizontal gene transfer, hybridization or reassortment. Thus, the question arises how to define and compute a tanglegram for such networks. Results: In this article, we present the first formal definition of a tanglegram for rooted phylogenetic networks and present a heuristic approach for computing one, called the NN-tanglegram method. We compare the performance of our method with existing tree tanglegram algorithms and also show a typical application to real biological datasets. For maximum usability, the algorithm does not require that the trees or networks are bifurcating or bicombining, or that they are on identical taxon sets. Availability: The algorithm is implemented in our program Dendroscope 3, which is freely available from www.dendroscope.org. Contact: scornava@informatik.uni-tuebingen.de; huson@informatik.uni-tuebingen.de PMID:21685078

  2. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  3. The phylogenetic relationships and molecular systematics of scincid lizards of the genus Heremites (Sauria, Scincidae) in the Middle East based on mtDNA sequences.

    PubMed

    Bahmani, Zahed; Rastegar-Pouyani, Eskandar; Rastegar-Pouyani, Nasrullah

    2017-09-08

    The taxonomic status of species included in the genus Heremites in Iran and Iraq is uncertain. Three of these species have been assigned to the genus based on morphology: Heremites auratus transcaucasica, H. vittatus, and H. septemtaeniatus. We examined the phylogenetic relationships and taxonomic status of the Iranian and Iraqi species of Heremites by performing phylogenetic analyses using mitochondrial DNA sequences (cytochrome b and 16S rRNA). Phylogenetic relationships and estimated genetic distances indicated that the Heremites populations of the area (Iran and Iraq) form five distinct clades. Three of these clades are found only in Iran, specifically in: (1) Fars and Hormozgan provinces; (2) Northeastern Khuzestan; and (3) Khorasan and Isfahan provinces. The fourth clade (H. septemtaeniatus) is found in west and Mahshahr in Iran as well as in eastern and northern parts of Iraq. The fifth clade, Heremites vittatus, is found in Iran and Iraq. We also confirm the absence of H. auratus in Iran and Iraq. It also indicated that H. vittatus is sister taxon to the other groups that our analyses estimate the divergence of this clade in the Middle Miocene (15.9 Mya). The clade containing the Fars-Hormozgan and Khuzestan populations diverged at the end of the Miocene (8.5 Mya). The Isfahan and Khorasan populations separated at the Pliocene (4.2 Mya) from the western Iranian group, the group in Mahshahr, Iran and the groups in northern and eastern Iraq.

  4. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  5. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.

    PubMed

    Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-08-28

    We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/

  6. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    PubMed

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  7. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.

    PubMed

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

  8. Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs

    PubMed Central

    Tribot, Anne-Sophie; Mouquet, Nicolas; Villéger, Sébastien; Raymond, Michel; Hoff, Fabrice; Boissery, Pierre; Holon, Florian; Deter, Julie

    2016-01-01

    The aesthetic value of landscapes contributes to human well-being. However, studies which have investigated the link between biodiversity and ecosystem services have not taken aesthetic value into account. In this study we evaluated how the aesthetics of coralligenous reefs, a key marine ecosystem in the Mediterranean, is perceived by the general public and how aesthetic preferences are related to biodiversity facets (taxonomic, phylogenetic and functional diversities). We performed both biodiversity measures and online-surveys of aesthetic perception on photographic quadrats sampled along the French Mediterranean coast. Our results show that species richness and functional richness have a significant positive effect on aesthetic value. Most of the ecological literature, exploring the relationship between biodiversity and ecosystem functioning and service has focused so far on ‘economical’ aspects of biodiversity (provision or regulation). Our results illustrate that cultural facets, such as ‘beauty’, should also be central in our motivations to preserve ecological diversity. PMID:27677850

  9. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  10. Phylogenetic analysis of Saccharum s.l. (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2015-02-01

    Polyploidy and reticulate evolution are often a complication for discovering phylogenetic relationships between genera and species. Despite the huge economic importance of sugarcane (Saccharum officinarum-Poaceae, Andropogoneae), the limits of the genus Saccharum and its species are complex and largely unresolved, involving both polyploidy and reticulate evolution. This study aimed to assess the phylogenetic relationships of Saccharum s.l., including Erianthus and Tripidium, as well as investigate the taxonomic circumscription of the South American species of the genus. Molecular cloning and sequencing of five regions of four low-copy nuclear loci were performed, including Aberrant panicle organization1 (apo1), Dwarf8 (d8), two exons of Erect panicle2 (ep2-ex7 and ep2-ex8), and Retarded palea1 (rep1). Concatenated trees were reconstructed using Maximum Parsimony, Maximum Likelihood, and Bayesian Inference analyses. The allopolyploid origin of Saccharum was demonstrated using evidence from nuclear genes. The samples of Saccharum s.l. grouped in two distinct clades, with S. arundinaceum and S. ravennae (= Tripidium, or Erianthus sect. Ripidium) apart from all other species analyzed of the genus. Saccharum angustifolium, S. asperum, and S. villosum correspond to distinct clades (different species). The plants with intermediate morphology between S. angustifolium and S. villosum presented a pattern of paralogues consistent with a hybrid origin. Saccharum s.l. is polyphyletic and Tripidium should be recognized as a distinct genus. However, no strong evidence was found to support the segregation of Erianthus. The taxonomic circumscription of the South American species of the genus was resolved and the occurrence of natural hybrids was documented. Better understanding of the phylogenetic relationships of Saccharum and relatives may be useful for sugarcane breeders to identify potential taxa for interspecific and intergeneric crosses in the genetic improvement of sugarcane

  11. Phylogenetic Analysis of Prevalent Tuberculosis and Non-Tuberculosis Mycobacteria in Isfahan, Iran, Based on a 360 bp Sequence of the rpoB Gene

    PubMed Central

    Nasr Esfahani, Bahram; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Moghoofei, Mohsen; Sedighi, Mansour; Hadifar, Shima

    2016-01-01

    Background Taxonomic and phylogenetic studies of Mycobacterium species have been based around the 16sRNA gene for many years. However, due to the high strain similarity between species in the Mycobacterium genus (94.3% - 100%), defining a valid phylogenetic tree is difficult; consequently, its use in estimating the boundaries between species is limited. The sequence of the rpoB gene makes it an appropriate gene for phylogenetic analysis, especially in bacteria with limited variation. Objectives In the present study, a 360bp sequence of rpoB was used for precise classification of Mycobacterium strains isolated in Isfahan, Iran. Materials and Methods From February to October 2013, 57 clinical and environmental isolates were collected, subcultured, and identified by phenotypic methods. After DNA extraction, a 360bp fragment was PCR-amplified and sequenced. The phylogenetic tree was constructed based on consensus sequence data, using MEGA5 software. Results Slow and fast-growing groups of the Mycobacterium strains were clearly differentiated based on the constructed tree of 56 common Mycobacterium isolates. Each species with a unique title in the tree was identified; in total, 13 nods with a bootstrap value of over 50% were supported. Among the slow-growing group was Mycobacterium kansasii, with M. tuberculosis in a cluster with a bootstrap value of 98% and M. gordonae in another cluster with a bootstrap value of 90%. In the fast-growing group, one cluster with a bootstrap value of 89% was defined, including all fast-growing members present in this study. Conclusions The results suggest that only the application of the rpoB gene sequence is sufficient for taxonomic categorization and definition of a new Mycobacterium species, due to its high resolution power and proper variation in its sequence (85% - 100%); the resulting tree has high validity. PMID:27284397

  12. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies

    PubMed Central

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M.

    2017-01-01

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies. PMID:28440791

  13. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species

    PubMed Central

    Segatto, Ana Lúcia Anversa; Thompson, Claudia Elizabeth; Freitas, Loreta Brandão

    2016-01-01

    Abstract Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX) are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes. PMID:27768156

  14. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as

  15. Applying species-tree analyses to deep phylogenetic histories: challenges and potential suggested from a survey of empirical phylogenetic studies.

    PubMed

    Lanier, Hayley C; Knowles, L Lacey

    2015-02-01

    Coalescent-based methods for species-tree estimation are becoming a dominant approach for reconstructing species histories from multi-locus data, with most of the studies examining these methodologies focused on recently diverged species. However, deeper phylogenies, such as the datasets that comprise many Tree of Life (ToL) studies, also exhibit gene-tree discordance. This discord may also arise from the stochastic sorting of gene lineages during the speciation process (i.e., reflecting the random coalescence of gene lineages in ancestral populations). It remains unknown whether guidelines regarding methodologies and numbers of loci established by simulation studies at shallow tree depths translate into accurate species relationships for deeper phylogenetic histories. We address this knowledge gap and specifically identify the challenges and limitations of species-tree methods that account for coalescent variance for deeper phylogenies. Using simulated data with characteristics informed by empirical studies, we evaluate both the accuracy of estimated species trees and the characteristics associated with recalcitrant nodes, with a specific focus on whether coalescent variance is generally responsible for the lack of resolution. By determining the proportion of coalescent genealogies that support a particular node, we demonstrate that (1) species-tree methods account for coalescent variance at deep nodes and (2) mutational variance - not gene-tree discord arising from the coalescent - posed the primary challenge for accurate reconstruction across the tree. For example, many nodes were accurately resolved despite predicted discord from the random coalescence of gene lineages and nodes with poor support were distributed across a range of depths (i.e., they were not restricted to a particular recent divergences). Given their broad taxonomic scope and large sampling of taxa, deep level phylogenies pose several potential methodological complications including

  16. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution

    PubMed Central

    Broughton, Richard E.; Betancur-R., Ricardo; Li, Chenhong; Arratia, Gloria; Ortí, Guillermo

    2013-01-01

    Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group. PMID:23788273

  17. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches

    PubMed Central

    Colles, Audrey; Liow, Lee Hsiang; Prinzing, Andreas

    2009-01-01

    The question ‘what renders a species extinction prone’ is crucial to biologists. Ecological specialization has been suggested as a major constraint impeding the response of species to environmental changes. Most neoecological studies indicate that specialists suffer declines under recent environmental changes. This was confirmed by many paleoecological studies investigating longer-term survival. However, phylogeneticists, studying the entire histories of lineages, showed that specialists are not trapped in evolutionary dead ends and could even give rise to generalists. Conclusions from these approaches diverge possibly because (i) of approach-specific biases, such as lack of standardization for sampling efforts (neoecology), lack of direct observations of specialization (paleoecology), or binary coding and prevalence of specialists (phylogenetics); (ii) neoecologists focus on habitat specialization; (iii) neoecologists focus on extinction of populations, phylogeneticists on persistence of entire clades through periods of varying extinction and speciation rates; (iv) many phylogeneticists study species in which specialization may result from a lack of constraints. We recommend integrating the three approaches by studying common datasets, and accounting for range-size variation among species, and we suggest novel hypotheses on why certain specialists may not be particularly at risk and consequently why certain generalists deserve no less attention from conservationists than specialists. PMID:19580588

  18. Phylogenetic Relationships of the Triassic Archaeosemionotus Deecke (Halecomorphi, Ionoscopiformes) from the ‘Perledo Fauna’

    PubMed Central

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade. PMID:25296174

  19. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    NASA Astrophysics Data System (ADS)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  20. Taxonomical and functional microbial community selection in soybean rhizosphere

    PubMed Central

    Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M

    2014-01-01

    This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468

  1. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  2. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    PubMed Central

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  3. Partial Knowledge of Word Meanings: Thematic and Taxonomic Representations

    ERIC Educational Resources Information Center

    Whitmore, Jeannette M.; Shore, Wendelyn J.; Smith, Peg Hull

    2004-01-01

    The type of information (taxonomic or thematic) available at different levels of knowledge was investigated. Following extensive norming to identify taxonomic and thematic associates of low-frequency nouns, participants determined if taxonomic or thematic associates were meaningfully related to target words at three levels of knowledge: target…

  4. Impact of tree priors in species delimitation and phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae).

    PubMed

    da Cruz, Marcos de O R; Weksler, Marcelo

    2018-02-01

    The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phylogenetic relationships among the North American cleomoids (Cleomaceae): a test of Iltis's reduction series.

    PubMed

    Riser, James P; Cardinal-McTeague, Warren M; Hall, Jocelyn C; Hahn, William J; Sytsma, Kenneth J; Roalson, Eric H

    2013-10-01

    A monophyletic group composed of five genera of the Cleomaceae represents an intriguing lineage with outstanding taxonomic and evolutionary questions. Generic boundaries are poorly defined, and historical hypotheses regarding the evolution of fruit type and phylogenetic relationships provide testable questions. This is the first detailed phylogenetic investigation of all 22 species in this group. We use this phylogenetic framework to assess generic monophyly and test Iltis's evolutionary "reduction series" hypothesis regarding phylogeny and fruit type/seed number. • Maximum likelihood and Bayesian analyses of four plastid intergenic spacer region sequences (rpl32-trnL, trnQ-rps16, ycf1-rps15, and psbA-trnH) and one nuclear (ITS) region were used to reconstruct phylogenetic relationships among the NA cleomoid species. Stochastic mapping and ancestral-state reconstruction were used to study the evolution of fruit type. • Both analyses recovered nearly identical phylogenies. Three of the currently recognized genera (Wislizenia, Carsonia, and Oxystylis) are monophyletic while two (Cleomella and Peritoma) are para- or polyphyletic. There was a single origin of the two-seeded schizocarp in the ancestor of the Oxystylis-Wislizenia clade and a secondary derivation of elongated capsule-type fruits in Peritoma from a truncated capsule state in Cleomella. • Our well-resolved phylogeny supports most of the current species circumscriptions but not current generic circumscriptions. Additionally, our results are inconsistent with Iltis's hypothesis of species with elongated many-seed fruits giving rise to species with truncated few-seeded fruits. Instead, we find support for the reversion to elongated multiseeded fruits from a truncate few-seeded ancestor in Peritoma.

  6. New insights on the phylogenetic relationships among the traditional Philodendron subgenera and the other groups of the Homalomena clade (Araceae).

    PubMed

    Vasconcelos, Santelmo; Soares, Maria de Lourdes; Sakuragui, Cássia M; Croat, Thomas B; Oliveira, Guilherme; Benko-Iseppon, Ana M

    2018-05-19

    Philodendron (Araceae) is one of the largest Neotropical plant genera, with approximately 500 species and at least 1000 species predicted. There is a considerable ecological diversity in the group, although most species occur in the humid forests of tropical America. Despite being relatively well-studied in taxonomic analyses, the relationships among the traditional morphological groups of the genus are not well-established, mainly regarding the three traditional subgenera, referred here as Philodendron sensu lato (s.l.), P. subg. Pteromischum, P. subg. Philodendron and P. subg. Meconostigma, which was recently recognized as a separate genus, Thaumatophyllum. Therefore, the present work evaluates the phylogenetic position and the monophyly of Philodendron s.l. and its three main subdivisions, and the sister groups within the Homalomena clade, which also includes the Neotropical genus Adelonema, the two Asian genera Homalomena and Furtadoa, and the two African genera Cercestis and Culcasia, by means of molecular phylogenetic approaches including chloroplast DNA (atpF-atpH, rpl32-trnL, trnQ-5'-rps16 and trnV-ndhC) and nuclear (ITS2) markers. The monophyly of Philodendron s.l. and its three lineages is confirmed and our analyses corroborate previous morphologic data indicating Thaumatophyllum as sister to the clade formed by P. subg. Pteromischum and P. subg. Philodendron. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    PubMed Central

    2014-01-01

    Background The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning. PMID:24708438

  8. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit.

    PubMed

    Hoefman, Sven; van der Ha, David; Boon, Nico; Vandamme, Peter; De Vos, Paul; Heylen, Kim

    2014-04-04

    The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning.

  9. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of

  10. GENOME-WIDE COMPARATIVE ANALYSIS OF PHYLOGENETIC TREES: THE PROKARYOTIC FOREST OF LIFE

    PubMed Central

    Puigbò, Pere; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance (SD) method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the applications methods used to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a ‘species tree’. PMID:22399455

  11. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    PubMed

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  12. Palaeoamyda messeliana nov. comb. (Testudines, Pan-Trionychidae) from the Eocene Messel Pit and Geiseltal localities, Germany, taxonomic and phylogenetic insights.

    PubMed

    Cadena, Edwin

    2016-01-01

    Abundant pan-trionychid (soft-shell) turtles specimens have been found in Eocene sequences of central Europe, particularly from two localities in Germany, the Messel Pit (a UNESCO World Natural Heritage Site) and Geiseltal, traditionally attributed to Trionyx messelianus or Rafetoides austriacus . Over the last two decades new specimens of this taxon from these two localities have been discovered and fully prepared. However, they have remained unstudied, as well as their phylogenetic position inside Pan-Trionychidae is unknown. Five new specimens of Palaeoamyda messeliana nov. comb. from Messel Pit and Geiseltal localities are fully described here. A revised diagnosis for the species is also presented here, together with its inclusion in a phylogenetic analysis of Pan-Trionychidae that shows that this species is sister to the extant Amyda cartilaginea , one of the most abundant pan-trionychid (soft-shell) turtles from Asia, both members of the clade Chitrini. The specimens described in here are among the best and most complete fossil pan-trionychid skeletons so far known.

  13. Taxonomic notes on Cretarophalis patrickmuelleri Wichard, 2017 (Insecta: Neuroptera: Nevrorthidae) from the mid-Cretaceous of Myanmar, and its phylogenetic significance.

    PubMed

    Lu, Xiumei; Xia, Fangyuan; Wang, Bo; AspÖck, Ulrike; Liu, Xingyue

    2018-01-15

    Nevrorthidae is a family of Neuroptera with low species diversity, disjunct geographic distributions, and a controversial phylogenetic status. Previous fossil records of the family are from the Eocene except for the recently described species Cretarophalis patrickmuelleri Wichard, 2017 from mid-Cretaceous Burmese amber, following earlier records of an undescribed species. However, such a significant finding of this family from Mesozoic was originally presented only with a preliminary description. Here we re-describe the species based on exquisitely preserved materials from mid-Cretaceous Burmese amber that provides for a much more detailed description, in particular of the hindwing, female genitalia, and larval head. Furthermore, distinctive morphological characters of C. patrickmuelleri with significant phylogenetic relevance are discussed. The general morphology, particularly that of the larva, has changed little between the Mesozoic and Cenozoic, and it reflects an evolutionary stasis that might correspond to their aquatic larval life-style. The present finding also supports the relictual nature of the modern nevrorthids.

  14. Phylogenetic relationships and systematic position of the families Cortrematidae and Phaneropsolidae (Platyhelminthes: Digenea).

    PubMed

    Kanarek, Gerard; Zaleśny, Grzegorz; Sitko, Jiljí; Tkach, Vasyl V

    2014-12-01

    The systematic position and phylogenetic relationships of the family Cortrematidae Yamaguti, 1958 have always been controversial. In the present study, the phylogenetic relationships of this family and its constituent genera and families within the superfamily Microphalloidea were evaluated using previously published and newly obtained sequences of 28S rDNA of Cortrema magnicaudata (Bykhovskaya-Pavlovskaya, 1950) (Cortrematidae), Phaneropsolus praomydis Baer, 1971 and Microtrema barusi Sitko, 2013 (Phaneropsolidae). Results clearly demonstrate that the genus Cortrema Tang, 1951 is closest to Gyrabascus Macy 1935, both genera forming one of the clades within the family Pleurogenidae in the superfamily Microphalloidea and sharing several important morphological features. Thus, the family Cortrematidae should be considered among synonyms of the Pleurogenidae. Based on the analysis of morphology, C. corti Tang, 1951, C. testilobata (Bykhovskaya-Pavlovskaya, 1953) and C. niloticus Ashour, Ahmed et Lewis, 1994 are considered junior synonyms of C. magnicaudata. The phylogenetic position of P. praomydis as a family-level branch not showing close relationships with other families of the Microphalloidea, supports the status of the Phaneropsolidae as an independent family. The genus Parabascus Looss, 1907 previously considered within the Phaneropsolidae clearly belongs to the Pleurogenidae. In addition, the molecular phylogeny has demonstrated that the recently described phaneropsolid Microtrema barusi belongs to the microphallid genus Microphallus Ward, 1901. Therefore, Microtrema Sitko, 2013 is considered a junior synonym of Microphallus. Our analysis has also confirmed the status of Collyriclidae as a family within the Microphalloidea. Not yet sequenced representatives of other families within the Microphalloidea (e.g. Anenterotrematidae, Eumegacetidae, Renschtrematidae, Stomylotrematidae, etc.) need to be included in future molecular phylogenetic studies to better unravel

  15. Phylogenetically Novel LuxI/LuxR-Type Quorum Sensing Systems Isolated Using a Metagenomic Approach

    PubMed Central

    Nasuno, Eri; Fujita, Masaki J.; Nakatsu, Cindy H.; Kamagata, Yoichi; Hanada, Satoshi

    2012-01-01

    A great deal of research has been done to understand bacterial cell-to-cell signaling systems, but there is still a large gap in our current knowledge because the majority of microorganisms in natural environments do not have cultivated representatives. Metagenomics is one approach to identify novel quorum sensing (QS) systems from uncultured bacteria in environmental samples. In this study, fosmid metagenomic libraries were constructed from a forest soil and an activated sludge from a coke plant, and the target genes were detected using a green fluorescent protein (GFP)-based Escherichia coli biosensor strain whose fluorescence was screened by spectrophotometry. DNA sequence analysis revealed two pairs of new LuxI family N-acyl-l-homoserine lactone (AHL) synthases and LuxR family transcriptional regulators (clones N16 and N52, designated AubI/AubR and AusI/AusR, respectively). AubI and AusI each produced an identical AHL, N-dodecanoyl-l-homoserine lactone (C12-HSL), as determined by nuclear magnetic resonance (NMR) and mass spectrometry. Phylogenetic analysis based on amino acid sequences suggested that AusI/AusR was from an uncultured member of the Betaproteobacteria and AubI/AubR was very deeply branched from previously described LuxI/LuxR homologues in isolates of the Proteobacteria. The phylogenetic position of AubI/AubR indicates that they represent a QS system not acquired recently from the Proteobacteria by horizontal gene transfer but share a more ancient ancestry. We demonstrated that metagenomic screening is useful to provide further insight into the phylogenetic diversity of bacterial QS systems by describing two new LuxI/LuxR-type QS systems from uncultured bacteria. PMID:22983963

  16. Functional characterization of two concrete biofilms using pyrosequencing data

    EPA Science Inventory

    Phylogenetic studies of concrete biofilms using 16SrRNA-based approaches have demonstrated that concrete surfaces harbor a diverse microbial community. These approaches can provide information on the general taxonomical groups present in a sample but cannot shed light on the func...

  17. Non-invasive ancient DNA protocol for fluid-preserved specimens and phylogenetic systematics of the genus Orestias (Teleostei: Cyprinodontidae).

    PubMed

    Garrigos, Yareli Esquer; Hugueny, Bernard; Koerner, Kellie; Ibañez, Carla; Bonillo, Celine; Pruvost, Patrice; Causse, Romain; Cruaud, Corinne; Gaubert, Philippe

    2013-01-01

    Specimens stored in museum collections represent a crucial source of morphological and genetic information, notably for taxonomically problematic groups and extinct taxa. Although fluid-preserved specimens of groups such as teleosts may constitute an almost infinite source of DNA, few ancient DNA protocols have been applied to such material. In this study, we describe a non-invasive Guanidine-based (GuSCN) ancient DNA extraction protocol adapted to fluid-preserved specimens that we use to re-assess the systematics of the genus Orestias (Cyprinodontidae: Teleostei). The latter regroups pupfishes endemic to the inter-Andean basin that have been considered as a 'species flock', and for which the morphology-based taxonomic delimitations have been hotly debated. We extracted DNA from the type specimens of Orestias kept at the Muséum National d'Histoire Naturelle of Paris, France, including the extinct species O. cuvieri. We then built the first molecular (control region [CR] and rhodopsin [RH]) phylogeny including historical and recently collected representatives of all the Orestias complexes as recognized by Parenti (1984a): agassizii, cuvieri, gilsoni and mulleri. Our ancient DNA extraction protocol was validated after PCR amplification through an approach based on fragment-by-fragment chimera detection. After optimization, we were able to amplify < 200 bp fragments from both mitochondrial and nuclear DNA (CR and RH, respectively) from probably formalin-fixed type specimens bathed entirely in the extraction fluid. Most of the individuals exhibited few modifications of their external structures after GuSCN bath. Our approach combining type material and 'fresh' specimens allowed us to taxonomically delineate four clades recovered from the well-resolved CR tree into four redefined complexes: agassizii (sensu stricto, i.e. excluding luteus-like species), luteus, cuvieri and gilsoni. The mulleri complex is polyphyletic. Our phylogenetic analyses based on both

  18. Towards an eco-phylogenetic framework for infectious disease ecology.

    PubMed

    Fountain-Jones, Nicholas M; Pearse, William D; Escobar, Luis E; Alba-Casals, Ana; Carver, Scott; Davies, T Jonathan; Kraberger, Simona; Papeş, Monica; Vandegrift, Kurt; Worsley-Tonks, Katherine; Craft, Meggan E

    2018-05-01

    Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats. © 2017 Cambridge Philosophical Society.

  19. Phylogenetic comparative methods on phylogenetic networks with reticulations.

    PubMed

    Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile

    2018-04-25

    The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.

  20. Diversity of heavy metal resistant bacteria from Kalimas Surabaya: A phylogenetic taxonomy approach

    NASA Astrophysics Data System (ADS)

    Zulaika, Enny; Utomo, Andry Prio; Prima, Adisya; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya; Sembiring, Langkah

    2017-06-01

    Bacterial resistance to heavy metal is a genetic and physiological adaptation to the environment which contaminated by heavy metal. Kalimas is an important river in Surabaya that is contaminated by some heavy metals and probably as a habitat for heavy metal resistance bacteria. Bacterial resistance to heavy metals are different for each species, and their diversity can be studied by phylogenetic taxonomy approach. Isolates screening was done using nutrient agar which contained 1 mg/L HgCl2, CdCl2 and K2Cr2O7. Bacterial viability were observed by nutrient broth which contained 10 mg/L HgCl2, 30 mg/L CdCl2 and 50 mg/L K2Cr2O7. Isolates that resistant to heavy metal and viable after exposure to heavy metal were identified using 16S rRNA gene marker by Polymerase Chain Reaction (PCR). Phylogenetic tree reconstruction was done by the neighbor-joining algorithm. Genetic assignment showed isolates that resist and viable after exposure of Hg, Cd and Cr are Bacillus S1, SS19 and DA11. Based on BLAST analysis from NCBI gene bank, 16S rRNA sequences, those isolates were similar with the member of Bacillus cereus. Depend on 16S rRNA nucleotide alignment by the neighbor-joining algorithm, Bacillus S1, SS19 and DA11 were belong to Bacillus cereus sensu-lato group.

  1. Taxonomic and Thematic Semantic Systems

    PubMed Central

    Mirman, Daniel; Landrigan, Jon-Frederick; Britt, Allison E.

    2017-01-01

    Object concepts are critical for nearly all aspects of human cognition, from perception tasks like object recognition, to understanding and producing language, to making meaningful actions. Concepts can have two very different kinds of relations: similarity relations based on shared features (e.g., dog – bear), which are called “taxonomic” relations, and contiguity relations based on co-occurrence in events or scenarios (e.g., dog – leash), which are called “thematic” relations. Here we report a systematic review of experimental psychology and cognitive neuroscience evidence of this distinction in the structure of semantic memory. We propose two principles that may drive the development of distinct taxonomic and thematic semantic systems: (1) differences between which features determine taxonomic vs. thematic relations and (2) differences in the processing required to extract taxonomic vs. thematic relations. This review brings together distinct threads of behavioral, computational, and neuroscience research on semantic memory in support of a functional and neural dissociation, and defines a framework for future studies of semantic memory. PMID:28333494

  2. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae).

    PubMed

    Søchting, Ulrik; Lutzoni, François

    2003-11-01

    A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results.

  3. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales.

    PubMed

    Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter

    2017-12-01

    Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.

  4. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest

    PubMed Central

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-01-01

    Background and Aims Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside

  5. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest.

    PubMed

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-04-01

    Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, 'geographic state speciation and extinction', was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas

  6. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    PubMed

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for

  7. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

  8. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.

    PubMed

    Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J

    2018-04-16

    Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.

  9. Phylogenetic analysis of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha): evidence from mitochondrial genomes

    PubMed Central

    Hua, Jimeng; Li, Ming; Dong, Pengzhi; Cui, Ying; Xie, Qiang; Bu, Wenjun

    2009-01-01

    Background The true water bugs are grouped in infraorder Nepomorpha (Insecta: Hemiptera: Heteroptera) and are of great economic importance. The phylogenetic relationships within Nepomorpha and the taxonomic hierarchies of Pleoidea and Aphelocheiroidea are uncertain. Most of the previous studies were based on morphological characters without algorithmic assessment. In the latest study, the molecular markers employed in phylogenetic analyses were partial sequences of 16S rDNA and 18S rDNA with a total length about 1 kb. Up to now, no mitochondrial genome of the true water bugs has been sequenced, which is one of the largest data sets that could be compared across animal taxa. In this study we analyzed the unresolved problems in Nepomorpha using evidence from mitochondrial genomes. Results Nine mitochondrial genomes of Nepomorpha and five of other hemipterans were sequenced. These mitochondrial genomes contain the commonly found 37 genes without gene rearrangements. Based on the nucleotide sequences of mt-genomes, Pleoidea is not a member of the Nepomorpha and Aphelocheiroidea should be grouped back into Naucoroidea. Phylogenetic relationships among the superfamilies of Nepomorpha were resolved robustly. Conclusion The mt-genome is an effective data source for resolving intraordinal phylogenetic problems at the superfamily level within Heteroptera. The mitochondrial genomes of the true water bugs are typical insect mt-genomes. Based on the nucleotide sequences of the mt-genomes, we propose the Pleoidea to be a separate heteropteran infraorder. The infraorder Nepomorpha consists of five superfamilies with the relationships (Corixoidea + ((Naucoroidea + Notonectoidea) + (Ochteroidea + Nepoidea))). PMID:19523246

  10. Niche conservatism and phylogenetic clustering in a tribe of arid-adapted marsupial mice, the Sminthopsini.

    PubMed

    García-Navas, Vicente; Westerman, Michael

    2018-05-28

    The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  11. The phylogenetic roots of human lethal violence.

    PubMed

    Gómez, José María; Verdú, Miguel; González-Megías, Adela; Méndez, Marcos

    2016-10-13

    The psychological, sociological and evolutionary roots of conspecific violence in humans are still debated, despite attracting the attention of intellectuals for over two millennia. Here we propose a conceptual approach towards understanding these roots based on the assumption that aggression in mammals, including humans, has a significant phylogenetic component. By compiling sources of mortality from a comprehensive sample of mammals, we assessed the percentage of deaths due to conspecifics and, using phylogenetic comparative tools, predicted this value for humans. The proportion of human deaths phylogenetically predicted to be caused by interpersonal violence stood at 2%. This value was similar to the one phylogenetically inferred for the evolutionary ancestor of primates and apes, indicating that a certain level of lethal violence arises owing to our position within the phylogeny of mammals. It was also similar to the percentage seen in prehistoric bands and tribes, indicating that we were as lethally violent then as common mammalian evolutionary history would predict. However, the level of lethal violence has changed through human history and can be associated with changes in the socio-political organization of human populations. Our study provides a detailed phylogenetic and historical context against which to compare levels of lethal violence observed throughout our history.

  12. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  13. Streptococcus massiliensis in the human mouth: a phylogenetic approach for the inference of bacterial habitats.

    PubMed

    Póntigo, F; Silva, C; Moraga, M; Flores, S V

    2015-12-29

    Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.

  14. EAU standardised medical terminology for urologic imaging: a taxonomic approach.

    PubMed

    Loch, Tillmann; Carey, Brendan; Walz, Jochen; Fulgham, Pat Fox

    2015-05-01

    The terminology and abbreviations used in urologic imaging have generally been adopted on an ad hoc basis by different speciality groups; however, there is a need for shared nomenclature to facilitate clinical communication and collaborative research. This work reviews the current nomenclature for urologic imaging used in clinical practice and proposes a taxonomy and terminology for urologic imaging studies. A list of terms used in urologic imaging were compiled from guidelines published by the European Association of Urology and the American Urological Association and from the American College of Radiology Appropriateness Criteria. Terms searched were grouped into broad categories based on technology, and imaging terms were further stratified based on the anatomic extent, contrast or phases, technique or modifiers, and combinations or fusions. Terms that had a high degree of utilisation were classified as accepted. We propose a new taxonomy to define a more useful and acceptable nomenclature model acceptable to all health professionals involved in urology. The major advantage of a taxonomic approach to the classification of urologic imaging studies is that it provides a flexible framework for classifying the modifications of current imaging modalities and allows the incorporation of new imaging modalities. The adoption of this hierarchical classification model ranging from the most general to the most detailed descriptions should facilitate hierarchical searches of the medical literature using both general and specific terms. This work is limited in its scope, as it is not currently all-inclusive. This will hopefully be addressed by future modification as others embrace the concept and work towards uniformity in nomenclature. This paper provides a noncomprehensive list of the most widely used terms across different specialties. This list can be used as the basis for further discussion, development, and enhancement. In this paper we describe a classification system

  15. Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR.

    PubMed

    Oueslati, Amel; Ollitrault, Frederique; Baraket, Ghada; Salhi-Hannachi, Amel; Navarro, Luis; Ollitrault, Patrick

    2016-08-18

    Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of photosynthetic eukaryotes. However, the sequencing and analysis of multiple chloroplastic regions is difficult to apply to large collections or large samples of natural populations. The objective of our work was to demonstrate that a molecular taxonomic key based on easy, scalable and low-cost genotyping method should be developed from a set of Single Nucleotide Polymorphisms (SNPs) diagnostic of well-established clades. It was applied to the Aurantioideae subfamily, the largest group of the Rutaceae family that includes the cultivated citrus species. The publicly available nucleotide sequences of eight plastid genomic regions were compared for 79 accessions of the Aurantioideae subfamily to search for SNPs revealing taxonomic differentiation at the inter-tribe, inter-subtribe, inter-genus and interspecific levels. Diagnostic SNPs (DSNPs) were found for 46 of the 54 clade levels analysed. Forty DSNPs were selected to develop KASPar markers and their taxonomic value was tested by genotyping 108 accessions of the Aurantioideae subfamily. Twenty-seven markers diagnostic of 24 clades were validated and they displayed a very high rate of transferability in the Aurantioideae subfamily (only 1.2 % of missing data on average). The UPGMA from the validated markers produced a cladistic organisation that was highly coherent with the previous phylogenetic analysis based on the sequence data of the eight plasmid regions. In particular, the monophyletic origin of the "true citrus" genera plus Oxanthera was validated. However, some clarification remains necessary regarding the organisation of the other wild species of the Citreae tribe. We validated the concept that with well-established clades, DSNPs can be selected and efficiently transformed into competitive allele-specific PCR markers (KASPar method) allowing cost-effective highly efficient cladistic analysis in large collections at

  16. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes.

    PubMed

    Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling

    2017-10-01

    Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

  17. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a

  18. Taxonomic study on Japanese Salvia (Lamiaceae): Phylogenetic position of S. akiensis, and polyphyletic nature of S. lutescens var. intermedia.

    PubMed

    Takano, Atsuko

    2017-01-01

    Both Salvia akiensis and S. lutescens (Lamiaceae) are endemic to Japan. Salvia akiensis was recently described in 2014 in the Chugoku (= SW Honshu) region, and each four varieties of S. lutescens distributed allopatrically. Among varieties in S. lutescens , var. intermedia show a disjunctive distribution in the Kanto (=E Honshu) and Kinki (= W Honshu) regions. Recent field studies of S. lutescens var. intermedia revealed several morphological differences between the Kanto and Kinki populations. Here, I evaluated these differences among Salvia lutescens var. intermedia and its allies with morphological analysis and molecular phylogenetic analyses of nuclear ribosomal DNA (internal and external transcribed spacer regions) and plastid DNA ( ycf1-rps15 spacer, rbcL , and trnL-F ) sequences. Both morphological analysis and molecular phylogenetic analyses showed that S. lutescens var. intermedia from the Kinki region and var. lutescens were closely related to each other. However, var. intermedia from the Kanto region exhibited an association with S. lutescens var. crenata and var. stolonifera, which also grew in eastern Japan, rather than var. intermedia in the Kinki region. These results indicated that S. lutescens var. intermedia is not a taxon with a disjunctive distribution, but a combination of two or more allopatric taxa. Present study also suggested that S. akiensis was most closely related to S. omerocalyx .

  19. Phylogenetic relationship among East Asian species of the Stegana genus group (Diptera, Drosophilidae).

    PubMed

    Li, Tong; Gao, Jian-jun; Lu, Jin-ming; Ji, Xing-lai; Chen, Hong-wei

    2013-01-01

    The phylogenetic relationship among 27 East Asian species of the Stegana genus group was reconstructed using DNA sequences of mitochondrial (COI and ND2) and nuclear (28S) genes. The results lent support to the current generic/subgeneric taxonomic classification in the genus group with the exceptions of the paraphyly of the genus Parastegana and the subgenus Oxyphortica in the genus Stegana. The ancestral areas and divergence times in the genus group were reconstructed/estimated, and accordingly, the biogeographical history of this important clade was discussed. It was proposed that, the evolution of the plant family Fagaceae, especially Quercus, may have played a certain role in facilitating the diversification of the Stegana genus group. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Coalescent methods for estimating phylogenetic trees.

    PubMed

    Liu, Liang; Yu, Lili; Kubatko, Laura; Pearl, Dennis K; Edwards, Scott V

    2009-10-01

    We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.

  1. Phylogenetic relationships of Sonoran Desert cactus beetles in the tribe Hololeptini (Coleoptera: Histeridae: Histerinae), with comments on the taxonomic status of Iliotona beyeri.

    PubMed

    Pfeiler, Edward; Vergara-Quintanar, Joel E; Castrezana, Sergio; Caterino, Michael S; Markow, Therese A

    2010-07-01

    Nucleotide sequences from 16S rRNA and cytochrome c oxidase subunit I (COI) were used to examine phylogenetic relationships and evolution of beetles from the tribe Hololeptini (Coleoptera: Histeridae: Histerinae) that inhabit necrotic tissue of columnar cacti in the Sonoran Desert. Phylogenetic and morphological analyses revealed the presence of seven separate lineages, three representing species in the genus Iliotona, including I. beyeri stat. nov., and four species belonging to the genus Hololepta (sensu lato). The possible roles of historical vicariance and host plant associations on the evolution of the Hololeptini from the Sonoran Desert are discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Phylogenetic relationships of Paradiclybothrium pacificum and Diclybothrium armatum (Monogenoidea: Diclybothriidae) inferred from 18S rDNA sequence data.

    PubMed

    Rozhkovan, Konstantin V; Shedko, Marina B

    2015-10-01

    The Diclybothriidae (Monogenoidea: Oligonchoinea) includes specific parasites of fishes assigned to the ancient order Acipenseriformes. Phylogeny of the Diclybothriidae is still unclear despite several systematic studies based on morphological characters. Together with the closely related Hexabothriidae represented by parasites of sharks and ray-fishes, the position of Diclybothriidae in different taxonomical systems has been matter of discussion. Here, we present the first molecular data on Diclybothriidae. The SSU rRNA gene was used to investigate the phylogenetic position of Paradiclybothrium pacificum and Diclybothrium armatum among the other Oligonchoinea. Complete nucleotide sequences of P. pacificum and D. armatum demonstrated high identity (98.53%) with no intraspecific sequence variability. Specimens of D. armatum were obtained from different hosts (Acipenser schrenckii and Huso dauricus); however, variation by host was not detected. The sequence divergence and phylogenetic trees data show that Diclybothriidae and Hexabothriidae are more closely related to each other than with other representatives of Oligonchoinea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Current Taxonomical Situation of Streptococcus suis

    PubMed Central

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-01-01

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains. PMID:27348006

  4. Current Taxonomical Situation of Streptococcus suis.

    PubMed

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-06-24

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several "S. suis-like strains" that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains.

  5. Taxonomic bias in biodiversity data and societal preferences.

    PubMed

    Troudet, Julien; Grandcolas, Philippe; Blin, Amandine; Vignes-Lebbe, Régine; Legendre, Frédéric

    2017-08-22

    Studying and protecting each and every living species on Earth is a major challenge of the 21 st century. Yet, most species remain unknown or unstudied, while others attract most of the public, scientific and government attention. Although known to be detrimental, this taxonomic bias continues to be pervasive in the scientific literature, but is still poorly studied and understood. Here, we used 626 million occurrences from the Global Biodiversity Information Facility (GBIF), the biggest biodiversity data portal, to characterize the taxonomic bias in biodiversity data. We also investigated how societal preferences and taxonomic research relate to biodiversity data gathering. For each species belonging to 24 taxonomic classes, we used the number of publications from Web of Science and the number of web pages from Bing searches to approximate research activity and societal preferences. Our results show that societal preferences, rather than research activity, strongly correlate with taxonomic bias, which lead us to assert that scientists should advertise less charismatic species and develop societal initiatives (e.g. citizen science) that specifically target neglected organisms. Ensuring that biodiversity is representatively sampled while this is still possible is an urgent prerequisite for achieving efficient conservation plans and a global understanding of our surrounding environment.

  6. Phylogenetic relationships of leopard frogs (Rana pipiens complex) from an isolated coastal mountain range in southern Sonora, Mexico.

    PubMed

    Pfeiler, E; Markow, T A

    2008-10-01

    Mitochondrial DNA sequence data from the control region and 12S rRNA in leopard frogs from the Sierra El Aguaje of southern Sonora, Mexico, together with GenBank sequences, were used to infer taxonomic identity and provide phylogenetic hypotheses for relationships with other members of the Rana pipiens complex. We show that frogs from the Sierra El Aguaje belong to the Rana berlandieri subgroup, or Scurrilirana clade, of the R. pipiens group, and are most closely related to Rana magnaocularis from Nayarit, Mexico. We also provide further evidence that Rana magnaocularis and R. yavapaiensis are close relatives.

  7. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  8. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    PubMed

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  9. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.

    PubMed

    Altaba, Cristian R

    2009-01-01

    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts

  10. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives

    PubMed Central

    Konowalik, Kamil

    2017-01-01

    In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids (Campylocentrum and Dendrophylax) and their closest relatives in the Old World (Angraecum) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied. PMID:28533976

  11. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives.

    PubMed

    Kolanowska, Marta; Grochocka, Elżbieta; Konowalik, Kamil

    2017-01-01

    In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids ( Campylocentrum and Dendrophylax ) and their closest relatives in the Old World ( Angraecum ) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied.

  12. Novel Approaches for Phylogenetic Inference from Morphological Data and Total-Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians).

    PubMed

    Pyron, R Alexander

    2017-01-01

    Here, I combine previously underutilized models and priors to perform more biologically realistic phylogenetic inference from morphological data, with an example from squamate reptiles. When coding morphological characters, it is often possible to denote ordered states with explicit reference to observed or hypothetical ancestral conditions. Using this logic, we can integrate across character-state labels and estimate meaningful rates of forward and backward transitions from plesiomorphy to apomorphy. I refer to this approach as MkA, for “asymmetric.” The MkA model incorporates the biological reality of limited reversal for many phylogenetically informative characters, and significantly increases likelihoods in the empirical data sets. Despite this, the phylogeny of Squamata remains contentious. Total-evidence analyses using combined morphological and molecular data and the MkA approach tend toward recent consensus estimates supporting a nested Iguania. However, support for this topology is not unambiguous across data sets or analyses, and no mechanism has been proposed to explain the widespread incongruence between partitions, or the hidden support for various topologies in those partitions. Furthermore, different morphological data sets produced by different authors contain both different characters and different states for the same or similar characters, resulting in drastically different placements for many important fossil lineages. Effort is needed to standardize ontology for morphology, resolve incongruence, and estimate a robust phylogeny. The MkA approach provides a preliminary avenue for investigating morphological evolution while accounting for temporal evidence and asymmetry in character-state changes.

  13. Testing Phylogenetic Hypotheses of the Subgenera of the Freshwater Crayfish Genus Cambarus (Decapoda: Cambaridae)

    PubMed Central

    Breinholt, Jesse W.; Porter, Megan L.; Crandall, Keith A.

    2012-01-01

    Background The genus Cambarus is one of three most species rich crayfish genera in the Northern Hemisphere. The genus has its center of diversity in the Southern Appalachians of the United States and has been divided into 12 subgenera. Using Cambarus we test the correspondence of subgeneric designations based on morphology used in traditional crayfish taxonomy to the underlying evolutionary history for these crayfish. We further test for significant correlation and explanatory power of geographic distance, taxonomic model, and a habitat model to estimated phylogenetic distance with multiple variable regression. Methodology/Principal Findings We use three mitochondrial and one nuclear gene regions to estimate the phylogenetic relationships for species within the genus Cambarus and test evolutionary hypotheses of relationships and associated morphological and biogeographical hypotheses. Our resulting phylogeny indicates that the genus Cambarus is polyphyletic, however we fail to reject the monophyly of Cambarus with a topology test. The majority of the Cambarus subgenera are rejected as monophyletic, suggesting the morphological characters used to define those taxa are subject to convergent evolution. While we found incongruence between taxonomy and estimated phylogenetic relationships, a multiple model regression analysis indicates that taxonomy had more explanatory power of genetic relationships than either habitat or geographic distance. Conclusions We find convergent evolution has impacted the morphological features used to delimit Cambarus subgenera. Studies of the crayfish genus Orconectes have shown gonopod morphology used to delimit subgenera is also affected by convergent evolution. This suggests that morphological diagnoses based on traditional crayfish taxonomy might be confounded by convergent evolution across the cambarids and has little utility in diagnosing relationships or defining natural groups. We further suggest that convergent morphological

  14. Cryptic diversity in the Azorean beetle genus Tarphius Erichson, 1845 (Coleoptera: Zopheridae): An integrative taxonomic approach with description of four new species.

    PubMed

    Borges, Paulo A V; Amorim, Isabel R; Terzopoulou, Sofia; Rigal, François; Emerson, Brent C; Serrano, Artur R M

    2017-02-23

    Recent findings based on molecular data support the occurrence in the Azores of several independently evolving lineages of the beetle genus Tarphius Erichson, 1845 (Coleoptera: Zopheridae Solier, 1834) and higher species richness masked by cryptic diversity, needing formal taxonomic description. All Tarphius from the Azores are revised using an integrative taxonomic approach, using evidence from morphology, morphometrics and molecular data to delimit species. Our results reveal that Azorean Tarphius comprise at least five phyletic lineages, two of which share a similar morphology, despite being divergent at the molecular level. A total of four new species are described grouped into two complexes: i) two new species in the "complex tornvalli" with the new taxa Tarphius relictus sp. nov. (Terceira) and Tarphius furtadoi sp. nov. (São Jorge, Faial and Pico) and; ii) two new species in the "complex azoricus-wollastoni-depressus" with the new taxa Tarphius gabrielae sp. nov. (Pico) and Tarphius floresensis sp. nov. (Flores). Descriptions, photographs of holotypes and morphological details, and remarks on diagnostic features comparing similar species are presented. Additional information on the distribution and conservation status of the 12 described species in the archipelago is also provided.

  15. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides)

    PubMed Central

    2014-01-01

    Background The colorful wing patterns of butterflies, a prime example of biodiversity, can change dramatically within closely related species. Wing pattern diversity is specifically present among papilionid butterflies. Whether a correlation between color and the evolution of these butterflies exists so far remained unsolved. Results We here investigate the Cattlehearts, Parides, a small Neotropical genus of papilionid butterflies with 36 members, the wings of which are marked by distinctly colored patches. By applying various physical techniques, we investigate the coloration toolkit of the wing scales. The wing scales contain two different, wavelength-selective absorbing pigments, causing pigmentary colorations. Scale ridges with multilayered lamellae, lumen multilayers or gyroid photonic crystals in the scale lumen create structural colors that are variously combined with these pigmentary colors. Conclusions The pigmentary and structural traits strongly correlate with the taxonomical distribution of Parides species. The experimental findings add crucial insight into the evolution of butterfly wing scales and show the importance of morphological parameter mapping for butterfly phylogenetics. PMID:25064167

  16. Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates.

    PubMed

    Rosenthal, Benjamin M; Dunams-Morel, Detiger; Ostoros, Gyorgyi; Molnár, Kálmán

    2016-06-01

    Fish are the oldest and most diverse group of vertebrates; it therefore stands to reason that fish may have been the original hosts for many types of extant vertebrate parasites. Here, we sought to determine whether coccidian parasites of fish are especially diverse. We therefore sampled such parasites from thirty-nine species of fish and tested phylogenetic hypotheses concerning their relationships, using 18S rDNA. We found compelling phylogenetic support for distinctions among at least four lineages of piscine parasites presently ascribed to the genus Goussia. Some, but not all parasites attributed to Eimeria were confirmed as such. Major taxonomic revisions are likely justified for these parasites of fish, which appear to have given rise to each of the major lineages of coccidian parasites that subsequently proliferated in terrestrial vertebrates, including those such as Toxoplasma gondii that form tissue cysts in intermediate hosts. Published by Elsevier B.V.

  17. Integrating and visualizing primary data from prospective and legacy taxonomic literature

    PubMed Central

    Agosti, Donat; Penev, Lyubomir; Sautter, Guido; Georgiev, Teodor; Catapano, Terry; Patterson, David; King, David; Pereira, Serrano; Vos, Rutger Aldo; Sierra, Soraya

    2015-01-01

    Abstract Specimen data in taxonomic literature are among the highest quality primary biodiversity data. Innovative cybertaxonomic journals are using workflows that maintain data structure and disseminate electronic content to aggregators and other users; such structure is lost in traditional taxonomic publishing. Legacy taxonomic literature is a vast repository of knowledge about biodiversity. Currently, access to that resource is cumbersome, especially for non-specialist data consumers. Markup is a mechanism that makes this content more accessible, and is especially suited to machine analysis. Fine-grained XML (Extensible Markup Language) markup was applied to all (37) open-access articles published in the journal Zootaxa containing treatments on spiders (Order: Araneae). The markup approach was optimized to extract primary specimen data from legacy publications. These data were combined with data from articles containing treatments on spiders published in Biodiversity Data Journal where XML structure is part of the routine publication process. A series of charts was developed to visualize the content of specimen data in XML-tagged taxonomic treatments, either singly or in aggregate. The data can be filtered by several fields (including journal, taxon, institutional collection, collecting country, collector, author, article and treatment) to query particular aspects of the data. We demonstrate here that XML markup using GoldenGATE can address the challenge presented by unstructured legacy data, can extract structured primary biodiversity data which can be aggregated with and jointly queried with data from other Darwin Core-compatible sources, and show how visualization of these data can communicate key information contained in biodiversity literature. We complement recent studies on aspects of biodiversity knowledge using XML structured data to explore 1) the time lag between species discovry and description, and 2) the prevelence of rarity in species descriptions

  18. Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution

    PubMed Central

    Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.

    2014-01-01

    Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554

  19. Phylogenetic rooting using minimal ancestor deviation.

    PubMed

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  20. Visualizing phylogenetic tree landscapes.

    PubMed

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D

  1. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei).

    PubMed

    Dornburg, Alex; Friedman, Matt; Near, Thomas J

    2015-08-01

    Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods. Copyright

  2. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Agata, Norio; Venkateswaran, Kasthuri

    2004-01-01

    Bacillus anthracis, the causative agent of the human disease anthrax, Bacillus cereus, a food-borne pathogen capable of causing human illness, and Bacillus thuringiensis, a well-characterized insecticidal toxin producer, all cluster together within a very tight clade (B. cereus group) phylogenetically and are indistinguishable from one another via 16S rDNA sequence analysis. As new pathogens are continually emerging, it is imperative to devise a system capable of rapidly and accurately differentiating closely related, yet phenotypically distinct species. Although the gyrB gene has proven useful in discriminating closely related species, its sequence analysis has not yet been validated by DNA:DNA hybridization, the taxonomically accepted "gold standard". We phylogenetically characterized the gyrB sequences of various species and serotypes encompassed in the "B. cereus group," including lab strains and environmental isolates. Results were compared to those obtained from analyses of phenotypic characteristics, 16S rDNA sequence, DNA:DNA hybridization, and virulence factors. The gyrB gene proved more highly differential than 16S, while, at the same time, as analytical as costly and laborious DNA:DNA hybridization techniques in differentiating species within the B. cereus group.

  3. Assessment of available anatomical characters for linking living mammals to fossil taxa in phylogenetic analyses.

    PubMed

    Guillerme, Thomas; Cooper, Natalie

    2016-05-01

    Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies. © 2016 The Authors.

  4. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    PubMed

    Savic, Olivera; Savic, Andrej M; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  5. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials

    PubMed Central

    Savic, Olivera; Savic, Andrej M.; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280–460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520–600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation. PMID:29236767

  6. Phylogenetic perspective and the search for life on earth and elsewhere

    NASA Technical Reports Server (NTRS)

    Pace, Norman R.

    1989-01-01

    Any search for microbial life on Mars cannot rely upon cultivation of indigenous organisms. Only a minority of even terrestrial organisms that are observed in mixed, naturally-occurring microbial populations can be cultivated in the laboratory. Consequently, methods are being developed for analyzing the phylogenetic affiliations of the constituents of natural microbial populations without the need for their cultivation. This is more than an exercise in taxonomy, for the extent of phylogenetic relatedness between unknown and known organisms is some measure of the extent of their biochemical commonalities. In one approach, total DNA is isolated from natural microbial populations and 16S rRNA genes are shotgun cloned for rapid sequence determinations and phylogenetic analyses. A second approach employs oligodeoxynucleotide hybridization probes that bind to phylogenetic group-specific sequences in 16S rRNA. Since each actively growing cell contains about 104 ribosomes, the binding of the diagnostic probes to single cells can be visualized by radioactivity or fluorescence. The application of these methods and the use of in situ cultivation techniques is illustrated using submarine hydrothermal vent communities. Recommendations are made regarding planning toward future Mars missions.

  7. A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales).

    PubMed

    Vasse, Marie; Voglmayr, Hermann; Mayer, Veronika; Gueidan, Cécile; Nepel, Maximilian; Moreno, Leandro; de Hoog, Sybren; Selosse, Marc-André; McKey, Doyle; Blatrix, Rumsaïs

    2017-03-15

    The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales. © 2017 The Author(s).

  8. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  9. Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae-Andropogoneae): Taxonomic implications and evidence of interspecific hybridization.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2016-06-01

    Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution

  10. Taxonomic revision of Pachyptera (Bignonieae, Bignoniaceae)

    PubMed Central

    Francisco, Jessica Nayara Carvalho; Lohmann, Lúcia G.

    2018-01-01

    Abstract Pachyptera DC. is a small genus of neotropical lianas included in tribe Bignonieae (Bignoniaceae). The genus has a complicated taxonomic history but currently includes species distributed from Belize to Southern Amazon. Pachyptera is characterised by four main synapomorphies, namely, a papery peeling bark, prophylls of the axillary buds organised in a series of three, patelliform glands arranged in lines in the upper portions of the calyx and corolla tube. Furthermore, members of the genus also have stems with four phloem wedges in cross-section and conspicuous extrafloral nectaries between the interpetiolar region and at the petiole apex, although these characters are also shared with other genera of tribe Bignonieae. Here, we present a taxonomic revision of Pachyptera, which includes a complete list of synonyms, detailed morphological descriptions of species and an identification key, as well as information on the habitat, distribution and phenology, nomenclatural notes, taxonomic comments and illustrations of all the species. In addition, we designate three lectotypes, propose one new combination, raise one variety to species status and describe a new species. After these adjustments, a Pachyptera with five well-defined species is recognised. PMID:29416412

  11. Taxonomic revision of Pachyptera (Bignonieae, Bignoniaceae).

    PubMed

    Francisco, Jessica Nayara Carvalho; Lohmann, Lúcia G

    2018-01-01

    Pachyptera DC. is a small genus of neotropical lianas included in tribe Bignonieae (Bignoniaceae). The genus has a complicated taxonomic history but currently includes species distributed from Belize to Southern Amazon. Pachyptera is characterised by four main synapomorphies, namely, a papery peeling bark, prophylls of the axillary buds organised in a series of three, patelliform glands arranged in lines in the upper portions of the calyx and corolla tube. Furthermore, members of the genus also have stems with four phloem wedges in cross-section and conspicuous extrafloral nectaries between the interpetiolar region and at the petiole apex, although these characters are also shared with other genera of tribe Bignonieae. Here, we present a taxonomic revision of Pachyptera , which includes a complete list of synonyms, detailed morphological descriptions of species and an identification key, as well as information on the habitat, distribution and phenology, nomenclatural notes, taxonomic comments and illustrations of all the species. In addition, we designate three lectotypes, propose one new combination, raise one variety to species status and describe a new species. After these adjustments, a Pachyptera with five well-defined species is recognised.

  12. Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences.

    PubMed

    Zeng, Xu; Yuan, Zhengrong; Tong, Xin; Li, Qiushi; Gao, Weiwei; Qin, Minjian; Liu, Zhihua

    2012-05-01

    Oryzoideae (Poaceae) plants have economic and ecological value. However, the phylogenetic position of some plants is not clear, such as Hygroryza aristata (Retz.) Nees. and Porteresia coarctata (Roxb.) Tateoka (syn. Oryza coarctata). Comprehensive molecular phylogenetic studies have been carried out on many genera in the Poaceae. The different DNA sequences, including nuclear and chloroplast sequences, had been extensively employed to determine relationships at both higher and lower taxonomic levels in the Poaceae. Chloroplast DNA ndhF gene and atpB-rbcL spacer were used to construct phylogenetic trees and estimate the divergence time of Oryzoideae, Bambusoideae, Panicoideae, Pooideae and so on. Complete sequences of atpB-rbcL and ndhF were generated for 17 species representing six species of the Oryzoideae and related subfamilies. Nicotiana tabacum L. was the outgroup species. The two DNA datasets were analyzed, using Maximum Parsimony and Bayesian analysis methods. The molecular phylogeny revealed that H. aristata (Retz.) Nees was the sister to Chikusichloa aquatica Koidz. Moreover, P. coarctata (Roxb.) Tateoka was in the genus Oryza. Furthermore, the result of evolution analysis, which based on the ndhF marker, indicated that the time of origin of Oryzoideae might be 31 million years ago.

  13. Designing Multimedia Games for Young Children's Taxonomic Concept Development

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Chang, Kuo-En; Lee, Meng-Da

    2008-01-01

    This study aimed to design and evaluate multimedia games which were based on the theories of children's development of taxonomic concepts. Factors that might affect children's classification skills, such as use of single physical characteristics of objects, competition between thematic and taxonomic relationships, difficulty in forming…

  14. Preschool Children's Taxonomic Knowledge of Animal Species

    ERIC Educational Resources Information Center

    Allen, Michael

    2015-01-01

    Although taxonomic proficiency is a prerequisite for understanding ideas central to biology, previous research has established that learners frequently misclassify animals by not following the tenets of accepted taxonomic rubrics. This has immediate relevance with the recently revised English National Curriculum now requiring concepts of animal…

  15. A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Tongkerd, Piyoros; Panha, Somsak

    2016-01-01

    Abstract The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmüller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area. PMID:27408540

  16. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  17. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    PubMed

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  18. Taxonomic confirmation of mud crab species (genus Scylla) in Bangladesh by nuclear and mitochondrial DNA markers.

    PubMed

    Sarower, Mohammed Golam; Shahriar, Sheik Istiak Md; Nakamura, Hiromasa; Rouf, Muhammad Abdur; Okada, Shigeru

    2017-11-01

    Taxonomy of mud crabs genus Scylla has been misidentified for several years due to their high morphological plasticity. Several reports concerning mud crab have been published with misleading identification in Bangladesh. In this study, partial fragments of nuclear and mitochondrial DNA of Scylla species obtained from four locations along the Bangladesh coast were used to resolve taxonomical ambiguity of mud crab species. A single PCR product from the nuclear first internal transcribed spacer (ITS-1) marker and phylogenetic trees constructed based on 16S rDNA sequences indicated that all Scylla species obtained in this study were S. olivacea. Both molecular data and morphological characters revealed that S. olivacea is the only major species in Bangladesh coastal waters. Further, the 16S rDNA haplotypes significantly differed with known S. serrata by 33%. From this study it is clear that 'S. serrata' commonly reported from Bangladesh should be S. olivacea.

  19. A phylogenetic community approach for studying termite communities in a West African savannah.

    PubMed

    Hausberger, Barbara; Korb, Judith

    2015-10-01

    Termites play fundamental roles in tropical ecosystems, and mound-building species in particular are crucial in enhancing species diversity, from plants to mammals. However, it is still unclear which factors govern the occurrence and assembly of termite communities. A phylogenetic community approach and null models of species assembly were used to examine structuring processes associated with termite community assembly in a pristine savannah. Overall, we did not find evidence for a strong influence of interspecific competition or environmental filtering in structuring these communities. However, the presence of a single species, the mound-building termite Macrotermes bellicosus, left a strong signal on structuring and led to clustered communities of more closely related species. Hence, this species changes the assembly rules for a whole community. Our results show the fundamental importance of a single insect species for community processes, suggesting that more attention to insect species is warranted when developing conservation strategies. © 2015 The Author(s).

  20. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  1. Taxonomic status of the Columbia duskysnail (Truncatelloidea, Amnicolidae, Colligyrus).

    PubMed

    Liu, Hsiu-Ping; Hershler, Robert; Rossel, Christopher S

    2015-01-01

    Undescribed freshwater snails (Amnicolidae: Colligyrus) from the Mount Hood region (northwestern United States) identified as a new species (commonly known as the Columbia duskysnail) in grey literature have been provided federal protection under the "survey and manage" provisions of the Northwest Forest Plan and have been placed on conservation watch lists. However, there are no published studies of the identity of these snails aside from a molecular phylogenetic analysis which delineated a close relationship between the single sampled population and Colligyrusgreggi, which is distributed more than 750 km to the east of the Mount Hood area. Here we examine the taxonomic status of the Columbia duskysnail based on additional molecular sampling of mitochondrial DNA sequences (COI) and morphological evidence. We found that the Columbia duskysnail is not a monophyletic group and forms a strongly supported clade with Colligyrusgreggi. The COI divergence between these broadly disjunct groups (2.1%) was somewhat larger than that within Colligyrusgreggi (1.0%) but considerably less than that among the three currently recognized species of Colligyrus (8.7-12.1%). Additionally we found that the Columbia duskysnail and Colligyrusgreggi cannot be consistently differentiated by previously reported diagnostic characters (size and shape of shell spire, pigmentation of body and penis) and are closely similar in other aspects of morphology. Based on these results we conclude that the Columbia duskysnail is conspecific with Colligyrusgreggi.

  2. A guide to phylogenetic metrics for conservation, community ecology and macroecology

    PubMed Central

    Cadotte, Marc W.; Carvalho, Silvia B.; Davies, T. Jonathan; Ferrier, Simon; Fritz, Susanne A.; Grenyer, Rich; Helmus, Matthew R.; Jin, Lanna S.; Mooers, Arne O.; Pavoine, Sandrine; Purschke, Oliver; Redding, David W.; Rosauer, Dan F.; Winter, Marten; Mazel, Florent

    2016-01-01

    ABSTRACT The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub‐disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub‐disciplines hampers potential meta‐analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo‐diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo‐diversity metrics based on their mathematical form within these three dimensions and identify ‘anchor’ representatives: for α‐diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. PMID:26785932

  3. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study.

    PubMed

    Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I

    2014-06-01

    Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Constructing Student Problems in Phylogenetic Tree Construction.

    ERIC Educational Resources Information Center

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  5. Genus age, provincial area and the taxonomic structure of marine faunas.

    PubMed

    Harnik, Paul G; Jablonski, David; Krug, Andrew Z; Valentine, James W

    2010-11-22

    Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf-Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.

  6. Genus age, provincial area and the taxonomic structure of marine faunas

    PubMed Central

    Harnik, Paul G.; Jablonski, David; Krug, Andrew Z.; Valentine, James W.

    2010-01-01

    Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf–Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area. PMID:20534619

  7. The Neural Bases of Taxonomic and Thematic Conceptual Relations: An MEG Study

    PubMed Central

    Lewis, Gwyneth A.; Poeppel, David; Murphy, Gregory L.

    2015-01-01

    Converging evidence from behavioral and neuroimaging studies of human concepts indicate distinct neural systems for taxonomic and thematic knowledge. A recent study of naming in aphasia found involvement of the anterior temporal lobe (ATL) during taxonomic (feature-based) processing, and involvement of the temporoparietal junction (TPJ) during thematic (function-based) processing. We conducted an online magnetoencephalography (MEG) study to examine the spatio-temporal nature of taxonomic and thematic relations. We measured participants’ brain responses to words preceded by either a taxonomically or thematically related item (e.g., cottage→castle, king→castle). In a separate experiment we collected relatedness ratings of the word pairs from participants. We examined effects of relatedness and relation type on activation in ATL and TPJ regions of interest (ROIs) using permutation t-tests to identify differences in ROI activation between conditions as well as single-trial correlational analyses to examine the millisecond-by-millisecond influence of the stimulus variables on the ROIs. Taxonomic relations strongly predicted ATL activation, and both kinds of relations influenced the TPJ. Our results further strengthen the view of the ATL's importance to taxonomic knowledge. Moreover, they provide a nuanced view of thematic relations as involving taxonomic knowledge. PMID:25582406

  8. Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences

    PubMed Central

    Garnica, Sigisfredo; Weiß, Michael; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2009-01-01

    Background Section Calochroi is one of the most species-rich lineages in the genus Cortinarius (Agaricales, Basidiomycota) and is widely distributed across boreo-nemoral areas, with some extensions into meridional zones. Previous phylogenetic studies of Calochroi (incl. section Fulvi) have been geographically restricted; therefore, phylogenetic and biogeographic relationships within this lineage at a global scale have been largely unknown. In this study, we obtained DNA sequences from a nearly complete taxon sampling of known species from Europe, Central America and North America. We inferred intra- and interspecific phylogenetic relationships as well as major morphological evolutionary trends within section Calochroi based on 576 ITS sequences, 230 ITS + 5.8S + D1/D2 sequences, and a combined dataset of ITS + 5.8S + D1/D2 and RPB1 sequences of a representative subsampling of 58 species. Results More than 100 species were identified by integrating DNA sequences with morphological, macrochemical and ecological data. Cortinarius section Calochroi was consistently resolved with high branch support into at least seven major lineages: Calochroi, Caroviolacei, Dibaphi, Elegantiores, Napi, Pseudoglaucopodes and Splendentes; whereas Rufoolivacei and Sulfurini appeared polyphyletic. A close relationship between Dibaphi, Elegantiores, Napi and Splendentes was consistently supported. Combinations of specific morphological, pigmentation and molecular characters appear useful in circumscribing clades. Conclusion Our analyses demonstrate that Calochroi is an exclusively northern hemispheric lineage, where species follow their host trees throughout their natural ranges within and across continents. Results of this study contribute substantially to defining European species in this group and will help to either identify or to name new species occurring across the northern hemisphere. Major groupings are in partial agreement with earlier morphology-based and molecular phylogenetic

  9. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus.

    PubMed

    Chemisquy, M Amelia; Giussani, Liliana M; Scataglini, María A; Kellogg, Elizabeth A; Morrone, Osvaldo

    2010-07-01

    Twenty-five genera having sterile inflorescence branches were recognized as the bristle clade within the x = 9 Paniceae (Panicoideae). Within the bristle clade, taxonomic circumscription of Cenchrus (20-25 species), Pennisetum (80-140) and the monotypic Odontelytrum is still unclear. Several criteria have been applied to characterize Cenchrus and Pennisetum, but none of these has proved satisfactory as the diagnostic characters, such as fusion of bristles in the inflorescences, show continuous variation. A phylogenetic analysis based on morphological, plastid (trnL-F, ndhF) and nuclear (knotted) data is presented for a representative species sampling of the genera. All analyses were conducted under parsimony, using heuristic searches with TBR branch swapping. Branch support was assessed with parsimony jackknifing. Based on plastid and morphological data, Pennisetum, Cenchrus and Odontelytrum were supported as a monophyletic group: the PCO clade. Only one section of Pennisetum (Brevivalvula) was supported as monophyletic. The position of P. lanatum differed among data partitions, although the combined plastid and morphology and nuclear analyses showed this species to be a member of the PCO clade. The basic chromosome number x = 9 was found to be plesiomorphic, and x = 5, 7, 8, 10 and 17 were derived states. The nuclear phylogenetic analysis revealed a reticulate pattern of relationships among Pennisetum and Cenchrus, suggesting that there are at least three different genomes. Because apomixis can be transferred among species through hybridization, its history most likely reflects crossing relationships, rather than multiple independent appearances. Due to the consistency between the present results and different phylogenetic hypotheses (including morphological, developmental and multilocus approaches), and the high support found for the PCO clade, also including the type species of the three genera, we propose unification of Pennisetum, Cenchrus and Odontelytrum

  10. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Phylogenetic studies in Psathyrella focusing on sections Pennatae and Spadiceae--new evidence for the paraphyly of the genus.

    PubMed

    Vasutová, Martina; Antonín, Vladimír; Urban, Alexander

    2008-10-01

    The sections Pennatae and Spadiceae were chosen to test the agreement of current infrageneric classifications of Psathyrella (Psathyrellaceae, Agaricales) with molecular phylogenetic data and to evaluate the systematic significance of relevant morphological characters. The ITS and partial LSU regions of nu-rDNA from 53 specimens representing 34 species of Psathyrella were sequenced and analysed with parsimony-based and model-based phylogenetic methods. According to our analyses, the sections Pennatae and Spadiceae are polyphyletic and distributed across the family Psathyrellaceae, which is divided into at least five major groups. The first one comprises most of the included Psathyrella species and, probably, the whole genus Coprinellus. The second group is made up of Psathyrella gossypina and P. delineata. The third clade consists of the genus Coprinopsis and includes Psathyrella aff. huronensis and P. marcescibilis. The fourth clade is composed of two sister groups, the subgenus Homophron and the genus Lacrymaria, and the fifth group represents the genus Parasola including Psathyrella conopilus. These results are in agreement with neither the current circumscription of the two subgenera, Psathyra and Psathyrella, nor with the pre-sent disposition of the Psathyrellaceae. Taxonomically important morphological characters in the genus Psathyrella show a high degree of homoplasy. Although these characters are useful for species delimitation, and in some cases for the circumscription of sections, they appear insufficient for a phylogenetically correct generic concept.

  12. Phylogenetic relationships and biogeography of the genus Algansea Girard (Cypriniformes: Cyprinidae) of central Mexico inferred from molecular data

    PubMed Central

    Pérez-Rodríguez, Rodolfo; Domínguez-Domínguez, Omar; de León, Gerardo Pérez Ponce; Doadrio, Ignacio

    2009-01-01

    Background The genus Algansea is one of the most representative freshwater fish groups in central Mexico due to its wide geographic distribution and unusual level of endemicity. Despite the small number of species, this genus has had an unsettled taxonomic history due to high levels of intraspecific morphological variation. Moreover, several phylogenetic hypotheses among congeners have been proposed but have had the following shortcomings: the use of homoplasious morphological characters, the use of character codification and polarisation methods that lacked objectivity, and incomplete taxonomic sampling. In this study, a phylogenetic analysis among species of Algansea is presented. This analysis is based upon two molecular markers, the mitochondrial gene cytochrome b and the first intron of the ribosomal protein S7 gene. Results Bayesian analysis based on a combined matrix (cytochrome b and first intron S7) showed that Algansea is a monophyletic group and that Agosia chrysogaster is the sister group. Divergence times dated the origin of the genus around 16.6 MYA, with subsequent cladogenetic events occurring between 6.4 and 2.8 MYA. When mapped onto the molecular phylogenetic hypothesis, the character states of three morphological characters did not support previous hypotheses on the evolution of morphological traits in the genus Algansea, whereas the character states of the remaining six characters partially corroborated those hypotheses. Conclusion Monophyly of the genus Algansea was corroborated in this study. Tree topology shows the genus consists of three main lineages: Central-Eastern, Western, and Southern clades. However, the relationships among these clades remained unresolved. Congruence found between the available geological and climatic history and the divergence times made it possible to infer the biogeographical history of Algansea, which suggested that vicariance events were responsible for the evolutionary history of the genus. Interestingly, this

  13. Comparative myology of the unicornfishes, Naso (Acanthuridae, Percomorpha), with implications for phylogenetic analysis.

    PubMed

    Borden, W Calvin

    1999-02-01

    Striated muscles of 15 species of unicornfishes (Naso, Acanthuridae) are described in detail. Of 93 muscles dissected, only five demonstrate intrageneric variation, providing only ten characters suitable for phylogenetic analysis. Thus, myology appears to be highly conservative at the species level and has been so for approximately 50-55 million years in this particular group of fishes. Furthermore, myology is static relative to osteology in Naso and at any taxonomic rank within fishes, implying osteology provides a larger but not necessarily more valuable data source for systematic studies. Although important for their epistomological value, these descriptions provide a basis for further studies ranging from functional, comparative, and systematic analyses, ultimately with the potential to address questions of historical ecology (i.e., speciation, adaptation, coevolution) within Naso. J. Morphol. 239:191-224, 1999. © 1999 Wiley-Liss, Inc. Copyright © 1999 Wiley-Liss, Inc.

  14. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications.

    PubMed

    Kan, Xian-Zhao; Wang, Shan-Shan; Ding, Xin; Wang, Xiao-Quan

    2007-08-01

    Nuclear ribosomal DNA (nrDNA) has been considered as an important tool for inferring phylogenetic relationships at many taxonomic levels. In comparison with its fast concerted evolution in angiosperms, nrDNA is symbolized by slow concerted evolution and substantial ITS region length variation in gymnosperms, particularly in Pinaceae. Here we studied structure characteristics, including subrepeat composition, size, GC content and secondary structure, of nrDNA ITS regions of all Pinaceae genera. The results showed that the ITS regions of all taxa studied contained subrepeat units, ranging from 2 to 9 in number, and these units could be divided into two types, longer subrepeat (LSR) without the motif (5'-GGCCACCCTAGTC) and shorter subrepeat (SSR) with the motif. Phylogenetic analyses indicate that the homology of some SSRs still can be recognized, providing important informations for the evolutionary history of nrDNA ITS and phylogeny of Pinaceae. In particular, the adjacent tandem SSRs are not more closely related to one another than they are to remote SSRs in some genera, which may imply that multiple structure variations such as recombination have occurred in the ITS1 region of these groups. This study also found that GC content in the ITS1 region is relevant to its sequence length and subrepeat number, and could provide some phylogenetic information, especially supporting the close relationships among Picea, Pinus, and Cathaya. Moreover, several characteristics of the secondary structure of Pinaceae ITS1 were found as follows: (1) the structure is dominated by several extended hairpins; (2) the configuration complexity is positively correlated with subrepeat number; (3) paired subrepeats often partially overlap at the conserved motif (5'-GGCCACCCTAGTC), and form a long stem, while other subrepeats fold onto itself, leaving part of the conserved motif exposed in hairpin loops.

  15. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  16. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    PubMed

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  17. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  18. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  19. Individual differences in the strength of taxonomic versus thematic relations

    PubMed Central

    Mirman, Daniel; Graziano, Kristen M.

    2011-01-01

    Knowledge about word and object meanings can be organized taxonomically (fruits, mammals, etc.) based on shared features, or thematically (eating breakfast, taking a dog for a walk, etc.) based on participation in events or scenarios. An eye-tracking study showed that both kinds of knowledge are activated during comprehension of a single spoken word, even when the listener is not required to perform any active task. The results further revealed that an individual’s relative activation of taxonomic relations compared to thematic relations predicts that individual’s tendency to favor taxonomic over thematic relations when asked to choose between them in a similarity judgment task. These results argue that individuals differ in the relative strengths of their taxonomic and thematic semantic knowledge and suggest that meaning information is organized in two parallel, complementary semantic systems. PMID:22201413

  20. Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain

    PubMed Central

    Schwartz, Myrna F.; Kimberg, Daniel Y.; Walker, Grant M.; Brecher, Adelyn; Faseyitan, Olufunsho K.; Dell, Gary S.; Mirman, Daniel; Coslett, H. Branch

    2011-01-01

    It is thought that semantic memory represents taxonomic information differently from thematic information. This study investigated the neural basis for the taxonomic-thematic distinction in a unique way. We gathered picture-naming errors from 86 individuals with poststroke language impairment (aphasia). Error rates were determined separately for taxonomic errors (“pear” in response to apple) and thematic errors (“worm” in response to apple), and their shared variance was regressed out of each measure. With the segmented lesions normalized to a common template, we carried out voxel-based lesion-symptom mapping on each error type separately. We found that taxonomic errors localized to the left anterior temporal lobe and thematic errors localized to the left temporoparietal junction. This is an indication that the contribution of these regions to semantic memory cleaves along taxonomic-thematic lines. Our findings show that a distinction long recognized in the psychological sciences is grounded in the structure and function of the human brain. PMID:21540329

  1. New high through put approach to study ancient microbial phylogenetic diversity in permafrost

    NASA Astrophysics Data System (ADS)

    Spirina, E.; Cole, J.; Chai, B.; Gilichinksy, D.; Tiedje, J.

    2003-04-01

    The study of microbial diversity in the deep ancient permafrost can help to answer many questions: (1) what kind of mechanisms keeps microbial cells alive, (2) how many of phylogenetic groups exist in situ and never had been cultivated, (3) what is the difference between modern and ancient microorganisms? From this point, distinct environments were examined: Arctic and Antarctic modern soil and permafrost. 16S rDNA genes were amplified from genomic DNA extracted from both original frozen samples and the same samples incubated at 10oC for 8 weeks under both aerobic and anaerobic conditions to determine those capable to grow. High throughput DNA sequencing was performed on the cloned PCR products to obtain partial 16S rDNA gene sequences. The unique script was written to automatically compare over 2,000 partial sequences with those rrn sequences in the Ribosomal Database Project (RDP) release 8.1 using the SEQUENCE MATCH. Sequences were grouped into categories from the RDPs phylogenetic hierarchy based on the closest database matches. Investigation revealed significant microbial diversity; two phylogenetic groups were predominant in all samples: Proteobacteria and Gram Positive Bacteria. Microbial community composition within those groups is different from sample to sample. However, similar genera, such as Arthrobacter, Bacillus, Citrobacter, Caulobacter, Comamonas, Flavobacterium, Nocardioides, Pseudomonas, Rhodocyclus, Rhodococcus, Sphingobacterium, Sphingomonas, Streptococcus, Terrabacter appeared in both polar regions. The greatest microbial diversity was detected in Arctic surface samples. According to RDPs phylogenetic hierarchy those organisms are related to Proteobacteria_SD, Gram Positive Bacteria_SD, Leptospirillum-Nitrospira, Nitrospina_SD, Flexibacter-Cytophaga-Bacteroides, Planctomyces and Relatives. Both the aerobic and anaerobic low temperatures soil incubation yielded some microbes not detected in the original samples. It should be possible, using

  2. Dual phylogenetic origins of Nigerian lions (Panthera leo).

    PubMed

    Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt

    2014-07-01

    Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa.

  3. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes).

    PubMed

    Cachera, Marie; Le Loc'h, François

    2017-08-01

    The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.

  4. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation

    NASA Astrophysics Data System (ADS)

    Sahu, Sunil Kumar; Singh, Reena; Kathiresan, Kandasamy

    2016-12-01

    Mangroves are taxonomically diverse group of salt-tolerant, mainly arboreal, flowering plants that grow in tropical and sub-tropical regions and have adapted themselves to thrive in such obdurate surroundings. While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose and the co-opted features are called exaptations. Thus, one of the fundamental issues is what features of mangroves have evolved through exaptation. We attempt to address these questions through molecular phylogenetic approach using chloroplast and nuclear markers. First, we determined if these mangroves specific traits have evolved multiple times in the phylogeny. Once the multiple origins were established, we then looked at related non-mangrove species for characters that could have been co-opted by mangrove species. We also assessed the efficacy of these molecular sequences in distinguishing mangroves at the species level. This study revealed the multiple origin of mangroves and shed light on the ancestral characters that might have led certain lineages of plants to adapt to estuarine conditions and also traces the evolutionary history of mangroves and hitherto unexplained theory that mangroves traits (aerial roots and viviparous propagules) evolved as a result of exaptation rather than adaptation to saline habitats.

  5. The phylogenetic position of a new species of Plakobranchus from West Papua, Indonesia (Mollusca, Opisthobranchia, Sacoglossa)

    PubMed Central

    Meyers-Muñoz, María Angélica; van der Velde, Gerard; van der Meij, Sancia E.T.; Stoffels, Bart E.M.W.; van Alen, Theo; Tuti, Yosephine; Hoeksema, Bert W.

    2016-01-01

    Abstract Plakobranchus papua Meyers-Muñoz & van der Velde, sp. n. from West Papua (Papua Barat province, Indonesia), is described based on its external morphology, colour pattern, internal anatomy, radula and reproductive system. In a molecular phylogenetic study specimens of this new species were compared with those of ten candidate taxa under the name Plakobranchus ocellatus van Hasselt, 1824. DNA analyses of COI mtDNA showed a clear distinction between Plakobranchus papua sp. n. and “Plakobranchus ocellatus”. Plakobranchus papua, sp. n. also differed from all taxa that have been synonymised with Plakobranchus ocellatus. The genus is in dire need of taxonomic revision, preferably based on an integrative analysis involving morphology and DNA of all known Plakobranchus varieties. PMID:27408559

  6. Evolution and taxonomic split of the model grass Brachypodium distachyon

    PubMed Central

    Catalán, Pilar; Müller, Jochen; Hasterok, Robert; Jenkins, Glyn; Mur, Luis A. J.; Langdon, Tim; Betekhtin, Alexander; Siwinska, Dorota; Pimentel, Manuel; López-Alvarez, Diana

    2012-01-01

    Background and Aims Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n =  10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species. Methods Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated. Key Results The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species. Conclusions The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B

  7. BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics

    PubMed Central

    Ayres, Daniel L.; Darling, Aaron; Zwickl, Derrick J.; Beerli, Peter; Holder, Mark T.; Lewis, Paul O.; Huelsenbeck, John P.; Ronquist, Fredrik; Swofford, David L.; Cummings, Michael P.; Rambaut, Andrew; Suchard, Marc A.

    2012-01-01

    Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software. PMID:21963610

  8. Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil

    PubMed Central

    Zhao, Jun; Wang, Baozhan

    2015-01-01

    Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959

  9. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy.

    PubMed

    Aagaard, Kjersti; Riehle, Kevin; Ma, Jun; Segata, Nicola; Mistretta, Toni-Ann; Coarfa, Cristian; Raza, Sabeen; Rosenbaum, Sean; Van den Veyver, Ignatia; Milosavljevic, Aleksandar; Gevers, Dirk; Huttenhower, Curtis; Petrosino, Joseph; Versalovic, James

    2012-01-01

    While current major national research efforts (i.e., the NIH Human Microbiome Project) will enable comprehensive metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina) and the V5V3 region of bacterial 16S rRNA genes were sequenced (454FLX Titanium platform). Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed weeks) were compared with 301 non-pregnant controls (60 subjects). Generated sequence data were quality filtered, taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU); principal coordinates analysis (PCoA) of the resultant beta diversity measures were used for visualization and analysis in association with sample clinical metadata. Altogether, 1.4 gigabytes of data containing >2.5 million reads (averaging 6,837 sequences/sample of 493 nt in length) were generated for computational analyses. Although gravidae were not excluded by virtue of a posterior fornix pH >4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy, with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and Lactobacillaceae family), Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous standardized sampling protocols and analytical methodologies provides robust initial evidence that the vaginal

  10. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.

    PubMed

    Rajan, Vaibhav

    2013-03-01

    Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.

  11. A cybertaxonomic revision of the new dung beetle tribe Parachoriini (Coleoptera: Scarabaeidae: Scarabaeinae) and its phylogenetic assessment using molecular and morphological data.

    PubMed

    Tarasov, Sergei

    2017-10-03

    Two Oriental dung beetle genera: Parachorius Harold, 1873 and Cassolus Sharp, 1875 have long had an ambiguous tribal position in Scarabaeinae (Coleoptera: Scarabaeidae), but have never been considered as closely related. A recently discovered species representing the morphological link between the two genera gave a hint to their possible close affiliation. To assess phylogenetic and taxonomic placement of these genera, I conducted phylogenetic analyses of global dung beetle samples using morphological (134 taxa, 232 characters) and molecular (551 terminals, 8 gene regions) data. Both morphological and molecular analyses strongly support the monophyly of Parachorius + Cassolus. This leads to the synonymy of Parachorius with Cassolus new synonymy, and resulted in the new generic concept for Parachorius. The isolated phylogenetic position of Parachorius and its morphological distinctiveness from all other known Scarabaeinae tribes suggest recognition of a new tribe, Parachoriini new tribe, to maintain the stability of tribal classification in dung beetles. Investigation of old and recent material of Parachorius revealed a large number of undescribed species and the need for a taxonomic revision of this genus. The revision of Parachorius, powered by the 3i cybertaxonomic tool, is presented in this study. The revised Parachorius is comprised of 19 species from the Oriental and southeastern Palaearctic Regions, of which seven are newly described (P. asymmetricus new species, P. bolavensis new species, P. longipenis new species, P. newthayerae new species, P. pseudojavanus new species, P. schuelkei new species, and P. solodovnikovi new species). Three species names in Parachorius are synonymized, namely, P. fungorum Kryzhanovsky & Medvedev, 1966 = P. krali Utsunomiya & Masumoto, 2001 new synonymy; P. thomsoni Harold, 1873 = P. lannathai Hanboonsong & Masumoto, 2001 new synonymy; and P. peninsularis (Arrow, 1907) = C. pongchaii Masumoto, 2001 new synonymy. Two species

  12. IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

    PubMed Central

    Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan

    2009-01-01

    Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385

  13. One tree to link them all: a phylogenetic dataset for the European tetrapoda.

    PubMed

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-08-08

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

  14. A guide to phylogenetic metrics for conservation, community ecology and macroecology.

    PubMed

    Tucker, Caroline M; Cadotte, Marc W; Carvalho, Silvia B; Davies, T Jonathan; Ferrier, Simon; Fritz, Susanne A; Grenyer, Rich; Helmus, Matthew R; Jin, Lanna S; Mooers, Arne O; Pavoine, Sandrine; Purschke, Oliver; Redding, David W; Rosauer, Dan F; Winter, Marten; Mazel, Florent

    2017-05-01

    The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify 'anchor' representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. © 2016 The Authors. Biological Reviews published by John Wiley © Sons Ltd on behalf of

  15. Examination into the taxonomic position of Bacillus thermotolerans Yang et al., 2013, proposal for its reclassification into a new genus and species Quasibacillus thermotolerans gen. nov., comb. nov. and reclassification of B. encimensis Dastager et al., 2015 as a later heterotypic synonym of B. badius.

    PubMed

    Verma, Ashish; Pal, Yash; Khatri, Indu; Ojha, Anup Kumar; Gruber-Vodicka, Harald; Schumann, Peter; Dastager, Syed; Subramanian, Srikrishna; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2017-10-01

    Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8 T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C 15:0 and iso-C 16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8 T (=CCTCC AB2012108 T =KACC 16706 T ). Further our analyses also revealed that B. encimensis SGD-V-25 T is a later heterotypic synonym of Bacillus badius DSM 23 T . Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  17. Parental Acceptance-Rejection Theory and the Phylogenetic Model.

    ERIC Educational Resources Information Center

    Rohner, Ronald P.

    Guided by specific theoretical and methodological points of view--the phylogenetic perspective and the universalistic approach respectively--this paper reports on a worldwide study of the antecedents and effects of parental acceptance and rejection. Parental acceptance-rejection theory postulates that rejected children throughout our species share…

  18. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    PubMed Central

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  19. A non-toxigenic but morphologically and phylogenetically distinct new species of Pseudo-nitzschia, P. sabit sp. nov. (Bacillariophyceae).

    PubMed

    Teng, Sing Tung; Lim, Po Teen; Lim, Hong Chang; Rivera-Vilarelle, María; Quijano-Scheggia, Sonia; Takata, Yoshinobu; Quilliam, Michael A; Wolf, Matthias; Bates, Stephen S; Leaw, Chui Pin

    2015-08-01

    A new species of Pseudo-nitzschia (Bacillariophyceae) is described from plankton samples collected from Port Dickson (Malacca Strait, Malaysia) and Manzanillo Bay (Colima, Mexico). The species possesses a distinctive falcate cell valve, from which they form sickle-like colonies in both environmental samples and cultured strains. Detailed observation of frustules under TEM revealed ultrastructure that closely resembles P. decipiens, yet the new species differs by the valve shape and greater ranges of striae and poroid densities. The species is readily distinguished from the curve-shaped P. subcurvata by the presence of a central interspace. The morphological distinction is further supported by phylogenetic discrimination. We sequenced and analyzed the nuclear ribosomal RNA genes in the LSU and the second internal transcribed spacer, including its secondary structure, to infer the phylogenetic relationship of the new species with its closest relatives. The results revealed a distinct lineage of the new species, forming a sister cluster with its related species, P. decipiens and P. galaxiae, but not with P. subcurvata. We examined the domoic acid (DA) production of five cultured strains from Malaysia by Liquid chromatography-mass spectrometry (LC-MS), but they showed no detectable DA. Here, we present the taxonomic description of the vegetative cells, document the sexual reproduction, and detail the molecular phylogenetics of Pseudo-nitzschia sabit sp. nov. © 2015 Phycological Society of America.

  20. Phylogenetic Trees and Networks Reduce to Phylogenies on Binary States: Does It Furnish an Explanation to the Robustness of Phylogenetic Trees against Lateral Transfers.

    PubMed

    Thuillard, Marc; Fraix-Burnet, Didier

    2015-01-01

    This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.

  1. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  2. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle).

    PubMed

    Raja, Huzefa A; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H; Cech, Nadja B; Oberlies, Nicholas H

    2015-01-02

    Use of the herb milk thistle ( Silybum marianum ) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.

  3. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages.

    PubMed

    Si, Xingfeng; Baselga, Andrés; Leprieur, Fabien; Song, Xiao; Ding, Ping

    2016-03-01

    Taxonomic diversity considers all species being equally different from each other and thus disregards species' different ecological functions. Exploring taxonomic and functional aspects of biodiversity simultaneously can better understand the processes of community assembly. We analysed taxonomic and functional alpha and beta diversities of breeding bird assemblages on land-bridge islands in the Thousand Island Lake, China. Given the high dispersal ability of most birds at this spatial scale (several kilometres), we predicted (i) selective extinction driving alpha and beta diversities after the creation of land-bridge islands of varying area and (ii) low taxonomic and functional beta diversities that were not correlated to spatial distance. Breeding birds were surveyed on 37 islands annually from 2007 to 2014. We decomposed beta diversity of breeding birds into spatial turnover and nestedness-resultant components, and related taxonomic and functional diversities to island area and isolation using power regression models (for alpha diversity) and multiple regression models on distance matrices (for beta diversity). We then ran simulations to assess the strength of the correlations between taxonomic and functional diversities. Results revealed that both taxonomic and functional alpha diversities increased with island area. The taxonomic nestedness-resultant and turnover components increased and decreased with difference in area, respectively, but functional counterparts did not. Isolation played a minor role in explaining alpha- and beta-diversity patterns. By partitioning beta diversity, we found low levels of overall taxonomic and functional beta diversities. The functional nestedness-resultant component dominated overall functional beta diversity, whereas taxonomic turnover was the dominant component for taxonomic beta diversity. The simulation showed that functional alpha and beta diversities were significantly correlated with taxonomic diversities, and the

  4. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations.

    PubMed

    Kittel, Rebecca N; Austin, Andrew D; Klopfstein, Seraina

    2016-08-01

    Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov

  5. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae

    PubMed Central

    Lagkouvardos, Ilias; Weinmaier, Thomas; Lauro, Federico M; Cavicchioli, Ricardo; Rattei, Thomas; Horn, Matthias

    2014-01-01

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir. PMID:23949660

  6. Taxonomic review of the late Cenozoic megapodes (Galliformes: Megapodiidae) of Australia

    PubMed Central

    Prideaux, Gavin J.

    2017-01-01

    Megapodes are unusual galliform birds that use passive heat sources to incubate their eggs. Evolutionary relationships of extant megapode taxa have become clearer with the advent of molecular analyses, but the systematics of large, extinct forms (Progura gallinacea, Progura naracoortensis) from the late Cenozoic of Australia has been a source of confusion. It was recently suggested that the two species of Progura were synonymous, and that this taxon dwarfed into the extant malleefowl Leipoa ocellata in the Late Pleistocene. Here, we review previously described fossils along with newly discovered material from several localities, and present a substantial taxonomic revision. We show that P. gallinacea and P. naracoortensis are generically distinct, describe two new species of megapode from the Thylacoleo Caves of south-central Australia, and a new genus from Curramulka Quarry in southern Australia. We also show that L. ocellata was contemporaneous with larger species. Our phylogenetic analysis places four extinct taxa in a derived clade with the extant Australo-Papuan brush-turkeys Talegalla fuscirostris, L. ocellata, Alectura lathami and Aepypodius bruijnii. Therefore, diversity of brush-turkeys halved during the Quaternary, matching extinction rates of scrubfowl in the Pacific. Unlike extant brush-turkeys, all the extinct taxa appear to have been burrow-nesters. PMID:28680676

  7. Prokaryotic Caspase Homologs: Phylogenetic Patterns and Functional Characteristics Reveal Considerable Diversity

    PubMed Central

    Asplund-Samuelsson, Johannes; Bergman, Birgitta; Larsson, John

    2012-01-01

    Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18%) were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota). Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes. PMID:23185476

  8. Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL-75 CFU/100 mL for the rainwater, and were 10-94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria.

  9. Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study.

    PubMed

    de Busserolles, Fanny; Fitzpatrick, John L; Paxton, John R; Marshall, N Justin; Collin, Shaun P

    2013-01-01

    One of the most common visual adaptations seen in the mesopelagic zone (200-1000 m), where the amount of light diminishes exponentially with depth and where bioluminescent organisms predominate, is the enlargement of the eye and pupil area. However, it remains unclear how eye size is influenced by depth, other environmental conditions and phylogeny. In this study, we determine the factors influencing variability in eye size and assess whether this variability is explained by ecological differences in habitat and lifestyle within a family of mesopelagic fishes characterized by broad intra- and interspecific variance in depth range and luminous patterns. We focus our study on the lanternfish family (Myctophidae) and hypothesise that lanternfishes with a deeper distribution and/or a reduction of bioluminescent emissions have smaller eyes and that ecological factors rather than phylogenetic relationships will drive the evolution of the visual system. Eye diameter and standard length were measured in 237 individuals from 61 species of lanternfishes representing all the recognised tribes within the family in addition to compiling an ecological dataset including depth distribution during night and day and the location and sexual dimorphism of luminous organs. Hypotheses were tested by investigating the relationship between the relative size of the eye (corrected for body size) and variations in depth and/or patterns of luminous-organs using phylogenetic comparative analyses. Results show a great variability in relative eye size within the Myctophidae at all taxonomic levels (from subfamily to genus), suggesting that this character may have evolved several times. However, variability in eye size within the family could not be explained by any of our ecological variables (bioluminescence and depth patterns), and appears to be driven solely by phylogenetic relationships.

  10. Eye-Size Variability in Deep-Sea Lanternfishes (Myctophidae): An Ecological and Phylogenetic Study

    PubMed Central

    de Busserolles, Fanny; Fitzpatrick, John L.; Paxton, John R.; Marshall, N. Justin; Collin, Shaun P.

    2013-01-01

    One of the most common visual adaptations seen in the mesopelagic zone (200–1000 m), where the amount of light diminishes exponentially with depth and where bioluminescent organisms predominate, is the enlargement of the eye and pupil area. However, it remains unclear how eye size is influenced by depth, other environmental conditions and phylogeny. In this study, we determine the factors influencing variability in eye size and assess whether this variability is explained by ecological differences in habitat and lifestyle within a family of mesopelagic fishes characterized by broad intra- and interspecific variance in depth range and luminous patterns. We focus our study on the lanternfish family (Myctophidae) and hypothesise that lanternfishes with a deeper distribution and/or a reduction of bioluminescent emissions have smaller eyes and that ecological factors rather than phylogenetic relationships will drive the evolution of the visual system. Eye diameter and standard length were measured in 237 individuals from 61 species of lanternfishes representing all the recognised tribes within the family in addition to compiling an ecological dataset including depth distribution during night and day and the location and sexual dimorphism of luminous organs. Hypotheses were tested by investigating the relationship between the relative size of the eye (corrected for body size) and variations in depth and/or patterns of luminous-organs using phylogenetic comparative analyses. Results show a great variability in relative eye size within the Myctophidae at all taxonomic levels (from subfamily to genus), suggesting that this character may have evolved several times. However, variability in eye size within the family could not be explained by any of our ecological variables (bioluminescence and depth patterns), and appears to be driven solely by phylogenetic relationships. PMID:23472203

  11. The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

    PubMed Central

    Hoyal Cuthill, Jennifer F.

    2015-01-01

    Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may

  12. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.

    PubMed

    Goldstein, Paul Z; DeSalle, Rob

    2011-02-01

    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence data into taxonomic information but also for our comprehension of the magnitude of species diversity and its disappearance. This paper examines the potential strengths and pitfalls of integrating DNA sequence data, specifically in the form of DNA barcodes as they are currently generated and analyzed, with taxonomic practice.

  13. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees.

    PubMed

    Martínez-Aquino, Andrés

    2016-08-01

    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.

  14. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies.

    PubMed

    Liu, Liang; Huo, Guan-Nan; He, Hong-Bin; Zhou, Benjiang; Attwood, Stephen W

    2014-02-18

    The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising

  15. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies

    PubMed Central

    2014-01-01

    Background The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. Results The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. Conclusions The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and

  16. Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences

    PubMed Central

    2013-01-01

    Background Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses. Results The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes. Conclusions We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also

  17. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.

    PubMed

    Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine

    2017-04-01

    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.

  18. Gram-positive and gram-negative bacteria induce different patterns of cytokine production in human mononuclear cells irrespective of taxonomic relatedness.

    PubMed

    Skovbjerg, Susann; Martner, Anna; Hynsjö, Lars; Hessle, Christina; Olsen, Ingar; Dewhirst, Floyd E; Tham, Wilhelm; Wold, Agnes E

    2010-01-01

    Upon bacterial stimulation, tissue macrophages produce a variety of cytokines that orchestrate the immune response that clears the infection. We have shown that Gram-positives induce higher levels of interleukin-12 (IL-12), interferon-gamma (IFN-gamma), and tumor necrosis factor (TNF) from human peripheral blood mononuclear cells (PBMCs) than do Gram-negatives, which instead induce more of IL-6, IL-8, and IL-10. Here, we study whether these patterns follows or crosses taxonomic borders. PBMCs from blood donors were incubated with UV-inactivated bacteria representing 37 species from five phyla. IL-12, TNF, IL-1beta, IL-6, IL-8, and IL-10 were measured in the supernatants after 24 h and IFN-gamma after 5 days. Irrespective of phylogenetic position, Gram-positive bacteria induced much more IL-12 (nine times more on average) and IFN-gamma (seven times), more TNF (three times), and slightly more IL-1beta (1.5 times) than did Gram-negatives, which instead induced more IL-6 (1.5 times), IL-8 (1.9 times), and IL-10 (3.3 times) than did Gram-positives. A notable exception was the Gram-positive Listeria monocytogenes, which induced very little IL-12, IFN-gamma, and TNF. The results confirm the fundamental difference in innate immune responses to Gram-positive and Gram-negative bacteria, which crosses taxonomic borders and probably reflects differences in cell wall structure.

  19. Taxa: An R package implementing data standards and methods for taxonomic data

    PubMed Central

    Foster, Zachary S.L.; Chamberlain, Scott; Grünwald, Niklaus J.

    2018-01-01

    The taxa R package provides a set of tools for defining and manipulating taxonomic data. The recent and widespread application of DNA sequencing to community composition studies is making large data sets with taxonomic information commonplace. However, compared to typical tabular data, this information is encoded in many different ways and the hierarchical nature of taxonomic classifications makes it difficult to work with. There are many R packages that use taxonomic data to varying degrees but there is currently no cross-package standard for how this information is encoded and manipulated. We developed the R package taxa to provide a robust and flexible solution to storing and manipulating taxonomic data in R and any application-specific information associated with it. Taxa provides parsers that can read common sources of taxonomic information (taxon IDs, sequence IDs, taxon names, and classifications) from nearly any format while preserving associated data. Once parsed, the taxonomic data and any associated data can be manipulated using a cohesive set of functions modeled after the popular R package dplyr. These functions take into account the hierarchical nature of taxa and can modify the taxonomy or associated data in such a way that both are kept in sync. Taxa is currently being used by the metacoder and taxize packages, which provide broadly useful functionality that we hope will speed adoption by users and developers. PMID:29707201

  20. Phylogenetic convolutional neural networks in metagenomics.

    PubMed

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  1. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes

    PubMed Central

    Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David

    2016-01-01

    Abstract A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life. PMID:27604879

  2. Heritable Bovine Rumen Bacteria Are Phylogenetically Related and Correlated with the Cow’s Capacity To Harvest Energy from Its Feed

    PubMed Central

    Sasson, Goor; Kruger Ben-Shabat, Sheerli; Seroussi, Eyal; Doron-Faigenboim, Adi; Shterzer, Naama; Yaacoby, Shamay; Berg Miller, Margret E.; White, Bryan A.; Halperin, Eran

    2017-01-01

    ABSTRACT Ruminants sustain a long-lasting obligatory relationship with their rumen microbiome dating back 50 million years. In this unique host-microbiome relationship, the host’s ability to digest its feed is completely dependent on its coevolved microbiome. This extraordinary alliance raises questions regarding the dependent relationship between ruminants’ genetics and physiology and the rumen microbiome structure, composition, and metabolism. To elucidate this relationship, we examined the association of host genetics with the phylogenetic and functional composition of the rumen microbiome. We accomplished this by studying a population of 78 Holstein-Friesian dairy cows, using a combination of rumen microbiota data and other phenotypes from each animal with genotypic data from a subset of 47 animals. We identified 22 operational taxonomic units (OTUs) whose abundances were associated with rumen metabolic traits and host physiological traits and which showed measurable heritability. The abundance patterns of these microbes can explain high proportions of variance in rumen metabolism and many of the host physiological attributes such as its energy-harvesting efficiency. Interestingly, these OTUs shared higher phylogenetic similarity between themselves than expected by chance, suggesting occupation of a specific ecological niche within the rumen ecosystem. The findings presented here suggest that ruminant genetics and physiology are correlated with microbiome structure and that host genetics may shape the microbiome landscape by enriching for phylogenetically related taxa that may occupy a unique niche. PMID:28811339

  3. Restingomyces, a new sequestrate genus from the Brazilian Atlantic rainforest that is phylogenetically related to early-diverging taxa in Trappeaceae (Phallales).

    PubMed

    Sulzbacher, Marcelo A; Grebenc, Tine; Cabral, Tiara S; Giachini, Admir J; Goto, Bruno T; Smith, Matthew E; Baseia, Iuri G

    2016-09-01

    Restingomyces reticulatus gen. et sp. nov. is a recently discovered false truffle species from Atlantic "restinga" rainforest in northeastern Brazil. Molecular and morphological characters separate this new sequestrate species from other described taxa in the order Phallales (Phallomycetidae, Basidiomycota). In our phylogenetic analysis based on nuc 28S rDNA and atp6, R. reticulatus forms a sister clade to Trappea darkeri and Phallobata alba, with the three taxa forming the earliest diverging lineage within Phallales. Morphological and molecular data warrant the recognition of the new genus and species, described here, and we also amend the taxonomic description for the family Trappeaceae. © 2016 by The Mycological Society of America.

  4. Ultrastructure variation in the spermatozoa of Pseudopaludicola frogs (Amphibia, Anura, Leptodactylidae), with brief comments on its phylogenetic relevance.

    PubMed

    dos Santos, Julio Sérgio; Introíni, Gisele Orlandi; Veiga-Menoncello, Ana Cristina Prado; Recco-Pimentel, Shirlei Maria

    2015-12-01

    The taxonomic history of the small frogs of the genus Pseudopaludicola from South America has been controversial. Phylogenetic inferences based on molecular data have identified four Pseudopaludicola clades, correlating with the known variation in karyotypes (2n = 22, 20, 18, and 16). In this study, the ultrastructure of the spermatozoa was analyzed in 12 species of the Pseudopaludicola, with the aim of describing their morphology and identifying characters that may contribute to a better understanding of the phylogenetic relationships. The spermatozoa presented marked differences in tail structures. The tails of the spermatozoa of the species with 2n = 22 chromosomes (Pseudopaludicola sp. 1 [P. pusilla group], Pseudopaludicola falcipes, P. mineira, and Pseudopaludicola saltica), as well as Pseudopaludicola ameghini and Pseudopaludicola ternetzi (2n=20), have juxta-axonemal fibers, undulating membranes and axial fibers. In contrast, in the species with 2n = 18 (P. facureae, P. giarettai, Pseudopaludicola canga, P. atragula, and Pseudopaludicola sp. 2) and 2n = 16 (Pseudopaludicola mystacalis), there are no evident axial or juxta-axonemal fibers, but a paraxonemal rod with a thick undulating membrane, which is shorter than that found among Pseudopaludicola species. The ultrastructural morphological differences observed in the spermatozoa of these species may be phylogenetically informative, given that they coincide with the consensus phylogeny of the group and appear to represent a progressive simplification of the spermatozoon. © 2015 Wiley Periodicals, Inc.

  5. Dual phylogenetic origins of Nigerian lions (Panthera leo)

    PubMed Central

    Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt

    2014-01-01

    Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa. PMID:25077018

  6. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    PubMed Central

    Weißenborn, Sandra; Walther, Dirk

    2017-01-01

    Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the

  7. Guidelines for quality assurance and quality control of fish taxonomic data collected as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Walsh, Stephen Joseph; Meador, Michael R.

    1998-01-01

    Fish community structure is characterized by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of a perennial, multidisciplinary approach to evaluating the physical, chemical, and biological conditions of the Nation's water resources. The objective of quality assurance and quality control of fish taxonomic data that are collected as part of the NAWQA Program is to establish uniform guidelines and protocols for the identification, processing, and archiving of fish specimens to ensure that accurate and reliable data are collected. Study unit biologists, collaborating with regional biologists and fish taxonomic specialists, prepare a pre-sampling study plan that includes a preliminary faunal list and identification of an ichthyological curation center for receiving preserved fish specimens. Problematic taxonomic issues and protected taxa also are identified in the study plan, and collecting permits are obtained in advance of sampling activities. Taxonomic specialists are selected to identify fish specimens in the field and to assist in determining what fish specimens should be sacrificed, fixed, and preserved for laboratory identification, independent taxonomic verification, and long-term storage in reference or voucher collections. Quantitative and qualitative sampling of fishes follows standard methods previously established for the NAWQA Program. Common ichthyological techniques are used to process samples in the field and prepare fish specimens to be returned to the laboratory or sent to an institutional repository. Taxonomic identifications are reported by using a standardized list of scientific names that provides nomenclatural consistency and uniformity across study units.

  8. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  9. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  10. The role of fusion in ant chromosome evolution: insights from cytogenetic analysis using a molecular phylogenetic approach in the genus mycetophylax.

    PubMed

    Cardoso, Danon Clemes; das Graças Pompolo, Silvia; Cristiano, Maykon Passos; Tavares, Mara Garcia

    2014-01-01

    Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution.

  11. Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae).

    PubMed

    Larabee, Fredrick J; Fisher, Brian L; Schmidt, Chris A; Matos-Maraví, Pável; Janda, Milan; Suarez, Andrew V

    2016-10-01

    Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Integrative Taxonomic Approach for Describing a New Cryptic Species of Bush Frog (Raorchestes: Anura: Rhacophoridae) from the Western Ghats, India

    PubMed Central

    Roshmi, Rekha Sarma; Ramya, Badrinath; Sudhira, H. S.; Ravikanth, G.; Aravind, Neelavara Anantharam

    2016-01-01

    A new cryptic species of bush frog Raorchestes honnametti sp. nov. is described from the south-eastern part of the Western Ghats, India. This newly described species belongs to the Charius clade and is morphologically similar to other clade members—R. charius and R. griet. Therefore, an integrative taxonomic approach based on molecular and bioacoustic analysis along with morphology was used to delimit the new species. Raorchestes honnametti sp. nov., is currently known only from Biligiri Rangaswamy Temple Tiger Reserve, a part of Biligiri Rangaswamy horst mountain range (a mountain formed due movement of two faults) formed during the Late Quaternary period (1.8–2.58 Ma). Discovery of cryptic species from a highly speciose and well-studied genus Raorchestes hints at the possible existence of several more cryptic species in this genus. We discuss the possible reasons for crypsis and emphasize the need for continued systematic surveys of amphibians across the Western Ghats. PMID:26934213

  13. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.

    PubMed

    Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang

    2013-01-01

    Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.

  14. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.

    PubMed

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  15. Functional and Phylogenetic Relatedness in Temporary Wetland Invertebrates: Current Macroecological Patterns and Implications for Future Climatic Change Scenarios

    PubMed Central

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P.

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  16. Digitising legacy zoological taxonomic literature: Processes, products and using the output

    PubMed Central

    Lyal, Christopher H. C.

    2016-01-01

    Abstract By digitising legacy taxonomic literature using XML mark-up the contents become accessible to other taxonomic and nomenclatural information systems. Appropriate schemas need to be interoperable with other sectorial schemas, atomise to appropriate content elements and carry appropriate metadata to, for example, enable algorithmic assessment of availability of a name under the Code. Legacy (and new) literature delivered in this fashion will become part of a global taxonomic resource from which users can extract tailored content to meet their particular needs, be they nomenclatural, taxonomic, faunistic or other. To date, most digitisation of taxonomic literature has led to a more or less simple digital copy of a paper original – the output of the many efforts has effectively been an electronic copy of a traditional library. While this has increased accessibility of publications through internet access, the means by which many scientific papers are indexed and located is much the same as with traditional libraries. OCR and born-digital papers allow use of web search engines to locate instances of taxon names and other terms, but OCR efficiency in recognising taxonomic names is still relatively poor, people’s ability to use search engines effectively is mixed, and many papers cannot be searched directly. Instead of building digital analogues of traditional publications, we should consider what properties we require of future taxonomic information access. Ideally the content of each new digital publication should be accessible in the context of all previous published data, and the user able to retrieve nomenclatural, taxonomic and other data / information in the form required without having to scan all of the original papers and extract target content manually. This opens the door to dynamic linking of new content with extant systems: automatic population and updating of taxonomic catalogues, ZooBank and faunal lists, all descriptions of a taxon and its

  17. Phylogenetically-informed priorities for amphibian conservation.

    PubMed

    Isaac, Nick J B; Redding, David W; Meredith, Helen M; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  18. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Stepanova, Anna; Okahashi, Hisayo; Cronin, Thomas M.; Brouwers, Elisabeth M.

    2015-01-01

    Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean was conducted to reduce taxonomic uncertainty that will improve our understanding of species ecology, biogeography and relationship to faunas from other deep-sea regions. Fifteen genera and 40 species were examined and (re-)illustrated with high-resolution scanning electron microscopy images, covering most of known deep-sea species in the central Arctic Ocean. Seven new species are described: Bythoceratina lomonosovensis n. sp., Cytheropteron parahamatum n. sp., Cytheropteron lanceae n. sp.,Cytheropteron irizukii n. sp., Pedicythere arctica n. sp., Cluthiawhatleyi n. sp., Krithe hunti n. sp. This study provides a robust taxonomic baseline for application to paleoceanographical reconstruction and biodiversity analyses in this climatically sensitive region.

  19. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes.

    PubMed

    Erisman, Brad E; Petersen, Christopher W; Hastings, Philip A; Warner, Robert R

    2013-10-01

    Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation. Examinations of several families of fishes with adequate data on phylogeny, patterns of sex allocation, mating systems, and with some form of hermaphroditism reveal that the evolution and expression of protogyny and other forms of sex allocation show little evidence of phylogenetic inertia within specific lineages but rather are associated with particular mating systems in accordance with prevalent theories about sex allocation. Transformations from protogyny to gonochorism in groupers (Epinephelidae), seabasses (Serranidae), and wrasses and parrotfishes (Labridae) are associated with equivalent transformations in the structure of mating groups from spawning of pairs to group spawning and related increases in sperm competition. Similarly, patterns of protandry, androdioecy, simultaneous hermaphroditism, and bidirectional sex change in other lineages (Aulopiformes, Gobiidae, and Pomacentridae) match well with particular mating systems in accordance with sex-allocation theory. Unlike other animals and plants, we did not find evidence that transitions between hermaphroditism and gonochorism required functional intermediates. Two instances in which our general conclusions might not hold

  20. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis

    PubMed Central

    Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda

    2015-01-01

    Abstract The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species – Echinochasmus sp., Echinochasmus coaxatus Dietz, 1909, Stephanoprora pseudoechinata (Olsson, 1876) and Echinoparyphium mordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmus beleocephalus (von Linstow, 1893), 2n=14, and Episthmium bursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprora pseudoechinata clustered with one well-supported clade together with Echinochasmus japonicus Tanabe, 1926 (data only for 28S) and Echinochasmus coaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher