Sample records for taylor series methods

  1. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  2. Solving ODE Initial Value Problems With Implicit Taylor Series Methods

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.

  3. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  4. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  5. Application of Taylor's series to trajectory propagation

    NASA Technical Reports Server (NTRS)

    Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.

    1986-01-01

    This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.

  6. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  7. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  8. New trends in Taylor series based applications

    NASA Astrophysics Data System (ADS)

    Kocina, Filip; Šátek, Václav; Veigend, Petr; Nečasová, Gabriela; Valenta, Václav; Kunovský, Jiří

    2016-06-01

    The paper deals with the solution of large system of linear ODEs when minimal comunication among parallel processors is required. The Modern Taylor Series Method (MTSM) is used. The MTSM allows using a higher order during the computation that means a larger integration step size while keeping desired accuracy. As an example of complex systems we can take the Telegraph Equation Model. Symbolic and numeric solutions are compared when harmonic input signal is used.

  9. Three Important Taylor Series for Introductory Physics

    DTIC Science & Technology

    2009-09-01

    series by the sum of its first few terms is useful throughout an introductory physics course . Example applications [1, 2] include estimating square...Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 535 http://www.journal.lapen.org.mx Three Important Taylor Series for Introductory Physics...one dimension, which instructively ties the mathematical development to physics concepts already presented in introductory courses . Keywords

  10. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  11. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  12. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  13. On Taylor-Series Approximations of Residual Stress

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  14. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.; Picca, P.; Previti, A.

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making usemore » of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)« less

  15. Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yan Long

    2018-05-01

    When the dependence of the function on uncertain variables is non-monotonic in interval, the interval of function obtained by the classic interval extension based on the first order Taylor series will exhibit significant errors. In order to reduce theses errors, the improved format of the interval extension with the first order Taylor series is developed here considering the monotonicity of function. Two typical mathematic examples are given to illustrate this methodology. The vibration of a beam with lumped masses is studied to demonstrate the usefulness of this method in the practical application, and the necessary input data of which are only the function value at the central point of interval, sensitivity and deviation of function. The results of above examples show that the interval of function from the method developed by this paper is more accurate than the ones obtained by the classic method.

  16. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  17. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  18. Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method

    NASA Astrophysics Data System (ADS)

    Shahid, A.; Zhou, Z.; Bhatti, M. M.; Tripathi, D.

    2018-03-01

    Nanofluid dynamics with magnetohydrodynamics has tremendously contributed in industrial applications recently since presence of nanoparticle in base fluids enhances the specific chemical and physical properties. Owing to the relevance of nanofluid dynamics, we analyze the nanofluid flow in the presence of gyrotactic microorganism and magnetohydrodynamics through a stretching/shrinking plate. The impacts of chemical reaction and thermal radiation on flow characteristics are also studied. To simplify the governing equations of microorganisms, velocity, concentration and temperature, the similarity transformations are employed. The couple governing equations are numerically solved using Successive Taylor Series Linearization Method (STSLM). The velocity profile, motile microorganism density profile, concentration profile, temperature profile as well as Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are discussed using tables and graphs against all the sundry parameters. A numerical comparison is also given for Nusselt number, Sherwood number, skin friction, and density number of motile microorganisms with previously published results to validate the present model. The results show that Nusselt number, Sherwood number and density number diminish with increasing the magnetic field effects.

  19. Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems

    NASA Astrophysics Data System (ADS)

    Favorite, Jeffrey

    2017-09-01

    The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.

  20. Trees, B-series and G-symplectic methods

    NASA Astrophysics Data System (ADS)

    Butcher, J. C.

    2017-07-01

    The order conditions for Runge-Kutta methods are intimately connected with the graphs known as rooted trees. The conditions can be expressed in terms of Taylor expansions written as weighted sums of elementary differentials, that is as B-series. Polish notation provides a unifying structure for representing many of the quantities appearing in this theory. Applications include the analysis of general linear methods with special reference to G-symplectic methods. A new order 6 method has recently been constructed.

  1. Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion

    ERIC Educational Resources Information Center

    Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…

  2. Differences between Experts' and Students' Conceptual Images of the Mathematical Structure of Taylor Series Convergence

    ERIC Educational Resources Information Center

    Martin, Jason

    2013-01-01

    Taylor series convergence is a complicated mathematical structure which incorporates multiple concepts. Therefore, it can be very difficult for students to initially comprehend. How might students make sense of this structure? How might experts make sense of this structure? To answer these questions, an exploratory study was conducted using…

  3. On power series expansions of the S-resolvent operator and the Taylor formula

    NASA Astrophysics Data System (ADS)

    Colombo, Fabrizio; Gantner, Jonathan

    2016-12-01

    The S-functional calculus is based on the theory of slice hyperholomorphic functions and it defines functions of n-tuples of not necessarily commuting operators or of quaternionic operators. This calculus relays on the notion of S-spectrum and of S-resolvent operator. Since most of the properties that hold for the Riesz-Dunford functional calculus extend to the S-functional calculus, it can be considered its non commutative version. In this paper we show that the Taylor formula of the Riesz-Dunford functional calculus can be generalized to the S-functional calculus. The proof is not a trivial extension of the classical case because there are several obstructions due to the non commutativity of the setting in which we work that have to be overcome. To prove the Taylor formula we need to introduce a new series expansion of the S-resolvent operators associated to the sum of two n-tuples of operators. This result is a crucial step in the proof of our main results, but it is also of independent interest because it gives a new series expansion for the S-resolvent operators. This paper is addressed to researchers working in operator theory and in hypercomplex analysis.

  4. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  5. Beyond linear fields: the Lie–Taylor expansion

    PubMed Central

    2017-01-01

    The work extends the linear fields’ solution of compressible nonlinear magnetohydrodynamics (MHD) to the case where the magnetic field depends on superlinear powers of position vector, usually, but not always, expressed in Cartesian components. Implications of the resulting Lie–Taylor series expansion for physical applicability of the Dolzhansky–Kirchhoff (D–K) equations are found to be positive. It is demonstrated how resistivity may be included in the D–K model. Arguments are put forward that the D–K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is suggested that the Lie–Taylor series approach may lead to valuable insights into other fluid models. PMID:28265187

  6. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  7. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  8. Measuring effects of refractive surgery on corneas using Taylor series polynomials

    NASA Astrophysics Data System (ADS)

    Corbin, Jacob A.; Klein, Stanley A.; van de Pol, Corina

    1999-06-01

    Corneal topographers have made it possible to accurately map corneal shape. We applied this technology to model the post- refractive surgery cornea using Taylor series polynomials. Topography data was taken from 58 patient eyes with photorefractive keratectomy (PRK) or astigmatic photorefractive keratectomy (PARK). We looked at the changes the cornea underwent surgically, as well as the healing process. We compared the post-ablation cornea to the pre-ablation cornea and to the intended correction using novel topography maps. From the refractive map, we quantified the spherical aberration as areas of defocus on the cornea. From the pre-op exam to the first post-op exam, we measured 0.19+/-0.10 mm radius decrease in PRK and a 0.13+/-0.08 mm radius decrease in PARK in the areas where rays come to within two diopeters of defocus. As this change occurs within the optical zone, this corresponds to an increase in spherical aberration for both the PRK and the PARK patient. As the patient healed, we found additional decrease in radius of the zones of best vision in PRK patients, whereas we found no significant decrease in PARK patients. This corresponds to increased spherical aberration in the PRK patient.

  9. Taylor Curtis | NREL

    Science.gov Websites

    , The Environmental Law Institute, Washington, D.C. (2014) Featured Publication Curtis, Taylor L., Aaron . Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-70098. Levine, Aaron. Taylor L. Curtis . Golden, CO: National Renewable Energy Laboratory: NREL/TP-6A20-70121. Kevin B. Jones, Curtis, Taylor L

  10. The integration of the motion equations of low-orbiting earth satellites using Taylor's method

    NASA Astrophysics Data System (ADS)

    Krivov, A. V.; Chernysheva, N. A.

    1990-04-01

    A method for the numerical integration of the equations of motion for a satellite is proposed, taking the earth's oblateness and atmospheric drag into account. The method is based on Taylor's representation of the solution to the corresponding polynomial system. The algorithm for choosing the integration step and error estimation is constructed. The method is realized as a subrouting package. The method is applied to a low-orbiting earth satellite and the results are compared with those obtained using Everhart's method.

  11. Applicability of Taylor's hypothesis in thermally driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2018-04-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.

  12. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  13. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  14. A Taylor weak-statement algorithm for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Kim, J. W.

    1987-01-01

    Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.

  15. Suppressing Taylor vortices in a Taylor-Couette flow system with free surface

    NASA Astrophysics Data System (ADS)

    Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.

    2016-11-01

    Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.

  16. PREFACE: The 15th International Couette-Taylor Worskhop

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  17. Taylor dispersion in wind-driven current

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  18. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  19. Arithmetical functions and irrationality of Lambert series

    NASA Astrophysics Data System (ADS)

    Duverney, Daniel

    2011-09-01

    We use a method of Erdös in order to prove the linear independence over Q of the numbers 1, ∑ n = 1+∞1/qn2-1, ∑ n = 1+∞n/qn2-1 for every q∈Z, with |q|≥2. The main idea consists in considering the two above series as Lambert series. This allows to expand them as power series of 1/q. The Taylor coefficients of these expansions are arithmetical functions, whose properties allow to apply an elementary irrationality criterion, which yields the result.

  20. Taylor-Made Libraries

    ERIC Educational Resources Information Center

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  1. Taylor Elected to Royal Society of London

    Science.gov Websites

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at statements must be verified by facts. Taylor will travel to London in the near future for his induction, part Isaac Newton and Michael Faraday. Taylor, a Canadian citizen, received his Ph.D. at Stanford in 1962 and

  2. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  3. Legends Lecture Series

    NASA Image and Video Library

    2011-10-13

    Stennis Space Center Director Patrick Scheuermann (right) welcomes former leaders to the fourth Legends Lecture Series presentation Oct. 13. Stennis launched the series in November 2010 as part of a yearlong 50th anniversary celebration. The recent session focused on past rocket engine test work. Visiting Stennis legends were: (l to r) Dave Geiger, Patrick Mooney, Boyce Mix, J. Stephens Dick, James Taylor and Marvin Carpenter.

  4. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  5. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  6. Characterising experimental time series using local intrinsic dimension

    NASA Astrophysics Data System (ADS)

    Buzug, Thorsten M.; von Stamm, Jens; Pfister, Gerd

    1995-02-01

    Experimental strange attractors are analysed with the averaged local intrinsic dimension proposed by A. Passamante et al. [Phys. Rev. A 39 (1989) 3640] which is based on singular value decomposition of local trajectory matrices. The results are compared to the values of Kaplan-Yorke and the correlation dimension. The attractors, reconstructed with Takens' delay time coordinates from scalar velocity time series, are measured in the hydrodynamic Taylor-Couette system. A period doubling route towards chaos obtained from a very short Taylor-Couette cylinder yields a sequence of experimental time series where the local intrinsic dimension is applied.

  7. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  8. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  9. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  10. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  11. Herringbone streaks in Taylor-Couette turbulence.

    PubMed

    Dong, S

    2008-03-01

    We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation, axial distribution, onset, and tilting angle of these streaks are characterized.

  12. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. Aeromagnetic Survey of Taylor Mountains Area in Southwest Alaska, A Website for the Distribution of Data

    USGS Publications Warehouse

    ,

    2006-01-01

    USGS Data Series Report for the release of aeromagnetic data collected in the Taylor Mountains Area of Southwest Alaska and associated contractor reports. Summary: An airborne high-resolution magnetic and coincidental horizontal magnetic gradiometer survey was completed over the Taylor Mountains area in southwest Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by April 7, 2004, and data acquisition was initiated on April 17, 2004. The final data acquisition and final test/calibrations flight was completed on May 31, 2004. Data acquired during the survey totaled 8,971.15 line-miles.

  14. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  15. 33 CFR 117.987 - Taylor Bayou.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  16. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  17. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  18. Fluctuation scaling, Taylor's law, and crime.

    PubMed

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  19. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  20. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  1. String-theoretic deformation of the Parke-Taylor factor

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  2. Taylorism and the Logic of Learning Outcomes

    ERIC Educational Resources Information Center

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  3. A cosmological Slavnov-Taylor identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Hael; Holman, R.; Vardanyan, Tereza, E-mail: hcollins@andrew.cmu.edu, E-mail: rh4a@andrew.cmu.edu, E-mail: tvardany@andrew.cmu.edu

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states.more » We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.« less

  4. The Life and Legacy of G. I. Taylor

    NASA Astrophysics Data System (ADS)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  5. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    van der Straeten, Erik; Beck, Christian

    2009-09-01

    We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.

  6. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.

  7. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  8. Experiments of the highly non-linear Rayleigh-Taylor instability regime and dependence on Atwood Number

    NASA Astrophysics Data System (ADS)

    Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Functional DNA: Teaching Infinite Series through Genetic Analogy

    ERIC Educational Resources Information Center

    Kowalski, R. Travis

    2011-01-01

    This article presents an extended analogy that connects infinite sequences and series to the science of genetics, by identifying power series as "DNA for a function." This analogy allows standard topics such as convergence tests or Taylor approximations to be recast in a "forensic" light as mathematical analogs of genetic concepts such as DNA…

  10. The New Taylorism: Hacking at the Philosophy of the University's End

    ERIC Educational Resources Information Center

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  11. 20. TURNTABLE WITH CABLE CAR BAY & TAYLOR: View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TURNTABLE WITH CABLE CAR - BAY & TAYLOR: View to northwest of the Bay and Taylor turntable. The gripman and conductor are turning the car around. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  12. Introduction to the Special Series.

    ERIC Educational Resources Information Center

    Peterson, Lizette

    1986-01-01

    Presents a special series of seven articles dealing with biopsychosocial oncology, the role of psychology in cancer treatment. Includes an introduction by Lizette Peterson and articles by Thomas Burish and Michael Carey, Susan Jay et al., Shelley Taylor et al., David Cella and Susan Tross, Gerald Koocher, and Leonard Derogatis. (KS)

  13. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  14. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  15. G.I. Taylor and the Trinity Test

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  16. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  17. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  18. THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.; TenBarge, J. M.

    2014-08-01

    Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less

  19. 15. TURNTABLE RECONSTRUCTION BAY & TAYLOR: Photocopy of January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TURNTABLE RECONSTRUCTION - BAY & TAYLOR: Photocopy of January 1941 photograph taken during reconstruction of the Bay and Taylor turntable. View to the south. The 'spider' that carries the actual turntable is in place in the pit. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  1. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  2. Centrifugally Driven Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  3. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  4. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  5. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  6. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  7. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  8. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  9. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  10. 75 FR 7405 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... available in the AD docket shortly after receipt. FOR FURTHER INFORMATION CONTACT: Taylor Martin, Aerospace... AD docket. Relevant Service Information BAE Systems has issued British Aerospace Jetstream Series...

  11. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  12. Techniques for optimizing nanotips derived from frozen taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less

  13. Dynamic stabilization of classical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2011-09-15

    Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.

  14. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    USGS Publications Warehouse

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  15. Fluid-structure interaction in Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Kempf, Martin Horst Willi

    1998-10-01

    The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.

  16. Instability of Taylor-Sedov blast waves propagating through a uniform gas

    NASA Astrophysics Data System (ADS)

    Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.; Crawford, J.; Ripin, B. H.

    1991-05-01

    An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.

  17. DSM-5 and ADHD - an interview with Eric Taylor.

    PubMed

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  18. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    NASA Astrophysics Data System (ADS)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  19. A litmus test for exploitation: James Stacey Taylor's stakes and kidneys.

    PubMed

    Kuntz, J R

    2009-12-01

    James Stacy Taylor advances a thorough argument for the legalization of markets in current (live) human kidneys. The market is seemly the most abhorrent type of market, a market where the least well-off sell part of their body to the most well off. Though rigorously defended overall, his arguments concerning exploitation are thin. I examine a number of prominent bioethicists' account of exploitation: most importantly, Ruth Sample's exploitation as degradation. I do so in the context of Taylor's argument, with the aim of buttressing Taylor's position that a regulated kidney market is morally allowable. I argue that Sample fails to provide normative grounds consistent with her claim that exploitation is wrong. I then reformulate her account for consistency and plausibility. Still, this seemingly more plausible view does not show that Taylor's regulated kidney market is prohibitively exploitative of impoverished persons. I tack into place one more piece of support for Taylor's conclusion. (wc. 148).

  20. Jupiter's great red spot revisited. [validity of Taylor column theory

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    On the original Taylor column theory of Jupiter's Great Red Spot, the fixed latitude of the Spot is taken to imply that the Taylor column in Jupiter's atmosphere is associated with a disturbance such as a topographic feature of the surface Q underlying the atmosphere. The alternative suggestion that the Taylor column is produced by a solid raft floating at depth in the atmosphere is somewhat easier to reconcile with the approximately 10s difference between the respective rotation periods P sub S and P sub R of the Red Spot and of the radio sources, but it does not account so readily for the fixed latitude of the Spot unless it can be shown that the raft is in stable equilibrium under the north-south components of the dynamical forces, including wind effects, acting upon it. A slight wavering of the upper end of the Taylor column relative to the lower end could account at least in part for the most rapid variations in P sub S, but the slow large-amplitude variations in P sub S must reflect changes in the longitudinal motion of either the surface Q or of the raft. By generalizing the Proudman-Taylor theorem to the case of a non-homogeneous fluid it is shown that the Taylor column theory does not imply very special and therefore unlikely horizontal and vertical temperature variations in Jupiter's atmosphere, thus refuting a widely-held belief to the contrary.

  1. G.I. Taylor and the Trinity test

    NASA Astrophysics Data System (ADS)

    Deakin, Michael A. B.

    2011-12-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions of the story are quite inaccurate historically. The reality is more complex than the usual accounts have it. This article sets out to disentangle fact from fiction.

  2. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    USGS Publications Warehouse

    Bockheim, James G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  3. Tweedie convergence: a mathematical basis for Taylor's power law, 1/f noise, and multifractality.

    PubMed

    Kendal, Wayne S; Jørgensen, Bent

    2011-12-01

    Plants and animals of a given species tend to cluster within their habitats in accordance with a power function between their mean density and the variance. This relationship, Taylor's power law, has been variously explained by ecologists in terms of animal behavior, interspecies interactions, demographic effects, etc., all without consensus. Taylor's law also manifests within a wide range of other biological and physical processes, sometimes being referred to as fluctuation scaling and attributed to effects of the second law of thermodynamics. 1/f noise refers to power spectra that have an approximately inverse dependence on frequency. Like Taylor's law these spectra manifest from a wide range of biological and physical processes, without general agreement as to cause. One contemporary paradigm for 1/f noise has been based on the physics of self-organized criticality. We show here that Taylor's law (when derived from sequential data using the method of expanding bins) implies 1/f noise, and that both phenomena can be explained by a central limit-like effect that establishes the class of Tweedie exponential dispersion models as foci for this convergence. These Tweedie models are probabilistic models characterized by closure under additive and reproductive convolution as well as under scale transformation, and consequently manifest a variance to mean power function. We provide examples of Taylor's law, 1/f noise, and multifractality within the eigenvalue deviations of the Gaussian unitary and orthogonal ensembles, and show that these deviations conform to the Tweedie compound Poisson distribution. The Tweedie convergence theorem provides a unified mathematical explanation for the origin of Taylor's law and 1/f noise applicable to a wide range of biological, physical, and mathematical processes, as well as to multifractality.

  4. Magnetically Induced Rotating Rayleigh-Taylor Instability.

    PubMed

    Scase, Matthew M; Baldwin, Kyle A; Hill, Richard J A

    2017-03-03

    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses 1 , rocketry 2 or linear electric motors 3 to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors e.g. 4 , 5 , 6 have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10 -6 - 10 -5 , compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.

  5. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  6. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    NASA Technical Reports Server (NTRS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  7. Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.

    2017-12-01

    The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.

  8. Using a High-Resolution Ensemble Modeling Method to Inform Risk-Based Decision-Making at Taylor Park Dam, Colorado

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Mahoney, K. M.; Holman, K. D.

    2015-12-01

    The Bureau of Reclamation (Reclamation) is responsible for the safety of Taylor Park Dam, located in central Colorado at an elevation of 9300 feet. A key aspect of dam safety is anticipating extreme precipitation, runoff and the associated inflow of water to the reservoir within a probabilistic framework for risk analyses. The Cooperative Institute for Research in Environmental Sciences (CIRES) has partnered with Reclamation to improve understanding and estimation of precipitation in the western United States, including the Taylor Park watershed. A significant challenge is that Taylor Park Dam is located in a relatively data-sparse region, surrounded by mountains exceeding 12,000 feet. To better estimate heavy precipitation events in this basin, a high-resolution modeling approach is used. The Weather Research and Forecasting (WRF) model is employed to simulate events that have produced observed peaks in streamflow at the location of interest. Importantly, an ensemble of model simulations are run on each event so that uncertainty bounds (i.e., forecast error) may be provided such that the model outputs may be more effectively used in Reclamation's risk assessment framework. Model estimates of precipitation (and the uncertainty thereof) are then used in rainfall runoff models to determine the probability of inflows to the reservoir for use in Reclamation's dam safety risk analyses.

  9. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the...

  10. Baker & Taylor's George Coe

    ERIC Educational Resources Information Center

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  11. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.

  12. A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.

  13. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  14. Neo-Taylorism in Educational Administration?

    ERIC Educational Resources Information Center

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography…

  15. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.

    PubMed

    Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  16. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform

    PubMed Central

    Tripathy, Rajesh K.; Zamora-Mendez, Alejandro; de la O Serna, José A.; Paternina, Mario R. Arrieta; Arrieta, Juan G.; Naik, Ganesh R.

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  17. Taylor Impact Tests and Simulations on PBX 9501

    NASA Astrophysics Data System (ADS)

    Clements, Brad; Thompson, Darla G.; Luscher, D. J.; Deluca, Racci

    2011-06-01

    Taylor impact tests have been conducted previously on plastic bonded explosives (PBXs) to characterize the stress state of these materials as they impact smooth and flat steel anvil surfaces at speeds of ~100m/s (i.e. Christopher, et al, 11th Detonation Symposium). In 2003, C. Liu and R. Ellis (unpublished, Los Alamos National Laboratory) performed Taylor tests on PBX 9501 up to speeds of 115 m/s, capturing impact images. In the work presented here, we have extended these tests to velocities of 200 m/s using a composite-lined gun barrel and no specimen sabot. Specimen images are used to validate the thermo-mechanical constitutive model ViscoSCRAM. ViscoSCRAM has been parameterized for PBX 9501 in uniaxial stress configurations. Simulating Taylor impact experiments tests the model in situations undergoing extreme damage. In addition, experimental variations to specimen confinement and friction are introduced in an attempt to establish ignition thresholds in this velocity regime.

  18. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  19. Rayleigh--Taylor spike evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schappert, G. T.; Batha, S. H.; Klare, K. A.

    2001-09-01

    Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150more » {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.« less

  20. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    NASA Technical Reports Server (NTRS)

    Banyukevich, A.; Ziolkovski, K.

    1975-01-01

    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  1. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  2. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  3. Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Gajjar, P. N.

    2018-04-01

    The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.

  4. Application of differential transformation method for solving dengue transmission mathematical model

    NASA Astrophysics Data System (ADS)

    Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.

    2018-03-01

    The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.

  5. Cross-correlation of point series using a new method

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.

    1994-01-01

    Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.

  6. Bistability and chaos in the Taylor-Green dynamo.

    PubMed

    Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj

    2012-03-01

    Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.

  7. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    NASA Astrophysics Data System (ADS)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  8. Application of AWE for RCS Frequency Response Calculations Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1996-01-01

    An implementation of the Asymptotic Waveform Evaluation (AWE) technique is presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The electric current, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of the Taylor series (called 'moments') are obtained using the frequency derivatives of the EFIE. Using the moments, the electric current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth. A good agreement between AWE and the exact solution over the bandwidth is observed.

  9. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  10. Nature and significance of Austin-Taylor unconformity on western margin of east Texas basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surles, M.A. Jr.

    1984-04-01

    The Taylor Marl unconformably overlies the Austin Chalk on the western margin of the East Texas basin. Along this contact, up to 275 ft (84 m) of upper Austin is missing in the Waco area and up to 450 ft (137 m) in Bell County. However, the Austin Chalk appears to have been more-or-less uniformly deposited throughout the study area. Apparently regional uplift caused a regression that terminated Austin deposition and was related to the erosion of the upper Chalk. While the unconformity is areally extensive, slightly angular, and accounts for a relatively long period of time, the mechanism ofmore » erosion that caused the unconformity is still uncertain. Erosion was terminated by the deposition of the lower Taylor Marl. Taylor A, the lowermost subdivision of the lower Taylor, was deposited in a near-shore environment that was highly variable. Of particular interest is the relationship of this unconformity to structure and probably to oil occurrence in the Austin Chalk in McLennan and Falls Counties. Major Austin fracturing, which apparently does not extend into the Taylor in Falls County, clearly indicates that structure in the Chalk, at least in part, antedates Taylor deposition. Oil occurrence in the Chalk is clearly related to fracturing and probably is localized by post-Austin-pre-Taylor fracture systems.« less

  11. Improvements to surrogate data methods for nonstationary time series.

    PubMed

    Lucio, J H; Valdés, R; Rodríguez, L R

    2012-05-01

    The method of surrogate data has been extensively applied to hypothesis testing of system linearity, when only one realization of the system, a time series, is known. Normally, surrogate data should preserve the linear stochastic structure and the amplitude distribution of the original series. Classical surrogate data methods (such as random permutation, amplitude adjusted Fourier transform, or iterative amplitude adjusted Fourier transform) are successful at preserving one or both of these features in stationary cases. However, they always produce stationary surrogates, hence existing nonstationarity could be interpreted as dynamic nonlinearity. Certain modifications have been proposed that additionally preserve some nonstationarity, at the expense of reproducing a great deal of nonlinearity. However, even those methods generally fail to preserve the trend (i.e., global nonstationarity in the mean) of the original series. This is the case of time series with unit roots in their autoregressive structure. Additionally, those methods, based on Fourier transform, either need first and last values in the original series to match, or they need to select a piece of the original series with matching ends. These conditions are often inapplicable and the resulting surrogates are adversely affected by the well-known artefact problem. In this study, we propose a simple technique that, applied within existing Fourier-transform-based methods, generates surrogate data that jointly preserve the aforementioned characteristics of the original series, including (even strong) trends. Moreover, our technique avoids the negative effects of end mismatch. Several artificial and real, stationary and nonstationary, linear and nonlinear time series are examined, in order to demonstrate the advantages of the methods. Corresponding surrogate data are produced with the classical and with the proposed methods, and the results are compared.

  12. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  13. PEOPLE IN PHYSICS: Interview with Charles Taylor

    NASA Astrophysics Data System (ADS)

    Pople, Conducted by Stephen

    1996-07-01

    Charles Taylor started his university teaching career at UMIST in 1948. In 1965 he became Professor and Head of the Department of Physics at University College, Cardiff. He was a Vice-President of the Institute of Physics from 1970 to 1975, and Professor of Experimental Physics at the Royal Institution from 1977 until 1989. Over the years, Professor Taylor has delighted audiences of all ages with his demonstration lectures, including the Royal Institution Christmas Lectures televised in 1971 and 1989. In 1986 he became the first recipient of the Royal Society's Michael Faraday Award for contributions to the public understanding of science. His many books include Exploring Music, The Art and Science of the Lecture Demonstration, and also the Oxford Children's Book of Science, co-written with interviewer Stephen Pople.

  14. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  15. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  16. A novel weight determination method for time series data aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Paiheng; Zhang, Rong; Deng, Yong

    2017-09-01

    Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.

  17. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 43 CFR 2091.7-2 - Segregative effect and opening: Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect and opening: Taylor Grazing Act. 2091.7-2 Section 2091.7-2 Public Lands: Interior Regulations Relating to Public Lands... LAWS AND RULES Segregation and Opening of Lands § 2091.7-2 Segregative effect and opening: Taylor...

  19. Compression of an Accelerated Taylor State in SSX

    NASA Astrophysics Data System (ADS)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t < 10 μ s, adiabatic compression is observed. The magnetothermodynamics of this compression do not appear to be dictated by the MHD equation of state d / dt (P /nγ) = 0 . Rather, the compression appears to evolve according to the Chew-Goldberger-Low (CGL) double adiabatic model. CGL theory presents two equations of state, one corresponding with particle motion perpendicular to magnetic field in a plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  20. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  1. Transformation-cost time-series method for analyzing irregularly sampled data

    NASA Astrophysics Data System (ADS)

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  2. Transformation-cost time-series method for analyzing irregularly sampled data.

    PubMed

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  3. 43 CFR 4170.2-1 - Penal provisions under the Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Penal provisions under the Taylor Grazing Act. 4170.2-1 Section 4170.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued...-EXCLUSIVE OF ALASKA Penalties § 4170.2-1 Penal provisions under the Taylor Grazing Act. Under section 2 of...

  4. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  5. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  6. Ethics, organ donation and tax: a reply to Quigley and Taylor.

    PubMed

    Lippert-Rasmussen, Kasper; Petersen, Thomas Søbirk

    2012-08-01

    A national opt-out system of post-mortem donation of scarce organs is preferable to an opt-in system. Unfortunately, the former system is not always feasible, and so in a recent JME article we canvassed the possibility of offering people a tax break for opting-in as a way of increasing the number of organs available for donation under an opt-in regime. Muireann Quigley and James Stacey Taylor criticize our proposal. Roughly, Quigley argues that our proposal is costly and, hence, is unlikely to be implemented, while Taylor contests our response to a Titmuss-style objection to our scheme. In response to Quigley, we note that our proposal's main attraction lies in gains not reflected in the figures presented by Quigley and that the mere fact that it is costly does not imply that it is unfeasible. In response to Taylor, we offer some textual evidence in support of our interpretation of Taylor and responds to his favoured interpretation of the Titmuss-style objection that many people seem to want to donate to charities even if they can deduct their donations from their income tax. Finally, we show why our views do not commit us to endorsing a free organ-market.

  7. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    PubMed

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  8. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  9. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  10. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical weathering in a polar climate

    USGS Publications Warehouse

    Lyons, W.B.; Nezat, C.A.; Benson, L.V.; Bullen, T.D.; Graham, E.Y.; Kidd, J.; Welch, K.A.

    2002-01-01

    We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.

  11. Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.

    2017-09-01

    The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.

  12. Trends in Elevated Triglyceride in Adults: United States, 2001-2012

    MedlinePlus

    ... All variance estimates accounted for the complex survey design using Taylor series linearization ( 10 ). Percentage estimates for the total adult ... al. National Health and Nutrition Examination Survey: Sample design, 2007–2010. ... KM. Taylor series methods. In: Introduction to variance estimation. 2nd ed. ...

  13. Advection and Taylor-Aris dispersion in rivulet flow

    NASA Astrophysics Data System (ADS)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  14. Nonideal Rayleigh–Taylor mixing

    PubMed Central

    Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.

    2010-01-01

    Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983

  15. 75 FR 22517 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... INFORMATION CONTACT: Taylor Martin, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301... [Amended] 0 2. The FAA amends Sec. 39.13 by adding the following new AD: 2010-09-02 British Aerospace...

  16. Taylor instability in the shock layer on a Jovian atmosphere entry probe.

    NASA Technical Reports Server (NTRS)

    Compton, D. L.

    1972-01-01

    Investigation of the Taylor instability relative to the dynamical instability whose presence in the shock layer on a spacecraft entering the Jovian atmosphere is to be expected because of the difference in velocity across the shear layer. Presented calculations show that the Taylor instability at the interface between shock-heated freestream gas and ablation products is inconsequential in comparison to the shear layer instability.

  17. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  18. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  19. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarski, Jacek; Ruediger, Guenther

    2007-12-15

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less

  20. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  1. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  2. McMurdo LTER: streamflow measurements in Taylor Valley

    USGS Publications Warehouse

    McKnight, D.; House, H.; Von Guerard, P.

    1994-01-01

    Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.

  3. Irregular wall roughness in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  4. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  5. Lightcurve Analysis and Rotation Period Determination for Asteroids 1491 Balduinus and 2603 Taylor

    NASA Astrophysics Data System (ADS)

    Odden, Caroline E.; Cohen, Adam J.; Davis, Spencer; Eldracher, Emelie A.; Fitzgerald, Zachary T.; Jiang, Derek C.; Kozol, Eliana L.; Laurencin, Victoria L.; Meyer-Idzik, Benjamin D.; Pennington, Oliver; Philip, Reuben C.; Sanchez, Emily J.; Warren, Natalie J.; Klinglesmith, Daniel A.; Briggs, John W.

    2018-07-01

    Photometric observations of asteroids 1491 Balduinus and 2603 Taylor were made from 2017 December to 2018 February. 1491 Balduinus was found to have a rotational period 15.315 ± 0.003 h with amplitude 0.40 mag; 2603 Taylor was found to have rotational period 3.905 ± 0.001 h with amplitude 0.27 mag.

  6. Financial time series analysis based on information categorization method

    NASA Astrophysics Data System (ADS)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  7. Two Point Exponential Approximation Method for structural optimization of problems with frequency constraints

    NASA Technical Reports Server (NTRS)

    Fadel, G. M.

    1991-01-01

    The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.

  8. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  9. Frank Bursley Taylor - Forgotten Pioneer of Continental Drift.

    ERIC Educational Resources Information Center

    Black, George W., Jr.

    1979-01-01

    Frank B. Taylor was an American geologist who specialized in the glacial geology of the Great Lakes. This article discusses his work on the Continental Drift theory, which preceeded the work of Alfred Wegener by a year and a half. (MA)

  10. CURTIS TAYLOR, PRESIDENT OF LINC RESEARCH CORP.

    NASA Image and Video Library

    2016-04-27

    CURTIS O. TAYLOR, PRESIDENT OF LINC RESEARCH CORP, (L), AND JEFF LINDNER, CHIEF ENGINEER, POSE WITH HARDWARE FOR THEIR PATENTED TECHNOLOGY, FLUID STRUCTURE COUPLING, WHICH USES SIMPLE PHYSICS TO DAMPEN POTENTIALLY HARMFUL SHAKING IN STRUCTURES. INSTALLATION OF THE FLUID STRUCTURE COUPLING TECHNOLOGY IN A BUILDING WILL TAKE PLACE IN SUMMER OF 2016.

  11. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A

  12. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  13. Numerical study of spherical Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Yang, R.-J.

    1989-01-01

    A new technique to simulate Taylor vortices in a spherical gap between a rotating inner sphere and a stationary outer one has been developed and tested. Paths leading to zero-, one-, and two-vortex flows are designed heuristically. Fictitious symmetric boundaries near the equator are imposed, and the choice of the location of the fictitious boundaries is determined by either one- or two-vortex flow being stimulated. The imposition of one or two fictitious boundaries during the initial calculation generates the state suitable for one-or two-vortex flow to exist. After removing the fictitious boundaries, the flow settles down into its own attractor. Using this method, the three steady flow modes can be simulated by using a half domain. The technique can converge to desired flows very fast, and its results show excellent agreement with experimental ones.

  14. The effect of crossflow on Taylor vortices: A model problem

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1993-01-01

    A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.

  15. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  16. Computing the Lyapunov spectrum of a dynamical system from an observed time series

    NASA Technical Reports Server (NTRS)

    Brown, Reggie; Bryant, Paul; Abarbanel, Henry D. I.

    1991-01-01

    The paper examines the problem of accurately determining, from an observed time series, the Liapunov exponents for the dynamical system generating the data. It is shown that, even with very large data sets, it is clearly advantageous to utilize local neighborhood-to-neighborhood mappings with higher-order Taylor series rather than just local linear maps. This procedure is demonstrated on the Henon and Ikeda maps of the plane itself, the Lorenz system of three ordinary differential equations, and the Mackey-Glass delay differential equation.

  17. Boundary effects and the onset of Taylor vortices

    NASA Astrophysics Data System (ADS)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  18. Taylor Proposes Five-Year Child-Care Program.

    ERIC Educational Resources Information Center

    Taylor, Glen

    Senator Glen Taylor of Minnesota proposed a five-year child-care program for the purposes of encouraging employer-sponsored child care and increasing by 53,000 the number of children in low-income families who were covered. This report lists central features of the program, which include: (1) tax incentives which employers can use when they build…

  19. Reliability, validity and description of timed performance of the Jebsen-Taylor Test in patients with muscular dystrophies.

    PubMed

    Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de

    2017-12-08

    The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  1. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  2. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  3. Taylorism, Tylerism, and Performance Indicators: Defending the Indefensible?

    ERIC Educational Resources Information Center

    Helsby, Gill; Saunders, Murray

    1993-01-01

    Explores the antecedents to the growing interest in the use of educational performance indicators. Discusses this issue in relation to the work of economist F. W. Taylor and evaluator Ralph Tyler. Describes a five-year project that demonstrates the promise of teacher-developed performance indicators. (CFR)

  4. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    NASA Astrophysics Data System (ADS)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  5. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  6. Using Taylor Expansions to Prepare Students for Calculus

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2011-01-01

    We propose an alternative to the standard introduction to the derivative. Instead of using limits of difference quotients, students develop Taylor expansions of polynomials. This alternative allows students to develop many of the central ideas about the derivative at an intuitive level, using only skills and concepts from precalculus, and…

  7. Positive Health Psychology: An Interview with Shelley Taylor.

    ERIC Educational Resources Information Center

    Rich, Grant Jewell

    2000-01-01

    Presents an interview with Shelley Taylor, a professor of Psychology at the University of California in Los Angles (California). Addresses topics such as how she became interested in psychology, the importance of health psychology in the curriculum, the ideal training for students in health psychology, and her work with "positive illusions." (CMK)

  8. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  9. 2. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  10. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients. Copyright 2012, SLACK Incorporated.

  11. Taylor bubbles in liquid filled annuli: Some new observations

    NASA Astrophysics Data System (ADS)

    Agarwal, V.; Jana, A. K.; Das, G.; Das, P. K.

    2007-10-01

    Taylor bubbles rising through a vertical concentric annulus do not wrap around the inner tube completely. The two edges of the bubble are separated by a liquid bridge which increases with an increase of the inner radius. However, the change in the shape of the Taylor bubbles in annuli with extremely small inner diameter has not yet been reported. In the present investigation, several experiments have been performed in circular and noncircular annuli to understand the influence of the inner and outer wall on the bubble shape. The bubble has been observed to assume a completely different shape in both circular and square annuli with a very thin inner rod. Nevertheless, the rise velocity for such situations agree with the prediction of the model proposed by Das et al. [Chem. Eng. Sci. 53, 977 (1998)] when the outer pipe is circular but fails for a square outer pipe.

  12. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji

    2017-10-01

    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 < 1 . Moreover, in the case of weak guide field Bz 0 < 0.2 , a helically-symmetric relaxed state is self-generated instead of the axisymmetric reversed-field pinch. As a theoretical model, the helicity balance is considered in a similar way to R. G. O'Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  13. Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.

    ERIC Educational Resources Information Center

    Allen, JoBeth

    Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…

  14. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  15. A cluster merging method for time series microarray with production values.

    PubMed

    Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio

    2014-09-01

    A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.

  16. 1. Historic American Buildings Survey Everitt K. Taylor, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Everitt K. Taylor, Photographer September 15, 1936 EXTERIOR - GENERAL VIEW EAST ELEVATION FROM OLD PRINT IN POSSESSION OF OWNER - Governor's House, 149 Kearny Avenue, Perth Amboy, Middlesex County, NJ

  17. Transient electromagnetic scattering by a radially uniaxial dielectric sphere: Debye series, Mie series and ray tracing methods

    NASA Astrophysics Data System (ADS)

    Yazdani, Mohsen

    Transient electromagnetic scattering by a radially uniaxial dielectric sphere is explored using three well-known methods: Debye series, Mie series, and ray tracing theory. In the first approach, the general solutions for the impulse and step responses of a uniaxial sphere are evaluated using the inverse Laplace transformation of the generalized Mie series solution. Following high frequency scattering solution of a large uniaxial sphere, the Mie series summation is split into the high frequency (HF) and low frequency terms where the HF term is replaced by its asymptotic expression allowing a significant reduction in computation time of the numerical Bromwich integral. In the second approach, the generalized Debye series for a radially uniaxial dielectric sphere is introduced and the Mie series coefficients are replaced by their equivalent Debye series formulations. The results are then applied to examine the transient response of each individual Debye term allowing the identification of impulse returns in the transient response of the uniaxial sphere. In the third approach, the ray tracing theory in a uniaxial sphere is investigated to evaluate the propagation path as well as the arrival time of the ordinary and extraordinary returns in the transient response of the uniaxial sphere. This is achieved by extracting the reflection and transmission angles of a plane wave obliquely incident on the radially oriented air-uniaxial and uniaxial-air boundaries, and expressing the phase velocities as well as the refractive indices of the ordinary and extraordinary waves in terms of the incident angle, optic axis and propagation direction. The results indicate a satisfactory agreement between Debye series, Mie series and ray tracing methods.

  18. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  19. A window-based time series feature extraction method.

    PubMed

    Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife

    2017-10-01

    This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  1. DSMC Simulations of High Mach Number Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01 Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r1).

  2. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  3. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikaelian, Karnig O.

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  4. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  5. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  6. The Spirit and Action of Citizenship: Alex Taylor Community School.

    ERIC Educational Resources Information Center

    Haggerson, Nelson L.; And Others

    1987-01-01

    Describes a study of the prosocial atmosphere and citizenship spirit found at Alex Taylor Community School in Edmonton, Canada. Includes a brief background of the project and a description of several motivating citizenship activities within the school. (BSR)

  7. Traveling waves in a magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Ji, Hantao

    2007-07-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

  8. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  9. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  10. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less

  11. Transition to turbulence in Taylor-Couette ferrofluidic flow

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572

  12. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes

  13. Rayleigh-Taylor instability in an equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  14. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  15. A new data processing technique for Rayleigh-Taylor instability growth experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yongteng; Tu, Shaoyong; Miao, Wenyong

    Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discussmore » both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.« less

  16. 78 FR 61505 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Taylor's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...We, the U.S. Fish and Wildlife Service, designate critical habitat for the Taylor's checkerspot butterfly (Euphydryas editha taylori) and streaked horned lark (Eremophila alpestris strigata) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 1,941 acres (786 hectares) in Island, Clallam, and Thurston Counties in Washington, and in Benton County in Oregon, fall within the boundaries of the critical habitat designation for Taylor's checkerspot butterfly. Approximately 4,629 acres (1,873 hectares) in Grays Harbor, Pacific, and Wahkiakum Counties in Washington, and in Clatsop, Columbia, Marion, Polk, and Benton Counties in Oregon, fall within the boundaries of the critical habitat designation for streaked horned lark. The effect of this regulation is to designate critical habitat for the Taylor's checkerspot butterfly and streaked horned lark under the Act for the conservation of the species.

  17. On the variability of the Priestley-Taylor coefficient over water bodies

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.

    2016-01-01

    Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.

  18. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  19. Self-awareness deficits following loss of inner speech: Dr. Jill Bolte Taylor's case study.

    PubMed

    Morin, Alain

    2009-06-01

    In her 2006 book "My Stroke of Insight" Dr. Jill Bolte Taylor relates her experience of suffering from a left hemispheric stroke caused by a congenital arteriovenous malformation which led to a loss of inner speech. Her phenomenological account strongly suggests that this impairment produced a global self-awareness deficit as well as more specific dysfunctions related to corporeal awareness, sense of individuality, retrieval of autobiographical memories, and self-conscious emotions. These are examined in details and corroborated by numerous excerpts from Taylor's book.

  20. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  1. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  2. Some observations of a sheared Rayleigh-Taylor/Benard instability

    NASA Technical Reports Server (NTRS)

    Humphrey, J. A. C.; Marcus, D. L.

    1987-01-01

    An account is provided of preliminary flow visualization observations made in an unstably stratified flow with shear superimposed. The structures observed appear to be the superposition of a Rayleigh-Taylor/Benard instability and a Kelvin-Helmholtz instability. Aside from its intrinsic fundamental value, the study of these structures is of special interest to theoreticians developing nonlinear stability calculation methodologies.

  3. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 20, 2011 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  4. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 16, 2009 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  5. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents Notice of July 17, 2013 Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by...

  6. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  7. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE PAGES

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; ...

    2016-08-31

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  8. Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Javadpoor, M.; Farahat, S.

    2016-12-01

    Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.

  9. Taylor Farms Retail Inc., Salinas, CA; Consent Agreement and Final Order

    EPA Pesticide Factsheets

    Consent Agreement and Final Order (Proposed CA/FO), between the U.S. Environmental Protection Agency, Region IX (EPA or Complainant), and Taylor Farms Retail Inc. (Respondent), 150 Main Street Salinas, CA 93901. Docket Number CWA-09-2018-0010

  10. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Treesearch

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  11. a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.

    2018-04-01

    Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.

  12. Empirical method to measure stochasticity and multifractality in nonlinear time series

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  13. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  14. Equalizer system and method for series connected energy storing devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ross, Guy

    1999-01-01

    An apparatus and method for regulating the charge voltage of a number of electrochemical cells connected in series is disclosed. Equalization circuitry is provided to control the amount of charge current supplied to individual electrochemical cells included within the series string of electrochemical cells without interrupting the flow of charge current through the series string. The equalization circuitry balances the potential of each of the electrochemical cells to within a pre-determined voltage setpoint tolerance during charging, and, if necessary, prior to initiating charging. Equalization of cell potentials may be effected toward the end of a charge cycle or throughout the charge cycle. Overcharge protection is also provided for each of the electrochemical cells coupled to the series connection. During a discharge mode of operation in accordance with one embodiment, the equalization circuitry is substantially non-conductive with respect to the flow of discharge current from the series string of electrochemical cells. In accordance with another embodiment, equalization of the series string of cells is effected during a discharge cycle.

  15. Private Rogers L. Taylor: Prisoner of the Japanese

    DTIC Science & Technology

    2015-04-01

    cooking , its body closely resembled that of a human baby. Other soldiers recall their memories regarding the local fare on Bataan. Lajzer recounted...Horse meat stunk so bad it was revolting. The cooks would boil it and then fry it over an open fire so it could be eaten. … Believe me, mules...gathering wood and water for cooking but the worst was the burial detail, which Taylor begrudgingly performed. This is not a detail he spoke of

  16. Combined study of the solar neighbourhood kinematics - Spherical harmonics and Taylor expansions

    NASA Astrophysics Data System (ADS)

    Hernandez-Pajares, M.; Nunez, J.

    1990-08-01

    This paper relates two methods of analyzing the kinematic parameters of the local macroscopic motions of the Galaxy: (1) the Ogorodnikov-Milne model (OM) that consists in the three-dimensional Taylor expansion of the mean velocity field, and (2) the two-dimensional spherical harmonic development of the velocity components (SH). The theoretical relations between the SH coefficients and the second-order OM ones for the radial velocity v(r), and the galactic heliocentric components of the velocity U, V, W are presented. Only the hypothesis of separability of the stellar density function of the sample into angular and radial parts is needed. They are applied to 4732 A-M stars included in the Figueras (1986) sample.

  17. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  18. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Andrews, Malcolm J.

    2011-04-01

    We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.

  19. James Taylor (1859-1946): favourite disciple of Hughlings Jackson and William Gowers.

    PubMed

    Eadie, M J

    2013-01-01

    In neurological circles today the name James Taylor (1859-1946) is probably remembered mainly for his role in editing the Selected Writings of John Hughlings Jackson, the most readily available source of Jackson's contributions to neurological knowledge. Taylors' own neurological achievements are largely or entirely forgotten, but in his day he was an influential figure whose career linked the great figures of the golden era of late nineteenth century British neurology to the neurology of the first half of the twentieth century. Not only was he a junior professional colleague and close friend of both John Hughlings Jackson and William Gowers, he also produced a substantial corpus of neurological writings in his own right, including a textbook of child neurology and the first English language account of subacute combined degeneration of the spinal cord.

  20. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  1. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  2. Molecular-Level Simulations of the Turbulent Taylor-Green Flow

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Plimpton, S. J.; Torczynski, J. R.; Papadakis, G.

    2017-11-01

    The Direct Simulation Monte Carlo (DSMC) method, a statistical, molecular-level technique that provides accurate solutions to the Boltzmann equation, is applied to the turbulent Taylor-Green vortex flow. The goal of this work is to investigate whether DSMC can accurately simulate energy decay in a turbulent flow. If so, then simulating turbulent flows at the molecular level can provide new insights because the energy decay can be examined in detail from molecular to macroscopic length scales, thereby directly linking molecular relaxation processes to macroscopic transport processes. The DSMC simulations are performed on half a million cores of Sequoia, the 17 Pflop platform at Lawrence Livermore National Laboratory, and the kinetic-energy dissipation rate and the energy spectrum are computed directly from the molecular velocities. The DSMC simulations are found to reproduce the Kolmogorov -5/3 law and to agree with corresponding Navier-Stokes simulations obtained using a spectral method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  3. Inertial migration of particles in Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  4. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  5. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  6. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  7. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  8. On the equivalence of case-crossover and time series methods in environmental epidemiology.

    PubMed

    Lu, Yun; Zeger, Scott L

    2007-04-01

    The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.

  9. Taylor's Theorem: The Elusive "c" Is Not So Elusive

    ERIC Educational Resources Information Center

    Kreminski, Richard

    2010-01-01

    For a suitably nice, real-valued function "f" defined on an open interval containing [a,b], f(b) can be expressed as p[subscript n](b) (the nth Taylor polynomial of f centered at a) plus an error term of the (Lagrange) form f[superscript (n+1)](c)(b-a)[superscript (n+1)]/(n+1)! for some c in (a,b). This article is for those who think that not…

  10. Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements

    DOE PAGES

    Cheng, Yu; Sayde, Chadi; Li, Qi; ...

    2017-04-18

    Taylors’ frozen turbulence hypothesis suggests that all turbulent eddies are advected by the mean streamwise velocity, without changes in their properties. This hypothesis has been widely invoked to compute Reynolds’ averaging using temporal turbulence data measured at a single point in space. However, in the atmospheric surface layer, the exact relationship between convection velocity and wavenumber k has not been fully revealed since previous observations were limited by either their spatial resolution or by the sampling length. Using Distributed Temperature Sensing (DTS), acquiring turbulent temperature fluctuations at high temporal and spatial frequencies, we computed convection velocities across wavenumbers using amore » phase spectrum method. We found that convection velocity decreases as k –1/3 at the higher wavenumbers of the inertial subrange instead of being independent of wavenumber as suggested by Taylor's hypothesis. We further corroborated this result using large eddy simulations. Applying Taylor's hypothesis thus systematically underestimates turbulent spectrum in the inertial subrange. As a result, a correction is proposed for point-based eddy-covariance measurements, which can improve surface energy budget closure and estimates of CO 2 fluxes.« less

  11. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2014-11-01

    Magnetotelluric (MT) time-series are often contaminated with noise from natural or man-made processes. A substantial improvement is possible when the time-series are presented as clean as possible for further processing. A combinatorial method is described for filtering of MT time-series based on the Hilbert-Huang transform that requires a minimum of human intervention and leaves good data sections unchanged. Good data sections are preserved because after empirical mode decomposition the data are analysed through hierarchies, morphological filtering, adaptive threshold and multi-point smoothing, allowing separation of noise from signals. The combinatorial method can be carried out without any assumption about the data distribution. Simulated data and the real measured MT time-series from three different regions, with noise caused by baseline drift, high frequency noise and power-line contribution, are processed to demonstrate the application of the proposed method. Results highlight the ability of the combinatorial method to pick out useful signals, and the noise is suppressed greatly so that their deleterious influence is eliminated for the MT transfer function estimation.

  12. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  13. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  14. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  15. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  16. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  17. Statistical inference methods for sparse biological time series data.

    PubMed

    Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita

    2011-04-25

    Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for

  18. The Inhibition of the Rayleigh-Taylor Instability by Rotation.

    PubMed

    Baldwin, Kyle A; Scase, Matthew M; Hill, Richard J A

    2015-07-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode.

  19. The Inhibition of the Rayleigh-Taylor Instability by Rotation

    PubMed Central

    Baldwin, Kyle A.; Scase, Matthew M.; Hill, Richard J. A.

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  20. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  1. Subscales to the Taylor Manifest Anxiety Scale in Three Chronically Ill Populations.

    ERIC Educational Resources Information Center

    Moore, Peter N.; And Others

    1984-01-01

    Examines factors of anxiety in the Taylor Manifest Anxiety Scale in 150 asthma, tuberculosis, and chronic pain patients. Key cluster analysis revealed five clusters: restlessness, embarrassment, sensitivity, physiological anxiety, and self-confidence. Embarrassment is fairly dependent on the other factors. (JAC)

  2. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    PubMed Central

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606

  3. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    PubMed

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  4. Anti-solvent crystallization of L-threonine in Taylor crystallizers and MSMPR crystallizer: Effect of fluid dynamic motions on crystal size, shape, and recovery

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2017-07-01

    The influence of the fluid dynamic motions of a periodic Taylor vortex and random turbulent eddy on the anti-solvent crystallization of L-threonine was investigated. The Taylor vortex flow and random turbulent eddy flow were generated by the inner cylinder rotation in a Couette-Taylor (CT) crystallizer and the impeller agitation in a mixed-suspension mixed product removal (MSMPR) crystallizer, respectively. Furthermore, the circumferentially sinusoidal fluctuation of a Taylor vortex was induced in an elliptical Couette-Taylor (ECT) crystallizer . The periodic Taylor vortex flows in the CT and ECT crystallizers resulted in a smaller crystal size and higher crystal recovery ratio of L-threonine than the random turbulent flow in the MSMPR crystallizer due to induction of a higher supersaturation, resulting in a higher nucleation in the CT and ECT crystallizers than in the MSMPR crystallizer. Thus, the crystal size was reduced and the crystal recovery ratio enhanced when increasing the rotation/agitation speed and feed flow rate in the CT, ECT, and MSMPR crystallizers. When increasing the temperature, the crystal size and crystal recovery ratio were both increased due an enhanced mass transfer for crystal growth. The crystal morphology changes according to the fluid dynamic motion with various crystallization conditions were well correlated in terms of the supersaturation.

  5. Chapter 1: Executive Summary - 2003 Assessment of Undiscovered Oil and Gas Resources in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Gulf Coast Region, Texas

    USGS Publications Warehouse

    ,

    2006-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Upper Cretaceous Navarro and Taylor Groups in the Western Gulf Province of the Gulf Coast region (fig. 1) as part of a national oil and gas assessment effort (USGS Navarro and Taylor Groups Assessment Team, 2004). The assessment of the petroleum potential of the Navarro and Taylor Groups was based on the general geologic elements used to define a total petroleum system (TPS), including hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five assessment units (AU) in the Navarro and Taylor Groups as parts of a single TPS, the Smackover-Austin-Eagle Ford Composite TPS: Travis Volcanic Mounds Oil AU, Uvalde Volcanic Mounds Gas and Oil AU, Navarro-Taylor Updip Oil and Gas AU, Navarro-Taylor Downdip Gas and Oil AU, and Navarro-Taylor Slope-Basin Gas AU (table 1).

  6. Identifying hidden common causes from bivariate time series: a method using recurrence plots.

    PubMed

    Hirata, Yoshito; Aihara, Kazuyuki

    2010-01-01

    We propose a method for inferring the existence of hidden common causes from observations of bivariate time series. We detect related time series by excessive simultaneous recurrences in the corresponding recurrence plots. We also use a noncoverage property of a recurrence plot by the other to deny the existence of a directional coupling. We apply the proposed method to real wind data.

  7. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    NASA Technical Reports Server (NTRS)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  8. Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators

    NASA Astrophysics Data System (ADS)

    Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam

    2018-05-01

    In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.

  9. Bayesian methods for outliers detection in GNSS time series

    NASA Astrophysics Data System (ADS)

    Qianqian, Zhang; Qingming, Gui

    2013-07-01

    This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.

  10. A novel stiffness control method for series elastic actuator

    NASA Astrophysics Data System (ADS)

    Lin, Guangmo; Zhao, Xingang; Han, Jianda

    2017-01-01

    Compliance plays an important role in human-robot cooperation. However, fixed compliance, or fixed stiffness, is difficult to meet the growing needs of human machine collaboration. As a result, the robot actuator is demanded to be able to adjust its stiffness. This paper presents a stiffness control scheme for a single DOF series elastic actuator (SEA) with a linear spring mounted in series in the mechanism. In this proposed method, the output angle of the spring is measured and used to calculate the input angle of the spring, thus the equivalent stiffness of the robot actuator revealed to the human operator can be rendered in accordance to the desired stiffness. Since the techniques used in this method only involve the position information of the system, there is no need to install an expensive force/torque sensor on the actuator. Further, the force/torque produced by the actuator can be estimated by simply multiplying the deformation angle of the spring and its constant stiffness coefficient. The analysis of the stiffness controller is provided. Then a simulation that emulates a human operates the SEA while the stiffness controller is running is carried out and the results also validate the proposed method.

  11. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  12. Variational approach to stability boundary for the Taylor-Goldstein equation

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.

    2015-11-01

    Linear stability of inviscid stratified shear flow is studied by developing an efficient method for finding neutral (i.e., marginally stable) solutions of the Taylor-Goldstein equation. The classical Miles-Howard criterion states that stratified shear flow is stable if the local Richardson number JR is greater than 1/4 everywhere. In this work, the case of JR > 0 everywhere is considered by assuming strictly monotonic and smooth profiles of the ambient shear flow and density. It is shown that singular neutral modes that are embedded in the continuous spectrum can be found by solving one-parameter families of self-adjoint eigenvalue problems. The unstable ranges of wavenumber are searched for accurately and efficiently by adopting this method in a numerical algorithm. Because the problems are self-adjoint, the variational method can be applied to ascertain the existence of singular neutral modes. For certain shear flow and density profiles, linear stability can be proven by showing the non-existence of a singular neutral mode. New sufficient conditions, extensions of the Rayleigh-Fjortoft stability criterion for unstratified shear flows, are derived in this manner. This work was supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation # 55053270.

  13. Changing Course: Thurgood Marshall College Fund President Johnny Taylor Seeks New Partnerships and Avenues of Support for Public HBCUs

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2011-01-01

    When veteran educator Dr. N. Joyce Payne handed the reins of the organization she founded, the Thurgood Marshall College Fund, to entertainment lawyer and board member Johnny Taylor, Taylor began pursuing a remake of the prestigious group that has turned it on its head in just a matter of months. Today, with just more than a year of leading the…

  14. Transport in Rayleigh-stable experimental Taylor-Couette flow and granular electrification in a shaking experiment

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja

    This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of

  15. Temporal Taylor's scaling of facial electromyography and electrodermal activity in the course of emotional stimulation

    NASA Astrophysics Data System (ADS)

    Chołoniewski, Jan; Chmiel, Anna; Sienkiewicz, Julian; Hołyst, Janusz A.; Küster, Dennis; Kappas, Arvid

    2016-09-01

    High frequency psychophysiological data create a challenge for quantitative modeling based on Big Data tools since they reflect the complexity of processes taking place in human body and its responses to external events. Here we present studies of fluctuations in facial electromyography (fEMG) and electrodermal activity (EDA) massive time series and changes of such signals in the course of emotional stimulation. Zygomaticus major (ZYG, "smiling" muscle) activity, corrugator supercilii (COR, "frowning"bmuscle) activity, and phasic skin conductance (PHSC, sweating) levels of 65 participants were recorded during experiments that involved exposure to emotional stimuli (i.e., IAPS images, reading and writing messages on an artificial online discussion board). Temporal Taylor's fluctuations scaling were found when signals for various participants and during various types of emotional events were compared. Values of scaling exponents were close to 1, suggesting an external origin of system dynamics and/or strong interactions between system's basic elements (e.g., muscle fibres). Our statistical analysis shows that the scaling exponents enable identification of high valence and arousal levels in ZYG and COR signals.

  16. Large Eddy Simulations of the Tilted Rig Experiment: A Two-dimensional Rayleigh-Taylor Instability Case

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.

    2012-11-01

    The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.

  17. Fractal analysis of the short time series in a visibility graph method

    NASA Astrophysics Data System (ADS)

    Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2016-05-01

    The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.

  18. Methods for estimating confidence intervals in interrupted time series analyses of health interventions.

    PubMed

    Zhang, Fang; Wagner, Anita K; Soumerai, Stephen B; Ross-Degnan, Dennis

    2009-02-01

    Interrupted time series (ITS) is a strong quasi-experimental research design, which is increasingly applied to estimate the effects of health services and policy interventions. We describe and illustrate two methods for estimating confidence intervals (CIs) around absolute and relative changes in outcomes calculated from segmented regression parameter estimates. We used multivariate delta and bootstrapping methods (BMs) to construct CIs around relative changes in level and trend, and around absolute changes in outcome based on segmented linear regression analyses of time series data corrected for autocorrelated errors. Using previously published time series data, we estimated CIs around the effect of prescription alerts for interacting medications with warfarin on the rate of prescriptions per 10,000 warfarin users per month. Both the multivariate delta method (MDM) and the BM produced similar results. BM is preferred for calculating CIs of relative changes in outcomes of time series studies, because it does not require large sample sizes when parameter estimates are obtained correctly from the model. Caution is needed when sample size is small.

  19. Forty years later at Taylor Woods: Merging the old and new

    Treesearch

    John D. Bailey

    2008-01-01

    The Taylor Woods "Levels-of-Growing-Stock" study was established in 1962 to create a replicated ponderosa pine density experiment for the Southwest, making a valuable addition to research in the Fort Valley Experimental Forest. Basal area treatments ranged from 5-20 m2/ha (19-80 ft2/ac) when installed, designed as...

  20. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  1. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  2. An evaluation of dynamic mutuality measurements and methods in cyclic time series

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohua; Huang, Guitian; Duan, Na

    2010-12-01

    Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.

  3. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data

    NASA Astrophysics Data System (ADS)

    Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci

    2013-04-01

    This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.

  4. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    NASA Astrophysics Data System (ADS)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  5. A method for transferring NASTRAN data between dissimilar computers. [application to CDC 6000 series, IBM 360-370 series, and Univac 1100 series computers

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1973-01-01

    The NASTRAN computer program is capable of executing on three different types of computers: (1) the CDC 6000 series, (2) the IBM 360-370 series, and (3) the Univac 1100 series. A typical activity requiring transfer of data between dissimilar computers is the analysis of a large structure such as the space shuttle by substructuring. Models of portions of the vehicle which have been analyzed by subcontractors using their computers must be integrated into a model of the complete structure by the prime contractor on his computer. Presently the transfer of NASTRAN matrices or tables between two different types of computers is accomplished by punched cards or a magnetic tape containing card images. These methods of data transfer do not satisfy the requirements for intercomputer data transfer associated with a substructuring activity. To provide a more satisfactory transfer of data, two new programs, RDUSER and WRTUSER, were created.

  6. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  7. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  8. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  9. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Colin Stuart

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less

  10. Using PEACE Data from the four CLUSTER Spacecraft to Measure Compressibility, Vorticity, and the Taylor Microscale in the Magnetosheath and Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Parks, George; Gurgiolo, C.; Fazakerley, Andrew N.

    2008-01-01

    We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.

  11. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics

    PubMed Central

    Morad, M. R.; Rajabi, A.; Razavi, M.; Sereshkeh, S. R. Pejman

    2016-01-01

    A stable capillary liquid jet formed by an electric field is an important physical phenomenon for formation of controllable small droplets, power generation and chemical reactions, printing and patterning, and chemical-biological investigations. In electrohydrodynamics, the well-known Taylor cone-jet has a stability margin within a certain range of the liquid flow rate (Q) and the applied voltage (V). Here, we introduce a simple mechanism to greatly extend the Taylor cone-jet stability margin and produce a very high throughput. For an ethanol cone-jet emitting from a simple nozzle, the stability margin is obtained within 1 kV for low flow rates, decaying with flow rate up to 2 ml/h. By installing a hemispherical cap above the nozzle, we demonstrate that the stability margin could increase to 5 kV for low flow rates, decaying to zero for a maximum flow rate of 65 ml/h. The governing borders of stability margins are discussed and obtained for three other liquids: methanol, 1-propanol and 1-butanol. For a gravity-directed nozzle, the produced cone-jet is more stable against perturbations and the axis of the spray remains in the same direction through the whole stability margin, unlike the cone-jet of conventional simple nozzles. PMID:27917956

  12. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    NASA Astrophysics Data System (ADS)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2, and also for MaL

  13. Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development

    Science.gov Websites

    on the Web. Documents: Experimental Search for a Heavy Electron, DOE Technical Report, September 1967 1967 (Taylor, R. E.) Deep Inelastic Electron Scattering: Experimental, DOE Technical Report, October page may take you to non-federal websites. Their policies may differ from this site. Website Policies

  14. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  15. The method of trend analysis of parameters time series of gas-turbine engine state

    NASA Astrophysics Data System (ADS)

    Hvozdeva, I.; Myrhorod, V.; Derenh, Y.

    2017-10-01

    This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.

  16. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two

  17. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  18. Analyzing Traditional Medical Practitioners' Information-Seeking Behaviour Using Taylor's Information-Use Environment Model

    ERIC Educational Resources Information Center

    Olatokun, Wole Michael; Ajagbe, Enitan

    2010-01-01

    This survey-based study examined the information-seeking behaviour of traditional medical practitioners using Taylor's information use model. Respondents comprised all 160 traditional medical practitioners that treat sickle cell anaemia. Data were collected using an interviewer-administered, structured questionnaire. Frequency and percentage…

  19. Elimination of Gravity Influence on Flame Propagation Via Enhancement of the Saffman-Taylor Instability

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2003-01-01

    In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.

  20. Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow.

    PubMed

    Hoffmann, Ch; Lücke, M; Pinter, A

    2004-05-01

    We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders. The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio 12 with rigid nonrotating ends in a setup with radius ratio eta=0.5. Differences in structure, dynamics, symmetry properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbers M=+/-1 and M=0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second part of the paper we determine how the above listed properties of the M=-1, 0, and 1 vortex structures are changed by an externally imposed axial through flow with Reynolds numbers in the range -40< or =Re< or =40. Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are preferred.

  1. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    PubMed

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  2. The Fourier decomposition method for nonlinear and non-stationary time series analysis

    PubMed Central

    Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-01-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352

  3. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  4. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.

    PubMed

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-07-17

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.

  5. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series

    PubMed Central

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-01-01

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283

  6. Pattern selection and tip perturbations in the Saffman-Taylor problem

    NASA Technical Reports Server (NTRS)

    Hong, D. C.; Langer, J. S.

    1987-01-01

    An analytic approach to the Saffman-Taylor problem of predicting the width of a viscous finger in a Hele-Shaw cell is presented. The first purpose is to provide a systematic description of the way in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for pattern selection. It is then shown how recent experimental observations by Couder et al. (1986) may be interpreted in terms suggested by this mechanism.

  7. Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.

    PubMed

    Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D

    2013-01-01

    We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.

  8. The World of Barilla Taylor: Bringing History to Life through Primary Sources.

    ERIC Educational Resources Information Center

    Stearns, Liza

    1997-01-01

    Presents a lesson plan using material from a primary source-based curriculum kit titled "The World of Barilla Taylor." The kit uses personal letters, maps, hospital and work records, and other primary sources to document the life of a young woman working in the textile mills in 19th-century Massachusetts. (MJP)

  9. What InSAR time-series methods are best suited for the Ecuadorian volcanoes

    NASA Astrophysics Data System (ADS)

    Mirzaee, S.; Amelung, F.

    2017-12-01

    Ground displacement measurements from stacks of SAR images obtained using interferometric time-series approaches play an increasingly important role for volcanic hazard assessment. The inflation of the ground surface can indicate that magma ascends to shallower levels and that a volcano gets ready for an eruption. Commonly used InSAR time-series approaches include Small Baseline (SB), Persistent Scatter InSAR (PSI) and SqueeSAR methods but it remains unclear which approach is best suited for volcanic environments. On this poster we present InSAR deformation measurements for the active volcanoes of Ecuador (Cotopaxi, Tungurahua and Pichincha) using a variety of INSAR time-series methods. We discuss the pros and cons of each method given the available data stacks (TerraSAR-X, Cosmo-Skymed and Sentinel-1) in an effort to design a comprehensive observation strategy for the Ecuadorian volcanoes. SAR data are provided in the framework of the Group on Earth Observation's Ecuadorian Volcano Geohazard Supersite.

  10. Testing for nonlinearity in time series: The method of surrogate data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiler, J.; Galdrikian, B.; Longtin, A.

    1991-01-01

    We describe a statistical approach for identifying nonlinearity in time series; in particular, we want to avoid claims of chaos when simpler models (such as linearly correlated noise) can explain the data. The method requires a careful statement of the null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against themore » null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. We present algorithms for generating surrogate data under various null hypotheses, and we show the results of numerical experiments on artificial data using correlation dimension, Lyapunov exponent, and forecasting error as discriminating statistics. Finally, we consider a number of experimental time series -- including sunspots, electroencephalogram (EEG) signals, and fluid convection -- and evaluate the statistical significance of the evidence for nonlinear structure in each case. 56 refs., 8 figs.« less

  11. Comparison of time-series registration methods in breast dynamic infrared imaging

    NASA Astrophysics Data System (ADS)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  12. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  13. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  14. Normalization methods in time series of platelet function assays

    PubMed Central

    Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham

    2016-01-01

    Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217

  15. Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.

    PubMed

    Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal

    2011-07-01

    The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.

  16. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured usingmore » through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}« less

  17. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.

    1997-04-15

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measuredmore » using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.« less

  18. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  19. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  20. Simulating the Rayleigh-Taylor instability with the Ising model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Justin R.; Elliott, James B.

    2011-08-26

    The Ising model, implemented with the Metropolis algorithm and Kawasaki dynamics, makes a system with its own physics, distinct from the real world. These physics are sophisticated enough to model behavior similar to the Rayleigh-Taylor instability and by better understanding these physics, we can learn how to modify the system to better re ect reality. For example, we could add a v x and a v y to each spin and modify the exchange rules to incorporate them, possibly using two body scattering laws to construct a more realistic system.

  1. Photographic copy of architectural drawings for Building 4315: Taylor & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4315: Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-50 and 210-44, Military Construction: Muroc Flight Test Base, Muroc, California, Utility Yard & Shops: Carpenter & Paint Shop, Utility Shop & Lavatory, Plan & Elevations, Sheet No. 4 of 8, May 1945. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Utility & Paint Shop, Second & E Streets, Boron, Kern County, CA

  2. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villani, Mattia, E-mail: villani@fi.infn.it

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  3. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less

  4. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  5. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  6. [Correlation coefficient-based principle and method for the classification of jump degree in hydrological time series].

    PubMed

    Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting

    2018-04-01

    The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.

  7. Regional Variation in Use of Complementary Health Approaches by U.S. Adults

    MedlinePlus

    ... part of their yoga exercise. Data sources and methods Data from the 2012 NHIS were used for ... sampling design of NHIS. The Taylor series linearization method was chosen for estimation of standard errors. Differences ...

  8. Trends in Adults Receiving a Recommendation for Exercise or Other Physical Activity from a Physician or Other Health ...

    MedlinePlus

    ... to exercise or physical activity. Data source and methods National Health Interview Survey (NHIS) data are collected ... sample design of NHIS. The Taylor series linearization method was used for variance estimation. All estimates shown ...

  9. Low-fat Milk Consumption among Children and Adolescents in the United States, 2007-2008

    MedlinePlus

    ... separately reported for this group. Data source and methods Data from the National Health and Nutrition Examination ... percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. ...

  10. Calories Consumed from Alcoholic Beverages by U.S. Adults, 2007-2010

    MedlinePlus

    ... the National School Lunch Program. Data sources and methods National Health and Nutrition Examination Survey (NHANES) data ... percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. ...

  11. Antidepressant Use in Persons Aged 12 and Over: United States, 2005-2008

    MedlinePlus

    ... received from primary care providers. Data sources and methods NHANES is a continuous survey conducted to assess ... percentages were estimated using Taylor series linearization, a method that incorporates the sample design and weights. Overall ...

  12. Consumption of Sugar Drinks in the United States, 2005-2008

    MedlinePlus

    ... 130% of the poverty level. Data source and methods Data from the National Health and Nutrition Examination ... percentages were estimated using Taylor Series Linearization, a method that incorporates the sample weights and sample design. ...

  13. Young Adults Seeking Medical Care: Do Race and Ethnicity Matter?

    MedlinePlus

    ... services were sought or received. Data source and methods Data from the 2008 and 2009 NHIS were ... design of the NHIS. The Taylor series linearization method was chosen for variance estimation. All estimates shown ...

  14. Attention Deficit Hyperactivity Disorder among Children Aged 5-17 Years in the United States, 1998-2009

    MedlinePlus

    ... and imputed family income ( 10 ). Data source and methods All ADHD prevalence estimates were obtained from the ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. Differences between percentages ...

  15. Use of the Internet for Health Information: United States, 2009

    MedlinePlus

    ... as accidents or dental care. Data source and methods Data from the 2009 NHIS were used for ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. Differences between percentages ...

  16. Consumption of Added Sugar among U.S. Children and Adolescents, 2005-2008

    MedlinePlus

    ... 130% of the poverty level. Data source and methods Data from the National Health and Nutrition Examination ... percentages were estimated using Taylor Series Linearization, a method that incorporates the sample weights and sample design. ...

  17. Trends in Allergic Conditions among Children: United States, 1997-2011

    MedlinePlus

    ... and imputed family income ( 13 ). Data source and methods Prevalence estimates for allergic conditions were obtained from ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. Differences between percentages ...

  18. Use of Medication Prescribed for Emotional or Behavioral Difficulties among Children Aged 6-17 Years in the United ...

    MedlinePlus

    ... were considered to be uninsured. Data source and methods NHIS data were used to estimate the percentage ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. Differences between percentages ...

  19. Perception of Weight Status in U.S. Children and Adolescents Aged 8-15 Years, 2005-2012

    MedlinePlus

    ... Larger FIPRs indicate greater income. Data source and methods Data from NHANES were used for these analyses. ... percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. ...

  20. Consumption of Diet Drinks in the United States, 2009‒2010

    MedlinePlus

    ... in analyses for this report. Data source and methods National Health and Nutrition Examination Survey (NHANES) data ... percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. ...

  1. Consumption of Added Sugars among U.S. Adults, 2005-2010

    MedlinePlus

    ... the National School Lunch Program. Data source and methods Data from the National Health and Nutrition Examination ... percentages were estimated using Taylor Series Linearization, a method that incorporates the sample weights and sample design. ...

  2. Psychotropic Medication Use among Adolescents: United States, 2005-2010

    MedlinePlus

    ... social worker about your health?" Data source and methods NHANES is a continuous, multipurpose cross-sectional survey ... percentages are estimated using Taylor series linearization, a method that takes into consideration the sample weights and ...

  3. Vitamin D Status: United States, 2001-2006

    MedlinePlus

    ... have been published elsewhere ( 2 ). Data source and methods NHANES data were used for these analyses. NHANES ... percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. ...

  4. Strategies Used by Adults to Reduce Their Prescription Drug Costs

    MedlinePlus

    ... on their 2010 income ( 5 ). Data source and methods Data from the 2011 NHIS were used for ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. All estimates shown ...

  5. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    MedlinePlus

    ... and multiracial persons, among others. Data source and methods The National Health and Nutrition Examination Survey (NHANES) ... percentages were estimated using Taylor Series Linearization, a method that incorporates the sample weights and sample design. ...

  6. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures.

    PubMed

    Sala, Francesco; Elbatrawy, Yasser; Thabet, Ahmed M; Zayed, Mahmoud; Capitani, Dario

    2013-08-01

    To evaluate the Taylor spatial frame (TSF) for primary and definitive fixation of lower limb long-bone fractures in patients with multiple traumatic injuries. Retrospective. Level I trauma center. Consecutive series of 52 patients, 57 fractures (25 femoral and 32 tibial), treated between 2005 and 2009. Forty-nine fractures (86%) were open. Injury Severity Score ≥16 for all patients. Fifty-four fractures (95%) underwent definitive fixation with the TSF and 3 were treated primarily within 48 hours of injury. In 22 cases (39%), fractures were acutely reduced with the TSF, fixed to bone and the struts in sliding mode without further adjustment, and in 35 cases (61%), the total residual deformity correction program was undertaken. Clinical and radiological. Complete union was obtained in 52 fractures (91%) without additional surgery at an average of 29 weeks. Four nonunions and 1 delayed union occurred. Results based on Association for the Study and Application of the Method of Ilizarov criteria: 74% excellent, 16% good, 4% fair, and 7% poor for bone outcomes and 35% excellent, 47% good, and 18% fair for functional outcomes. Eighty-eight percent of patients returned to preinjury work activities. Primary and definitive fixation with the TSF is effective. Advantages include continuity of device until union, reduced risk of infection, early mobilization, restoration of primary defect caused by bone loss, easy and accurate application, convertibility and versatility compared with a monolateral fixator, and improved union rate and range of motion for lower extremity long-bone fractures in patients with multiple traumatic injuries.

  7. Extending existing structural identifiability analysis methods to mixed-effects models.

    PubMed

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    NASA Astrophysics Data System (ADS)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  9. Experimental Evidence for Magnetorotational Instability in a Taylor-Couette Flow under the Influence of a Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Rüdiger, Günther; Schultz, Manfred; Szklarski, Jacek; Hollerbach, Rainer

    2006-11-01

    A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.124501] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with the liquid metal alloy GaInSn, showing evidence for the existence of the magnetorotational instability at Reynolds numbers of order 1000 and Hartmann numbers of order 10.

  10. Physical Activity in U.S. Youth Aged 12-15 Years, 2012

    MedlinePlus

    ... equal to the 95th percentile). Data source and methods These analyses used data from the combined 2012 ... percentages were estimated using Taylor series linearization, a method that incorporates the sample design. Differences between groups ...

  11. Beyond linear methods of data analysis: time series analysis and its applications in renal research.

    PubMed

    Gupta, Ashwani K; Udrea, Andreea

    2013-01-01

    Analysis of temporal trends in medicine is needed to understand normal physiology and to study the evolution of disease processes. It is also useful for monitoring response to drugs and interventions, and for accountability and tracking of health care resources. In this review, we discuss what makes time series analysis unique for the purposes of renal research and its limitations. We also introduce nonlinear time series analysis methods and provide examples where these have advantages over linear methods. We review areas where these computational methods have found applications in nephrology ranging from basic physiology to health services research. Some examples include noninvasive assessment of autonomic function in patients with chronic kidney disease, dialysis-dependent renal failure and renal transplantation. Time series models and analysis methods have been utilized in the characterization of mechanisms of renal autoregulation and to identify the interaction between different rhythms of nephron pressure flow regulation. They have also been used in the study of trends in health care delivery. Time series are everywhere in nephrology and analyzing them can lead to valuable knowledge discovery. The study of time trends of vital signs, laboratory parameters and the health status of patients is inherent to our everyday clinical practice, yet formal models and methods for time series analysis are not fully utilized. With this review, we hope to familiarize the reader with these techniques in order to assist in their proper use where appropriate.

  12. An analytical study of M2 tidal waves in the Taiwan Strait using an extended Taylor method

    NASA Astrophysics Data System (ADS)

    Wu, Di; Fang, Guohong; Cui, Xinmei; Teng, Fei

    2018-02-01

    The tides in the Taiwan Strait (TS) feature large semidiurnal lunar (M2) amplitudes. An extended Taylor method is employed in this study to provide an analytical model for the M2 tide in the TS. The strait is idealized as a rectangular basin with a uniform depth, and the Coriolis force and bottom friction are retained in the governing equations. The observed tides at the northern and southern openings are used as open boundary conditions. The obtained analytical solution, which consists of a stronger southward propagating Kelvin wave, a weaker northward propagating Kelvin wave, and two families of Poincaré modes trapped at the northern and southern openings, agrees well with the observations in the strait. The superposition of two Kelvin waves basically represents the observed tidal pattern, including an anti-nodal band in the central strait, and the cross-strait asymmetry (greater amplitudes in the west and smaller in the east) of the anti-nodal band. Inclusion of Poincaré modes further improves the model result in that the cross-strait asymmetry can be better reproduced. To explore the formation mechanism of the northward propagating wave in the TS, three experiments are carried out, including the deep basin south of the strait. The results show that the southward incident wave is reflected to form a northward wave by the abruptly deepened topography south of the strait, but the reflected wave is slightly weaker than the northward wave obtained from the above analytical solution, in which the southern open boundary condition is specified with observations. Inclusion of the forcing at the Luzon Strait strengthens the northward Kelvin wave in the TS, and the forcing is thus of some (but lesser) importance to the M2 tide in the TS.

  13. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  14. Aqueous geochemical data from the analysis of stream water samples collected in August 2004--Taylor Mountains 1:250,000 scale Quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Bailey, Elizabeth; Lee, Greg

    2006-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000 quadrangle. Samples were collected as part of the multi-year U.S. Geological Survey's project -- Geologic and Mineral Deposit Data for Alaskan Economic Development. Data presented here are from water samples collected primarily in the northeastern part of the Taylor Mountains quadrangle. The data include samples taken from the Taylor Mountains C1, C2, D1, D2, and D4 1:63,360 scale quadrangles. The data are being released at this time with minimal interpretation. Site selection was based on a regional sampling strategy that focused on first and second order drainages. Water sampling site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and the cursory field review of the mineralogy from the pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50% of the anionic charge can be attibuted to sulfate ( SO42-). The major-cation chemistry range from Ca/Mg dominated to a mix of Ca/Mg/Na+K. Good agreement was found between the major cation and anions in the duplicate samples. Many trace elements were at or near the method detection limit in these samples but good agreement was found between duplicate samples for elements with detectable concentrations. Major ion concentrations were below detection in all field blanks and the trace elements concentrations generally were below detection. However, Ta (range 0.9 -.1 ug/L) and Zn (1 to 3.5 ug/L) were detected in all blanks and Ba ( 0.24 ug/L) and Th (0.2 ug/L) were detected in one blank. There was good agreement between dupilicate total- and methyl- mercury and DOC samples; however, total mercury, methyl-mercury and dissolve organic carbon (DOC) were detected in the blank at 2.35 ng/L, 0.07 ng/L and 0.57 mg/L, respectively.

  15. Hybrid perturbation methods based on statistical time series models

    NASA Astrophysics Data System (ADS)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  16. 2. Photographic copy of architectural elevations for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photographic copy of architectural elevations for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Exterior Elevations, Sheet No. 18, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  17. Use of Selected Nonmedication Mental Health Services by Adolescent Boys and Girls with Serious Emotional or Behavioral ....

    MedlinePlus

    ... of center); or g) other.” Data sources and methods This analysis used data from the 2010–2012 ... sample design of NHIS. The Taylor series linearization method was chosen for variance estimation. All estimates shown ...

  18. Measures of Muscular Strength in U.S. Children and Adolescents, 2012

    MedlinePlus

    ... errors of the percentages were estimated using Taylor series linearization, a method that incorporates the sample weights and sample design. Differences between groups were evaluated using a t ...

  19. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  20. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  1. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ1<ρ2 . It extends previous results for Atwood number AT=1 [B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786 (1998), 10.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  2. Which homogenisation method is appropriate for daily time series of relative humidity?

    NASA Astrophysics Data System (ADS)

    Chimani, Barbara; Nemec, Johanna; Auer, Ingeborg; Venema, Victor

    2014-05-01

    Data homogenisation is an essential part of reliable climate data analyses. Different tools for detecting and adjusting breaks in daily extreme temperatures (Tmin, Tmax) and daily precipitation sums were developed in the last years. Due to its influence on health, plants and construction relative humidity is another parameter of great importance. On the basis of 6 networks of measured (and homogenized with respect to the monthly means) relative humidity data, which cover different climatic areas in Austria, a synthetic data set for testing and validating homogenisation methods was built. Each network consists of 4 to 6 station time series with a minimum length of 5 years. The so-called surrogate networks resemble the statistical properties (e.g. distribution of parameter, auto- and cross correlation within the network) of the measured time series, but are extended to 100 year long time series, which are in a first step assumed to be homogeneous. For creating the best possible surrogate dataset of relative humidity detailed statistical information on potential inhomogeneities is decisive. Information on the potential breaks was taken from parallel measurements available for some Austrian locations, mostly representing changes in instrumentation and/or station relocation. Beside changes in the distribution of the parameter the analyses includes an estimation of changes in the number of missing data, global and local biases, both on a seasonal and annual basis. An additional break is to be expected in the Austrian time series due to a change in observation time in 1970/1971. Since this change occurred simultaneously at all Austrian climate stations, standard homogenisation methods, which rely on a comparison with reference stations, are not able to detect or correct this shift. Therefore an independent correction method for this type of break, to be applied before homogenisation was developed. This type of change point was not included in the surrogate network

  3. A New NPGS Special Collection: Norman L. Taylor University of Kentucky Clover Collection

    USDA-ARS?s Scientific Manuscript database

    Dr. Norman L. Taylor was a world renowned Professor and clover breeder in the Department of Plant and Soil Sciences at the University of Kentucky for 48 years. Following retirement in 2001, he continued working on clovers up until his death in 2010. Dr. Taylor’s entire career was devoted to enhancin...

  4. Determining an Appropriate Sampling Method. School Accountability Series. Monograph 3.

    ERIC Educational Resources Information Center

    McCallon, Earl; McClaran, Rutledge

    This is one of a series of eight short monographs intended to aid practicing educators in planning and conducting accountability programs in schools. This booklet discusses how to determine a sampling method that is appropriate to the objectives of a particular research or evaluation effort. Short sections focus in turn on why and when to sample,…

  5. 1. Photographic copy of architectural plan for Building 4505, Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of architectural plan for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Floor Plan & Roof Plan, Sheet No. 16, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  6. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  7. Performance of time-series methods in forecasting the demand for red blood cell transfusion.

    PubMed

    Pereira, Arturo

    2004-05-01

    Planning the future blood collection efforts must be based on adequate forecasts of transfusion demand. In this study, univariate time-series methods were investigated for their performance in forecasting the monthly demand for RBCs at one tertiary-care, university hospital. Three time-series methods were investigated: autoregressive integrated moving average (ARIMA), the Holt-Winters family of exponential smoothing models, and one neural-network-based method. The time series consisted of the monthly demand for RBCs from January 1988 to December 2002 and was divided into two segments: the older one was used to fit or train the models, and the younger to test for the accuracy of predictions. Performance was compared across forecasting methods by calculating goodness-of-fit statistics, the percentage of months in which forecast-based supply would have met the RBC demand (coverage rate), and the outdate rate. The RBC transfusion series was best fitted by a seasonal ARIMA(0,1,1)(0,1,1)(12) model. Over 1-year time horizons, forecasts generated by ARIMA or exponential smoothing laid within the +/- 10 percent interval of the real RBC demand in 79 percent of months (62% in the case of neural networks). The coverage rate for the three methods was 89, 91, and 86 percent, respectively. Over 2-year time horizons, exponential smoothing largely outperformed the other methods. Predictions by exponential smoothing laid within the +/- 10 percent interval of real values in 75 percent of the 24 forecasted months, and the coverage rate was 87 percent. Over 1-year time horizons, predictions of RBC demand generated by ARIMA or exponential smoothing are accurate enough to be of help in the planning of blood collection efforts. For longer time horizons, exponential smoothing outperforms the other forecasting methods.

  8. An approach to checking case-crossover analyses based on equivalence with time-series methods.

    PubMed

    Lu, Yun; Symons, James Morel; Geyh, Alison S; Zeger, Scott L

    2008-03-01

    The case-crossover design has been increasingly applied to epidemiologic investigations of acute adverse health effects associated with ambient air pollution. The correspondence of the design to that of matched case-control studies makes it inferentially appealing for epidemiologic studies. Case-crossover analyses generally use conditional logistic regression modeling. This technique is equivalent to time-series log-linear regression models when there is a common exposure across individuals, as in air pollution studies. Previous methods for obtaining unbiased estimates for case-crossover analyses have assumed that time-varying risk factors are constant within reference windows. In this paper, we rely on the connection between case-crossover and time-series methods to illustrate model-checking procedures from log-linear model diagnostics for time-stratified case-crossover analyses. Additionally, we compare the relative performance of the time-stratified case-crossover approach to time-series methods under 3 simulated scenarios representing different temporal patterns of daily mortality associated with air pollution in Chicago, Illinois, during 1995 and 1996. Whenever a model-be it time-series or case-crossover-fails to account appropriately for fluctuations in time that confound the exposure, the effect estimate will be biased. It is therefore important to perform model-checking in time-stratified case-crossover analyses rather than assume the estimator is unbiased.

  9. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  10. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  11. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  12. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE PAGES

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    2016-02-15

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  13. Rayleigh-Taylor instability in soft elastic layers

    NASA Astrophysics Data System (ADS)

    Riccobelli, D.; Ciarletta, P.

    2017-04-01

    This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  14. Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.

    PubMed

    Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-09-01

    A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.

  15. Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow.

    PubMed

    Latrache, Noureddine; Abcha, Nizar; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-04-01

    Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four polymer solutions with different values of the elasticity number, the defects appear just above the onset of the ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The flow structure around the defects is determined and the statistical properties of these defects are analyzed in the framework of the complex Ginzburg-Landau equation.

  16. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}

  17. Payload Specialist Taylor Wang performs repairs on Drop Dynamics Module

    NASA Image and Video Library

    1985-05-01

    51B-03-035 (29 April-6 May 1985) --- Payload specialist Taylor G. Wang performs a repair task on the Drop Dynamics Module (DDM) in the Science Module aboard the Earth-orbiting Space Shuttle Challenger. The photo was taken with a 35mm camera. Dr. Wang is principal investigator for the first time-to-fly experiment, developed by his team at NASA?s Jet Propulsion Laboratory (JPL), Pasadena, California. This photo was among the first to be released by NASA upon return to Earth by the Spacelab 3 crew.

  18. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  19. An experimental study of the Rayleigh-Taylor instability critical wave length

    NASA Astrophysics Data System (ADS)

    Kong, Xujing; Wang, Youchun; Zhang, Shufei; Xu, Hongkun

    1992-06-01

    A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins, which is based on visual observation in experiment. The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film, thus enhancing condensation heat transfer.

  20. Bypass apparatus and method for series connected energy storage devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik

    2000-01-01

    A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.

  1. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  2. Application of a time-series methodology to Federal program allocations. [Modified Box and Jenkins method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronfman, B. H.

    Time-series analysis provides a useful tool in the evaluation of public policy outputs. It is shown that the general Box and Jenkins method, when extended to allow for multiple interrupts, enables researchers simultaneously to examine changes in drift and level of a series, and to select the best fit model for the series. As applied to urban renewal allocations, results show significant changes in the level of the series, corresponding to changes in party control of the Executive. No support is given to the ''incrementalism'' hypotheses as no significant changes in drift are found.

  3. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  4. Technical requirements for Na¹⁸F PET bone imaging of patients being treated using a Taylor spatial frame.

    PubMed

    Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E

    2014-03-01

    Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.

  5. The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    NASA Technical Reports Server (NTRS)

    Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.

    2013-01-01

    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.

  6. Advanced Computational Methods for Study of Electromagnetic Compatibility

    DTIC Science & Technology

    2011-03-31

    following result establishes the super-algebraic convergence of Gper ,Lk to Gperk : Theorem 2.1 (Bruno, Shipman, Turc, Venakides) If k is not a Wood...Gperk (x,x ′)− Gper ,Lk (x,x ′)| ≤ CL 1 2 −p. Figure 7 demonstrates the excellent accuracies arising from use of Theorem 2.1. Separable variables...representations of non-adjacent interactions. In order to further accelerate the evaluation of Gper ,Lk , we derive Taylor series expansions of quantities Gk

  7. Space-Pseudo-Time Method: Application to the One-Dimensional Coulomb Potential and Density Funtional Theory

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles; Gebremedhin, Daniel

    2016-03-01

    A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.

  8. Health Insurance Coverage: Early Release of Estimates from the National Health Interview Survey, January -- June 2013

    MedlinePlus

    ... Park, NC) to account for the complex sample design of NHIS, taking into account stratum and primary sampling unit (PSU) identifiers. The Taylor series linearization method was chosen for variance estimation. Trends ...

  9. Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.

    2011-08-15

    An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.

  10. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    NASA Technical Reports Server (NTRS)

    Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.

  11. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    NASA Astrophysics Data System (ADS)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  12. Forty years later at Taylor Woods: Merging the old and new (P-53)

    Treesearch

    John D. Bailey

    2008-01-01

    The Taylor Woods "Levels-of-Growing-Stock" study was established in 1962 to create a replicated ponderosa pine density experiment for the Southwest, making a valuable addition to research in the Fort Valley Experimental Forest. Basal area treatments ranged from 5-20 m2/ha (19-80 ft2/ac) when installed, designed as growing stock levels 30/40, 60, 80, 100, 120...

  13. 75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... develop and conduct underground uranium mining operations on their mining claims on and near Jesus Mesa in... open to mineral entry under the General Mining Law of 1872. Section 16 is State of New Mexico land... statement (EIS) to assess the development of a uranium mining operation on the Mount Taylor Ranger District...

  14. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  15. Automatic Generation of Taylor Series in Pascal-SC: Basic Operations and Applications to Ordinary Differential Equations.

    DTIC Science & Technology

    1983-03-01

    facilities built into the language compiler itself can be used to generate _imanchAe-C-d, for the evaluatiomn la ’ fficients.) Examples of such languages...Dy mtt ss. I I I I I I I I I,ase.TC11) - 0 1 I =- M 3 (SM) By Mse rede a• I RA IQ BZ yrcrec Table 4.1. Resolution of Cases for e. Consider a series...von Gudenberg. Gesmte Arithmetik des PASCAL-SC Rechners: Benutzerhandbuch. Institute for Applied Mathematics, University of Karlsruhe, 1981. -33- 4

  16. Surface Area Analysis Using the Brunauer-Emmett-Teller (BET) Method: Standard Operating Procedure Series: SOP-C

    DTIC Science & Technology

    2016-09-01

    Method Scientific Operating Procedure Series : SOP-C En vi ro nm en ta l L ab or at or y Jonathon Brame and Chris Griggs September 2016...BET) Method Scientific Operating Procedure Series : SOP-C Jonathon Brame and Chris Griggs Environmental Laboratory U.S. Army Engineer Research and...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing

  17. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  18. Janet Taylor Spence (1923-2015).

    PubMed

    Deaux, Kay

    2016-01-01

    The long and remarkable life of Janet Taylor Spence, the sixth woman to serve as president of the American Psychological Association (APA), ended on March 16, 2015, after a short illness. Janet's 1978 book, Masculinity & Femininity, coauthored with Robert Helmreich, was a major contribution to our understanding of the complex relationships between personal attributes, self-esteem, and attitudes toward women, as well their links to both achievement motivation and parental characteristics. Janet's interest in achievement motivation was an extension of her gender work, as she attempted to learn more about the ways in which presumed differences in achievement motivation might be related to the key dimensions of instrumentality and expressiveness. Janet's election to the presidency of the APA was the culmination of a long and broad involvement in the organization. She served on the Board of Directors from 1976 to 1978, and again in 1983 to 1984 during her presidential term. Earlier she served on the Board of Scientific Affairs and edited Contemporary Psychology in the 1970s. Janet was a fellow in four divisions (3, 8, 12, and 35), and in 2004 she received the APA Gold Medal Award for Life Achievement in the Science of Psychology. (c) 2016 APA, all rights reserved).

  19. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  20. Observed Melt Season Seismicity of Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.

    2006-12-01

    Sufficient evidence exists to suggest that interaction of crevasses and meltwater accelerates ice cliff disintegration of tidewater glaciers. It is not clear what role meltwater plays in calving characteristics from dry- based polar glaciers. We have obtained seismic data from a six-sensor seismic array deployed in October of 2004 near the terminus cliffs of Taylor Glacier, West Antarctica, to analyze near-cliff seismicity throughout a melt season. Discharge data from the adjacent Lawson stream suggests that dramatic increases in meltwater volume temporally correlate with changes in seismic character near ice cliffs. We calculated source-locations for ice-quake during hours of melting and re-freezing and found most large energy events to be located near the ice cliffs. The associated spectra and waveform characteristics are indicative of literature descriptions of crevassing events.

  1. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  2. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Meakin, Paul

    2005-08-10

    A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less

  3. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A.; McDonald, S.; Withers, P.; Bourne, N.; Millett, J.; Brown, E.; Rae, P.

    2013-06-01

    Aerospace, defence and automotive applications of polymers and polymer matrix composites have placed these materials under increasingly more extreme conditions. It is therefore important to understand the mechanical response of these multi-phase materials under high pressures and strain rates. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of the fractures from the impact face showing a clear trend with increase in impact velocity. The experimental observations are discussed with respect to parallel multi-phase model predictions by CTH hydrocode of the shock response from Taylor impact simulations.

  4. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; McDonald, S. A.; Withers, P. J.; Bourne, N. K.; Millett, J. C. F.; Brown, E. N.; Rae, P. J.

    2014-05-01

    The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of fractures from the impact face showing a clear trend with increasing impact velocity. A two-phase rate sensitive strength model is implemented in the CTH hydrocode and used for simulation of the problem. The high-pressure phase transition of PTFE into Phase III within the crystalline domains from the polymer at normal conditions is managed by suitable phase transition kinetics within the model. The experimental observations are discussed with respect to the multi-phase model hydrocode predictions of the shock response from Taylor impact simulations. The damage and its progress are shown to correlate well with the onset of the phase transition and its evolution following the impact velocity increase.

  5. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  6. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  7. Otto LaPorte Lecture: Ultimate Rayleigh-Bénard and Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef

    2017-11-01

    Rayleigh-Bénard flow - the flow in a box heated from below and cooled from above - and Taylor-Couette flow - the flow between two coaxial co- or counter-rotating cylinders - are the two paradigmatic systems in physics of fluids and many new concepts have been tested with them. They are mathematically well defined, namely by the Navier-Stokes equations and the respective boundary conditions, and share many features. While the low Reynolds number regime (i.e., weakly driven systems) has been very well explored in the '80s and '90s of the last century, in the fully turbulent regime major research activity only developed in the last two decades. In this talk we will first briefly review this recent progress in our understanding of fully developed Rayleigh-Bénard (RB) and Taylor-Couette (TC) turbulence, from the experimental, theoretical, and numerical point of view. We will explain the parameter dependences of the global transport properties of the flow and the local flow organisation, including velocity profiles and boundary layers, which are closely connected to the global properties. Next, we will discuss transitions between different (turbulent) flow states. We will in particular focus on the so-called ultimate regime, in which the boundary layer has become turbulent, and which therefore has enhanced transport properties. In the mechanical driven TC flow this ultimate regime can also be achieved in our high-performance numerical simulations, showing excellent agreement with our experiments on the Twente Turbulent Taylor-Couette (T3 C) facility. In the last part of the talk we will discuss RB and TC turbulence with rough walls. There the results can be expressed in terms of the skin-friction factor, revealing analogy to turbulent flow in rough pipes. Finally, we will present our results on RB and TC flow with bubbles, focusing on bubbly drag reduction and its origin. This is joint work with many colleagues over the years, and I in particular would like to name

  8. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  9. Photographic copy of architectural plan for Administration Building (T50): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural plan for Administration Building (T-50): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Administration Building Type OB-H-T, Plans and - Details, Sheet No. 38 of 38, March 1944. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Administration Building T-50, D Street, Boron, Kern County, CA

  10. Photographic copy of architectural drawings for Building 4332 (T82): Taylor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of architectural drawings for Building 4332 (T-82): Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. Muroc ESA 210-48 and 210-49, Military Construction: Muroc Flight Test Base, Muroc, California, Warehouses and Additional Housing for Officers: Warehouse "A" Plans & Elevations, Sheet No. 4 of 16, May 1945. Reproduced from the holdings of the National Archives; Pacific Southwest Region - Edwards Air Force Base, North Base, Warehouse A, North Base Road at E Street, Boron, Kern County, CA

  11. Viète's Formula and an Error Bound without Taylor's Theorem

    ERIC Educational Resources Information Center

    Boucher, Chris

    2018-01-01

    This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.

  12. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models

    USGS Publications Warehouse

    Susong, D.; Marks, D.; Garen, D.

    1999-01-01

    Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited

  13. TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)

    EPA Science Inventory

    A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...

  14. Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng

    2014-09-01

    The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.

  15. The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs

    NASA Technical Reports Server (NTRS)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-01-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  16. The incept of ejection from a fresh Taylor cone and subsequent evolution

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Jose M.; Ganan-Calvo, Alfonso

    2017-11-01

    Within a certain range of applied voltages, a pendant drop suddenly subject to an intense electric field develops a cusp from which a fast liquid ligament issues. The incept of this process has common roots with other related phenomena like the Worthington jets, the jet issued after surface bubble bursting or the impact of a drop on a liquid pool. This is experimentally and numerically demonstrated. However, given the electrohydrodynamic nature of the driver in the formation of a Taylor cone, a number of electrokinetic processes take place in the rapid tapering flow, whose characteristic times should be carefully compared to the ones of the flow. As a result, universal scaling laws for the size and charge of the top drop have been obtained. Subsequently, sustaining the applied electric field, the ejection continues and the issuing liquid ligament releases a train of droplets of varying size and charge. Under appropriate conditions and if the liquid suctioned by the electric field is replenished, the system reaches a (quasi)steady state asymptotically. The degree of compliance of the size and charge of those subsequent droplets with previously proposed scaling laws of steady Taylor cone-jets has been studied. Computational code Gerris and an extended electrokinetic module is used. This work was supported by the Ministerio de Economia y Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  17. 78 FR 61451 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for the Taylor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...). The Taylor's checkerspot butterfly was originally described by W.H. Edwards (1888) from specimens... and modified by encroaching trees, nonnative grasses, and the invasive, nonnative shrub Scot's broom... maintained as, grass and forb vegetation (for details, see 77 FR 61938; October 11, 2012). In British...

  18. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 < Re < 86000 . By monitoring the torque-speed scaling we show that the swirling flow becomes fully turbulent above Re = 15000 and we focus on measurements in this regime. By applying SH coatings on the inner cylinder, we can evaluate the drag reducing performance of the coating and calculate the effective slip length in turbulent flow using a suitably modified Prandtl-von Kármán analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  19. Statistical characterization of planar two-dimensional Rayleigh-Taylor mixing layers

    NASA Astrophysics Data System (ADS)

    Sendersky, Dmitry

    2000-10-01

    The statistical evolution of a planar, randomly perturbed fluid interface subject to Rayleigh-Taylor instability is explored through numerical simulation in two space dimensions. The data set, generated by the front-tracking code FronTier, is highly resolved and covers a large ensemble of initial perturbations, allowing a more refined analysis of closure issues pertinent to the stochastic modeling of chaotic fluid mixing. We closely approach a two-fold convergence of the mean two-phase flow: convergence of the numerical solution under computational mesh refinement, and statistical convergence under increasing ensemble size. Quantities that appear in the two-phase averaged Euler equations are computed directly and analyzed for numerical and statistical convergence. Bulk averages show a high degree of convergence, while interfacial averages are convergent only in the outer portions of the mixing zone, where there is a coherent array of bubble and spike tips. Comparison with the familiar bubble/spike penetration law h = alphaAgt 2 is complicated by the lack of scale invariance, inability to carry the simulations to late time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method of data analysis. Finally, we use the simulation data to analyze some constitutive properties of the mixing process.

  20. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  1. Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data

    NASA Astrophysics Data System (ADS)

    Mora, P.; Spies, M.

    2018-05-01

    We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.

  2. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  3. Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.

    2018-02-01

    River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of

  4. An adaptive gridless methodology in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, N.T.; Hailey, C.E.

    1996-09-01

    Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less

  5. Discrete Data Qualification System and Method Comprising Noise Series Fault Detection

    NASA Technical Reports Server (NTRS)

    Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall

    2013-01-01

    A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.

  6. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  7. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  8. Predicting Urban Medical Services Demand in China: An Improved Grey Markov Chain Model by Taylor Approximation.

    PubMed

    Duan, Jinli; Jiao, Feng; Zhang, Qishan; Lin, Zhibin

    2017-08-06

    The sharp increase of the aging population has raised the pressure on the current limited medical resources in China. To better allocate resources, a more accurate prediction on medical service demand is very urgently needed. This study aims to improve the prediction on medical services demand in China. To achieve this aim, the study combines Taylor Approximation into the Grey Markov Chain model, and develops a new model named Taylor-Markov Chain GM (1,1) (T-MCGM (1,1)). The new model has been tested by adopting the historical data, which includes the medical service on treatment of diabetes, heart disease, and cerebrovascular disease from 1997 to 2015 in China. The model provides a predication on medical service demand of these three types of disease up to 2022. The results reveal an enormous growth of urban medical service demand in the future. The findings provide practical implications for the Health Administrative Department to allocate medical resources, and help hospitals to manage investments on medical facilities.

  9. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, D.P.

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}mmore » aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.« less

  10. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  11. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  12. An empirical method for approximating stream baseflow time series using groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May

    2014-11-01

    Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.

  13. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Tangborn, A.

    2004-05-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.

  14. Chapter 2: 2003 Geologic Assessment of Undiscovered Conventional Oil and Gas Resources in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    Condon, S.M.; Dyman, T.S.

    2006-01-01

    The Upper Cretaceous Navarro and Taylor Groups in the western part of the Western Gulf Province were assessed for undiscovered oil and gas resources in 2003. The area is part of the Smackover-Austin-Eagle Ford Composite Total Petroleum System. The rocks consist of, from youngest to oldest, the Escondido and Olmos Formations of the Navarro Group and the San Miguel Formation and the Anacacho Limestone of the Taylor Group (as well as the undivided Navarro Group and Taylor Group). Some units of the underlying Austin Group, including the 'Dale Limestone' (a term of local usage that describes a subsurface unit), were also part of the assessment in some areas. Within the total petroleum system, the primary source rocks comprise laminated carbonate mudstones and marine shales of the Upper Jurassic Smackover Formation, mixed carbonate and bioclastic deposits of the Upper Cretaceous Eagle Ford Group, and shelf carbonates of the Upper Cretaceous Austin Group. Possible secondary source rocks comprise the Upper Jurassic Bossier Shale and overlying shales within the Upper Jurassic to Lower Cretaceous Cotton Valley Group, Lower Cretaceous marine rocks, and the Upper Cretaceous Taylor Group. Oil and gas were generated in the total petroleum system at different times because of variations in depth of burial, geothermal gradient, lithology, and organic-matter composition. A burial-history reconstruction, based on data from one well in the eastern part of the study area (Jasper County, Tex.), indicated that (1) the Smackover generated oil from about 117 to 103 million years ago (Ma) and generated gas from about 52 to 41 Ma and (2) the Austin and Eagle Ford Groups generated oil from about 42 to 28 Ma and generated gas from about 14 Ma to the present. From the source rocks, oil and gas migrated upsection and updip along a pervasive system of faults and fractures as well as along bedding planes and within sandstone units. Types of traps include stratigraphic pinchouts, folds, faulted

  15. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    PubMed

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  16. Size invariance of the granular Rayleigh-Taylor instability.

    PubMed

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  17. Anolis marsupialis Taylor 1956, a valid species from southern Pacific Costa Rica (Reptilia, Squamata, Dactyloidae).

    PubMed

    Köhler, Johannes J; Poe, Steven; Ryan, Mason J; Köhler, Gunther

    2015-02-02

    The examination of the holotype of Anolis marsupialis Taylor 1956 along with recently collected specimens reveals that A. marsupialis is a valid species. It differs from its closest congeners A. humilis Peters 1863 and A. quaggulus Cope 1885, in male dewlap coloration, scalation, body size, and hemipenial morphology. These findings are supported by preliminary molecular genetic analysis. 

  18. The Robert Taylor Boys and Girls Club of Chicago. Practitioner Perspectives: Bulletin from the Field.

    ERIC Educational Resources Information Center

    Coleman, Patrick J.; Lahey, Elizabeth; Orlando, Kristine

    The Robert Taylor Boys and Girls Club of Chicago is located in this country's largest public housing development, serving over 1,500 predominantly African American members. It offers a brightly-colored building in a dilapidated, deprived area. It provides a clean, warm, safe haven for children to play, build strong bodies, get help with homework,…

  19. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the

  20. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Betti, R.; Bradley, D. K.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined bymore » the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.« less

  1. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  2. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event

    NASA Astrophysics Data System (ADS)

    Lyons, W. Berry; Welch, Kathleen A.; Carey, Anne E.; Doran, Peter T.; Wall, Diana H.; Virginia, Ross A.; Fountain, Andrew G.; Csathó, Bea M.; Tremper, Catherine M.

    The 2001/02 austral summer was the warmest summer on record in Taylor Valley, Antarctica, (˜78° S) since continuous records of temperature began in 1985. The highest stream-flows ever recorded in the Onyx River, Wright Valley, were also recorded that year (the record goes back to the 1969/70 austral summer). In early January 2002, a groundwater seep was observed flowing in the southwest portion of Taylor Valley. This flow has been named 'Wormherder Creek' (WHC) and represents an unusual event, probably occurring on a decadal time-scale. The physical characteristics of this feature suggest that it may have flowed at other times in the past. Other groundwater seeps, emanating from the north-facing slope of Taylor Valley, were also observed. Little work has been done previously on these very ephemeral seeps, and the source of water is unknown. These features, resembling recently described features on Mars, represent the melting of subsurface ice. The Martian features have been interpreted as groundwater seeps. In this paper we compare the chemistry of the WHC groundwater seep to that of the surrounding streams that flow every austral summer. The total dissolved solids content of WHC was ˜6 times greater than that of some nearby streams. The Na : Cl and SO4 : Cl ratios of the seep waters are higher than those of the streams, but the Mg : Cl and HCO3 : Cl ratios are lower, indicating different sources of solutes to the seeps compared to the streams. The enrichment of Na and SO4 relative to Cl may suggest significant dissolution of mirabilite within the previously unwetted soil. The proposed occurrence of abundant mirabilite in higher-elevation soils of the dry valley region agrees with geochemical models developed, but not tested, in the late 1970s. The geochemical data demonstrate that these seeps could be important in 'rinsing' the soils by dissolving and redistributing the long-term accumulation of salts, and perhaps improving habitat suitability for soil biota

  3. Taylor dispersion in premixed combustion: Questions from turbulent combustion answered for laminar flames

    NASA Astrophysics Data System (ADS)

    Daou, Joel; Pearce, Philip; Al-Malki, Faisal

    2018-02-01

    We present a study of Taylor dispersion in premixed combustion and use it to clarify fundamental issues related to flame propagation in a flow field. In particular, simple analytical formulas are derived for variable density laminar flames with arbitrary Lewis number Le providing clear answers to important questions arising in turbulent combustion, when these questions are posed for the case of one-scale laminar parallel flows. Exploiting, in the context of a laminar Poiseuille flow model, a thick flame distinguished asymptotic limit for which the flow amplitude is large with the Reynolds number Re fixed, three main contributions are made. First, a link is established between Taylor dispersion [G. Taylor, Proc. R. Soc. London Ser. A 219, 186 (1953), 10.1098/rspa.1953.0139] and Damköhler's second hypothesis [G. Damköhler, Ber. Bunsen. Phys. Chem. 46, 601 (1940)] by describing analytically the enhancement of the effective propagation speed UT due to small flow scales. More precisely, it is shown that Damköhler's hypothesis is only partially correct for one-scale parallel laminar flows. Specifically, while the increase in UT due to the flow is shown to be directly associated with the increase in the effective diffusivity as suggested by Damköhler, our results imply that UT˜Re (for Re≫1 ) rather than UT˜√{Re} , as implied by Damköhler's hypothesis. Second, it is demonstrated analytically and confirmed numerically that, when UT is plotted versus the flow amplitude for fixed values of Re, the curve levels off to a constant value depending on Re. We may refer to this effect as the laminar bending effect as it mimics a similar bending effect known in turbulent combustion. Third, somewhat surprising implications associated with the dependence of UT and of the effective Lewis number Leeff on the flow are reported. For example, Leeff is found to vary from Le to Le-1 as Re varies from small to large values. Also, UT is found to be a monotonically increasing function

  4. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  5. Dynamo Action in a Quasi-Keplerian Taylor-Couette Flow.

    PubMed

    Guseva, Anna; Hollerbach, Rainer; Willis, Ashley P; Avila, Marc

    2017-10-20

    We numerically compute the flow of an electrically conducting fluid in a Taylor-Couette geometry where the rotation rates of the inner and outer cylinders satisfy Ω_{o}/Ω_{i}=(r_{o}/r_{i})^{-3/2}. In this quasi-Keplerian regime, a nonmagnetic system would be Rayleigh stable for all Reynolds numbers Re, and the resulting purely azimuthal flow incapable of kinematic dynamo action for all magnetic Reynolds numbers Rm. For Re = 10^{4} and Rm=10^{5}, we demonstrate the existence of a finite-amplitude dynamo, whereby a suitable initial condition yields mutually sustaining turbulence and magnetic fields, even though neither could exist without the other. This dynamo solution results in significantly increased outward angular momentum transport, with the bulk of the transport being by Maxwell rather than Reynolds stresses.

  6. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction

    PubMed Central

    Carleton, W. Christopher; Campbell, David

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating—the most common chronometric technique in archaeological and palaeoenvironmental research—creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20–30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence. PMID:29351329

  7. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction.

    PubMed

    Carleton, W Christopher; Campbell, David; Collard, Mark

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.

  8. Numerical Study on the Validity of the Taylor Hypothesis in Space Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, Silvia; Servidio, Sergio; Valentini, Francesco

    In situ heliospheric measurements allow us to resolve fluctuations as a function of frequency. A crucial point is to describe the power spectral density as a function of the wavenumber, in order to understand the energy cascade through the scales in terms of plasma turbulence theories. The most favorable situation occurs when the average wind speed is much higher than the phase speed of the plasma modes, equivalent to the fact that the fluctuations’ dynamical times are much longer than their typical crossing period through the spacecraft (frozen-in Taylor approximation). Using driven compressible Hall-magneothydrodynamics simulations, in which an “imaginary” spacecraftmore » flies across a time-evolving turbulence, here we explore the limitations of the frozen-in assumption. We find that the Taylor hypothesis is robust down to sub-proton scales, especially for flows with mean velocities typical of the fast solar wind. For slow mean flows (i.e., speeds of the order of the Alfvèn speed) power spectra are subject to an amplitude shift throughout the scales. At small scales, when dispersive decorrelation mechanisms become significant, the frozen-in assumption is generally violated, in particular for k -vectors almost parallel to the average magnetic field. A discussion in terms of the spacetime autocorrelation function is proposed. These results might be relevant for the interpretation of the observations, in particular for existing and future space missions devoted to very high-resolution measurements.« less

  9. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model.

    PubMed

    Ripesi, P; Biferale, L; Schifano, S F; Tripiccione, R

    2014-04-01

    We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a two-dimensional geometry using a highly optimized thermal lattice-Boltzmann code for GPUs. Our investigation's initial condition, given by the superposition of three layers with three different densities, leads to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high-resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long-time asymptotic regime. We also provide details on the optimized lattice-Boltzmann code that we have run on a cluster of GPUs.

  10. Are All Homeschooling Methods Created Equal?

    ERIC Educational Resources Information Center

    Taylor-Hough, Deborah

    2010-01-01

    For parents looking to see their children develop into the self-reliant, critical thinkers John Taylor Gatto described in his essay, "Against School," and other works, a combination of unschooling and the Charlotte Mason method would have the best chance of overall success. Research shows any method of homeschooling produces standardized test…

  11. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA)more » models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.« less

  13. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    NASA Astrophysics Data System (ADS)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  14. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  15. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  16. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  17. Smoothing of climate time series revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.

    2008-08-01

    We present an easily implemented method for smoothing climate time series, generalizing upon an approach previously described by Mann (2004). The method adaptively weights the three lowest order time series boundary constraints to optimize the fit with the raw time series. We apply the method to the instrumental global mean temperature series from 1850-2007 and to various surrogate global mean temperature series from 1850-2100 derived from the CMIP3 multimodel intercomparison project. These applications demonstrate that the adaptive method systematically out-performs certain widely used default smoothing methods, and is more likely to yield accurate assessments of long-term warming trends.

  18. Evaluation of Thermoelectric Devices by the Slope-Efficiency Method

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7837 ● SEP 2016 US Army Research Laboratory Evaluation of Thermoelectric Devices by the Slope-Efficiency Method by...Evaluation of Thermoelectric Devices by the Slope-Efficiency Method by Patrick J Taylor Sensors and Electron Devices Directorate, ARL Jay R...

  19. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  20. Saffman-Taylor Instability for a non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-11-01

    Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).

  1. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2004-01-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics,model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sevee numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius r(sub a). We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius r(sub a). A better assimilation shall serve our nudging tests in near future.

  2. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  3. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; ...

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation frontmore » is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.« less

  4. Methods for measuring risk-aversion: problems and solutions

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2013-09-01

    Risk-aversion is a fundamental parameter determining how humans act when required to operate in situations of risk. Its general applicability has been discussed in a companion presentation, and this paper examines methods that have been used in the past to measure it and their attendant problems. It needs to be borne in mind that risk-aversion varies with the size of the possible loss, growing strongly as the possible loss becomes comparable with the decision maker's assets. Hence measuring risk-aversion when the potential loss or gain is small will produce values close to the risk-neutral value of zero, irrespective of who the decision maker is. It will also be shown how the generally accepted practice of basing a measurement on the results of a three-term Taylor series will estimate a limiting value, minimum or maximum, rather than the value utilised in the decision. A solution is to match the correct utility function to the results instead.

  5. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  6. TEMPORAL SIGNATURES OF AIR QUALITY OBSERVATIONS AND MODEL OUTPUTS: DO TIME SERIES DECOMPOSITION METHODS CAPTURE RELEVANT TIME SCALES?

    EPA Science Inventory

    Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereb...

  7. Error compensation for hybrid-computer solution of linear differential equations

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.

    1970-01-01

    Z-transform technique compensates for digital transport delay and digital-to-analog hold. Method determines best values for compensation constants in multi-step and Taylor series projections. Technique also provides hybrid-calculation error compared to continuous exact solution, plus system stability properties.

  8. Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data

    PubMed Central

    Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten

    2012-01-01

    Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897

  9. Axial dipolar dynamo action in the Taylor-Green vortex.

    PubMed

    Krstulovic, Giorgio; Thorner, Gentien; Vest, Julien-Piera; Fauve, Stephan; Brachet, Marc

    2011-12-01

    We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight into some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, and the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining the magnetic Prandtl number dependence of the super- and subcritical nature of the dynamo transition is given.

  10. Modified cross sample entropy and surrogate data analysis method for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-09-01

    For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.

  11. Dynamic stabilization of Rayleigh-Taylor instability in an ablation front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G.

    2011-01-15

    Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint itmore » imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.« less

  12. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  13. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  14. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  15. Developing new mathematical method for search of the time series periodicity with deletions and insertions

    NASA Astrophysics Data System (ADS)

    Korotkov, E. V.; Korotkova, M. A.

    2017-01-01

    The purpose of this study was to detect latent periodicity in the presence of deletions or insertions in the analyzed data, when the points of deletions or insertions are unknown. A mathematical method was developed to search for periodicity in the numerical series, using dynamic programming and random matrices. The developed method was applied to search for periodicity in the Euro/Dollar (Eu/) exchange rate, since 2001. The presence of periodicity within the period length equal to 24 h in the analyzed financial series was shown. Periodicity can be detected only with insertions and deletions. The results of this study show that periodicity phase shifts, depend on the observation time. The reasons for the existence of the periodicity in the financial ranks are discussed.

  16. Numeric Function Generators Using Decision Diagrams for Discrete Functions

    DTIC Science & Technology

    2009-05-01

    Taylor series and Chebyshev series. Since polynomial functions can be realized with multipliers and adders, any numeric functions can be realized in...NFGs from the decision diagrams. Since nu- meric functions can be expanded into polynomial functions, such as a Taylor series, in this section, we use...pp. 107–114, July 1995. [13] T. Kam, T. Villa, R. K. Brayton , and A. L. Sangiovanni- Vincentelli, “Multi-valued decision diagrams: Theory and appli

  17. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].

    PubMed

    Murase, Kenya

    2015-01-01

    In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.

  18. Numerical simulations of induction and MWD logging tools and data inversion method with X-window interface on a UNIX workstation

    NASA Astrophysics Data System (ADS)

    Tian, Xiang-Dong

    The purpose of this research is to simulate induction and measuring-while-drilling (MWD) logs. In simulation of logs, there are two tasks. The first task, the forward modeling procedure, is to compute the logs from known formation. The second task, the inversion procedure, is to determine the unknown properties of the formation from the measured field logs. In general, the inversion procedure requires the solution of a forward model. In this study, a stable numerical method to simulate induction and MWD logs is presented. The proposed algorithm is based on a horizontal eigenmode expansion method. Vertical propagation of modes is modeled by a three-layer module. The multilayer cases are treated as a cascade of these modules. The mode tracing algorithm possesses stable characteristics that are superior to other methods. This method is applied to simulate the logs in the formations with both vertical and horizontal layers, and also used to study the groove effects of the MWD tool. The results are very good. Two-dimensional inversion of induction logs is an nonlinear problem. Nonlinear functions of the apparent conductivity are expanded into a Taylor series. After truncating the high order terms in this Taylor series, the nonlinear functions are linearized. An iterative procedure is then devised to solve the inversion problem. In each iteration, the Jacobian matrix is calculated, and a small variation computed using the least-squares method is used to modify the background medium. Finally, the inverted medium is obtained. The horizontal eigenstate method is used to solve the forward problem. It is found that a good inverted formation can be obtained by using measurements. In order to help the user simulate the induction logs conveniently, a Wellog Simulator, based on the X-window system, is developed. The application software (FORTRAN codes) embedded in the Simulator is designed to simulate the responses of the induction tools in the layered formation with dipping beds

  19. Myotrioza myopori Taylor, a designation of the type species for the genus Myotrioza gen. nov. (Psylloidea: Triozidae).

    PubMed

    Taylor, Gary S

    2016-04-04

    Taylor et al. (2016) described twenty new species in one new genus of Australian jumping plant-lice from the plant family Scrophulariaceae but did not nominate a type species, a requirement under the International Code of Zoological Nomenclature under Article 13.3 to make the genus name available (ICZN 1999).

  20. Looking for the Women in Baron and Taylor's (1969) "Educational Administration and the Social Sciences"

    ERIC Educational Resources Information Center

    Fuller, Kay

    2014-01-01

    A search for women in Baron and Taylor's (1969) "Educational administration and the social sciences" [London: The Athlone Press] using feminist poststructural discourse analysis (FPDA) has revealed a changing discourse about gendered educational administration over the course of 50 years. Whilst few women are featured in the text…

  1. A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Hong, Youngjoon; Nicholls, David P.

    2017-09-01

    The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.

  2. Magneto-Rayleigh-Taylor instability in solid media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. B.; School of Physical Science and Technology, Lanzhou University, Lanzhou 73000; University of Chinese Academy of Sciences, Beijing 100049

    2014-07-15

    A linear analysis of the magneto-Rayleigh-Taylor instability at the interface between a Newtonian fluid and an elastic-plastic solid is performed by considering a uniform magnetic B{sup →}, parallel to the interface, which has diffused into the fluid but not into the solid. It is found that the magnetic field attributes elastic properties to the viscous fluid which enhance the stability region by stabilizing all the perturbation wavelengths shorter than λ{sub 0}∝B{sup 2} for any initial perturbation amplitude. Longer wavelengths are stabilized by the mechanical properties of the solid provided that the initial perturbation wavelength is smaller than a threshold valuemore » determined by the yield strength and the shear modulus of the solid. Beyond this threshold, the amplitude grows initially with a growth rate reduced by the solid strength properties. However, such properties do not affect the asymptotic growth rate which is only determined by the magnetic field and the fluid viscosity. The described physical situation intends to resemble some of the features present in recent experiments involving the magnetic shockless acceleration of flyers plates.« less

  3. The cosmological Slavnov-Taylor identity from BRST symmetry in single-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, D.; Quadri, A., E-mail: binosi@ectstar.eu, E-mail: andrea.quadri@mi.infn.it

    The cosmological Slavnov-Taylor (ST) identity of the Einstein-Hilbert action coupled to a single inflaton field is obtained from the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated with diffeomorphism invariance in the Arnowitt-Deser-Misner (ADM) formalism. The consistency conditions between the correlators of the scalar and tensor modes in the squeezed limit are then derived from the ST identity, together with the softly broken conformal symmetry. Maldacena's original relations connecting the 2- and 3-point correlators at horizon crossing are recovered, as well as the next-to-leading corrections, controlled by the special conformal transformations.

  4. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.

    A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.

  5. An Empirical Evaluation of Five Circular Error Probable Estimation Techniques and a Method for Improving Them

    DTIC Science & Technology

    1993-03-10

    template which runs a Romberg algorithm in the background to numerically integrate the BVN [12:257]. Appendix A als- lists the results from two other...for computing these values: a Taylor series expansion, the Romberg algorithm , and the CBN technique. Appendix A lists CEPpop. values for eleven...determining factor in this selection process. Of the 175 populations ex- amined in the experiment, the MathCAD version of the Romberg algorithm failed

  6. A Volterra series-based method for extracting target echoes in the seafloor mining environment.

    PubMed

    Zhao, Haiming; Ji, Yaqian; Hong, Yujiu; Hao, Qi; Ma, Liyong

    2016-09-01

    The purpose of this research was to evaluate the applicability of the Volterra adaptive method to predict the target echo of an ultrasonic signal in an underwater seafloor mining environment. There is growing interest in mining of seafloor minerals because they offer an alternative source of rare metals. Mining the minerals cause the seafloor sediments to be stirred up and suspended in sea water. In such an environment, the target signals used for seafloor mapping are unable to be detected because of the unavoidable presence of volume reverberation induced by the suspended sediments. The detection of target signals in reverberation is currently performed using a stochastic model (for example, the autoregressive (AR) model) based on the statistical characterisation of reverberation. However, we examined a new method of signal detection in volume reverberation based on the Volterra series by confirming that the reverberation is a chaotic signal and generated by a deterministic process. The advantage of this method over the stochastic model is that attributions of the specific physical process are considered in the signal detection problem. To test the Volterra series based method and its applicability to target signal detection in the volume reverberation environment derived from the seafloor mining process, we simulated the real-life conditions of seafloor mining in a water filled tank of dimensions of 5×3×1.8m. The bottom of the tank was covered with 10cm of an irregular sand layer under which 5cm of an irregular cobalt-rich crusts layer was placed. The bottom was interrogated by an acoustic wave generated as 16μs pulses of 500kHz frequency. This frequency is demonstrated to ensure a resolution on the order of one centimetre, which is adequate in exploration practice. Echo signals were collected with a data acquisition card (PCI 1714 UL, 12-bit). Detection of the target echo in these signals was performed by both the Volterra series based model and the AR model

  7. Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, C.; Castro, S.; Fernandez de la Mora, J.

    2007-04-15

    The ionic liquid ion sources (ILISs) recently introduced by Lozano and Martinez Sanchez [J. Colloid Interface Sci. 282, 415 (2005)], based on electrochemically etched tungsten tips as emitters for Taylor cones of ionic liquids (ILs), have been tested with ionic liquids [A{sup +}B{sup -}] of increasing molecular weight and viscosity. These ILs have electrical conductivities well below 1 S/m and were previously thought to be unsuitable to operate in the purely ionic regime because their Taylor cones produce mostly charged drops from conventional capillary tube sources. Strikingly, all the ILs tried on ILIS form charged beams composed exclusively of smallmore » ions and cluster ions A{sup +}(AB){sub n} or B{sup -}(AB){sub n}, with abundances generally peaking at n=1. Particularly interesting are the positive and negative ion beams produced from the room temperature molten salts 1-methyl-3-pentylimidazolium tris(pentafluoroethyl) trifluorophosphate (C{sub 5}MI-(C{sub 2}F{sub 5}){sub 3}PF{sub 3}) and 1-ethyl-3-methylimidazolium bis(pentafluoroethyl) sulfonylimide (EMI-(C{sub 2}F{sub 5}SO{sub 3}){sub 2}N). We extend to these heavier species the previous conclusions from Lozano and Martinez Sanchez on the narrow energy distributions of the ion beams. In combination with suitable ILs, this source yields nanoamphere currents of positive and negative monoenergetic molecular ions with masses exceeding 2000 amu. Potential applications are in biological secondary ion mass spectrometry, chemically assisted high-resolution ion beam etching, and electrical propulsion. Advantages of the ILISs versus similar liquid metal ion sources include the possibility to form negative as well as positive ion beams and a much wider range of ion compositions and molecular masses.« less

  8. Fourier transform methods in local gravity modeling

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Dickinson, M.

    1989-01-01

    New algorithms were derived for computing terrain corrections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algoriithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface were developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem was developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.

  9. A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-01

    Three-dimensional models of atmospheric inorganic aerosols need accurate and computationally efficient parameterizations of activity coefficients of various electrolytes in multicomponent aqueous solutions. In this paper, we extend the Taylor's series expansion mixing rule used by C. Wagner in 1952 for estimating activity coefficients in dilute alloy solutions to aqueous electrolyte solutions at any concentration. The resulting method, called the multicomponent Taylor expansion method (MTEM), estimates the mean activity coefficient of an electrolyte in a multicomponent solution on the basis of its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. MTEM is applied here for atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+, SO42-, HSO4-, NO3-, and Cl- ions. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson (ZSR) method. For self-consistency, most of the MTEM and ZSR parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K and are valid for an aw range of 0.2-0.97. Because CaSO4 is sparingly soluble, it is treated as a solid in the model over the entire aw range. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols and is contrasted against the mixing rule of C. L. Kusik and H. P. Meissner and of L. A. Bromley and the newer approach of S. Metzger and colleagues. Predictions of MTEM are found to be generally within a factor of 0.8-1.25 of the comprehensive Pitzer-Simonson-Clegg model and are shown to be significantly more accurate than predictions of the other three methods. MTEM also yields a noniterative solution of the bisulfate ion dissociation in sulfate-rich systems: a major computational advantage over other ionic-strength-based methods that require an iterative solution. CPU time requirements of MTEM relative to other methods for

  10. 76 FR 24479 - In the Matter of the Taylor Lumber and Treating Superfund Site, Sheridan, Oregon, Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9300-9] In the Matter of the Taylor Lumber and Treating Superfund Site, Sheridan, Oregon, Amendment to Agreement and Covenant Not To Sue, Pacific Wood Preserving of... United States on behalf of the U.S. Environmental Protection Agency (``EPA'') and Pacific Wood Preserving...

  11. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  12. On the Rayleigh-Taylor Instability in Presence of a Background Shear

    NASA Astrophysics Data System (ADS)

    Shvydkoy, Roman

    2018-01-01

    In this note we revisit the classical subject of the Rayleigh-Taylor instability in presence of an incompressible background shear flow. We derive a formula for the essential spectral radius of the evolution group generated by the linearization near the steady state and reveal that the velocity variations neutralize shortwave instabilities. The formula is a direct generalization of the result of Hwang and Guo (Arch Ration Mech Anal 167(3):235-253, (2003). Furthermore, we construct a class of steady states which posses unstable discrete spectrum with neutral essential spectrum. The technique involves the WKB analysis of the evolution equation and contains novel compactness criterion for pseudo-differential operators on unbounded domains.

  13. Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Late Cretaceous Navarro and Taylor Groups in the Western Gulf Province in Texas (USGS Province 5047). The Navarro and Taylor Groups have moderate potential for undiscovered oil resources and good potential for undiscovered gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and five assessment units. Five assessment units were quantitatively assessed for undiscovered oil and gas resources.

  14. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling

    NASA Astrophysics Data System (ADS)

    Schilling, Oleg; Mueschke, Nicholas J.

    2017-12-01

    Data from a 1152 ×760 ×1280 direct numerical simulation [N. J. Mueschke and O. Schilling, Phys. Fluids 21, 014106 (2009), 10.1063/1.3064120] of a Rayleigh-Taylor mixing layer modeled after a small-Atwood-number water-channel experiment is used to investigate the validity of gradient diffusion and similarity closures a priori. The budgets of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate transport equations across the mixing layer were previously analyzed [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] at different evolution times to identify the most important transport and mixing mechanisms. Here a methodology is introduced to systematically estimate model coefficients as a function of time in the closures of the dynamically significant terms in the transport equations by minimizing the L2 norm of the difference between the model and correlations constructed using the simulation data. It is shown that gradient-diffusion and similarity closures used for the turbulent kinetic energy K , turbulent kinetic energy dissipation rate ɛ , heavy-fluid mass fraction variance S , and heavy-fluid mass fraction variance dissipation rate χ equations capture the shape of the exact, unclosed profiles well over the nonlinear and turbulent evolution regimes. Using order-of-magnitude estimates [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] for the terms in the exact transport equations and their closure models, it is shown that several of the standard closures for the turbulent production and dissipation (destruction) must be modified to include Reynolds-number scalings appropriate for Rayleigh-Taylor flow at small to intermediate Reynolds numbers. The late-time, large Reynolds number coefficients are determined to be different from those used in shear flow applications and

  15. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    PubMed

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  16. River catchment rainfall series analysis using additive Holt-Winters method

    NASA Astrophysics Data System (ADS)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  17. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial

  18. Limnology of Taylor Creek impoundment : with reference to other bodies in Upper St Johns River Basin, Florida

    USGS Publications Warehouse

    Goolsby, D.A.; McPherson, Benjamin F.

    1978-01-01

    Taylor Creek Impoundment, on the western part of the upper St. Johns basin, Fla., provides flood control and flow regulation. The 4,000-acre impoundment was first filled in 1969. The water was of relatively poor quality during the first three years of its existence, 1970-72. The impoundment is deep enough for thermal stratification, and a thermocline usually develops at 8 to 10 feet. During 1970-72 the hypolimnion remained anaerobic for more than six months. The poor water quality is attributed to the decomposition of flooded vegetation, of soil organic matter, and to heavy growths of phytoplankton and duckweed stimulated by an abundant supply of nutrients. Since 1972, the quality of the water has improved because of flushing of the impoundment and depletion of leachable nutrients and soil organic matter. The water is now similar in quality to that of nearby Wolf and Jane Green Creeks. Large releases of water may produce velocities great enough to resuspend bottom sediments several miles downstream where Taylor Creek flows into Lake Poinsett. (Woodard-USGS)

  19. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Bennett, James

    1986-01-01

    The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.

  20. Effects of polymer additives on Rayleigh-Taylor turbulence.

    PubMed

    Boffetta, G; Mazzino, A; Musacchio, S

    2011-05-01

    The role of polymer additives on the turbulent convective flow of a Rayleigh-Taylor system is investigated by means of direct numerical simulations of Oldroyd-B viscoelastic model. The dynamics of polymer elongations follows adiabatically the self-similar evolution of the turbulent mixing layer and shows the appearance of a strong feedback on the flow which originates a cutoff for polymer elongations. The viscoelastic effects on the mixing properties of the flow are twofold. Mixing is appreciably enhanced at large scales (the mixing layer growth rate is larger than that of the purely Newtonian case) and depleted at small scales (thermal plumes are more coherent with respect to the Newtonian case). The observed speed up of the thermal plumes, together with an increase of the correlations between temperature field and vertical velocity, contributes to a significant enhancement of heat transport. Our findings are consistent with a scenario of drag reduction induced by polymers. A weakly nonlinear model proposed by Fermi for the growth of the mixing layer is reported in the Appendix. © 2011 American Physical Society