Sample records for tbe virus transmission

  1. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    PubMed Central

    Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD

    2005-01-01

    Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390

  2. Tick-Borne Encephalitis (TBE)

    MedlinePlus

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  3. [Tick-borne encephalitis (TBE) and TBE-vaccination in Austria: Update 2014].

    PubMed

    Kunze, Ursula; Böhm, Gabriela

    2015-07-01

    TBE is a public health problem well under control in Austria because of a mass vaccination programme. There have been 50-100 registered cases per year for many years, the vaccination rate of the population is currently 85 %. Special attention has to be given to the "older" generation 40 plus as this is the segment of the population where the majority of cases are observed annually. In comparison of the counties, Tyrol and Upper Austria finished first and second after a long time when Styria and Carynthia had observed most of the cases. For TBE applies the same as for Tetanus, namely the principle of disease control or disease elimination: The virus cannot be eliminated and vaccination provides individual protection. The both available TBE vaccines have proven to be very effective with an effectivity of 96-99 %, also when given irregular vaccinations the protection rate is still very high (>90 %). More than 4000 prevented cases between 2000 and 2011 prove this impressively.

  4. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: systematic review and meta-analysis.

    PubMed

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection.

  5. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: Systematic review and meta-analysis

    PubMed Central

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection. PMID:25483679

  6. Tick-borne encephalitis (TBE): an underestimated risk…still: report of the 14th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    PubMed

    Kunze, Ursula

    2012-06-01

    Today, the risk of getting tick-borne encephalitis (TBE) is still underestimated in many parts of Europe and worldwide. Therefore, the 14th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists - was held under the title "Tick-borne encephalitis: an underestimated risk…still". Among the discussed issues were: TBE, an underestimated risk in children, a case report in two Dutch travelers, the very emotional report of a tick victim, an overview of the epidemiological situation, investigations to detect new TBE cases in Italy, TBE virus (TBEV) strains circulation in Northern Europe, TBE Program of the European Centre for Disease Prevention and Control (ECDC), efforts to increase the TBE vaccination rate in the Czech Republic, positioning statement of the World Health Organization (WHO), and TBE in dogs. To answer the question raised above: Yes, the risk of getting TBE is underestimated in children and adults, because awareness is still too low. It is still underestimated in several areas of Europe, where, for a lack of human cases, TBEV is thought to be absent. It is underestimated in travelers, because they still do not know enough about the risk, and diagnostic awareness in non-endemic countries is still low. Copyright © 2012. Published by Elsevier GmbH. All rights reserved.

  7. A new hot spot for tick-borne encephalitis (TBE): A marked increase of TBE cases in France in 2016.

    PubMed

    Velay, Aurélie; Solis, Morgane; Kack-Kack, Wallys; Gantner, Pierre; Maquart, Marianne; Martinot, Martin; Augereau, Olivier; De Briel, Dominique; Kieffer, Pierre; Lohmann, Caroline; Poveda, Jean Dominique; Cart-Tanneur, Emmanuelle; Argemi, Xavier; Leparc-Goffart, Isabelle; de Martino, Sylvie; Jaulhac, Benoit; Raguet, Sophie; Wendling, Marie-Josée; Hansmann, Yves; Fafi-Kremer, Samira

    2018-01-01

    Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. In 2016, in Northeastern France, we faced a TBEV infection increase, leading to a warning from the Regional Health Agency. Here, we report the confirmed TBE cases diagnosed between January 2013 and December 2016, with particular emphasis on the year 2016. A total of 1643 blood and cerebrospinal fluid (CSF) samples from everywhere in France, corresponding to 1460 patients, were prospectively tested for anti-TBEV-specific IgM and IgG antibodies by ELISA. Additional 39 blood and CSF samples from patients with suspected Lyme neuroborreliosis were retrospectively investigated. The TBEV seropositivity rate was estimated to 5.89% and 54 patients were diagnosed as TBE-confirmed cases. A significant increase in TBE cases was observed during the year 2016 with 29 confirmed cases, instead of a mean of eight cases during the three previous years (p=0.0006). Six imported cases and 48 autochthonous cases, located in the Alsace region (n=43) and in the Alpine region (n=5) were reported. Forty-six patients experienced neurological impairment. Nine patients showed an incomplete recovery at last follow-up (from 15days to eight months post-infection). TBE diagnosis was performed earlier for patients taken in charge in the Alsace region than those hospitalized elsewhere in France (p=0.0087). Among the 39 patients with suspected Lyme neuroborreliosis retrospectively investigated, one showed a TBEV recent infection. The TBE increase that occurred in France in 2016 highlights the need to improve our knowledge about the true burden of TBEV infection and subsequent long-term outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Characterization of tick-borne encephalitis (TBE) foci in Germany and Latvia (1997-2000).

    PubMed

    Süss, Jochen; Schrader, Christina; Abel, Ulrich; Bormane, Antra; Duks, Arnis; Kalnina, Vaira

    2002-06-01

    Knowledge concerning the prevalence of the tick-borne encephalitis virus (TBEV) in wild living tick populations is very important for understanding the epidemiology of the disease and for immuno prophylactic strategy. In Germany high and low risk areas of TBE exist. In the years 1997-2000, 533 autochthonous clinical TBE cases were recorded, in the high-risk areas of Bavaria and Baden-Wuerttemberg 140 and 363, and in the low risk areas in Hesse (Odenwald) and Rhineland-Palatinate 22 and 8, respectively. Corresponding to these case reports we have measured the virus prevalence in free living ticks in these four risk areas and compared these findings with the situation in high-risk areas in Latvia. In the years 1997-2000, 2,797 clinical TBE cases were recorded in Latvia. For the studies in Germany, a total of 17,398 Ixodesricinus ticks (14,860 nymphs and 2,538 adults) were collected by flagging and examined for TBEV, in Latvia the corresponding numbers were 525 I. ricinus ticks (350 adults and 175 nymphs) and 281 I. persulcatus ticks (adults only). Information concerning annual and seasonal differences of the TBEV prevalence in natural TBE foci is not available in Germany. This paper is a continuation of the study (Süss et al., 1999), starting in 1997. We investigated every year, in May and September, the virus prevalence in ticks in high risk areas of Bavaria (8 foci) and Baden-Wuerttemberg (5 foci). A total of 15,400 ticks (13,100 nymphs and 2,300 adults) were examined for TBEV. The ticks were tested for the presence of TBEV-RNA using a sensitive, nested-RT-PCR. The virus prevalence in the Bavarian foci of the whole tick population ranged from 0.3 to 2.0% during these four years, in adults between 1.2 and 5.3% and in nymphs between 0.1 and 1.4%. In the high-risk areas of Baden-Wuerttemberg, in the Black Forest, the estimated virus prevalence rates of investigated ticks varied from 0.2 to 3.4%, in adults from 0 to 4.8%, and in nymphs from 0.2 to 3.4%. Using the same

  9. Report of the 19th Annual Meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - TBE in a changing world.

    PubMed

    Kunze, Ursula

    2018-02-01

    The 19th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians and epidemiologists-was held under the title "TBE in a changing world". Key topics within virology, current epidemiological developments and investigations, expansion of risk areas, clinical aspects and cases, traveling and mobility, vaccination rates, and latest news on vaccination were presented and extensively discussed. Over the past four decades, TBE has become a growing public health challenge in Europe and parts of Asia. It may be considered a complex eco-epidemiological system, characterized by an intricate interplay between the virus, ticks and tick hosts on the one hand and human exposure strongly influenced by socioeconomic conditions on the other hand. Although the facts are simple - vaccination is the best prevention - the socioeconomic conditions keep changing, and with them the ability or willingness of people to get vaccinated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Correlation of TBE Incidence with Red Deer and Roe Deer Abundance in Slovenia

    PubMed Central

    Knap, Nataša; Avšič-Županc, Tatjana

    2013-01-01

    Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks' host finding and consequently may not be possible to correlate with incidence of human TBE. PMID:23776668

  11. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.

    PubMed

    Ershova, Anna S; Gra, Olga A; Lyaschuk, Alexander M; Grunina, Tatyana M; Tkachuk, Artem P; Bartov, Mikhail S; Savina, Darya M; Sergienko, Olga V; Galushkina, Zoya M; Gudov, Vladimir P; Kozlovskaya, Liubov I; Kholodilov, Ivan S; Gmyl, Larissa V; Karganova, Galina G; Lunin, Vladimir G; Karyagina, Anna S; Gintsburg, Alexander L

    2016-10-07

    E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.

  12. Seropersistence of TBE virus antibodies 10 years after first booster vaccination and response to a second booster vaccination with FSME-IMMUN 0.5mL in adults.

    PubMed

    Konior, R; Brzostek, J; Poellabauer, E M; Jiang, Q; Harper, L; Erber, W

    2017-06-16

    Tick-borne encephalitis (TBE) is a viral disease that can have a severe acute clinical course and considerable long-term morbidity. As there is no causal treatment currently available for TBE, vaccination is the only way to combat the disease in endemic areas. The studies presented here were conducted to obtain prospective long-term TBE serum antibody persistence data of subjects up to 10years after the first booster with FSME-IMMUN. This report presents the results of 2 follow-up studies in the same study population of 315 healthy adults. Blood was drawn to assess the seropersistence of TBE virus antibodies yearly, from 2-5 and 7-10years after the first booster vaccination with FSME-IMMUN administered during a previous study. The timing of the second booster vaccination was dependent on the level of serum TBE antibodies observed during yearly follow-up serology observations. The current follow up showed that adult recipients were 84.9% seropositive 10years after a 3 dose primary series and the first booster vaccination of FSME-IMMUN. Seropositivity rates were even higher (88.6%) in subjects below 50years of age. ClinicalTrials.gov Identifier: NCT00503529. ClinicalTrials.gov Identifier: NCT01582698. Copyright © 2017. Published by Elsevier Ltd.

  13. The International Scientific Working Group on Tick-Borne Encephalitis (ISW TBE): Review of 17 years of activity and commitment.

    PubMed

    Kunze, Ursula

    2016-04-01

    Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and other parts of the world for the past 20 years. In 1999, in order to encourage the control of TBE, international experts created a new body: The International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE). This Working Group has been composed of internationally recognized scientific experts from tick-borne encephalitis virus (TBEv)-endemic and non-endemic regions with extensive personal expertise in the field and a high level of commitment to improve the knowledge of TBE and to increase the public awareness of TBE. Since the foundation of the Working Group, ISW-TBE members meet annually. Every meeting is dedicated to a specific topic, and since 2004 a yearly conference report has been published to inform the scientific community about the latest developments. Among the specific issues that have been extensively discussed over the years were the following: clinical aspects of the disease, TBE in children and golden agers, epidemiology, possible causes for the increase in TBE incidence in Europe, TBE and awareness, TBE and travel, (low) vaccination rates, and the cooperation with the European Centre for Disease Prevention and Control (ECDC). This paper gives an overview of the most important activities and achievements of the ISW-TBE over the past 17 years. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. New endemic foci of tick-borne encephalitis (TBE) identified in districts where testing for TBE was not available before 2009 in Poland

    PubMed Central

    2013-01-01

    Background Tick-borne encephalitis (TBE) is found in limited endemic foci in Poland. Lack of diagnosis limits disease detection in non-endemic provinces. Methods In 2009, we enhanced TBE surveillance to confirm the location of endemic foci and inform vaccination policy. In 105 hospitals located in 11/16 provinces, we identified suspected TBE cases through admission ICD-10 codes indicating aseptic meningo-encephalitis or from specimens tested for TBE. The National Reference Laboratory confirmed cases at no cost, by testing serum and/or cerebrospinal fluid using ELISA method. We calculated TBE reported rates as the number of confirmed TBE cases per 100,000 inhabitants. Adjusting to neighbouring districts, we classified districts as non-endemic (<0.1 cases per 100,000 inhabitants), low endemic (> = 0.1 to <1), moderately endemic (> = 1 to <5) and highly endemic (> = 5). We compared surveillance data obtained in 2009 with 2004–2008 baseline data. Results Among 166,099 admissions, we identified 1,585 suspected TBE cases of which 256 were confirmed. Physicians reported more suspected cases among patients <40 years old (12 cases per 1,000 admissions) than among older patients (8 cases per 1,000 admissions). However, patients <40 years of age were confirmed less frequently (16%), than older patients (35%). Physicians reported more suspected cases in districts classed as endemic during 2004–2008 (12 cases per 1,000 admissions, 77% tested for TBE) than in districts classed as non-endemic (7 cases per 1,000 admissions, 59% tested). Of the 38 newly identified endemic districts, 31 were adjacent to 2004–2008 endemic districts and 7 were isolated. Conclusions Enhanced surveillance detected 38 new endemic districts to be considered for TBE vaccination. However, lack of consistent testing in districts believed to be TBE-free remained an obstacle for mapping TBE risk. Although the disease affects mostly older adults and the elderly, more attention is given to

  15. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm.

    PubMed

    Randolph, Sarah E

    2011-12-01

    During the 1990s, Milan Labuda's experimental results established a new paradigm for the study of tick-borne viruses that has since been strengthened by its demonstrated effectiveness in explaining the epidemiology of tick-borne encephalitis (TBE). This brief review summarizes the essential features of the transmission of tick-borne pathogens such as TBE virus. Leukocytes migrate between tick feeding sites, bearing infective virions and providing a transport route for the virus between co-feeding ticks independent of a systemic viraemia. Such tick-borne pathogens are thus transmitted from tick to tick via vertebrates; the ticks are the reservoirs as well as the vectors, while the vertebrate is the transient bridge. The aim is to bring the related but non-synonymous terms (co-feeding and non-systemic) to the attention of workers who use simple PCR screening to identify additional vertebrate reservoir hosts of vector-borne pathogens that are not in fact maintained in nature through systemic transmission. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Characterization of tick-borne encephalitis virus from Latvia.

    PubMed

    Mavtchoutko, V; Vene, S; Haglund, M; Forsgren, M; Duks, A; Kalnina, V; Hörling, J; Lundkvist, A

    2000-02-01

    Viruses of the tick-borne encephalitis (TBE) antigenic complex, within the family Flaviviridae, cause a variety of diseases including uncomplicated febrile illness, encephalitis, meningo-encephalitis, hemorrhagic fever and chronic disease in humans, domesticated animals or wildlife species. TBE is a serious problem in Latvia with up to a 1,000 patients confirmed serologically annually 1994-1995. No previous data had been reported on the causative agent of TBE in Latvia. In the present study, a virus was isolated from serum of a patient with clinical symptoms of an acute TBE infection. Nucleotide sequence information obtained by direct reverse transcription-polymerase chain reaction (RT-PCR) and the serological characteristics of the isolated virus strain, designated TBE-Latvia-1-96, indicated a closer relationship to the Vasilchenko strain, isolated in Novosibirsk (Siberia, Russia), as compared to the western European or far eastern subtypes of TBE viruses. In a mouse neurovirulence assay, a significant difference in survival rates (days) was shown between Latvia-1-96 and the western European TBE virus subtype. Copyright 2000 Wiley-Liss, Inc.

  17. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses.

    PubMed

    Gritsun, T S; Frolova, T V; Pogodina, V V; Lashkevich, V A; Venugopal, K; Gould, E A

    1993-02-01

    A strain of tick-borne encephalitis virus known as Vasilchenko (Vs) exhibits relatively low virulence characteristics in monkeys, Syrian hamsters and humans. The gene encoding the envelope glycoprotein of this virus was cloned and sequenced. Alignment of the sequence with those of other known tick-borne flaviviruses and identification of the recognised amino acid genetic marker EHLPTA confirmed its identity as a member of the TBE complex. However, Vs virus was distinguishable from eastern and western tick-borne serotypes by the presence of the sequence AQQ at amino acid positions 232-234 and also by the presence of other specific amino acid substitutions which may be genetic markers for these viruses and could determine their pathogenetic characteristics. When compared with other tick-borne flaviviruses, Vs virus had 12 unique amino acid substitutions including an additional potential glycosylation site at position (315-317). The Vs virus strain shared closest nucleotide and amino acid homology (84.5% and 95.5% respectively) with western and far eastern strains of tick-borne encephalitis virus. Comparison with the far eastern serotype of tick-borne encephalitis virus, by cross-immunoelectrophoresis of Vs virions and PAGE analysis of the extracted virion proteins, revealed differences in surface charge and virus stability that may account for the different virulence characteristics of Vs virus. These results support and enlarge upon previous data obtained from molecular and serological analysis.

  18. A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, May 2016.

    PubMed

    Brockmann, S O; Oehme, R; Buckenmaier, T; Beer, M; Jeffery-Smith, A; Spannenkrebs, M; Haag-Milz, S; Wagner-Wiening, C; Schlegel, C; Fritz, J; Zange, S; Bestehorn, M; Lindau, A; Hoffmann, D; Tiberi, S; Mackenstedt, U; Dobler, G

    2018-04-01

    In May 2016, two cases of tick-borne encephalitis (TBE) were confirmed by serology (positive IgM and IgG antibodies against TBE virus (TBEV) in serum), with a possible link to raw milk and cheese from a goat farm in a region in Baden-Württemberg, Germany not previously known as TBE-endemic. The outbreak investigation identified 32 consumers of goat dairy products (29 consumers, one farm employee, two owners) of whom none had IgM antibodies against TBEV 3-8 weeks after consumption. Of the 27 notified TBE cases in the State, none reported consumption of raw goat milk or cheese from the suspected farm. Five of 22 cheese samples from 18 different batches were RT-qPCR-positive for TBEV -genome, and two of the five samples were confirmed by virus isolation, indicating viability of TBEV in the cheese. Nine of the 45 goats had neutralising TBEV antibodies, two of them with a high titre indicating recent infection. One of 412 Ixodes ricinus was RT-qPCR-positive, and sequencing of the E gene from nucleic acid extracted from the tick confirmed TBEV. Phylogenetic analyses of tick and cheese isolates showed 100% amino acid homology in the E gene and a close relation to TBEV strains from Switzerland and Austria.

  19. Understanding Ebola Virus Transmission

    PubMed Central

    Judson, Seth; Prescott, Joseph; Munster, Vincent

    2015-01-01

    An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus. PMID:25654239

  20. Avian influenza virus transmission to mammals.

    PubMed

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  1. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: Results from a cross-sectional study.

    PubMed

    Erber, Wilhelm; Schmitt, Heinz-Josef

    2018-05-01

    Adequate vaccination is effective in preventing tick-borne encephalitis (TBE). A population survey conducted in 2015 in Czech Republic, Estonia, Finland, Germany, Hungary, Latvia, Lithuania, Poland, Slovakia, Slovenia, and Sweden obtained information on TBE vaccination. Respondents answered 10 questions for themselves and household members. Data were weighted according to age and fine-tuned for geographical spread. Across the 10 countries (excluding Poland), TBE awareness was 83%; of all respondents, 68% were aware of TBE vaccines and 25% had ≥1 injections. Vaccination rates were lowest in Finland and Slovakia (∼10%), highest in Austria (85%, results from a separate 2015 survey), and varied widely in Germany. Across the 11 countries (excluding Austria), compliance with vaccination schedule among TBE-vaccinated respondents was 61%; 27% and 15% of respondents received first and second booster injections; strongest motivators for vaccination were fear of TBE (38%) and residence/spending time in high-risk areas (31-35%); main reasons for not receiving vaccination were beliefs that vaccination was unnecessary (33%) and that there was no risk of contracting TBE (23%). TBE vaccine uptake and compliance could be improved with effective public health information to increase TBE awareness and trust in vaccination and by updating recommendations to include all subjects visiting TBE-risk areas. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Nipah virus transmission in a hamster model.

    PubMed

    de Wit, Emmie; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J

    2011-12-01

    Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.

  3. Nipah Virus Transmission in a Hamster Model

    PubMed Central

    de Wit, Emmie; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J.

    2011-01-01

    Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks. PMID:22180802

  4. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines

    PubMed Central

    Amicizia, Daniela; Domnich, Alexander; Panatto, Donatella; Lai, Piero Luigi; Cristina, Maria Luisa; Avio, Ulderico; Gasparini, Roberto

    2013-01-01

    Tick-borne Encephalitis (TBE), which is caused by a Flavivirus, is the most common tick-transmitted disease in Central and Eastern Europe and Russia. Today, TBE is endemic in 27 European countries, and has become an international public health problem. The epidemiology of TBE is changing owing to various factors, such as improvements in diagnosis and case reporting, increased recreational activities in areas populated by ticks, and changes in climatic conditions affecting tick habitats. Vaccination remains the most effective protective measure against TBE for people living in risk zones, occupationally exposed subjects and travelers to endemic areas. The vaccines currently in use are FSME-Immun®, Encepur®, EnceVir® and TBE vaccine Moscow®. The numerous studies performed on the efficacy and safety of these vaccines have shown a high level of immunogenicity and an excellent safety profile. Several studies have also shown a high level of cross-protection among strains belonging to different subtypes.   In the present paper we attempted to describe the continuously changing epidemiology of TBE in European States and to overview clinical development of available vaccines paying particular attention on cross-protection elicited by the vaccines. PMID:23377671

  5. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  6. Vector-virus interactions and transmission dynamics of West Nile virus.

    PubMed

    Ciota, Alexander T; Kramer, Laura D

    2013-12-09

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission.

  7. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2013-01-01

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission. PMID:24351794

  8. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia.

    PubMed

    Jemeršić, Lorena; Dežđek, Danko; Brnić, Dragan; Prpić, Jelena; Janicki, Zdravko; Keros, Tomislav; Roić, Besi; Slavica, Alen; Terzić, Svjetlana; Konjević, Dean; Beck, Relja

    2014-02-01

    Tick-borne encephalitis (TBE) is a growing public health concern in central and northern European countries. Even though TBE is a notifiable disease in Croatia, there is a significant lack of information in regard to vector tick identification, distribution as well as TBE virus prevalence in ticks or animals. The aim of our study was to identify and to investigate the viral prevalence of TBE virus in ticks removed from red fox (Vulpes vulpes) carcasses hunted in endemic areas in northern Croatia and to gain a better insight in the role of wild ungulates, especially red deer (Cervus elaphus) in the maintenance of the TBE virus in the natural cycle. We identified 5 tick species (Ixodes ricinus, Ixodes hexagonus, Haemaphysalis punctata, Dermacentor reticulatus, Rhipicephalus sanguineus) removed from 40 red foxes. However, TBE virus was isolated only from adult I. ricinus and I. hexagonus ticks showing a viral prevalence (1.6%) similar to or higher than reported in endemic areas of other European countries. Furthermore, 2 positive spleen samples from 182 red deer (1.1%) were found. Croatian TBE virus isolates were genetically analyzed, and they were shown to be closely related, all belonging to the European TBE virus subgroup. However, on the basis of nucleotide and amino acid sequence analysis, 2 clusters were identified. Our results show that further investigation is needed to understand the clustering of isolates and to identify the most common TBE virus reservoir hosts in Croatia. Sentinel surveys based on wild animal species would give a better insight in defining TBE virus-endemic and possible risk areas in Croatia. Copyright © 2013. Published by Elsevier GmbH.

  9. The evolution of plant virus transmission pathways

    Treesearch

    Frédéric M. Hamelin; Linda J.S. Allen; Holly R. Prendeville; M. Reza Hajimorad; Michael J. Jeger

    2016-01-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, oravector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which...

  10. Evaluation of European tick-borne encephalitis virus vaccine against recent Siberian and far-eastern subtype strains.

    PubMed

    Hayasaka, D; Goto, A; Yoshii, K; Mizutani, T; Kariwa, H; Takashima, I

    2001-09-14

    To evaluate the efficacy of the European TBE vaccine in east-Siberian and far-eastern regions of Russia, we examined the immune responses of the vaccine against recent TBE virus Siberian (Irkutsk) and far-eastern (Khabarovsk and Vladivostok) isolates. The sera of vaccinated humans showed efficient neutralizing antibody titers (> or =20) against Siberian and far-eastern strains. To evaluate the efficacy of the vaccine in vivo, mice were vaccinated and challenged with lethal doses of the viruses. All vaccinated mice survived each virus challenge. These results suggest that the European vaccine can prevent the TBE virus infection in east-Siberian and far-eastern regions of Russia.

  11. Household transmission of influenza virus

    PubMed Central

    Tsang, Tim K.; Lau, Lincoln L. H.; Cauchemez, Simon; Cowling, Benjamin J.

    2015-01-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection. PMID:26612500

  12. [Mumps vaccine virus transmission].

    PubMed

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  13. [Streptomycin--an activator of persisting tick-borne encephalitis virus].

    PubMed

    Malenko, G V; Pogodina, V V; Karmysheva, V Ia

    1984-01-01

    The effect of streptomycin (C) on persistence of tick-borne encephalitis (TBE) virus in Syrian hamsters infected with 3 strains of the virus (41/65, Aina/1448, Vasilchenko ) intracerebrally or subcutaneously was studied. In the animals not given C the infectious virus could be detected in the brain for 8-14 days but not later although their organs (mostly brains and spleens) contained the hemagglutinating antigen and viral antigen detectable by immunofluorescence. Intramuscularly C was given twice daily for 13-35 days in a daily dose of 200 mg/kg. The C-treated hamsters yielded 7 virulent TBE virus strains: 3 from the brain, 3 from the spleen, and one from the blood. No virus could be isolated from the liver, kidneys, or lungs despite the use of various methods for isolation including tissue explantation. The activating effect of C was observed against the background of 4-fold decrease in the titre of complement-fixing and antihemagglutinating antibodies. C exerted its activating effect both at early (70 days) and late (9 months) stages of TBE virus persistence. The activating effect of C appears to be due to its immunosuppressive properties and neurotoxic action on the CNS.

  14. Transmissible gastroenteritis virus: plaques and a plaque neutralization test.

    PubMed Central

    Thomas, F C; Dulac, G C

    1976-01-01

    A plaquing system and plaque neutralization test in porcine thyroid cells were used to study different transmissible gastroenteritis isolates and hemagglutinating encephalomyelitis virus. Among transmissible gastroenteritis virus isolates, plaque size varied considerably and mixed size ranges sometimes occurred. The most recently isolated viruses produced smaller plaques than the laboratory viruses or hemagglutinating encephalomyelitis virus. All transmissible gastroenteritis virus isolates reacted in the plaque neutralization test with a transmissible gastroenteritis virus antiserum which showed no activity against hemagglutinating encephalomyelitis virus. Plaque neutralization results both from experimentally infected pigs and following a field outbreak demonstrated the reliability of this test and its greater sensitivity than the conventional tube test. Images Fig. 1. PMID:187296

  15. Serologic Evidence of Tick-Borne Encephalitis Virus Infection in a Patient with Suspected Lyme Disease in Japan.

    PubMed

    Yoshii, Kentaro; Sato, Kozue; Ishizuka, Mariko; Kobayashi, Shintaro; Kariwa, Hiroaki; Kawabata, Hiroki

    2018-05-29

    Tick-borne encephalitis (TBE) is widely prevalent on the Eurasian continent, including Japan, but four cases of TBE have been reported in Japan. To inspect unconfirmed TBE cases in Japan, we conducted a retrospective seroepidemiological study of a total of 158 samples from 81 meningoencephalitis patients suspected as Lyme disease. Two serum samples from one patient showed neutralizing antibodies against TBE virus. The patient with severe and progressive encephalitis had a history of tick bite in Hokkaido in 2012. These results demonstrated that tick-borne encephalitis virus (TBEV) case was actually unconfirmed in Japan. Further seroepidemiological surveys are required to identify unconfirmed TBEV infections to consider the pros and cons of introducing specific countermeasures including vaccination in Japan.

  16. Tick-borne encephalitis virus in dogs - is this an issue?

    PubMed Central

    2011-01-01

    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog. PMID:21489255

  17. Foodborne transmission of nipah virus in Syrian hamsters.

    PubMed

    de Wit, Emmie; Prescott, Joseph; Falzarano, Darryl; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J

    2014-03-01

    Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×10⁸ TCID₅₀ of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing

  18. Foodborne Transmission of Nipah Virus in Syrian Hamsters

    PubMed Central

    de Wit, Emmie; Prescott, Joseph; Falzarano, Darryl; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J.

    2014-01-01

    Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×108 TCID50 of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and

  19. [Activating effect of adrenaline, prednisolone and vincristine in the late periods of tick-borne encephalitis virus persistence].

    PubMed

    Frolova, T V; Pogodina, V V

    1984-01-01

    The activating effect of adrenalin (A), prednisolone (P), and vincristine (V) on persistent infection caused by subcutaneous inoculation of Syrian hamsters with the Vasilchenko and B-383 strains of tick-borne encephalitis virus (TBE) was studied. The drugs were administered once, twice, or three times 250-270 days after virus inoculation. Complement-fixing antigen was found in the organs of the infected animals given no A, P, or V; in the organ explants synthesis of hemagglutinin was observed but no infectious virus could be isolated. After treatment of the infected hamsters with A, P, or V organ explants yielded TBE virus strains which showed either high or low virulence for white mice. The activated TBE virus strains were obtained from explants of hamster brains and spleens but not liver. V produced the most marked activating effect, A the least.

  20. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. The evolution of plant virus transmission pathways.

    PubMed

    Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J

    2016-05-07

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of three commercial IgG and IgM ELISA kits for the detection of tick-borne encephalitis virus antibodies.

    PubMed

    Ackermann-Gäumann, Rahel; Tritten, Marie-Lise; Hassan, Mona; Lienhard, Reto

    2018-05-01

    Tick-borne encephalitis (TBE) is endemic in many parts of Europe and Asia. The diagnosis of this disease is essentially based on the demonstration of specific antibodies. For reasons of simplicity, automatization and quick availability of test results, enzyme-linked immunosorbent assays (ELISAs) are the method of choice for serological diagnosis of TBE. Here, we evaluated three commercially available anti-TBEV IgG and IgM ELISAs using 251 serum samples: the SERION ELISA classic FSME Virus/TBE Virus IgG and IgM kit (Virion\\Serion), the RIDASCREEN ® FSME/TBE IgG and IgM kit (R-Biopharm), and the anti-FSME/TBE virus ELISA "Vienna" IgG/anti-FSME/TBE virus ELISA IgM kit (Euroimmun). In total, discrepant test results for IgG and/or IgM were observed for 37/251 (14.7 %) of tested samples; differences were statistically significant. Reference values defined by serum neutralization test (SNT, n = 25) or results provided by EQA organizers (n = 2) were established for a subset of samples. In relation to these values, false-positive results were observed mainly for Euroimmun Vienna IgG and RIDASCREEN IgG, whereas false-negative results were primarily observed for Virion\\Serion IgG and RIDASCREEN IgM kits. In routine diagnostics, specificity problems are of major relevance and may be addressed by analyzing the respective samples using SNT. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Host adaptation and transmission of influenza A viruses in mammals

    PubMed Central

    Schrauwen, Eefje JA; Fouchier, Ron AM

    2014-01-01

    A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks. PMID:26038511

  4. Zika Virus and Sexual Transmission: A New Route of Transmission for Mosquito-borne Flaviviruses
.

    PubMed

    Hastings, Andrew K; Fikrig, Erol

    2017-06-01

    Beginning in 2015, concern over a new global epidemic has spread in the media, governmental agencies, legislative bodies and the public at large. This newly emerging threat has been reported to cause symptoms ranging from mild fever, rash, and body aches, to severe birth defects and acute onset paralysis. The causative agent of this disease, Zika virus, is closely related to two other important human pathogens, dengue and West Nile Virus (WNV), but has some distinguishing features that has raised alarms from the scientific community. Like its two close relatives, this virus is a member of the Flaviviridae family, a class of single stranded RNA viruses with a positive sense genome and is spread primarily via the bite of an infected mosquito. However, this virus has demonstrated another route of transmission that is particularly concerning for people outside of the regions where the main mosquito vector for this virus is present. Sexual transmission of Zika virus has been increasingly reported, from both infected males and females to their partner, which has resulted in the World Health Organization (WHO) and the Center for Disease Control (CDC) issuing warnings to those living in or travelling to areas of Zika transmission to practice abstinence and/or avoid unprotected sexual contact for up to six months after infection with this virus. This perspective will outline the evidence for sexual transmission and persistence of viral infection in semen and vaginal secretions as well as review the animal models for sexual transmission of Zika virus.

  5. Virus dynamics in the presence of synaptic transmission

    PubMed Central

    Komarova, Natalia L.; Wodarz, Dominik

    2014-01-01

    Traditionally, virus dynamics models consider populations of infected and target cells, and a population of free virus that can infect susceptible cells. In recent years, however, it has become clear that direct cell-to-cell transmission can also play an important role for the in vivo spread of viruses, especially retroviruses such as human T lymphotropic virus-1 (HTLV-1) and Human immundeficeincy virus (HIV). Such cell-to-cell transmission is thought to occur through the formation of virological synapses that are formed between an infected source cell and a susceptible target cell. Here we formulate and analyze a class of virus dynamics models that include such cell-cell synaptic transmission. We explore different ”strategies” of the virus defined by the number of viruses passed per synapse, and determine how the choice of strategy influences the basic reproductive ratio, R0, of the virus and thus its ability to establish a persistent infection. We show that depending on specific assumptions about the viral kinetics, strategies with low or intermediate numbers of viruses transferred may correspond to the highest values of R0. We also explore the evolutionary competition of viruses of different strains, which differ by their synaptic strategy, and show that viruses characterized by synaptic strategies with the highest R0 win the evolutionary competition and exclude other, inferior, strains. PMID:23357287

  6. Construction of the influenza A virus transmission tree in a college-based population: co-transmission and interactions between influenza A viruses.

    PubMed

    Zhang, Xu-Sheng; De Angelis, Daniela

    2016-01-29

    Co-infection of different influenza A viruses is known to occur but how viruses interact within co-infection remains unknown. An outbreak in a college campus during the 2009 pandemic involved two subtypes of influenza A: persons infected with pandemic A/H1N1; persons infected with seasonal A/H3N2 viruses; and persons infected with both at the same time (co-infection). This provides data to analyse the possible interaction between influenza A viruses within co-infection. We extend a statistical inference method designed for outbreaks caused by one virus to that caused by two viruses. The method uses knowledge of which subtype each case is infected with (and whether they were co-infected), contact information and symptom onset date of each case in the influenza outbreak. We then apply it to construct the most likely transmission tree during the outbreak in the college campus. Analysis of the constructed transmission tree shows that the simultaneous presence of the two influenza viruses increases the infectivity and the transmissibility of A/H1N1 virus but whether it changes the infectivity of A/H3N2 is unclear. The estimation also shows that co-transmission of both subtypes from co-infection is low and therefore co-infection cannot be sustained on its own. This study suggests that influenza A viruses within co-infected patients can interact in some ways rather than transmit independently, and this can enhance the spread of influenza A virus infection.

  7. Transmission of human infection with Nipah Virus

    PubMed Central

    Luby, Stephen P.; Gurley, Emily S.; Hossain, M. Jahangir

    2009-01-01

    Nipah virus (NiV) is a paramyxovirus whose reservoir host is fruit bats of the genus Pteropus. Occasionally the virus is introduced into human populations and causes severe illness characterized by encephalitis or respiratory disease. The first outbreak of NiV was recognized in Malaysia, but since 2001 eight outbreaks have been reported from Bangladesh. The primary pathways of transmission from bats to people in Bangladesh are through contamination of raw date palm sap by bats with subsequent consumption by humans and through infection of domestic animals (cattle, pigs, and goats), presumably from consumption of food contaminated with bat saliva or urine with subsequent transmission to people. Approximately half of recognized Nipah cases in Bangladesh developed their disease following person to person transmission of the virus. Efforts to prevent transmission should focus on decreasing bat access to date palm sap and reducing family members' and friends' exposure to infected patients' saliva. PMID:19886791

  8. Ebola Virus Shedding and Transmission: Review of Current Evidence.

    PubMed

    Vetter, Pauline; Fischer, William A; Schibler, Manuel; Jacobs, Michael; Bausch, Daniel G; Kaiser, Laurent

    2016-10-15

     The magnitude of the 2013-2016 Ebola virus disease outbreak in West Africa was unprecedented, with >28 500 reported cases and >11 000 deaths. Understanding the key elements of Ebola virus transmission is necessary to implement adequate infection prevention and control measures to protect healthcare workers and halt transmission in the community.  We performed an extensive PubMed literature review encompassing the period from discovery of Ebola virus, in 1976, until 1 June 2016 to evaluate the evidence on modes of Ebola virus shedding and transmission.  Ebola virus has been isolated by cell culture from blood, saliva, urine, aqueous humor, semen, and breast milk from infected or convalescent patients. Ebola virus RNA has been noted in the following body fluids days or months after onset of illness: saliva (22 days), conjunctiva/tears (28 days), stool (29 days), vaginal fluid (33 days), sweat (44 days), urine (64 days), amniotic fluid (38 days), aqueous humor (101 days), cerebrospinal fluid (9 months), breast milk (16 months [preliminary data]), and semen (18 months). Nevertheless, the only documented cases of secondary transmission from recovered patients have been through sexual transmission. We did not find strong evidence supporting respiratory or fomite-associated transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Analysis of delayed TBE-vaccine booster after primary vaccination.

    PubMed

    Aerssens, Annelies; Cochez, Christel; Niedrig, Matthias; Heyman, Paul; Kühlmann-Rabens, Ilona; Soentjens, Patrick

    2016-02-01

    An open, uncontrolled single centre study was conducted in the Travel Clinic at the Military Hospital, Brussels. Eighty-eight subjects were recruited who had a primary series of tick-borne encephalitis (TBE) vaccine more than 5 years ago and who never received a booster dose afterwards. Response rate after booster vaccination was very high: 84 out of 88 subjects (95.5%) had neutralizing antibodies on plaque reduction neutralization test and all (100%) had IgG antibodies on ELISA, on Day 21-28 after booster vaccination. This study adds valuable information to the common situation of delayed booster interval. The results of our study indicate that in young healthy travellers (<50 years), one booster vaccination after a primary series of TBE vaccine in the past is sufficient to obtain protective antibodies, even if primary vaccination is much longer than the recommended booster interval of 5 years. © International Society of Travel Medicine, 2016. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  10. Frequent transmission of immunodeficiency viruses among bobcats and pumas

    USGS Publications Warehouse

    Franklin, S.P.; Troyer, J.L.; TerWee, J.A.; Lyren, L.M.; Boyce, W.M.; Riley, S.P.D.; Roelke, M.E.; Crooks, K.R.; VandeWoude, S.

    2007-01-01

    With the exception of human immunodeficiency virus (HIV), which emerged in humans after cross-species transmissions of simian immunodeficiency viruses from nonhuman primates, immunodeficiency viruses of the family Lentiviridae represent species-specific viruses that rarely cross species barriers to infect new hosts. Among the Felidae, numerous immunodeficiency-like lentiviruses have been documented, but only a few cross-species transmissions have been recorded, and these have not been perpetuated in the recipient species. Lentivirus seroprevalence was determined for 79 bobcats (Lynx rufus) and 31 pumas (Puma concolor) from well-defined populations in Southern California. Partial genomic sequences were subsequently obtained from 18 and 12 seropositive bobcats and pumas, respectively. Genotypes were analyzed for phylogenic relatedness and genotypic composition among the study set and archived feline lentivirus sequences. This investigation of feline immunodeficiency virus infection in bobcats and pumas of Southern California provides evidence that cross-species infection has occurred frequently among these animals. The data suggest that transmission has occurred in multiple locations and are most consistent with the spread of the virus from bobcats to pumas. Although the ultimate causes remain unknown, these transmission events may occur as a result of puma predation on bobcats, a situation similar to that which fostered transmission of HIV to humans, and likely represent the emergence of a lentivirus with relaxed barriers to cross-species transmission. This unusual observation provides a valuable opportunity to evaluate the ecological, behavioral, and molecular conditions that favor repeated transmissions and persistence of lentivirus between species. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  11. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014-2015.

    PubMed

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W; Quick, Joshua; Sall, Amadou A; Glynn, Judith R; Formenty, Pierre; Subissi, Lorenzo; Faye, Ousmane

    2016-12-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution.

  12. THE TRANSMISSION OF EQUINE ENCEPHALOMYELITIS VIRUS BY AEDES AEGYPTI.

    PubMed

    Merrill, M H; Tenbroeck, C

    1935-10-31

    In confirming Kelser's work on the transmission of equine encephalomyelitis of the western type by Aëdes aegypti it has been learned that the mosquitoes must be fed virus of high titer if positive results are to be secured. A period of from 4 to 5 days after feeding either on infected guinea pigs or on brain containing virus must elapse before the disease is transmitted by biting, but after this time transmission regularly results for a period of about 2 months. By inoculation, virus can be demonstrated in the bodies of infected mosquitoes for the duration of life. Although virus multiplies in the mosquitoes and is generally distributed in their bodies, repeated attempts to demonstrate it in the eggs from females known to be infected as well as in larvae, pupae, and adults from such eggs have been uniformly negative. Larvae have not taken up virus added to the water in which they were living. Male mosquitoes have been infected with virus by feeding but they have not transmitted the virus to normal females, nor have males transmitted the virus from infected to normal females. When virus of the eastern instead of the western type is used transmission experiments with Aëdes aegypti are negative. Apparently this virus is incapable of penetrating the intestinal mucosa of the mosquito. If, however, it is inoculated into the body cavity by needle puncture it persists and transmission experiments are positive.

  13. Water deficit enhances the transmission of plant viruses by insect vectors

    PubMed Central

    Yvon, Michel; Vile, Denis; Dader, Beatriz; Fereres, Alberto

    2017-01-01

    Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems. PMID:28467423

  14. Water deficit enhances the transmission of plant viruses by insect vectors.

    PubMed

    van Munster, Manuella; Yvon, Michel; Vile, Denis; Dader, Beatriz; Fereres, Alberto; Blanc, Stéphane

    2017-01-01

    Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems.

  15. [Interaction of the Siberian and Far Eastern subtypes of tick-borne encephalitis virus in mammals with mixed infection. I. Factors influencing the type of interaction].

    PubMed

    Gerasimov, S G; Pogodina, V V; Kolyasnikova, N M; Karan, L S; Malenko, G V; Levina, L S

    2011-01-01

    Polytypic strains containing the fragments of genes of Siberian and Far Eastern tick-borne encephalitis (TBE) virus subtypes were isolated from the brain of fatal TBE patients, the blood of TBE patients, and Ixodes persulcatus ticks in the foci of concomitant circulation of the two subtypes. The interaction of the Siberian and Far Eastern TBE virus subtypes was studied in the neural phase of the infection of albino mice and Syrian hamsters in order to understand conditions for formation of these strains and their role in the etiology of acute TBE. Their viral progeny was genotyped by reverse transcription-polymerase chain reaction and fluorescence hybridization assay with genotype-specific probes. Mixed infection showed an effect of synergism, independent reproduction of the two subtypes in the brain and spleen, competitive exclusion of one subtype from the viral population. The type of the Interaction depended on the species of animals, the properties of partner strains, and the target organ.

  16. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1994-01-01

    HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons

  17. West Nile Virus: Biology, Transmission, and Human Infection

    PubMed Central

    Colpitts, Tonya M.; Conway, Michael J.; Montgomery, Ruth R.

    2012-01-01

    Summary: West Nile Virus was introduced into the Western Hemisphere during the late summer of 1999 and has been causing significant and sometimes severe human diseases since that time. This article briefly touches upon the biology of the virus and provides a comprehensive review regarding recent discoveries about virus transmission, virus acquisition, and human infection and disease. PMID:23034323

  18. Characterization of Founder Viruses in Very Early SIV Rectal Transmission

    PubMed Central

    Yuan, Zhe; Ma, Fangrui; Demers, Andrew J.; Wang, Dong; Xu, Jianqing; Lewis, Mark G.; Li, Qingsheng

    2016-01-01

    A better understanding of HIV-1 transmission is critical for developing preventative strategies. To that end, we analyzed 524 full-length env sequences of SIVmac251 at 6 and 10 days post intrarectal infection of rhesus macaques. There was no tissue compartmentalization of founder viruses across plasma, rectal and distal lymphatic tissues for most animals; however one animal has evidence of virus tissue compartmentalization. Despite identical viral inoculums, founder viruses were animal-specific, primarily derived from rare variants in the inoculum, and have a founder virus signature that can distinguish dominant founder variants from minor founder or untransmitted variants in the inoculum. Importantly, the sequences of post-transmission defective viruses were phylogenetically associated with competent viral variants in the inoculum and were mainly converted from competent viral variants by frameshift rather than APOBEC mediated mutations, suggesting the converting the transmitted viruses into defective viruses through frameshift mutation is an important component of rectal transmission bottleneck. PMID:28027479

  19. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  20. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014–2015

    PubMed Central

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J.; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W.; Quick, Joshua; Sall, Amadou A.; Glynn, Judith R.; Formenty, Pierre; Faye, Ousmane

    2016-01-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution. PMID:27869596

  1. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses.

    PubMed

    Joseph, Sarah B; Swanstrom, Ronald; Kashuba, Angela D M; Cohen, Myron S

    2015-07-01

    HIV-1 infection typically results from the transmission of a single viral variant, the transmitted/founder (T/F) virus. Studies of these HIV-1 variants provide critical information about the transmission bottlenecks and the selective pressures acting on the virus in the transmission fluid and in the recipient tissues. These studies reveal that T/F virus phenotypes are shaped by stochastic and selective forces that restrict transmission and may be targets for prevention strategies. In this Review, we highlight how studies of T/F viruses contribute to a better understanding of the biology of HIV-1 transmission and discuss how these findings affect HIV-1 prevention strategies.

  2. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses

    PubMed Central

    Joseph, Sarah B.; Swanstrom, Ronald; Kashuba, Angela D. M.; Cohen, Myron S.

    2016-01-01

    HIV-1 infection typically results from the transmission of a single viral variant, the transmitted/founder (T/F) virus. Studies of these HIV-1 variants provide critical information about the transmission bottlenecks and the selective pressures acting on the virus in the transmission fluid and in the recipient tissues. These studies reveal that T/F virus phenotypes are shaped by stochastic and selective forces that restrict transmission and may be targets for prevention strategies. In this Review, we highlight how studies of T/F viruses contribute to a better understanding of the biology of HIV-1 transmission and discuss how these findings affect HIV-1 prevention strategies. PMID:26052661

  3. West Nile virus transmission and ecology in birds

    USGS Publications Warehouse

    McLean, R.G.; Ubico, S.R.; Docherty, D.E.; Hansen, W.R.; Sileo, L.; Mcnamara, T.S.

    2001-01-01

    The ecology of the strain of West Nile virus (WNV) introduced into the United States in 1999 has similarities to the native flavivirus, St. Louis encephalitis (SLE) virus, but has unique features not observed with SLE virus or with WNV in the old world. The primary route of transmission for most of the arboviruses in North America is by mosquito, and infected native birds usually do not suffer morbidity or mortality. An exception to this pattern is eastern equine encephalitis virus, which has an alternate direct route of transmission among nonnative birds, and some mortality of native bird species occurs. The strain of WNV circulating in the northeastern United States is unique in that it causes significant mortality in exotic and native bird species, especially in the American crow (Corvus brachyrhynchos). Because of the lack of information on the susceptibility and pathogenesis of WNV for this species, experimental studies were conducted at the USGS National Wildlife Health Center. In two separate studies, crows were inoculated with a 1999 New York strain of WNV, and all experimentally infected crows died. In one of the studies, control crows in regular contact with experimentally inoculated crows in the same room but not inoculated with WNV succumbed to infection. The direct transmission between crows was most likely by the oral route. Inoculated crows were viremic before death, and high titers of virus were isolated from a variety of tissues. The significance of the experimental direct transmission among captive crows is unknown.

  4. Is there a role for symbiotic bacteria in plant virus transmission?

    USDA-ARS?s Scientific Manuscript database

    During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...

  5. Transmission of Influenza B Viruses in the Guinea Pig

    PubMed Central

    Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M.

    2012-01-01

    Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission. PMID:22301149

  6. [The phenomenon of antigenic defectiveness in naturally circulating strains of the tick-borne encephalitis virus and its possible connection to seronegative forms of the disease].

    PubMed

    Pogodina, V V; Bochkova, N G; Dzhivanian, T I; Levina, L S; Karganova, G G; Riasova, R A; Sergeeva, V A; Lashkevich, V A

    1992-01-01

    Ten strains of tick-borne encephalitis (TBE) virus isolated from single specimens of I. persulcatus ticks were studied. The strains were divided into antigenically complete (AC) and antigenically defective (AD), depending on the presence or absence of some virus antigens in concentrated virus preparations, characteristics in rocket immune electrophoresis (RIEP), rate and intensity of humoral immune response in monkeys and rabbits, and plaque size in SPEV cell culture. The AC-strain markers include high activities of precipitating, hemagglutinating (HA), and complement-fixing (CF) antigens, formation of precipitates moving in rocket shape towards anode and cathode in RIEP, rapid development of antihemagglutinins and virus-neutralizing antibodies, large plaques (3-5 mm). The AD variants are characterized by the lack of HA and precipitating activity, low titres of CF antigen, slow and poor immune response, the lack of cathode precipitate "rocket", very small plaques. The antigenic defectiveness is transitory and shows in early passages; after 10-11 passages in SPEV cell cultures or in white mice, transformation AD----AC occurs. A transformed strain is neutralized, like standard TBE strains, by blood sera of a typical patient with poliomyelitis-like form of TBE. Examinations of blood sera from the population of an endemic zone (Yaroslavl Province) and 67 TBE patients (Kurgan Province) demonstrated the association of AC and AD variants with the formation of immune portion of the population and TBE etiology. Cases of the disease confirmed by seroconversion in HI with commercial diagnosticum are associated with AC variants, whereas AD variants are associated with those TBE cases which are difficult to diagnose using the commercial diagnosticum.

  7. A systematic review of human-to-human transmission of measles vaccine virus.

    PubMed

    Greenwood, Kathryn P; Hafiz, Radwan; Ware, Robert S; Lambert, Stephen B

    2016-05-17

    Measles is one of the most contagious human diseases. Administration of the live attenuated measles vaccine has substantially reduced childhood mortality and morbidity since its licensure in 1963. The live but attenuated form of the vaccine describes a virus poorly adapted to replicating in human tissue, but with a replication yield sufficient to elicit an immune response for long-term protection. Given the high transmissibility of the wild-type virus and that transmission of other live vaccine viruses has been documented, we conducted a systematic review to establish if there is any evidence of human-to-human transmission of the live attenuated measles vaccine virus. We reviewed 773 articles for genotypic confirmation of a vaccine virus transmitted from a recently vaccinated individual to a susceptible close contact. No evidence of human-to-human transmission of the measles vaccine virus has been reported amongst the thousands of clinical samples genotyped during outbreaks or endemic transmission and individual case studies worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Animal models of disease shed light on Nipah virus pathogenesis and transmission.

    PubMed

    de Wit, Emmie; Munster, Vincent J

    2015-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  9. Person-to-Person Transmission of Andes Virus

    PubMed Central

    Bellomo, Carla; San Juan, Jorge; Pinna, Diego; Forlenza, Raul; Elder, Malco; Padula, Paula J.

    2005-01-01

    Despite the fact that rodents are considered to be the infectious source of hantavirus for humans, another route of transmission was demonstrated. Andes virus (ANDV) has been responsible for most of the cases recorded in Argentina. Person-to-person transmission of ANDV Sout lineage was described during an outbreak of hantavirus pulmonary syndrome in southwest Argentina. In this study, we analyzed 4 clusters that occurred in 2 disease-endemic areas for different ANDV lineages. We found new evidence of interhuman transmission for ANDV Sout lineage and described the first event in which another lineage, ANDV Cent BsAs, was implicated in this mechanism of transmission. On the basis of epidemiologic and genetic data, we concluded that person-to-person spread of the virus likely took place during the prodromal phase or shortly after it ended, since close and prolonged contact occurred in the events analyzed here, and the incubation period was 15–24 days. PMID:16485469

  10. Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets

    PubMed Central

    Belser, Jessica A.; Gustin, Kortney M.; Maines, Taronna R.; Pantin-Jackwood, Mary J.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2012-01-01

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of entry for establishment of a respiratory infection. However, the properties which govern ocular tropism of influenza viruses, the mechanisms of virus spread from ocular to respiratory tissue, and the potential differences in respiratory disease initiated from different exposure routes are poorly understood. Here, we established a ferret model of ocular inoculation to explore the development of virus pathogenicity and transmissibility following influenza virus exposure by the ocular route. We found that multiple subtypes of human and avian influenza viruses mounted a productive virus infection in the upper respiratory tract of ferrets following ocular inoculation, and were additionally detected in ocular tissue during the acute phase of infection. H5N1 viruses maintained their ability for systemic spread and lethal infection following inoculation by the ocular route. Replication-independent deposition of virus inoculum from ocular to respiratory tissue was limited to the nares and upper trachea, unlike traditional intranasal inoculation which results in virus deposition in both upper and lower respiratory tract tissues. Despite high titers of replicating transmissible seasonal viruses in the upper respiratory tract of ferrets inoculated by the ocular route, virus transmissibility to naïve contacts by respiratory droplets was reduced following ocular inoculation. These data improve our understanding of the mechanisms of virus spread following ocular exposure and highlight differences in the establishment of respiratory disease and virus transmissibility following use of different inoculation volumes and routes. PMID:22396651

  11. Breast milk transmission of flaviviruses in the context of Zika virus: A systematic review.

    PubMed

    Mann, Taylor Z; Haddad, Lisa B; Williams, Tonya R; Hills, Susan L; Read, Jennifer S; Dee, Deborah L; Dziuban, Eric J; Pérez-Padilla, Janice; Jamieson, Denise J; Honein, Margaret A; Shapiro-Mendoza, Carrie K

    2018-06-08

    Since the Zika virus epidemic in the Americas began in 2015, Zika virus transmission has occurred throughout the Americas. However, limited information exists regarding possible risks of transmission of Zika virus and other flaviviruses through breast feeding and human milk. We conducted a systematic review of the evidence regarding flaviviruses detection in and transmission through milk, specifically regarding Zika virus, Japanese encephalitis virus, tick-borne encephalitis virus, Powassan virus, West Nile virus, dengue virus, and yellow fever virus. Medline, Embase, Global Health, CINAHL, Cochrane Library, Scopus, Popline, Virtual Health Library, and WorldCat were searched through June 2017. Two authors independently screened potential studies for inclusion and extracted data. Human and nonhuman (animal) studies describing: 1) confirmed or suspected cases of mother-to-child transmission through milk; or 2) the presence of flavivirus genomic material in milk. Seventeen studies were included, four animal models and thirteen observational studies. Dengue virus, West Nile virus, and Zika virus viral ribonucleic acid was detected in human milk, including infectious Zika virus and dengue virus viral particles. Human breast-feeding transmission was confirmed for only yellow fever virus. There was evidence of milk-related transmission of dengue virus, Powassan virus, and West Nile virus in animal studies. Because the health advantages of breast feeding are considered greater than the potential risk of transmission, the World Health Organization recommends that mothers with possible or confirmed Zika virus infection or exposure continue to breast feed. This review did not identify any data that might alter this recommendation. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  12. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways.

    PubMed

    Jones, Roger A C

    2018-01-01

    The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease

  13. Transmission of Ebola virus from pigs to non-human primates.

    PubMed

    Weingartl, Hana M; Embury-Hyatt, Carissa; Nfon, Charles; Leung, Anders; Smith, Greg; Kobinger, Gary

    2012-01-01

    Ebola viruses (EBOV) cause often fatal hemorrhagic fever in several species of simian primates including human. While fruit bats are considered natural reservoir, involvement of other species in EBOV transmission is unclear. In 2009, Reston-EBOV was the first EBOV detected in swine with indicated transmission to humans. In-contact transmission of Zaire-EBOV (ZEBOV) between pigs was demonstrated experimentally. Here we show ZEBOV transmission from pigs to cynomolgus macaques without direct contact. Interestingly, transmission between macaques in similar housing conditions was never observed. Piglets inoculated oro-nasally with ZEBOV were transferred to the room housing macaques in an open inaccessible cage system. All macaques became infected. Infectious virus was detected in oro-nasal swabs of piglets, and in blood, swabs, and tissues of macaques. This is the first report of experimental interspecies virus transmission, with the macaques also used as a human surrogate. Our finding may influence prevention and control measures during EBOV outbreaks.

  14. Molecular Evidence of Sexual Transmission of Ebola Virus

    PubMed Central

    Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; Shinde, S.A.; Murugan, R.; Sieh, S.B.; Badio, M.; Fakoli, L.; Taweh, F.; de Wit, E.; van Doremalen, N.; Munster, V.J.; Pettitt, J.; Prieto, K.; Humrighouse, B.W.; Ströher, U.; DiClaro, J.W.; Hensley, L.E.; Schoepp, R.J.; Safronetz, D.; Fair, J.; Kuhn, J.H.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Lo, T.; Gasasira, A.; Nichol, S.T.; Formenty, P.; Kateh, F.N.; De Cock, K.M.; Bolay, F.; Sanchez-Lockhart, M.; Palacios, G.

    2016-01-01

    Summary A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.) PMID:26465384

  15. Influenza A(H7N9) Virus Transmission between Finches and Poultry

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Webby, Richard J.

    2015-01-01

    Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry. PMID:25811839

  16. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission

    PubMed Central

    Ye, Liang; Schwaderlapp, Marilena; Gad, Hans Henrik; Hartmann, Rune; Garcin, Dominique; Mahlakõiv, Tanel

    2018-01-01

    Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. PMID:29651984

  17. Rabies Virus Transmission in Solid Organ Transplantation, China, 2015-2016.

    PubMed

    Chen, Shuilian; Zhang, Heng; Luo, Meiling; Chen, Jingfang; Yao, Dong; Chen, Faming; Liu, Ruchun; Chen, Tianmu

    2017-09-01

    We report rabies virus transmission among solid organ transplantation recipients in Changsha, China, in 2016. Two recipients were confirmed to have rabies and died. Our findings suggest that more attention should be paid to the possibility of rabies virus transmission through organ transplantation for clinical and public health reasons.

  18. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.

    PubMed

    Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X

    1998-03-01

    The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the

  19. [Activating effect of cyclophosphane at late stages of persistence of the tick-borne encephalitis virus].

    PubMed

    Frolova, T V; Pogodina, V V; Larina, G I; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    Conditions of activation of persistent infection caused by subcutaneous inoculation of Syrian hamsters with the B-383 and Vasilchenko strains of tick-borne encephalitis virus (TBE) were studied. After 2 administrations of cyclophosphane (CP) on day 170 of infection clinically manifest disease developed in some animals with increasingly severe pathomorphological lesions in the CNS. Several variants of activated TBE virus were isolated from brains and spleens of CP-treated hamsters. The activation of persistent infection was observed in the presence of marked decreased of humoral immunity level, weight of the thymus, and values of spontaneous rosette-formation.

  20. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    PubMed

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  1. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission

    PubMed Central

    Roundy, Christopher M.; Azar, Sasha R.; Rossi, Shannan L.; Huang, Jing H.; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J.; Paploski, Igor A.D.; Kitron, Uriel; Ribeiro, Guilherme S.; Hanley, Kathryn A.

    2017-01-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas. PMID:28287375

  2. Possible sexual transmission of Ebola virus - Liberia, 2015.

    PubMed

    Christie, Athalia; Davies-Wayne, Gloria J; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Blackley, David J; Laney, A Scott; Williams, Desmond E; Shinde, Shivam A; Badio, Moses; Lo, Terrence; Mate, Suzanne E; Ladner, Jason T; Wiley, Michael R; Kugelman, Jeffrey R; Palacios, Gustavo; Holbrook, Michael R; Janosko, Krisztina B; de Wit, Emmie; van Doremalen, Neeltje; Munster, Vincent J; Pettitt, James; Schoepp, Randal J; Verhenne, Leen; Evlampidou, Iro; Kollie, Karsor K; Sieh, Sonpon B; Gasasira, Alex; Bolay, Fatorma; Kateh, Francis N; Nyenswah, Tolbert G; De Cock, Kevin M

    2015-05-08

    On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time.

  3. The evolution of parasitic and mutualistic plant-virus symbioses through transmission-virulence trade-offs.

    PubMed

    Hamelin, Frédéric M; Hilker, Frank M; Sun, T Anthony; Jeger, Michael J; Hajimorad, M Reza; Allen, Linda J S; Prendeville, Holly R

    2017-09-15

    Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in infected plants. To better understand plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity. We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations, we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this study include the evolution of conditional (environment-dependent) mutualism in plant viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors

    PubMed Central

    Kliot, Adi; Ghanim, Murad

    2013-01-01

    Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV) by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV) by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed. PMID:23783810

  5. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission.

    PubMed

    Bao, Qiuying; Hipp, Michaela; Hugo, Annette; Lei, Janet; Liu, Yang; Kehl, Timo; Hechler, Torsten; Löchelt, Martin

    2015-11-11

    Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell-cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105-106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT-BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies.

  6. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission

    PubMed Central

    Bao, Qiuying; Hipp, Michaela; Hugo, Annette; Lei, Janet; Liu, Yang; Kehl, Timo; Hechler, Torsten; Löchelt, Martin

    2015-01-01

    Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell–cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105–106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT–BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies. PMID:26569290

  7. Experimental transmission of Powassan virus (Flaviviridae) by Ixodes scapularis ticks (Acari:Ixodidae).

    PubMed

    Costero, A; Grayson, M A

    1996-11-01

    Transmission experiments were performed with Ixodes scapularis ticks from an uninfected laboratory colony. Immature and adult ticks were exposed to Powassan (POW) viremic hamsters and rabbits, respectively. Oral infection rates for engorged larvae, nymphs and females fed on POW-infected hosts were 10%, 40%, and 57%, respectively. Transstadial transmission rates for nymphs exposed to POW virus as larvae, adults exposed as larvae, and adults exposed as nymphs, were 9.5%, 10%, and 54%, respectively. Evidence of transovarial transmission occurred when two uninfected hamsters, exposed to F2 larvae and nymphs originally exposed to POW virus in the F1 nymphal stage, seroconverted to POW virus with hemagglutination inhibition titers of 80 and 5,120, respectively; the transovarial transmission rate was 16.6%. All developmental stages were able to transmit virus orally to uninfected hosts regardless of when the ticks were originally exposed to the virus. These results suggest that I. scapularis is a competent vector of POW virus under experimental conditions.

  8. Transmission of Guanarito and Pirital Viruses among Wild Rodents, Venezuela

    PubMed Central

    Milazzo, Mary L.; Cajimat, Maria N.B.; Duno, Gloria; Duno, Freddy; Utrera, Antonio

    2011-01-01

    Samples from rodents captured on a farm in Venezuela in February 1997 were tested for arenavirus, antibody against Guanarito virus (GTOV), and antibody against Pirital virus (PIRV). Thirty-one (48.4%) of 64 short-tailed cane mice (Zygodontomys brevicauda) were infected with GTOV, 1 Alston’s cotton rat (Sigmodon alstoni) was infected with GTOV, and 36 (64.3%) of 56 other Alston’s cotton rats were infected with PIRV. The results of analyses of field and laboratory data suggested that horizontal transmission is the dominant mode of GTOV transmission in Z. brevicauda mice and that vertical transmission is an important mode of PIRV transmission in S. alstoni rats. The results also suggested that bodily secretions and excretions from most GTOV-infected short-tailed cane mice and most PIRV-infected Alston’s cotton rats may transmit the viruses to humans. PMID:22172205

  9. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    PubMed

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  10. 76 FR 72417 - Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) Through Solid Organ Transplantation AGENCY... Reducing Transmission of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus... Transmission of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) through...

  11. Transmission routes for nipah virus from Malaysia and Bangladesh.

    PubMed

    Clayton, Bronwyn A; Middleton, Deborah; Bergfeld, Jemma; Haining, Jessica; Arkinstall, Rachel; Wang, Linfa; Marsh, Glenn A

    2012-12-01

    Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.

  12. Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents

    PubMed Central

    Heydmann, Laura; Barth, Heidi; Soulier, Eric; Habersetzer, François; Doffoël, Michel; Bukh, Jens; Patel, Arvind H.; Zeisel, Mirjam B.; Baumert, Thomas F.

    2014-01-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. PMID:24830295

  13. Vector independent transmission of the vector-borne bluetongue virus.

    PubMed

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  14. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    PubMed

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-01

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  15. Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan.

    PubMed

    Uchida, Leo; Hayasaka, Daisuke; Ngwe Tun, Mya Myat; Morita, Kouichi; Muramatsu, Yasukazu; Hagiwara, Katsuro

    2018-04-19

    Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.

  16. Focal ratio degradation and transmission in VIRUS-P optical fibers

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy D.; MacQueen, Phillip J.; Hill, Gary J.; Grupp, Frank; Kelz, Andreas; Palunas, Povilas; Roth, Martin; Fry, Alexander

    2008-07-01

    We have conducted extensive tests of both transmission and focal ratio degradation (FRD) on two integral field units currently in use on the VIRUS-P integral field spectrograph. VIRUS-P is a prototype for the VIRUS instrument proposed for the Hobby-Eberly Telescope at McDonald Observatory. All tests have been conducted at an input f-ratio of F/3.65 and with an 18% central obscuration in order to simulate optical conditions on the HET. Transmission measurements were conducted with narrow-band interference filters (FWHM: 10 nm) at 10 discrete wavelengths (337 to 600 nm), while FRD tests were made at 365 nm, 400 nm and 600 nm. The influence of wavelength, end immersion, fiber type and length on both FRD and transmission is explored. Most notably, we find no wavelength dependence on FRD down to 365 nm. All fibers tested are within the VIRUS instrument specifications for both FRD and transmission. We present the details of our differential FRD testing method and explain a simple and robust technique of aligning the test bench and optical fiber axes to within +/-0.1 degrees.

  17. A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease.

    PubMed

    Barkhash, Andrey V; Yurchenko, Andrey A; Yudin, Nikolay S; Ignatieva, Elena V; Kozlova, Irina V; Borishchuk, Inessa A; Pozdnyakova, Larisa L; Voevoda, Mikhail I; Romaschenko, Aida G

    2018-05-01

    The progression of infectious diseases depends on causative agents, the environment and the host's genetic susceptibility. To date, human genetic susceptibility to tick-borne encephalitis (TBE) virus-induced disease has not been sufficiently studied. We have combined whole-exome sequencing with a candidate gene approach to identify genes that are involved in the development of predisposition to TBE in a Russian population. Initially, six exomes from TBE patients with severe central nervous system (CNS) disease and seven exomes from control individuals were sequenced. Despite the small sample size, two nonsynonymous single nucleotide polymorphisms (SNPs) were significantly associated with TBE virus-induced severe CNS disease. One of these SNPs is rs6558394 (G/A, Pro422Leu) in the scribbled planar cell polarity protein (SCRIB) gene and the other SNP is rs17576 (A/G, Gln279Arg) in the matrix metalloproteinase 9 (MMP9) gene. Subsequently, these SNPs were genotyped in DNA samples of 150 non-immunized TBE patients with different clinical forms of the disease from two cities and 228 control randomly selected samples from the same populations. There were no statistically significant differences in genotype and allele frequencies between the case and control groups for rs6558394. However, the frequency of the rs17576 G allele was significantly higher in TBE patients with severe CNS diseases such as meningo-encephalitis (43.5%) when compared with TBE patients with milder meningitis (26.3%; P = 0.01), as well as with the population control group (32.5%; P = 0.042). The results suggest that the MMP9 gene may affect genetic predisposition to TBE in a Russian population. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    PubMed

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (<5%), the infection was persistent with high TBEV yields (>10 6 pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Squirrelpox virus: assessing prevalence, transmission and environmental degradation.

    PubMed

    Collins, Lisa M; Warnock, Neil D; Tosh, David G; McInnes, Colin; Everest, David; Montgomery, W Ian; Scantlebury, Mike; Marks, Nikki; Dick, Jaimie T A; Reid, Neil

    2014-01-01

    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25 °C) and dry conditions than in cooler (5 and 15 °C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species.

  20. Mucosal Immunization with a Candidate Universal Influenza Vaccine Reduces Virus Transmission in a Mouse Model

    PubMed Central

    Lo, Chia-Yun; Misplon, Julia A.; Epstein, Suzanne L.

    2014-01-01

    ABSTRACT Pandemic influenza is a major public health concern, but conventional strain-matched vaccines are unavailable early in a pandemic. Candidate “universal” vaccines targeting the viral antigens nucleoprotein (NP) and matrix 2 (M2), which are conserved among all influenza A virus strains and subtypes, could be manufactured in advance for use at the onset of a pandemic. These vaccines do not prevent infection but can reduce disease severity, deaths, and virus titers in the respiratory tract. We hypothesized that such immunization may reduce virus transmission from vaccinated, infected animals. To investigate this hypothesis, we studied mouse models for direct-contact and airborne transmission of H1N1 and H3N2 influenza viruses. We established conditions under which virus transmission occurs and showed that transmission efficiency is determined in part at the level of host susceptibility to infection. Our findings indicate that virus transmission between mice has both airborne and direct-contact components. Finally, we demonstrated that immunization with recombinant adenovirus vectors expressing NP and M2 significantly reduced the transmission of virus to cohoused, unimmunized mice in comparison to controls. These findings have broad implications for the impact of conserved-antigen vaccines, not only in protecting the vaccinated individual but also in protecting others by limiting influenza virus transmission and potentially reducing the size of epidemics. IMPORTANCE Using a mouse model of influenza A virus transmission, we demonstrate that a candidate “universal” influenza vaccine both protects vaccinated animals from lethal infection and reduces the transmission of virus from vaccinated to nonvaccinated mice. This vaccine induces immunity against proteins conserved among all known influenza A virus strains and subtypes, so it could be used early in a pandemic before conventional strain-matched vaccines are available and could potentially reduce the

  1. The role of receptor binding specificity in interspecies transmission of influenza viruses

    PubMed Central

    Imai, Masaki; Kawaoka, Yoshihiro

    2017-01-01

    Influenza A virus infection begins with the binding of the hemagglutinin (HA) glycoprotein to sialic acid-containing receptors on the surface of the target cell. Avian influenza viruses, including avian H5N1, H7, and H9N2 viruses, can occasionally cross the species barrier and infect humans; however, these viruses do not spread efficiently from person to person, perhaps, in part, due to differences in the receptor-binding specificities of human and avian influenza viruses. The HAs of avian influenza viruses must adapt to receptors in humans to acquire efficient human-to-human transmissibility. In this review, we discuss the receptor binding specificity of influenza A viruses and its role in interspecies transmission. PMID:22445963

  2. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    PubMed

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes.

    PubMed

    Hall-Mendelin, Sonja; McLean, Breeanna J; Bielefeldt-Ohmann, Helle; Hobson-Peters, Jody; Hall, Roy A; van den Hurk, Andrew F

    2016-07-25

    Insect-specific viruses do not replicate in vertebrate cells, but persist in mosquito populations and are highly prevalent in nature. These viruses may naturally regulate the transmission of pathogenic vertebrate-infecting arboviruses in co-infected mosquitoes. Following the isolation of the first Australian insect-specific flavivirus (ISF), Palm Creek virus (PCV), we investigated routes of infection and transmission of this virus in key Australian arbovirus vectors and its impact on replication and transmission of West Nile virus (WNV). Culex annulirostris, Aedes aegypti and Aedes vigilax were exposed to PCV, and infection, replication and transmission rates in individual mosquitoes determined. To test whether the virus could be transmitted vertically, progeny reared from eggs oviposited by PCV-inoculated Cx. annulirostris were analysed for the presence of PCV. To assess whether prior infection of mosquitoes with PCV could also suppress the transmission of pathogenic flaviviruses, PCV positive or negative Cx. annulirostris were subsequently exposed to WNV. No PCV-infected Cx. annulirostris were detected 16 days after feeding on an infectious blood meal. However, when intrathoracically inoculated with PCV, Cx. annulirostris infection rates were 100 %. Similar rates of infection were observed in Ae. aegypti (100 %) and Ae. vigilax (95 %). Notably, PCV was not detected in any saliva expectorates collected from any of these species. PCV was not detected in 1038 progeny reared from 59 PCV-infected Cx. annulirostris. After feeding on a blood meal containing 10(7) infectious units of WNV, significantly fewer PCV-infected Cx. annulirostris were infected or transmitted WNV compared to PCV negative mosquitoes. Immunohistochemistry revealed that PCV localized in the midgut epithelial cells, which are the first site of infection with WNV. Our results indicate that PCV cannot infect Cx. annulirostris via the oral route, nor be transmitted in saliva or vertically to progeny

  4. Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2018-01-01

    Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal. PMID:24996862

  5. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    PubMed

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. © Her Majesty in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Oxford University Press on behalf of Entomological Society of America.

  6. Transmission of Hepatitis E Virus in Developing Countries

    PubMed Central

    Khuroo, Mohammad S.; Khuroo, Mehnaaz S.; Khuroo, Naira S.

    2016-01-01

    Hepatitis E virus (HEV), an RNA virus of the Hepeviridae family, has marked heterogeneity. While all five HEV genotypes can cause human infections, genotypes HEV-1 and -2 infect humans alone, genotypes HEV-3 and -4 primarily infect pigs, boars and deer, and genotype HEV-7 primarily infects dromedaries. The global distribution of HEV has distinct epidemiological patterns based on ecology and socioeconomic factors. In resource-poor countries, disease presents as large-scale waterborne epidemics, and few epidemics have spread through person-to-person contact; however, endemic diseases within these countries can potentially spread through person-to-person contact or fecally contaminated water and foods. Vertical transmission of HEV from infected mother to fetus causes high fetal and perinatal mortality. Other means of transmission, such as zoonotic transmission, can fluctuate depending upon the region and strain of the virus. For instance, zoonotic transmission can sometimes play an insignificant role in human infections, such as in India, where human and pig HEV infections are unrelated. However, recently China and Southeast Asia have experienced a zoonotic spread of HEV-4 from pigs to humans and this has become the dominant mode of transmission of hepatitis E in eastern China. Zoonotic HEV infections in humans occur by eating undercooked pig flesh, raw liver, and sausages; through vocational contact; or via pig slurry, which leads to environmental contamination of agricultural products and seafood. Lastly, blood transfusion-associated HEV infections occur in many countries and screening of donors for HEV RNA is currently under serious consideration. To summarize, HEV genotypes 1 and 2 cause epidemic and endemic diseases in resource poor countries, primarily spreading through contaminated drinking water. HEV genotypes 3 and 4 on the other hand, cause autochthonous infections in developed, and many developing countries, by means of a unique zoonotic food

  7. Compliance with vaccination against tick-borne encephalitis virus in Germany.

    PubMed

    Jacob, L; Kostev, K

    2017-07-01

    The goal of this study was to analyse patients' compliance with vaccination against tick-borne encephalitis (TBE) virus in Germany. The present study included 7266 patients from 638 general practices and 4194 patients from 114 paediatric practices. Patients were included if they had received the first dose of one of two vaccines against TBE virus (FSME-Immune ® and Encepur ® ). The immunization schedule of these vaccines consisted of three injections. Patients were considered compliant if they received the second and third doses at the recommended time or within a period of ±25% around the recommended time (tolerance period). Of the recruited patients, 28% received both the second and the third injections within the tolerance period. Individuals treated in paediatric practices had a higher likelihood of receiving vaccine doses within the tolerance period compared with individuals treated in general practices (OR 2.15; 95% CI 1.92-2.41). Moreover, patients <18 years old were more likely to be compliant than patients >65 years old (OR 1.22; 95% CI 1.02-1.46), whereas patients aged between 18 and 30 years were least likely to be compliant (OR 0·77; 95% CI 0.61-0.96). Compliance with vaccination against the TBE virus was low. This compliance was significantly associated with age and the type of practices in which patients were treated. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  9. Sexual and transovarian transmission of Crimean-Congo haemorrhagic fever virus in Hyalomma truncatum ticks.

    PubMed

    Gonzalez, J P; Camicas, J L; Cornet, J P; Faye, O; Wilson, M L

    1992-01-01

    Male Hyalomma truncatum ticks were inoculated with Crimean-Congo haemorrhagic fever (CCHF) virus, hypostomectomized and then allowed to mate with uninfected females feeding on a naive rabbit. After mating, CCHF virus was reisolated from 2 out of 3 males tested and from 4 of 6 mated, engorged females (titre greater than or equal to 2.2 log LD50/ml). Vertical transmission was then demonstrated by virus reisolation from a portion of 2 of the 6 batches of eggs laid by the positive females. From these 2 positive egg batches, 6 larvae pools were tested with successful virus reisolation from one. Attempts to reisolate CCHF virus from 15 nymph pools of this positive batch of larvae were unsuccessful. Virus reisolation from gonopore-closed female H. truncatum which cofed with preinfected males demonstrated transmission in the absence of copulation. Rabbits that served as bloodmeal sources seroconverted after infestation by infected male ticks. However, CCHF virus was not reisolated from 3 gonopore-closed, engorged females, nor from their eggs, after feeding with hypostomectomized preinfected males. Transmission of CCHF virus during mating or cofeeding of adult H. truncatum, and subsequent transovarial transmission, appear to represent additional mechanisms of infection in the tick population, and may contribute to the maintenance of transmission in nature.

  10. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens

    PubMed Central

    Hall, Roy A.; Bielefeldt-Ohmann, Helle; McLean, Breeanna J.; O’Brien, Caitlin A.; Colmant, Agathe M.G.; Piyasena, Thisun B.H.; Harrison, Jessica J.; Newton, Natalee D.; Barnard, Ross T.; Prow, Natalie A.; Deerain, Joshua M.; Mah, Marcus G.K.Y.; Hobson-Peters, Jody

    2016-01-01

    Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction. PMID:28096646

  11. The evolution of parasitic and mutualistic plant–virus symbioses through transmission-virulence trade-offs

    Treesearch

    Frédéric M. Hamelin; Frank M. Hilker; T. Anthony Sun; Michael J. Jeger; M. Reza Hajimorad; Linda J.S. Allen; Holly R. Prendeville

    2017-01-01

    Virus–plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to...

  12. Epidemiology and Transmission of Hepatitis A Virus and Hepatitis E Virus Infections in the United States.

    PubMed

    Hofmeister, Megan G; Foster, Monique A; Teshale, Eyasu H

    2018-04-30

    There are many similarities in the epidemiology and transmission of hepatitis A virus (HAV) and hepatitis E virus (HEV) genotype (gt)3 infections in the United States. Both viruses are enterically transmitted, although specific routes of transmission are more clearly established for HAV than for HEV: HAV is restricted to humans and primarily spread through the fecal-oral route, while HEV is zoonotic with poorly understood modes of transmission in the United States. New cases of HAV infection have decreased dramatically in the United States since infant vaccination was recommended in 1996. In recent years, however, outbreaks have occurred among an increasingly susceptible adult population. Although HEV is the most common cause of acute viral hepatitis in developing countries, it is rarely diagnosed in the United States. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Transmission of Ebola Viruses: What We Know and What We Do Not Know

    PubMed Central

    Moore, Kristine A.; Kelley, Nicholas S.; Brosseau, Lisa M.; Wong, Gary; Murphy, Frederick A.; Peters, Clarence J.; LeDuc, James W.; Russell, Phillip K.; Van Herp, Michel; Kapetshi, Jimmy; Muyembe, Jean-Jacques T.; Ilunga, Benoit Kebela; Strong, James E.; Grolla, Allen; Wolz, Anja; Kargbo, Brima; Kargbo, David K.; Formenty, Pierre; Sanders, David Avram; Kobinger, Gary P.

    2015-01-01

    ABSTRACT Available evidence demonstrates that direct patient contact and contact with infectious body fluids are the primary modes for Ebola virus transmission, but this is based on a limited number of studies. Key areas requiring further study include (i) the role of aerosol transmission (either via large droplets or small particles in the vicinity of source patients), (ii) the role of environmental contamination and fomite transmission, (iii) the degree to which minimally or mildly ill persons transmit infection, (iv) how long clinically relevant infectiousness persists, (v) the role that “superspreading events” may play in driving transmission dynamics, (vi) whether strain differences or repeated serial passage in outbreak settings can impact virus transmission, and (vii) what role sylvatic or domestic animals could play in outbreak propagation, particularly during major epidemics such as the 2013–2015 West Africa situation. In this review, we address what we know and what we do not know about Ebola virus transmission. We also hypothesize that Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread. PMID:25698835

  14. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

    PubMed Central

    Richard, Mathilde; Fouchier, Ron A.M.

    2015-01-01

    Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks. PMID:26385895

  15. Vital Signs: Preparing for Local Mosquito-Borne Transmission of Zika Virus--United States, 2016.

    PubMed

    2016-04-08

    Widespread Zika virus transmission in the Region of the Americas since 2015 has heightened the urgency of preparing for the possibility of expansion of mosquito-borne transmission of Zika virus during the 2016 mosquito season. CDC and other U.S. government agencies have been working with state and local government partners on prevention and early detection of Zika virus infection and will increase these activities during April as part of their preparation for the anticipated emergence of mosquito-borne transmission of Zika virus in the continental United States.

  16. Molecular Mechanism of the Airborne Transmissibility of H9N2 Avian Influenza A Viruses in Chickens

    PubMed Central

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin

    2014-01-01

    ABSTRACT H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. IMPORTANCE Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among

  17. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  18. Reduced evolutionary rate in reemerged Ebola virus transmission chains.

    PubMed

    Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-04-01

    On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.

  19. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia

    PubMed Central

    Wong, Hui Vern; Vythilingam, Indra; Sulaiman, Wan Yusof Wan; Lulla, Aleksei; Merits, Andres; Chan, Yoke Fun; Sam, I-Ching

    2016-01-01

    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection. PMID:26598564

  20. Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host

    PubMed Central

    Pagán, Israel; Montes, Nuria; Milgroom, Michael G.; García-Arenal, Fernando

    2014-01-01

    For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence. PMID:25077948

  1. Squirrelpox Virus: Assessing Prevalence, Transmission and Environmental Degradation

    PubMed Central

    Tosh, David G.; McInnes, Colin; Everest, David; Montgomery, W. Ian; Scantlebury, Mike; Marks, Nikki; Dick, Jaimie T. A.

    2014-01-01

    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species. PMID

  2. Environmental conditions and Puumala virus transmission in Belgium

    PubMed Central

    Linard, Catherine; Tersago, Katrien; Leirs, Herwig; Lambin, Eric F

    2007-01-01

    Background Non-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests. Results Linear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases. Conclusion The transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land

  3. Genetic insights into Graminella nigrifrons competence for Maize fine streak virus infection and transmission

    USDA-ARS?s Scientific Manuscript database

    Insects are critical for the spread of most plant virus diseases, with >75% of plant viruses depending on an insects for transmission to new, uninfected hosts. However, little is known about the molecular and cellular factors in the insect that are important for virus transmission. The black-faced l...

  4. Factors affecting the ecology of tick-borne encephalitis in Slovenia.

    PubMed

    Knap, N; Avšič-Županc, T

    2015-07-01

    Recognition of factors that influence the formation of tick-borne encephalitis (TBE) foci is important for assessing the risk of humans acquiring the viral infection and for establishing what can be done (within reasonable boundaries) to minimize that risk. In Slovenia, the dynamics of the TBE vector, i.e. Ixodes ricinus, was studied over a 4-year period and the prevalence of infection in ticks was established. Two groups of tick hosts were investigated: deer and small mammals. Red deer have been confirmed as having a direct influence on the incidence of TBE and rodents have been recognized as important sentinels for TBE infections, although their role in the enzootic cycle of the virus still remains to be elucidated. Last, forest and agricultural areas, which are influenced by human activity, are suitable habitats for ticks, and important for TBEV transmission and establishment. Human behaviour is also therefore an important factor and should always be considered in studies of TBE ecology.

  5. Tick-borne encephalitis virus and the immune response of the mammalian host.

    PubMed

    Dörrbecker, Bastian; Dobler, Gerhard; Spiegel, Martin; Hufert, Frank T

    2010-07-01

    Tick-borne encephalitis (TBE) is caused by Tick-borne encephalitis virus (TBEV), one of the most prevalent arboviruses in Europe and in many parts of Asia. Transmission of TBEV to humans usually occurs by bite of an infected tick or rarely by ingestion of unpasteurized milk products of infected livestock. TBEV infection induces an innate and adaptive immune response, nevertheless it is able to replicate in several cell types of the immune system at the same time which probably contributes to the spread of the virus in the human host. Furthermore, TBEV can enter the central nervous system (CNS) by yet not well understood mechanisms via the blood brain barrier (BBB) or the olfactory neurons which leads to serious neurological disorders like meningitis, encephalitis or even meningoencephalitis. In this article we review the known facts and possible hypotheses of interaction of TBEV with components of the mammalian immune system and their implications for TBEV-mediated pathogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe

    PubMed Central

    Hernández-Triana, Luis M.; Medlock, Jolyon M.; Fooks, Anthony R.; Carpenter, Simon; Johnson, Nicholas

    2018-01-01

    Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission. PMID:29473903

  7. African Horse Sickness Virus: History, Transmission, and Current Status.

    PubMed

    Carpenter, Simon; Mellor, Philip S; Fall, Assane G; Garros, Claire; Venter, Gert J

    2017-01-31

    African horse sickness virus (AHSV) is a lethal arbovirus of equids that is transmitted between hosts primarily by biting midges of the genus Culicoides (Diptera: Ceratopogonidae). AHSV affects draft, thoroughbred, and companion horses and donkeys in Africa, Asia, and Europe. In this review, we examine the impact of AHSV critically and discuss entomological studies that have been conducted to improve understanding of its epidemiology and control. The transmission of AHSV remains a major research focus and we critically review studies that have implicated both Culicoides and other blood-feeding arthropods in this process. We explore AHSV both as an epidemic pathogen and within its endemic range as a barrier to development, an area of interest that has been underrepresented in studies of the virus to date. By discussing AHSV transmission in the African republics of South Africa and Senegal, we provide a more balanced view of the virus as a threat to equids in a diverse range of settings, thus leading to a discussion of key areas in which our knowledge of transmission could be improved. The use of entomological data to detect, predict and control AHSV is also examined, including reference to existing studies carried out during unprecedented outbreaks of bluetongue virus in Europe, an arbovirus of wild and domestic ruminants also transmitted by Culicoides.

  8. Transmission and reassortment of avian influenza viruses at the Asian-North American interface.

    PubMed

    Ramey, Andrew M; Pearce, John M; Ely, Craig R; Guy, Lisa M Sheffield; Irons, David B; Derksen, Dirk V; Ip, Hon S

    2010-10-25

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted. Copyright © 2010. Published by Elsevier Inc.

  9. Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative.

    PubMed

    Fine, P E; Carneiro, I A

    1999-11-15

    The global poliomyelitis eradication initiative has been a tremendous success, with current evidence suggesting that wild poliovirus will cease to circulate anywhere in the world soon after the year 2000. As the goal of wild poliovirus eradication is approached, concern has been raised about the potential for persistent transmission of oral polio vaccine (OPV) viruses, as these viruses are known to revert toward wild-type neurovirulence. This paper has been extracted from a document prepared for the World Health Organization on the implications of OPV transmissibility for the strategy of stopping OPV vaccination after global eradication of wild polioviruses. The authors review the empirical evidence on OPV transmissibility available from household and community transmission studies and from mass-vaccination experiences. They then consider theoretical measures of transmissibility and persistence for wild and OPV viruses (secondary attack rate, basic reproduction number, and critical populations' size), to assess whether transmissibility of OPV viruses is sufficient to allow persistence of these viruses after cessation of vaccination. The findings indicate that OPV viruses could persist under various plausible circumstances, and that this potential should be a major consideration when planning the cessation of OPV vaccination.

  10. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens.

    PubMed

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin; Liu, Xiufan

    2014-09-01

    H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among flocks and individuals

  11. Reduced evolutionary rate in reemerged Ebola virus transmission chains

    PubMed Central

    Blackley, David J.; Wiley, Michael R.; Ladner, Jason T.; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L.; Gregory, Christopher; D’ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W.; Kuhn, Jens H.; Hensley, Lisa E.; Jahrling, Peter B.; Ströher, Ute; Nichol, Stuart T.; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A.; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-01-01

    On 29 June 2015, Liberia’s respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak (“flare-up”) of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. PMID:27386513

  12. Natural transmission of feline immunodeficiency virus from infected queen to kitten.

    PubMed

    Medeiros, Sheila de Oliveira; Martins, Angelica Nascimento; Dias, Carlos Gabriel Almeida; Tanuri, Amilcar; Brindeiro, Rodrigo de Moraes

    2012-05-25

    Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus that infects cats. The primary mode of transmission occurs through bite wounds, and other routes are difficult to observe in nature. The purpose of this study was to evaluate FIV transmission from queen to kitten in a colony of naturally infected stray cats. With this aim, a queen was monitored over a period of three years. A blood sample was taken to amplify and sequence gag, pol and env regions of the virus from the queen, two kittens and other cats from the colony. Phylogenetic analysis showed evidence of queen to kitten transmission.

  13. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    PubMed Central

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  14. The effect of sexual transmission on Zika virus dynamics.

    PubMed

    Saad-Roy, C M; Ma, Junling; van den Driessche, P

    2018-04-25

    Zika virus is a human disease that may lead to neurological disorders in affected individuals, and may be transmitted vectorially (by mosquitoes) or sexually. A mathematical model of Zika virus transmission is formulated, taking into account mosquitoes, sexually active males and females, inactive individuals, and considering both vector transmission and sexual transmission from infectious males to susceptible females. Basic reproduction numbers are computed, and disease control strategies are evaluated. The effect of the incidence function used to model sexual transmission from infectious males to susceptible females is investigated. It is proved that for such functions that are sublinear, if the basic reproduction [Formula: see text], then the disease dies out and [Formula: see text] is a sharp threshold. Moreover, under certain conditions on model parameters and assuming mass action incidence for sexual transmission, it is proved that if [Formula: see text], there exists a unique endemic equilibrium that is globally asymptotically stable. However, under nonlinear incidence, it is shown that for certain functions backward bifurcation and Hopf bifurcation may occur, giving rise to subthreshold equilibria and periodic solutions, respectively. Numerical simulations for various parameter values are displayed to illustrate these behaviours.

  15. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    PubMed Central

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  16. Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection.

    PubMed

    Fauteux-Daniel, Sébastien; Larouche, Ariane; Calderon, Virginie; Boulais, Jonathan; Béland, Chanel; Ransy, Doris G; Boucher, Marc; Lamarre, Valérie; Lapointe, Normand; Boucoiran, Isabelle; Le Campion, Armelle; Soudeyns, Hugo

    2017-12-01

    Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies. IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of

  17. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments

    PubMed Central

    Barclay, Wendy; Barr, Ian; Fouchier, Ron A.M.; Matsuyama, Ryota; Nishiura, Hiroshi; Peiris, Malik; Russell, Charles J.; Subbarao, Kanta; Zhu, Huachen

    2018-01-01

    The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model. PMID:29774862

  18. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland.

    PubMed

    Cisak, Ewa; Wójcik-Fatla, Angelina; Zając, Violetta; Sroka, Jacek; Buczek, Alicja; Dutkiewicz, Jacek

    2010-01-01

    A total of 119 unpasteurized milk samples taken from 63 cows, 29 goats and 27 sheep bred on 8 farms situated on the territory of the Lublin province (eastern Poland), an area of risk of tick-borne encephalitis (TBE), were examined for the presence of RNA of tick-borne encephalitis virus (TBEV) by the nested RT-PCR method. Milk samples were also tested for the presence of anti-TBEV antibodies by ELISA test. By RT-PCR, the greatest prevalence of TBE virus was found in the milk of sheep (22.2%), followed by milk of goats (20.7%) and cows (11.1%). By ELISA, the greatest prevalence of anti- TBEV antibodies was found also in the milk of sheep (14.8%), followed by milk of cows (3.2%) and goats (0%). The results suggest a potential risk of infection with TBEV by drinking raw milk on endemic areas of TBE, and indicate a need for milk pasteurization before consumption.

  19. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    PubMed

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine

    PubMed Central

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow

    2014-01-01

    ABSTRACT Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. IMPORTANCE We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and

  1. Mode of Parainfluenza Virus Transmission Determines the Dynamics of Primary Infection and Protection from Reinfection

    PubMed Central

    Burke, Crystal W.; Bridges, Olga; Brown, Sherri; Rahija, Richard; Russell, Charles J.

    2013-01-01

    Little is known about how the mode of respiratory virus transmission determines the dynamics of primary infection and protection from reinfection. Using non-invasive imaging of murine parainfluenza virus 1 (Sendai virus) in living mice, we determined the frequency, timing, dynamics, and virulence of primary infection after contact and airborne transmission, as well as the tropism and magnitude of reinfection after subsequent challenge. Contact transmission of Sendai virus was 100% efficient, phenotypically uniform, initiated and grew to robust levels in the upper respiratory tract (URT), later spread to the lungs, grew to a lower level in the lungs than the URT, and protected from reinfection completely in the URT yet only partially in the lungs. Airborne transmission through 7.6-cm and 15.2-cm separations between donor and recipient mice was 86%–100% efficient. The dynamics of primary infection after airborne transmission varied between individual mice and included the following categories: (a) non-productive transmission, (b) tracheal dominant, (c) tracheal initiated yet respiratory disseminated, and (d) nasopharyngeal initiated yet respiratory disseminated. Any previous exposure to Sendai virus infection protected from mortality and severe morbidity after lethal challenge. Furthermore, a higher level of primary infection in a given respiratory tissue (nasopharynx, trachea, or lungs) was inversely correlated with the level of reinfection in that same tissue. Overall, the mode of transmission determined the dynamics and tropism of primary infection, which in turn governed the level of seroconversion and protection from reinfection. These data are the first description of the dynamics of respiratory virus infection and protection from reinfection throughout the respiratory tracts of living animals after airborne transmission. This work provides a basis for understanding parainfluenza virus transmission and protective immunity and for developing novel vaccines and

  2. Seed Transmission of Beet Curly Top Virus and Beet Curly Top Iran Virus in a Local Cultivar of Petunia in Iran

    PubMed Central

    Anabestani, Ameneh; Behjatnia, Seyed Ali Akbar; Izadpanah, Keramat; Tabein, Saeid

    2017-01-01

    Beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV) are known as the causal agents of curly top disease in beet and several other dicotyledonous plants in Iran. These viruses are transmitted by Circulifer species, and until now, there has been no confirmed report of their seed transmission. A percentage (38.2–78.0%) of the seedlings developed from the seeds of a petunia local cultivar under insect-free conditions showed stunting, interveinal chlorosis, leaf curling, and vein swelling symptoms, and were infected by BCTV when tested by PCR. Presence of BCTV in seed extracts of petunia local cultivar was confirmed by PCR and IC-PCR, followed by sequencing. Agroinoculation of curly top free petunia plants with a BCTV infectious clone resulted in BCTV infection of plants and their developed seeds. These results show the seed infection and transmission of BCTV in a local cultivar of petunia. Similar experiments performed with BCTIV showed that this virus is also seed transmissible in the same cultivar of petunia, although with a lower rate (8.8–18.5%). Seed transmission of curly top viruses may have significant implications in the epidemiology of these viruses. PMID:29035342

  3. Narrow Bottlenecks Affect Pea Seedborne Mosaic Virus Populations during Vertical Seed Transmission but not during Leaf Colonization

    PubMed Central

    Johansen, Elisabeth Ida; Simon, Vincent; Jacquemond, Mireille; Senoussi, Rachid

    2014-01-01

    The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence. PMID:24415934

  4. Possible non-sexual modes of transmission of human papilloma virus.

    PubMed

    Sabeena, Sasidharanpillai; Bhat, Parvati; Kamath, Veena; Arunkumar, Govindakarnavar

    2017-03-01

    There is strong evidence to suggest vertical and horizontal modes of transmission of human papilloma virus (HPV), an established etiologic agent of cervical cancer. Infants, children, and adults can acquire both high-risk and low-risk infections by birth or by close contact even though HPV is mainly transmitted sexually. A thorough review of the literature was performed to assess the possible non-sexual modes of transmission of HPV. An electronic search of databases for review articles, cross-sectional studies, cohort studies, and case reports on non-sexual modes of transmission among sexually unexposed women and children was carried out using search terms such as "human papilloma virus, HPV, transmission, horizontal transmission, vertical transmission, and fomites". Articles published between 1983 and 2015 were retrieved. Epidemiological and clinical data support various non-sexual modes of transmission especially at the time of birth and by close contact. Even though the role of fomites in the transmission of HPV is not well established, HPV-DNA positivity has been reported in transvaginal ultrasound probes and colposcopes after routine disinfection. Awareness needs to be spread among the public about alternate modes of transmission. For a proper understanding of the exact natural history of HPV infection acquired via the non-sexual route, long-term prospective studies need to be undertaken. © 2017 Japan Society of Obstetrics and Gynecology.

  5. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007.

    PubMed

    Luby, Stephen P; Hossain, M Jahangir; Gurley, Emily S; Ahmed, Be Nazir; Banu, Shakila; Khan, Salah Uddin; Homaira, Nusrat; Rota, Paul A; Rollin, Pierre E; Comer, James A; Kenah, Eben; Ksiazek, Thomas G; Rahman, Mahmudur

    2009-08-01

    Human Nipah outbreaks recur in a specific region and time of year in Bangladesh. Fruit bats are the reservoir host for Nipah virus. We identified 23 introductions of Nipah virus into human populations in central and northwestern Bangladesh from 2001 through 2007. Ten introductions affected multiple persons (median 10). Illness onset occurred from December through May but not every year. We identified 122 cases of human Nipah infection. The mean age of case-patients was 27 years; 87 (71%) died. In 62 (51%) Nipah virus-infected patients, illness developed 5-15 days after close contact with another Nipah case-patient. Nine (7%) Nipah case-patients transmitted virus to others. Nipah case-patients who had difficulty breathing were more likely than those without respiratory difficulty to transmit Nipah (12% vs. 0%, p = 0.03). Although a small minority of infected patients transmit Nipah virus, more than half of identified cases result from person-to-person transmission. Interventions to prevent virus transmission from bats to humans and from person to person are needed.

  6. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds.

    PubMed

    Iqbal, Munir; Yaqub, Tahir; Mukhtar, Nadia; Shabbir, Muhammad Z; McCauley, John W

    2013-10-17

    Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises.

  7. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds

    PubMed Central

    2013-01-01

    Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises. PMID:24134616

  8. Transmission potential of Zika virus infection in the South Pacific.

    PubMed

    Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah

    2016-04-01

    Zika virus has spread internationally through countries in the South Pacific and Americas. The present study aimed to estimate the basic reproduction number, R0, of Zika virus infection as a measurement of the transmission potential, reanalyzing past epidemic data from the South Pacific. Incidence data from two epidemics, one on Yap Island, Federal State of Micronesia in 2007 and the other in French Polynesia in 2013-2014, were reanalyzed. R0 of Zika virus infection was estimated from the early exponential growth rate of these two epidemics. The maximum likelihood estimate (MLE) of R0 for the Yap Island epidemic was in the order of 4.3-5.8 with broad uncertainty bounds due to the small sample size of confirmed and probable cases. The MLE of R0 for French Polynesia based on syndromic data ranged from 1.8 to 2.0 with narrow uncertainty bounds. The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Enzootic Transmission of Yellow Fever Virus in Peru

    PubMed Central

    Bryant, Juliet; Wang, Heiman; Cabezas, Cesar; Ramirez, Gladys; Watts, Douglas; Russell, Kevin

    2003-01-01

    The prevailing paradigm of yellow fever virus (YFV) ecology in South America is that of wandering epizootics. The virus is believed to move from place to place in epizootic waves involving monkeys and mosquitoes, rather than persistently circulating within particular locales. After a large outbreak of YFV illness in Peru in 1995, we used phylogenetic analyses of virus isolates to reexamine the hypothesis of virus movement. We sequenced a 670-nucleotide fragment of the prM/E gene region of from 25 Peruvian YFV samples collected from 1977 to 1999, and delineated six clades representing the states (Departments) of Puno, Pasco, Junin, Ayacucho, San Martin/Huanuco, and Cusco. The concurrent appearance of at least four variants during the 1995 epidemic and the genetic stability of separate virus lineages over time, indicate that Peruvian YFV is locally maintained and circulates continuously in discrete foci of enzootic transmission. PMID:12967489

  10. Current characteristics of λ-DNA molecules/polystyrene nanoparticles in TBE buffer solution through micro/nanofluidic capillaries under DC electric field

    NASA Astrophysics Data System (ADS)

    Duan, Yifei; Zhao, Wei; Xue, Jing; Sun, Dan; Wang, Kaige; Wang, Guiren; Li, Junjie; Bai, Jintao; Gu, Changzhi

    2017-03-01

    In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate single bio-molecules and analyze their characteristics. To accurately and flexibly control the movement of single-molecule within micro/nanofluidic channels which are the basic components of Lab-chips, the current signals in micro/nanocapillaries filled with solutions of DNA molecules or polystyrene (PS) nanoparticles are systematically studied. Experimental results indicate that the current response along the micro/nanocapillaries can be significantly influenced by the diameter of the capillaries and the pH value of the solutions. Specifically, when there is only a pure (TBE) solution, the electric conductance does not monotonically decrease with decreasing the diameter of the capillaries, but slightly increases with decreasing the capillary diameter. When λ-DNA molecules or PS nanoparticles are added into the TBE buffer, the size effect on the electric conductance of the solutions are quite different. Although in the former, the electric conductance behaves differently from that in the pure TBE solution and decreases with the decreasing diameter, in the latter, the change is similar to that in the pure TBE solution. Besides, an abnormal ‘falling’ of the electric conductance is observed in a capillary with diameter of 200 nm. The investigation will significantly enhance the understanding on the electric properties of the solutions of biomolecules and particles in micro/nanofluidics. This is especially helpful for designing functional Lab-chip devices.

  11. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  12. Selection on hemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses

    PubMed Central

    Wilker, Peter R.; Dinis, Jorge M.; Starrett, Gabriel; Imai, Masaki; Hatta, Masato; Nelson, Chase W.; O’Connor, David H.; Hughes, Austin L.; Neumann, Gabriele; Kawaoka, Yoshihiro; Friedrich, Thomas C.

    2013-01-01

    The emergence of human-transmissible H5N1 avian influenza viruses poses a major pandemic threat. H5N1 viruses are thought to be highly genetically diverse both among and within hosts, but the effects of this diversity on viral replication and transmission are poorly understood. Here we use deep sequencing to investigate the impact of within-host viral variation on adaptation and transmission of H5N1 viruses in ferrets. We show that although within-host genetic diversity in hemagglutinin (HA) increases during replication in inoculated ferrets, HA diversity is dramatically reduced upon respiratory droplet transmission, where infection is established by only 1–2 distinct HA segments from a diverse source virus population in transmitting animals. Moreover, minor HA variants present in as little as 5.9% of viruses within the source animal become dominant in ferrets infected via respiratory droplets. These findings demonstrate that selective pressures acting during influenza virus transmission among mammals impose a significant bottleneck. PMID:24149915

  13. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets.

    PubMed

    Pappas, Claudia; Yang, Hua; Carney, Paul J; Pearce, Melissa B; Katz, Jacqueline M; Stevens, James; Tumpey, Terrence M

    2015-03-01

    After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers. Published by Elsevier Inc.

  14. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets

    PubMed Central

    Pappas, Claudia; Yang, Hua; Carney, Paul J.; Pearce, Melissa B.; Katz, Jacqueline M.; Stevens, James; Tumpey, Terrence M.

    2018-01-01

    After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers. PMID:25659818

  15. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence

    PubMed Central

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A.; Sullivan, Sheena G.; Barr, Ian G.; Holmes, Edward C.

    2015-01-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May – 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including “stragglers” from the preceding season and “heralds” of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality. PMID:26107631

  16. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    PubMed Central

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed. PMID:19893208

  17. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.

    PubMed

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  18. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

    PubMed Central

    Park, Daniel J.; Dudas, Gytis; Wohl, Shirlee; Goba, Augustine; Whitmer, Shannon L.M.; Andersen, Kristian G.; Sealfon, Rachel S.; Ladner, Jason T.; Kugelman, Jeffrey R.; Matranga, Christian B.; Winnicki, Sarah M.; Qu, James; Gire, Stephen K.; Gladden-Young, Adrianne; Jalloh, Simbirie; Nosamiefan, Dolo; Yozwiak, Nathan L.; Moses, Lina M.; Jiang, Pan-Pan; Lin, Aaron E.; Schaffner, Stephen F.; Bird, Brian; Towner, Jonathan; Mamoh, Mambu; Gbakie, Michael; Kanneh, Lansana; Kargbo, David; Massally, James L.B.; Kamara, Fatima K.; Konuwa, Edwin; Sellu, Josephine; Jalloh, Abdul A.; Mustapha, Ibrahim; Foday, Momoh; Yillah, Mohamed; Erickson, Bobbie R.; Sealy, Tara; Blau, Dianna; Paddock, Christopher; Brault, Aaron; Amman, Brian; Basile, Jane; Bearden, Scott; Belser, Jessica; Bergeron, Eric; Campbell, Shelley; Chakrabarti, Ayan; Dodd, Kimberly; Flint, Mike; Gibbons, Aridth; Goodman, Christin; Klena, John; McMullan, Laura; Morgan, Laura; Russell, Brandy; Salzer, Johanna; Sanchez, Angela; Wang, David; Jungreis, Irwin; Tomkins-Tinch, Christopher; Kislyuk, Andrey; Lin, Michael F.; Chapman, Sinead; MacInnis, Bronwyn; Matthews, Ashley; Bochicchio, James; Hensley, Lisa E.; Kuhn, Jens H.; Nusbaum, Chad; Schieffelin, John S.; Birren, Bruce W.; Forget, Marc; Nichol, Stuart T.; Palacios, Gustavo F.; Ndiaye, Daouda; Happi, Christian; Gevao, Sahr M.; Vandi, Mohamed A.; Kargbo, Brima; Holmes, Edward C.; Bedford, Trevor; Gnirke, Andreas; Ströher, Ute; Rambaut, Andrew; Garry, Robert F.; Sabeti, Pardis C.

    2015-01-01

    Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission. PMID:26091036

  19. [Characteristics of long-term persisting strains of tick-borne encephalitis virus in different forms of the chronic process in animals].

    PubMed

    Frolova, T V; Pogodina, V V; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    The properties of the Vasilchenko strain of tick-borne encephalitis (TBE) virus and its 3 variants isolated at various stages of persistent infection (383, 453, and 535 days) in Macaca rhesus monkeys and Syrian hamsters with different forms of the chronic TBE were studied. The process characterized by chronic focal inflammatory-degenerative changes in the brains of hamsters without the disturbance of motor functions was associated with persistence of different kinds of virus-specific antigens without virulent virus production. Brain explants of this group of hamsters yielded a virus with cytopathogenic properties but not pathogenic for mice. In a chronic disease developing without the initial acute period, a virus was recovered from hamsters which proved to be virulent for mice and to possess the hemagglutinating and high invasive activity. The most virulent strain was isolated from monkeys with continuously progressive chronic encephalitis with steady paralysis of the extremities. This isolate differed from the parental Vasilchenko strain by a high pathogenicity for hamsters by intracerebral and subcutaneous routes, and thermostability at 50 degrees C.

  20. [Comparative analysis of virulence of the Siberian and Far-East subtypes of the tick-born encephalitis virus].

    PubMed

    Pogodina, V V; Bochkova, N G; Karan', L S; Frolova, M P; Trukhina, A G; Malenko, G V; Levina, L S; Platonov, A E

    2004-01-01

    The Siberian subtype of the tick-borne encephalitis virus (TEV) is different from the Far-East subtype by a moderate virulence observed in Siberian hamsters and by a low infection development rate (100 strains were compared). No differences were found in neuro-invasiveness. Clinical findings and experiments with monkeys denote the ability of the Siberian subtype to provoke severe forms of tick-borne encephalitis (TBE). The inflammation-and-degenerative changes were localized in the brain cortex, subcortical ganglions, nuclei of medulla oblongata, in the cortex and nuclei of the cerebellum as well as in the anterior horns of the spinal cord. 18 disease cases triggered by the Siberian TEV subtypes in residents of the Western and Eastern Siberia and of Central Russia (Yaroslavl Region), including 7 acute TBE cases (5 lethal outcomes), as well as 11 chronic TBE cases are analyzed. The viral RNA was found in the cortex, medulla oblongata, horn and in the cervical part of the spinal cord of those diseased of acute TBE. Sequences of genotyped strains were presented to Gen Bank, NCBI (AY363846-AY363865).

  1. Climate change impacts on West Nile virus transmission in a global context

    PubMed Central

    Paz, Shlomit

    2015-01-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  2. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets

    PubMed Central

    Clayton, Bronwyn A.; Middleton, Deborah; Arkinstall, Rachel; Frazer, Leah; Wang, Lin-Fa; Marsh, Glenn A.

    2016-01-01

    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease. PMID:27341030

  3. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets.

    PubMed

    Clayton, Bronwyn A; Middleton, Deborah; Arkinstall, Rachel; Frazer, Leah; Wang, Lin-Fa; Marsh, Glenn A

    2016-06-01

    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.

  4. Seasonal forecast of St. Louis encephalitis virus transmission, Florida.

    PubMed

    Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark

    2004-05-01

    Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empiric relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill-verification analyses may be applied to test the predictability of an empiric disease forecast model.

  5. Seasonal Forecast of St. Louis Encephalitis Virus Transmission, Florida

    PubMed Central

    Day, Jonathan F.; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark

    2004-01-01

    Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill verification analyses may be applied to test the predictability of an empirical disease forecast model. PMID:15200812

  6. Inhibition of infectious bursal disease virus transmission using bioceramic derived from chicken feces.

    PubMed

    Thammakarn, Chanathip; Ishida, Yuki; Suguro, Atsushi; Hakim, Hakimullah; Nakajima, Katsuhiro; Kitazawa, Minori; Takehara, Kazuaki

    2015-06-02

    Bioceramic powder (BCX), at pH 13.0, derived from chicken feces, was evaluated for its efficacy to inactivate virus and inhibit virus horizontal transmission by fecal-oral route, using infectious bursal disease virus (IBDV) vaccine strain D78 as a challenge virus. Three 1-week-old SPF chicks were vaccinated per os and used as seeder birds. Six hours later, 3 sentinel 1-week-old SPF chicks were introduced into the same cage. Results revealed that BCX had excellent efficacy to inactivate IBDV within 3 min. Treating IBDV contaminated litter in the cage with BCX could prevent transmission of IBDV to new sensitive chicks completely. Further, transmission of IBDV to the sentinel chicks was significantly inhibited by adding BCX to litter and chicken feed. These data suggest that BCX at pH 13, derived from chicken feces, has excellent efficacy to inactivate IBDV, which can be applied in bedding materials for preventing viral transmission during production round. It is a good material that can effectively be used for enhancing biosecurity system in poultry farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Surveillance for Mosquitoborne Transmission of Zika Virus, New York City, NY, USA, 2016

    PubMed Central

    Wahnich, Amanda; Clark, Sandhya; Bloch, Danielle; Kubinson, Hannah; Hrusa, Gili; Liu, Dakai; Rakeman, Jennifer L.; Deocharan, Bisram; Jones, Lucretia; Slavinski, Sally; Stoute, Alaina; Mathes, Robert; Weiss, Don

    2018-01-01

    A large number of imported cases of Zika virus infection and the potential for transmission by Aedes albopictus mosquitoes prompted the New York City Department of Health and Mental Hygiene to conduct sentinel, enhanced passive, and syndromic surveillance for locally acquired mosquitoborne Zika virus infections in New York City, NY, USA, during June–October 2016. Suspected case-patients were those >5 years of age without a travel history or sexual exposure who had >3 compatible signs/symptoms (arthralgia, fever, conjunctivitis, or rash). We identified 15 suspected cases and tested urine samples for Zika virus by using real-time reverse transcription PCR; all results were negative. We identified 308 emergency department visits for Zika-like illness, 40,073 visits for fever, and 17 unique spatiotemporal clusters of visits for fever. We identified no evidence of local transmission. Our experience offers possible surveillance tools for jurisdictions concerned about local mosquitoborne Zika virus or other arboviral transmission. PMID:29664375

  8. Surveillance for Mosquitoborne Transmission of Zika Virus, New York City, NY, USA, 2016.

    PubMed

    Wahnich, Amanda; Clark, Sandhya; Bloch, Danielle; Kubinson, Hannah; Hrusa, Gili; Liu, Dakai; Rakeman, Jennifer L; Deocharan, Bisram; Jones, Lucretia; Slavinski, Sally; Stoute, Alaina; Mathes, Robert; Weiss, Don; Conners, Erin E

    2018-05-01

    A large number of imported cases of Zika virus infection and the potential for transmission by Aedes albopictus mosquitoes prompted the New York City Department of Health and Mental Hygiene to conduct sentinel, enhanced passive, and syndromic surveillance for locally acquired mosquitoborne Zika virus infections in New York City, NY, USA, during June-October 2016. Suspected case-patients were those >5 years of age without a travel history or sexual exposure who had >3 compatible signs/symptoms (arthralgia, fever, conjunctivitis, or rash). We identified 15 suspected cases and tested urine samples for Zika virus by using real-time reverse transcription PCR; all results were negative. We identified 308 emergency department visits for Zika-like illness, 40,073 visits for fever, and 17 unique spatiotemporal clusters of visits for fever. We identified no evidence of local transmission. Our experience offers possible surveillance tools for jurisdictions concerned about local mosquitoborne Zika virus or other arboviral transmission.

  9. Evidence of Long-Lived Founder Virus in Mother-to-Child HIV Transmission

    PubMed Central

    Danaviah, Sivapragashini; de Oliveira, Tulio; Bland, Ruth; Viljoen, Johannes; Pillay, Sureshnee; Tuaillon, Edouard; Van de Perre, Philippe; Newell, Marie-Louise

    2015-01-01

    Exposure of the infant’s gut to cell-associated and cell-free HIV-1 trafficking in breast milk (BM) remains a primary cause of mother-to-child transmission (MTCT). The mammary gland represents a unique environment for HIV-1 replication and host-virus interplay. We aimed to explore the origin of the virus transmitted during breastfeeding, and the link with quasi-species found in acellular and cellular fractions of breast-milk (BM) and in maternal plasma. The C2–V5 region of the env gene was amplified, cloned and sequenced from the RNA and DNA of BM, the RNA from the mother’s plasma (PLA) and the DNA from infant’s dried blood spot (DBS) in 11 post-natal mother-infant pairs. Sequences were assembled in Geneious, aligned in ClustalX, manually edited in SeAL and phylogenetic reconstruction was undertaken in PhyML and MrBayes. We estimated the timing of transmission (ETT) and reconstructed the time for the most recent common ancestor (TMRCA) of the infant in BEAST. Transmission of single quasi-species was observed in 9 of 11 cases. Phylogenetic analysis illustrated a BM transmission event by cell-free virus in 4 cases, and by cell-associated virus in 2 cases but could not be identified in the remaining 5 cases. Molecular clock estimates, of the infant ETT and TMRCA, corresponded well with the timing of transmission estimated by sequential infant DNA PCR in 10 of 11 children. The TMRCA of BM variants were estimated to emerge during gestation in 8 cases. We hypothesize that in the remaining cases, the breast was seeded with a long-lived lineage latently infecting resting T-cells. Our analysis illustrated the role of DNA and RNA virus in MTCT. We postulate that DNA archived viruses stem from latently infected quiescent T-cells within breast tissue and MTCT can be expected to continue, albeit at low levels, should interventions not effectively target these cells. PMID:25793402

  10. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    PubMed

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  11. Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing

    PubMed Central

    Li, Hui; Stoddard, Mark B.; Wang, Shuyi; Blair, Lily M.; Giorgi, Elena E.; Parrish, Erica H.; Learn, Gerald H.; Hraber, Peter; Goepfert, Paul A.; Saag, Michael S.; Denny, Thomas N.; Haynes, Barton F.; Hahn, Beatrice H.; Ribeiro, Ruy M.; Perelson, Alan S.; Korber, Bette T.; Bhattacharya, Tanmoy; Shaw, George M.

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures. PMID:22927816

  12. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Amber R., E-mail: engelam@mail.nih.go; Rumyantsev, Alexander A., E-mail: alexander.rumyantsev@sanofipasteur.co; Maximova, Olga A., E-mail: maximovao@mail.nih.go

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4.more » The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.« less

  13. Transmission dynamics of the recently-identified BYD virus causing duck egg-drop syndrome.

    PubMed

    Vaidya, Naveen K; Wang, Feng-bin; Zou, Xingfu; Wahl, Lindi M

    2012-01-01

    Baiyangdian (BYD) virus is a recently-identified mosquito-borne flavivirus that causes severe disease in ducks, with extremely rapid transmission, up to 15% mortality within 10 days and 90% reduction in egg production on duck farms within 5 days of infection. Because of the zoonotic nature of flaviviruses, the characterization of BYD virus and its epidemiology are important public health concerns. Here, we develop a mathematical model for the transmission dynamics of this novel virus. We validate the model against BYD outbreak data collected from duck farms in Southeast China, as well as experimental data obtained from an animal facility. Based on our model, the basic reproductive number of BYD virus is high (R(0) = 21) indicating that this virus is highly transmissible, consistent with the dramatic epidemiology observed in BYDV-affected duck farms. Our results indicate that younger ducks are more vulnerable to BYD disease and that ducks infected with BYD virus reduce egg production (to about 33% on average) for about 3 days post-infection; after 3 days infected ducks are no longer able to produce eggs. Using our model, we predict that control measures which reduce contact between mosquitoes and ducks such as mosquito nets are more effective than insecticides.

  14. Serological evidence of pig-to-human influenza virus transmission on Thai swine farms.

    PubMed

    Kitikoon, Pravina; Sreta, Donruethai; Tuanudom, Ranida; Amonsin, Alongkorn; Suradhat, Sanipa; Oraveerakul, Kanisak; Poovorawan, Yong; Thanawongnuwech, Roongroje

    2011-03-24

    We investigated influenza interspecies transmission in two commercial swine farms in Thailand. Sera from swine-exposed workers (n=78), age-matched non-swine-exposed healthy people (n=60) and swine populations in both farms (n=85) were studied. Hemagglutination-inhibition (HI) assay was performed on Thai swine H1 viruses (swH1N1 and swH1N2) isolated from both farms. Thai human H1N1 (huH1N1) and pandemic H1N1 2009 (pH1N1) were also used as test antigens. The hemagglutinin (HA) 1 genes of swH1N1 and swH1N2 viruses were sequenced and shown to be genetically distinct from the Thai huH1N1 and pH1N1 viruses. Evidence of pig-to-human influenza virus transmission was found in farm workers with increased odds of elevated antibody titers to both swH1N1 (OR 42.63, 95% CI, 14.65-124) and swH1N2 (OR 58, 95% CI, 13.12-256.3) viruses. No evidence of human-to-pig influenza virus transmission was detected in this study. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Iatrogenic Hepatitis C Virus Transmission and Safe Injection Practices.

    PubMed

    Defendorf, Charles M; Paul, Sindy; Scott, George J

    2018-05-01

    Hepatitis C virus (HCV) infection poses significant adverse health effects. Improper use of vials, needles, syringes, intravenous bags, tubing, and connectors for injections and infusions is a current preventable cause of iatrogenic HCV transmission. Numerous cases have demonstrated the need for continued vigilance and the widespread nature of this iatrogenic infection risk across a variety of medical practice settings in the United States. Failure to implement the evidence-based Centers for Disease Control and Prevention (CDC) infection prevention guidelines exposes patients to preventable harm. The guidelines establish the requirement to notify patients in cases of suspected virus transmission, as well as to screen those patients who would not otherwise have been at risk for HCV seroconversion and other bloodborne pathogens. Legal and regulatory ramifications, including state, criminal, and tort laws, hold physicians and other health care professionals accountable to use safe injection practices. This article reviews the major health risks of HCV infection, significant effects of iatrogenic infection transmission, CDC guidelines for safe injection practices, and legal regulations and ramifications designed to promote safe injection practices.

  16. Venezuelan encephalitis virus infection in neotropical bats. III. Experimental studies on virus excretion and non-arthropod transmission.

    PubMed

    Seymour, C; Dickerman, R W

    1978-03-01

    A total of 80 Neotropical bats of five species was inoculated with one of four strains of Venezuelan encephalitis (VE) virus. Virus was detected in the oropharynges of 56% of bats, and most regularly in Artibeus jamaicensis (75%). Titers of virus in oropharyngeal secretions were occasionally very high (8.5 log10 SMicLD50/ml in one A. jamaicensis). Only 2 of 123 urine samples from 50 bats and 2 of 86 fecal samples from 46 bats yielded VE virus. No contact or aerosol virus transmission from bat to bat was detected. VE virus passed transplacentally from two infected mothers to their fetuses, which were aborted. Virus did not pass from one infected mother to her nursing young.

  17. Inefficient transmission of H5N1 influenza viruses in a ferret contact model.

    PubMed

    Yen, Hui-Ling; Lipatov, Aleksandr S; Ilyushina, Natalia A; Govorkova, Elena A; Franks, John; Yilmaz, Neziha; Douglas, Alan; Hay, Alan; Krauss, Scott; Rehg, Jerold E; Hoffmann, Erich; Webster, Robert G

    2007-07-01

    The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synthetic sialosaccharides with alpha2,3 or alpha2,6 linkages) on transmissibility were assessed. A/Vietnam/1203/04 and A/Vietnam/JP36-2/05 viruses, which possess "avian-like" alpha2,3-linked sialic acid (SA) receptor specificity, caused neurological symptoms and death in ferrets inoculated with 10(3) 50% tissue culture infectious doses. A/Hong Kong/213/03 and A/Turkey/65-596/06 viruses, which show binding affinity for "human-like" alpha2,6-linked SA receptors in addition to their affinity for alpha2,3-linked SA receptors, caused mild clinical symptoms and were not lethal to the ferrets. No transmission of A/Vietnam/1203/04 or A/Turkey/65-596/06 virus was detected. One contact ferret developed neutralizing antibodies to A/Hong Kong/213/03 but did not exhibit any clinical signs or detectable virus shedding. In two groups, one of two naïve contact ferrets had detectable virus after 6 to 8 days when housed together with the A/Vietnam/JP36-2/05 virus-inoculated ferrets. Infected contact ferrets showed severe clinical signs, although little or no virus was detected in nasal washes. This limited virus shedding explained the absence of secondary transmission from the infected contact ferret to the other naïve ferret that were housed together. Our results suggest that despite their receptor binding affinity, circulating H5N1 viruses retain molecular determinants that restrict their spread among mammalian species.

  18. Global transmission of influenza viruses from humans to swine

    PubMed Central

    Gramer, Marie R.; Vincent, Amy L.; Holmes, Edward C.

    2012-01-01

    To determine the extent to which influenza viruses jump between human and swine hosts, we undertook a large-scale phylogenetic analysis of pandemic A/H1N1/09 (H1N1pdm09) influenza virus genome sequence data. From this, we identified at least 49 human-to-swine transmission events that occurred globally during 2009–2011, thereby highlighting the ability of the H1N1pdm09 virus to transmit repeatedly from humans to swine, even following adaptive evolution in humans. Similarly, we identified at least 23 separate introductions of human seasonal (non-pandemic) H1 and H3 influenza viruses into swine globally since 1990. Overall, these results reveal the frequency with which swine are exposed to human influenza viruses, indicate that humans make a substantial contribution to the genetic diversity of influenza viruses in swine, and emphasize the need to improve biosecurity measures at the human–swine interface, including influenza vaccination of swine workers. PMID:22791604

  19. Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh

    PubMed Central

    Hegde, Sonia T.; Hossain, Kamal; Sazzad, Hossain M.S.; Hossain, M. Jahangir; Rahman, Mahmudur; Sharker, M.A. Yushuf; Salje, Henrik; Islam, M. Saiful; Epstein, Jonathan H.; Khan, Salah U.; Kilpatrick, A. Marm; Daszak, Peter; Luby, Stephen P.

    2017-01-01

    Preventing emergence of new zoonotic viruses depends on understanding determinants for human risk. Nipah virus (NiV) is a lethal zoonotic pathogen that has spilled over from bats into human populations, with limited person-to-person transmission. We examined ecologic and human behavioral drivers of geographic variation for risk of NiV infection in Bangladesh. We visited 60 villages during 2011–2013 where cases of infection with NiV were identified and 147 control villages. We compared case villages with control villages for most likely drivers for risk of infection, including number of bats, persons, and date palm sap trees, and human date palm sap consumption behavior. Case villages were similar to control villages in many ways, including number of bats, persons, and date palm sap trees, but had a higher proportion of households in which someone drank sap. Reducing human consumption of sap could reduce virus transmission and risk for emergence of a more highly transmissible NiV strain. PMID:28820130

  20. Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh.

    PubMed

    Gurley, Emily S; Hegde, Sonia T; Hossain, Kamal; Sazzad, Hossain M S; Hossain, M Jahangir; Rahman, Mahmudur; Sharker, M A Yushuf; Salje, Henrik; Islam, M Saiful; Epstein, Jonathan H; Khan, Salah U; Kilpatrick, A Marm; Daszak, Peter; Luby, Stephen P

    2017-09-01

    Preventing emergence of new zoonotic viruses depends on understanding determinants for human risk. Nipah virus (NiV) is a lethal zoonotic pathogen that has spilled over from bats into human populations, with limited person-to-person transmission. We examined ecologic and human behavioral drivers of geographic variation for risk of NiV infection in Bangladesh. We visited 60 villages during 2011-2013 where cases of infection with NiV were identified and 147 control villages. We compared case villages with control villages for most likely drivers for risk of infection, including number of bats, persons, and date palm sap trees, and human date palm sap consumption behavior. Case villages were similar to control villages in many ways, including number of bats, persons, and date palm sap trees, but had a higher proportion of households in which someone drank sap. Reducing human consumption of sap could reduce virus transmission and risk for emergence of a more highly transmissible NiV strain.

  1. Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential

    PubMed Central

    Zanin, Mark; Wong, Sook-San; Barman, Subrata; Kaewborisuth, Challika; Vogel, Peter; Rubrum, Adam; Darnell, Daniel; Marinova-Petkova, Atanaska; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    North American wild birds are an important reservoir of influenza A viruses, yet the potential of viruses in this reservoir to transmit and cause disease in mammals is not well understood. Our surveillance of avian influenza viruses (AIVs) at Delaware Bay, USA, revealed a group of similar H1N1 AIVs isolated in 2009, some of which were airborne-transmissible in the ferret model without prior adaptation. Comparison of the genomes of these viruses revealed genetic markers of airborne transmissibility in the Polymerase Basic 2 (PB2), PB1, PB1-F2, Polymerase Acidic-X (PA-X), Nonstructural Protein 1 (NS1), and Nuclear Export Protein (NEP) genes. We studied the role of NS1 in airborne transmission and found that NS1 mutants that were not airborne-transmissible caused limited tissue pathology in the upper respiratory tract (URT). Viral maturation was also delayed, evident as strong intranuclear staining and little virus at the mucosa. Our study of this naturally occurring constellation of genetic markers has provided insights into the poorly understood phenomenon of AIV airborne transmissibility by revealing a role for NS1 and characteristics of viral replication in the URT that were associated with airborne transmission. The transmissibility of these viruses further highlights the pandemic potential of AIVs in the wild bird reservoir and the need to maintain surveillance. PMID:28874549

  2. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus.

    PubMed

    Bárcena, J; Morales, M; Vázquez, B; Boga, J A; Parra, F; Lucientes, J; Pagès-Manté, A; Sánchez-Vizcaíno, J M; Blasco, R; Torres, J M

    2000-02-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.

  3. Horizontal Transmissible Protection against Myxomatosis and Rabbit Hemorrhagic Disease by Using a Recombinant Myxoma Virus

    PubMed Central

    Bárcena, Juan; Morales, Mónica; Vázquez, Belén; Boga, José A.; Parra, Francisco; Lucientes, Javier; Pagès-Manté, Albert; Sánchez-Vizcaíno, José M.; Blasco, Rafael; Torres, Juan M.

    2000-01-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals. PMID:10627521

  4. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.

    PubMed

    Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E

    2012-05-04

    Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.

  5. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  6. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination

    PubMed Central

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H.; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral

  7. Modeling ebola virus disease transmissions with reservoir in a complex virus life ecology.

    PubMed

    Berge, Tsanou; Bowong, Samuel; Lubuma, Jean; Manyombe, Martin Luther Mann

    2018-02-01

    We propose a new deterministic mathematical model for the transmission dynamics of Ebola Virus Disease (EVD) in a complex Ebola virus life ecology. Our model captures as much as possible the features and patterns of the disease evolution as a three cycle transmission process in the two ways below. Firstly it involves the synergy between the epizootic phase (during which the disease circulates periodically amongst non-human primates populations and decimates them), the enzootic phase (during which the disease always remains in fruit bats population) and the epidemic phase (during which the EVD threatens and decimates human populations). Secondly it takes into account the well-known, the probable/suspected and the hypothetical transmission mechanisms (including direct and indirect routes of contamination) between and within the three different types of populations consisting of humans, animals and fruit bats. The reproduction number R0 for the full model with the environmental contamination is derived and the global asymptotic stability of the disease free equilibrium is established when R0andlt;1. It is conjectured that there exists a unique globally asymptotically stable endemic equilibrium for the full model when R0andgt;1. The role of a contaminated environment is assessed by comparing the human infected component for the sub-model without the environment with that of the full model. Similarly, the sub-model without animals on the one hand and the sub-model without bats on the other hand are studied. It is shown that bats influence more the dynamics of EVD than the animals. Global sensitivity analysis shows that the effective contact rate between humans and fruit bats and the mortality rate for bats are the most influential parameters on the latent and infected human individuals. Numerical simulations, apart from supporting the theoretical results and the existence of a unique globally asymptotically stable endemic equilibrium for the full model, suggest further

  8. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission.

    PubMed

    Rotenberg, Dorith; Krishna Kumar, Nallur K; Ullman, Diane E; Montero-Astúa, Mauricio; Willis, David K; German, Thomas L; Whitfield, Anna E

    2009-04-01

    Tomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factors associated with frequency of transmission have not been well characterized. We hypothesized that the number of transmission events by a single adult thrips is determined, in part, by the amount of virus harbored (titer) by the insect. Transmission time-course experiments were conducted using a leaf disk assay to determine the efficiency and frequency of TSWV transmission following 2-day inoculation access periods (IAPs). Virus titer in individual adult thrips was determined by real-time quantitative reverse transcriptase-PCR (qRT-PCR) at the end of the experiments. On average, 59% of adults transmitted the virus during the first IAP (2 to 3 days post adult-eclosion). Male thrips were more efficient at transmitting TSWV multiple times compared with female thrips of the same cohort. However, females harbored two to three times more copies of TSWV-N RNA per insect, indicating that factors other than absolute virus titer in the insect contribute to a successful transmission event. Examination of virus titer in individual insects at the end of the third IAP (7 days post adult-eclosion) revealed significant and consistent positive associations between frequency of transmission and virus titer. Our data support the hypothesis that a viruliferous thrips is more likely to transmit multiple times if it harbors a high titer of virus. This quantitative relationship provides new insights into the biological parameters that may influence the spread of TSWV by thrips.

  9. Vertical hepatitis C virus transmission: Main questions and answers

    PubMed Central

    Tosone, Grazia; Maraolo, Alberto Enrico; Mascolo, Silvia; Palmiero, Giulia; Tambaro, Orsola; Orlando, Raffaele

    2014-01-01

    Hepatitis C virus (HCV) affects about 3% of the world’s population and peaks in subjects aged over 40 years. Its prevalence in pregnant women is low (1%-2%) in most western countries but drastically increases in women in developing countries or with high risk behaviors for blood-transmitted infections. Here we review clinical, prognostic and therapeutic aspects of HCV infection in pregnant women and their offspring infected through vertical transmission. Pregnancy-related immune weakness does not seem to affect the course of acute hepatitis C but can affect the progression of chronic hepatitis C. In fact, postpartum immune restoration can exacerbate hepatic inflammation, thereby worsening the liver disease, particularly in patients with liver cirrhosis. HCV infection increases the risk of gestational diabetes in patients with excessive weight gain, premature rupture of membrane and caesarean delivery. Only 3%-5% of infants born to HCV-positive mothers have been infected by intrauterine or perinatal transmission. Maternal viral load, human immunodeficiency virus coinfection, prolonged rupture of membranes, fetal exposure to maternal infected blood consequent to vaginal or perineal lacerations and invasive monitoring of fetus increase the risk of viral transmission. Cesarean delivery and breastfeeding increases the transmission risk in HCV/human immunodeficiency virus coinfected women. The consensus is not to offer antiviral therapy to HCV-infected pregnant women because it is based on ribavirin (pregnancy category X) because of its embryocidal and teratogenic effects in animal species. In vertically infected children, chronic C hepatitis is often associated with minimal or mild liver disease and progression to liver cirrhosis and hepatocarcinoma is lower than in adults. Infected children may be treated after the second year of life, given the adverse effects of current antiviral agents. PMID:25232447

  10. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    PubMed

    Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun

    2017-11-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  11. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector

    PubMed Central

    Mao, Qianzhuo; Chen, Hongyan; Wu, Wei

    2017-01-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860

  12. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections.

    PubMed

    Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D

    2016-08-01

    Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of zucchini yellow mosaic virus

    Treesearch

    H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...

  14. Low potential for mechanical transmission of Ebola virus via house flies (Musca domestica)

    USDA-ARS?s Scientific Manuscript database

    Ebola virus emerged in West Africa in March 2014 and has caused more than 28,000 cases and 11,000 deaths. The unusually high number of cases raised the question as to whether muscid flies could mechanically transmit the virus. Mechanical transmission of Ebola virus was attempted using house flies t...

  15. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  16. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs.

    PubMed

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-01-13

    The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of

  17. Recurrent Zoonotic Transmission of Nipah Virus into Humans, Bangladesh, 2001–2007

    PubMed Central

    Hossain, M. Jahangir; Gurley, Emily S.; Ahmed, Be-Nazir; Banu, Shakila; Khan, Salah Uddin; Homaira, Nusrat; Rota, Paul A.; Rollin, Pierre E.; Comer, James A.; Kenah, Eben; Ksiazek, Thomas G.; Rahman, Mahmudur

    2009-01-01

    Human Nipah outbreaks recur in a specific region and time of year in Bangladesh. Fruit bats are the reservoir host for Nipah virus. We identified 23 introductions of Nipah virus into human populations in central and northwestern Bangladesh from 2001 through 2007. Ten introductions affected multiple persons (median 10). Illness onset occurred from December through May but not every year. We identified 122 cases of human Nipah infection. The mean age of case-patients was 27 years; 87 (71%) died. In 62 (51%) Nipah virus–infected patients, illness developed 5–15 days after close contact with another Nipah case-patient. Nine (7%) Nipah case-patients transmitted virus to others. Nipah case-patients who had difficulty breathing were more likely than those without respiratory difficulty to transmit Nipah (12% vs. 0%, p = 0.03). Although a small minority of infected patients transmit Nipah virus, more than half of identified cases result from person-to-person transmission. Interventions to prevent virus transmission from bats to humans and from person to person are needed. PMID:19751584

  18. Estimating West Nile virus transmission period in Pennsylvania using an optimized degree-day model.

    PubMed

    Chen, Shi; Blanford, Justine I; Fleischer, Shelby J; Hutchinson, Michael; Saunders, Michael C; Thomas, Matthew B

    2013-07-01

    Abstract We provide calibrated degree-day models to predict potential West Nile virus (WNV) transmission periods in Pennsylvania. We begin by following the standard approach of treating the degree-days necessary for the virus to complete the extrinsic incubation period (EIP), and mosquito longevity as constants. This approach failed to adequately explain virus transmission periods based on mosquito surveillance data from 4 locations (Harrisburg, Philadelphia, Pittsburgh, and Williamsport) in Pennsylvania from 2002 to 2008. Allowing the EIP and adult longevity to vary across time and space improved model fit substantially. The calibrated models increase the ability to successfully predict the WNV transmission period in Pennsylvania to 70-80% compared to less than 30% in the uncalibrated model. Model validation showed the optimized models to be robust in 3 of the locations, although still showing errors for Philadelphia. These models and methods could provide useful tools to predict WNV transmission period from surveillance datasets, assess potential WNV risk, and make informed mosquito surveillance strategies.

  19. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    PubMed

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  20. Estimation of Parameters Influencing Waterborne Transmission of Infectious Hematopoietic Necrosis Virus (IHNV) in Atlantic Salmon (Salmo salar)

    PubMed Central

    Garver, Kyle A; Mahony, Amelia A. M.; Stucchi, Dario; Richard, Jon; Van Woensel, Cecile; Foreman, Mike

    2013-01-01

    Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites. PMID:24340016

  1. HIV Transmission

    PubMed Central

    Shaw, George M.; Hunter, Eric

    2012-01-01

    HIV-1 is transmitted by sexual contact across mucosal surfaces, by maternal-infant exposure, and by percutaneous inoculation. For reasons that are still incompletely understood, CCR5-tropic viruses (R5 viruses) are preferentially transmitted by all routes. Transmission is followed by an orderly appearance of viral and host markers of infection in the blood plasma. In the acute phase of infection, HIV-1 replicates exponentially and diversifies randomly, allowing for an unambiguous molecular identification of transmitted/founder virus genomes and a precise characterization of the population bottleneck to virus transmission. Sexual transmission of HIV-1 most often results in productive clinical infection arising from a single virus, highlighting the extreme bottleneck and inherent inefficiency in virus transmission. It remains to be determined if HIV-1 transmission is largely a stochastic process whereby any reasonably fit R5 virus can be transmitted or if there are features of transmitted/founder viruses that facilitate their transmission in a biologically meaningful way. Human tissue explant models of HIV-1 infection and animal models of SIV/SHIV/HIV-1 transmission, coupled with new challenge virus strains that more closely reflect transmitted/founder viruses, have the potential to elucidate fundamental mechanisms in HIV-1 transmission relevant to vaccine design and other prevention strategies. PMID:23043157

  2. Short report: duration of tick attachment required for transmission of powassan virus by deer ticks.

    PubMed

    Ebel, Gregory D; Kramer, Laura D

    2004-09-01

    Infected deer ticks (Ixodes scapularis) were allowed to attach to naive mice for variable lengths of time to determine the duration of tick attachment required for Powassan (POW) virus transmission to occur. Viral load in engorged larvae detaching from viremic mice and in resulting nymphs was also monitored. Ninety percent of larval ticks acquired POW virus from mice that had been intraperitoneally inoculated with 10(5) plaque-forming units (PFU). Engorged larvae contained approximately 10 PFU. Transstadial transmission efficiency was 22%, resulting in approximately 20% infection in nymphs that had fed as larvae on viremic mice. Titer increased approximately 100-fold during molting. Nymphal deer ticks efficiently transmitted POW virus to naive mice after as few as 15 minutes of attachment, suggesting that unlike Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum, no grace period exists between tick attachment and POW virus transmission.

  3. STEM VQ Method, Using Scanning Transmission Electron Microscopy (STEM) for Accurate Virus Quantification

    DTIC Science & Technology

    2017-02-02

    Corresponding Author Abstract Accurate virus quantification is sought, but a perfect method still eludes the scientific community. Electron...unlimited. UNCLASSIFIED 2 provides morphology data and counts all viral particles, including partial or noninfectious particles; however, EM methods ...consistent, reproducible virus quantification method called Scanning Transmission Electron Microscopy – Virus Quantification (STEM-VQ) which simplifies

  4. Clusterons as a tool for monitoring populations of tick-borne encephalitis virus.

    PubMed

    Kovalev, Sergey Y; Mukhacheva, Tatyana A

    2014-02-01

    Tick-borne encephalitis (TBE) is a natural focal viral neuroinfection that is widespread in the temperate zone of Eurasia. Knowledge of the genetic structure of tick-borne encephalitis virus (TBEV) populations is important for understanding, not only the origin and evolution of the virus, but also the formation and maintenance of natural foci. A new approach to the differentiation of TBEV strains within subtype, with clusterons as the basis of analysis, has recently been proposed. In the present study, the genetic structure of TBEV-Sib populations has been investigated based on 387 strains isolated in the Middle Urals (Sverdlovsk region). Fourteen of the 18 currently known TBEV-Sib clusterons were identified. They belong to the Asian and Eastern European (Baltic) groups. It was shown that each TBE foci could be characterized by a unique clusteron profile. Three clusterons that emerged within the last 50 years have been identified which implies an active evolutionary process in the TBEV-Sib populations. The greatest diversity of clusterons was observed in the south of the Middle Urals along the Trans-Siberian Way. Such a pattern could reflect the history of colonization of the area and is closely related to the roads passing from Siberia to the European part of Russia through the Urals. In this article, the principles of continuous monitoring in the regional and local TBE foci are proposed, based on the quantitative and qualitative analysis of TBEV-Sib clusteron profiles. © 2013 Wiley Periodicals, Inc.

  5. Overview of West Nile Virus Transmission and Epidemiology.

    PubMed

    Troupin, Andrea; Colpitts, Tonya M

    2016-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that can cause mild-to-severe disease in humans and horses. WNV was first documented in Uganda in 1937 and passed through the majority of Africa, West Asia, and Europe before arriving in the USA (with infections in New York City in 1999). After the spread of the virus on the US east coast, it traveled westward, northward, and southward through the USA and into Central and South America. WNV can cause fever, rashes, nausea, vomiting, and potentially neuroinvasive disease or death. The virus is sustained through a mosquito-bird-mosquito cycle and there are many species that are competent vectors. Unfortunately, there are no vaccines and the only treatment is supportive care. This chapter highlights the epidemiology and transmission of WNV and provides insight into some of the challenges of controlling WNV disease.

  6. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Influence of Multiple Host Contacts on the Acquisition and Transmission of Dengue-2 Virus

    DTIC Science & Technology

    1993-01-01

    5500 Stanoard Form 298 (Rev 2-89) PIs~~ bv AtI %t .34-| II Best Available Copy ABSTRACT Title of Dissertation: THE INFLUENCE OF MULTIPLE HOST CONTACTS...ABSTRACT Title of the Dissertaton: THE INFLUENCE OF MULTIPLE HOST CONTACTS ON THE ACQUISITION AND TRANSMISSION OF DENGUE-2 VIRUS BY A=DISAEX2 . John L...virus does not alter the feeding behavior of An. n•ngy~i. THE INFLUENCE OF MULTIPLE HOST CONTACTS ON THE ACQUISITION AND TRANSMISSION OF DENGUE-2 VIRUS BY

  8. Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 virus

    PubMed Central

    Linster, Martin; van Boheemen, Sander; de Graaf, Miranda; Schrauwen, Eefje J. A.; Lexmond, Pascal; Mänz, Benjamin; Bestebroer, Theo M.; Baumann, Jan; van Riel, Debby; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Matrosovich, Mikhail; Fouchier, Ron A. M.; Herfst, Sander

    2014-01-01

    SUMMARY Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3 linked to α2,6 linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments. PMID:24725402

  9. Inefficient Mechanical Transmission of Langat (Tick-Borne Encephalitis Virus Complex) Virus by Blood-Feeding Mites (Acari) to Laboratory Mice

    DTIC Science & Technology

    1993-05-01

    AD--A269 706 SPSSHORT C:OMMNUNICATION 8 Inefficient Mechanical Transmission of Langat (Tick-Bornee Encephalitis Virus Complex) Virus by Blood-Feeding...I d after a . iremic blood meal. but onhv immediatelIy after the vi re muo. LANGAT (LGT) VIRUS is a member of the tick- No isolations of LCT virus...Use of ulatus collected in the Ulu Langat Forest re- Laboratory Animals." as promulgated by the Committee on serve, Malaysia. in l959’(Struth 1956

  10. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections.

    PubMed

    Lee, Justin; Malmberg, Jennifer L; Wood, Britta A; Hladky, Sahaja; Troyer, Ryan; Roelke, Melody; Cunningham, Mark; McBride, Roy; Vickers, Winston; Boyce, Walter; Boydston, Erin; Serieys, Laurel; Riley, Seth; Crooks, Kevin; VandeWoude, Sue

    2017-03-01

    Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats ( Lynx rufus ) and mountain lions ( Puma concolor ) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers ( Puma concolor coryi ) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates. IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which

  11. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections

    PubMed Central

    Lee, Justin; Malmberg, Jennifer L.; Wood, Britta A.; Hladky, Sahaja; Troyer, Ryan; Roelke, Melody; Cunningham, Mark; McBride, Roy; Vickers, Winston; Boyce, Walter; Boydston, Erin; Serieys, Laurel; Riley, Seth; Crooks, Kevin

    2016-01-01

    ABSTRACT Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats (Lynx rufus) and mountain lions (Puma concolor) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers (Puma concolor coryi) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates. IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine

  12. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients.

    PubMed

    Formanová, Petra; Černý, Jiří; Bolfíková, Barbora Černá; Valdés, James J; Kozlova, Irina; Dzhioev, Yuri; Růžek, Daniel

    2015-02-01

    Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Modes of transmission of Simian T-lymphotropic Virus Type 1 in semi-captive mandrills (Mandrillus sphinx).

    PubMed

    Roussel, Marion; Pontier, Dominique; Ngoubangoye, Barthélémy; Kazanji, Mirdad; Verrier, Delphine; Fouchet, David

    2015-09-30

    Non-human primates (NHPs) often live in inaccessible areas, have cryptic behaviors, and are difficult to follow in the wild. Here, we present a study on the spread of the simian T-lymphotropic Virus Type 1 (STLV-1), the simian counterpart of the human T-lymphotropic virus type 1 (HTLV-1) in a semi-captive mandrill colony. This study combines 28 years of longitudinal monitoring, including behavioral data, with a dynamic mathematical model and Bayesian inference. Three transmission modes were suspected: aggressive, sexual and familial. Our results show that among males, STLV-1 transmission occurs preferentially via aggression. Because of their impressive aggressive behavior male mandrills can easily transmit the virus during fights. On the contrary, sexual activity seems to have little effect. Thus transmission appears to occur primarily via male-male and female-female contact. In addition, for young mandrills, familial transmission appears to play an important role in virus spread. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hepacivirus cross-species transmission and the origins of the hepatitis C virus.

    PubMed

    Pybus, Oliver G; Thézé, Julien

    2016-02-01

    Just 5 years ago the hepatitis C virus (HCV) - a major cause of liver disease infecting >3% of people worldwide - was the sole confirmed member of the Hepacivirus genus. Since then, genetically-diverse hepaciviruses have been isolated from bats, dogs, cows, horses, primates and rodents. Here we review current information on the hepaciviruses and speculate on the zoonotic origins of the viruses in humans, horses and dogs. Recent and direct cross-species transmission from horses to dogs appears plausible, but the zoonotic origins of HCV in humans remain opaque. Mechanical transmission by biting insects, notably tabanids, could, in theory, connect all three host species. Much further work is needed to understand the transmission and zoonotic potential of hepaciviruses in natural populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Contributions from the silent majority dominate dengue virus transmission

    PubMed Central

    Duong, Veasna; Althouse, Benjamin M.; Lloyd, Alun L.; Waller, Lance A.; Morrison, Amy C.; Kitron, Uriel

    2018-01-01

    Despite estimates that, each year, as many as 300 million dengue virus (DENV) infections result in either no perceptible symptoms (asymptomatic) or symptoms that are sufficiently mild to go undetected by surveillance systems (inapparent), it has been assumed that these infections contribute little to onward transmission. However, recent blood-feeding experiments with Aedes aegypti mosquitoes showed that people with asymptomatic and pre-symptomatic DENV infections are capable of infecting mosquitoes. To place those findings into context, we used models of within-host viral dynamics and human demographic projections to (1) quantify the net infectiousness of individuals across the spectrum of DENV infection severity and (2) estimate the fraction of transmission attributable to people with different severities of disease. Our results indicate that net infectiousness of people with asymptomatic infections is 80% (median) that of people with apparent or inapparent symptomatic infections (95% credible interval (CI): 0–146%). Due to their numerical prominence in the infectious reservoir, clinically inapparent infections in total could account for 84% (CI: 82–86%) of DENV transmission. Of infections that ultimately result in any level of symptoms, we estimate that 24% (95% CI: 0–79%) of onward transmission results from mosquitoes biting individuals during the pre-symptomatic phase of their infection. Only 1% (95% CI: 0.8–1.1%) of DENV transmission is attributable to people with clinically detected infections after they have developed symptoms. These findings emphasize the need to (1) reorient current practices for outbreak response to adoption of pre-emptive strategies that account for contributions of undetected infections and (2) apply methodologies that account for undetected infections in surveillance programs, when assessing intervention impact, and when modeling mosquito-borne virus transmission. PMID:29723307

  16. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    PubMed

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive

  17. Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages

    PubMed Central

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J. M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-01-01

    Background Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Methods and Findings Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1–19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools

  18. Zika Virus Transmission - Region of the Americas, May 15, 2015-December 15, 2016.

    PubMed

    Ikejezie, Juniorcaius; Shapiro, Craig N; Kim, Jisoo; Chiu, Monica; Almiron, Maria; Ugarte, Ciro; Espinal, Marcos A; Aldighieri, Sylvain

    2017-03-31

    Zika virus, a mosquito-borne flavivirus that can cause rash with fever, emerged in the Region of the Americas on Easter Island, Chile, in 2014 and in northeast Brazil in 2015 (1). In response, in May 2015, the Pan American Health Organization (PAHO), which serves as the Regional Office of the Americas for the World Health Organization (WHO), issued recommendations to enhance surveillance for Zika virus. Subsequently, Brazilian investigators reported Guillain-Barré syndrome (GBS), which had been previously recognized among some patients with Zika virus disease, and identified an association between Zika virus infection during pregnancy and congenital microcephaly (2). On February 1, 2016, WHO declared Zika virus-related microcephaly clusters and other neurologic disorders a Public Health Emergency of International Concern.* In March 2016, PAHO developed case definitions and surveillance guidance for Zika virus disease and associated complications (3). Analysis of reports submitted to PAHO by countries in the region or published in national epidemiologic bulletins revealed that Zika virus transmission had extended to 48 countries and territories in the Region of the Americas by late 2016. Reported Zika virus disease cases peaked at different times in different areas during 2016. Because of ongoing transmission and the risk for recurrence of large outbreaks, response efforts, including surveillance for Zika virus disease and its complications, and vector control and other prevention activities, need to be maintained.

  19. Ecology and Epidemiology of Crimean-Congo Hemorrhagic Fever Virus Transmission in the Republic of Senegal.

    DTIC Science & Technology

    1992-07-01

    that simultaneously circulate in the region were investigated. Most notably, studies of Rift Valley fever ( RVF ) virus transmission in southern Mauritania...and Senegal were undertaken: we documented antibody prevalance in domestic animals during the 1987 outbreak, a decline in RVF virus transmission...following that epidemic, and human risk factors for RVF and associated mosquito vectors in Senegal. - 1 - FOREWORD Citations of commercial organizations

  20. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission

    PubMed Central

    Manuel, Menchie; Shan, Chao; Manokaran, Gayathri; Bradrick, Shelton S.; Missé, Dorothée; Shi, Pei-Yong

    2017-01-01

    Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3’ UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3’UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3’UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3’UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts. PMID:28753642

  1. [Strategy for choosing antibiotics for treating bacterial infections associated with chronic tick-borne encephalitis].

    PubMed

    Malenko, G V; Pogodina, V V; Frolova, M P; Ivannikova, T A

    1996-01-01

    The capacity of wide-spectrum antibiotics kefzol and ristomycin to activate the persisting tick-borne encephalitis (TBE) virus and cause an exacerbation of chronic process was investigated in Syrian hamsters in whom a prolonged (77 to 270 days) persistent TBE infection was induced by three TBE strains: Vasilchenko, V-383, and 205. The degree of antibiotic-induced activation was assessed using the criteria characterizing the reproduction and peculiarities of persisting TBE virus, immunodepression, and morphologic changes in the central nervous system. Effects of kefzol and ristomycin were compared with those of 8 antibiotics studied previously. Ristomycin, levomycetin (chloramphycin), penicillin, ampicillin (ampital), and levoridan were referred to drugs devoid of evident provoking effect. Kefzol (cefamezin), florimycin (viomycin), and kanamycin (kanamytrex) were characterized as weak activators and streptomycin and tetracycline as potent activators of the persisting TBE virus. These data may be used when selecting alternative agents for therapy of secondary bacterial infections concomitant with TBE.

  2. Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission

    PubMed Central

    Yugo, Danielle M.; Meng, Xiang-Jin

    2013-01-01

    Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919

  3. Transmission of hepatitis C virus between hemodialysis patients sharing the same machine.

    PubMed

    Sartor, Catherine; Brunet, Philippe; Simon, Sophie; Tamalet, Catherine; Berland, Yvon; Drancourt, Michel

    2004-07-01

    After a patient acquired hepatitis C virus (HCV) infection in our unit, we performed epidemiologic and virologic investigations, including genotyping and phylogenetic analyses. The results provided evidence for HCV transmission between two patients sharing the same machine and suggested possible transmission via accidental contamination of the venous pressure monitoring system.

  4. ZIKA VIRUS INFECTION; VERTICAL TRANSMISSION AND FOETAL CONGENITAL ANOMALIES.

    PubMed

    Abbasi, Aziz-un-Nisa

    2016-01-01

    Zika virus (ZIKV) is an arbovirus belonging to flaviviridae family that includes Dengue, West Nile, and Yellow Fever among others. Zika virus was first discovered in 1947 in Zika forest of Uganda. It is a vector borne disease, which has been sporadically reported mostly from Africa, Pacific islands and Southeast Asia since its discovery. ZIKV infection presents as a mild illness with symptoms lasting for several days to a week after the bite of an infected mosquito. Majority of the patients have low grade fever, rash, headaches, joints pain, myalgia, and flu like symptoms. Pregnant women are more vulnerable to ZIKV infection and serious congenital anomalies can occur in foetus through trans-placental transmission. The gestation at which infection is acquired is important. Zika virus infection acquired in early pregnancy poses greater risk. There is no evidence so far about transmission through breast milk. Foetal microcephaly, Gillian Barre syndrome and other neurological and autoimmune syndromes have been reported in areas where Zika outbreaks have occurred. As infection is usually very mild no specific treatment is required. Pregnant women may be advised to take rest, get plenty of fluids. For fever and pain they can take antipyretics like paracetamol. So far no specific drugs or vaccines are available against Zika Virus Infection so prevention is the mainstay against this diseases. As ZIKV infection is a vector borne disease, prevention can be a multi-pronged strategy. These entail vector control interventions, personal protection, environmental sanitation and health education among others.

  5. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination.

    PubMed

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin; Heinz, Franz X

    2014-12-01

    Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry

  6. Dynamics of a feline virus with two transmission modes within exponentially growing host populations.

    PubMed Central

    Berthier, K; Langlais, M; Auger, P; Pontier, D

    2000-01-01

    Feline panleucopenia virus (FPLV) was introduced in 1977 on Marion Island (in the southern Indian Ocean) with the aim of eradicating the cat population and provoked a huge decrease in the host population within six years. The virus can be transmitted either directly through contacts between infected and healthy cats or indirectly between a healthy cat and the contaminated environment: a specific feature of the virus is its high rate of survival outside the host. In this paper, a model was designed in order to take these two modes of transmission into account. The results showed that a mass-action incidence assumption was more appropriate than a proportionate mixing one in describing the dynamics of direct transmission. Under certain conditions the virus was able to control the host population at a low density. The indirect transmission acted as a reservoir supplying the host population with a low but sufficient density of infected individuals which allowed the virus to persist. The dynamics of the infection were more affected by the demographic parameters of the healthy hosts than by the epidemiological ones. Thus, demographic parameters should be precisely measured in field studies in order to obtain accurate predictions. The predicted results of our model were in good agreement with observations. PMID:11416908

  7. [Prevalence of transmission of zidovudine-resistant viruses in Switzerland. l'Etude suisse de cohorte VIH].

    PubMed

    Yerly, S; Rakik, A; Kinloch-de-Loes, S; Erb, P; Vernazza, P; Hirschel, B; Perrin, L

    1996-10-26

    Zidovudine (ZDV) was the most widely used anti-HIV drug between 1987 and 1995, and, as already reported, transmission of ZDV-resistant viruses occurs. Several mutations of the reverse transcriptase gene have been identified; one of them affects the 215 codon and is associated with a high degree of resistance. We have determined, using selective PCR, the prevalence of transmission of 215 mutant isolates in 134 patients with primary HIV infection (PHI) and have identified 8 patients with 215 mutant virus between 1989 and 1995 in Switzerland. Mutant resistant viruses have been isolated from patients treated with most antiviral drugs. A systematic search for mutant viruses may provide useful information for the adaptation of treatment strategies.

  8. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal.

    PubMed

    Kent, Rebekah J; Crabtree, Mary B; Miller, Barry R

    2010-05-04

    The natural history and potential impact of mosquito-specific flaviviruses on the transmission efficiency of West Nile virus (WNV) is unknown. The objective of this study was to determine whether or not prior infection with Culex flavivirus (CxFV) Izabal altered the vector competence of Cx. quinquefasciatus Say for transmission of a co-circulating strain of West Nile virus (WNV) from Guatemala. CxFV-negative Culex quinquefasciatus and those infected with CxFV Izabal by intrathoracic inoculation were administered WNV-infectious blood meals. Infection, dissemination, and transmission of WNV were measured by plaque titration on Vero cells of individual mosquito bodies, legs, or saliva, respectively, two weeks following WNV exposure. Additional groups of Cx. quinquefasciatus were intrathoracically inoculated with WNV alone or WNV+CxFV Izabal simultaneously, and saliva collected nine days post inoculation. Growth of WNV in Aedes albopictus C6/36 cells or Cx. quinquefasciatus was not inhibited by prior infection with CxFV Izabal. There was no significant difference in the vector competence of Cx. quinquefasciatus for WNV between mosquitoes uninfected or infected with CxFV Izabal across multiple WNV blood meal titers and two colonies of Cx. quinquefasciatus (p>0.05). However, significantly more Cx. quinquefasciatus from Honduras that were co-inoculated simultaneously with both viruses transmitted WNV than those inoculated with WNV alone (p = 0.0014). Co-inoculated mosquitoes that transmitted WNV also contained CxFV in their saliva, whereas mosquitoes inoculated with CxFV alone did not contain virus in their saliva. In the sequential infection experiments, prior infection with CxFV Izabal had no significant impact on WNV replication, infection, dissemination, or transmission by Cx. quinquefasciatus, however WNV transmission was enhanced in the Honduras colony when mosquitoes were inoculated simultaneously with both viruses.

  9. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus

    PubMed Central

    Tully, Damien C.; Ogilvie, Colin B.; Batorsky, Rebecca E.; Bean, David J.; Power, Karen A.; Ghebremichael, Musie; Bedard, Hunter E.; Gladden, Adrianne D.; Seese, Aaron M.; Amero, Molly A.; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B.; Tinsley, Jake; Lennon, Niall J.; Henn, Matthew R.; Brumme, Zabrina L.; Norris, Philip J.; Rosenberg, Eric S.; Mayer, Kenneth H.; Jessen, Heiko; Kosakovsky Pond, Sergei L.; Walker, Bruce D.; Altfeld, Marcus; Carlson, Jonathan M.; Allen, Todd M.

    2016-01-01

    Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. PMID:27163788

  10. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus.

    PubMed

    Tully, Damien C; Ogilvie, Colin B; Batorsky, Rebecca E; Bean, David J; Power, Karen A; Ghebremichael, Musie; Bedard, Hunter E; Gladden, Adrianne D; Seese, Aaron M; Amero, Molly A; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B; Tinsley, Jake; Lennon, Niall J; Henn, Matthew R; Brumme, Zabrina L; Norris, Philip J; Rosenberg, Eric S; Mayer, Kenneth H; Jessen, Heiko; Kosakovsky Pond, Sergei L; Walker, Bruce D; Altfeld, Marcus; Carlson, Jonathan M; Allen, Todd M

    2016-05-01

    Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.

  11. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens

    PubMed Central

    Gambaryan, Alexandra; Boravleva, Elizaveta; Lomakina, Natalia; Kropotkina, Ekaterina; Klenk, Hans-Dieter

    2018-01-01

    Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens. PMID:29614716

  12. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    PubMed

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  13. Transmission of Hepatitis A Virus through Combined Liver–Small Intestine–Pancreas Transplantation

    PubMed Central

    Weil, Lauren M.; Jin, Sherry; Johnson, Thomas; Hayden-Mixson, Tonya R.; Khudyakov, Yury; Annambhotla, Pallavi D.; Basavaraju, Sridhar V.; Kamili, Saleem; Ritter, Jana M.; Nelson, Noele; Mazariegos, George; Green, Michael; Himes, Ryan W.; Kuhar, David T.; Kuehnert, Matthew J.; Miller, Jeffrey A.; Wiseman, Rachel; Moorman, Anne C.

    2017-01-01

    Although transmission of hepatitis A virus (HAV) through blood transfusion has been documented, transmission through organ transplantation has not been reported. In August 2015, state health officials in Texas, USA, were notified of 2 home health nurses with HAV infection whose only common exposure was a child who had undergone multi–visceral organ transplantation 9 months earlier. Specimens from the nurses, organ donor, and all organ recipients were tested and medical records reviewed to determine a possible infection source. Identical HAV RNA sequences were detected from the serum of both nurses and the organ donor, as well as from the multi–visceral organ recipient’s serum and feces; this recipient’s posttransplant liver and intestine biopsy specimens also had detectable virus. The other organ recipients tested negative for HAV RNA. Vaccination of the donor might have prevented infection in the recipient and subsequent transmission to the healthcare workers. PMID:28322704

  14. Transmission of Hepatitis A Virus through Combined Liver-Small Intestine-Pancreas Transplantation.

    PubMed

    Foster, Monique A; Weil, Lauren M; Jin, Sherry; Johnson, Thomas; Hayden-Mixson, Tonya R; Khudyakov, Yury; Annambhotla, Pallavi D; Basavaraju, Sridhar V; Kamili, Saleem; Ritter, Jana M; Nelson, Noele; Mazariegos, George; Green, Michael; Himes, Ryan W; Kuhar, David T; Kuehnert, Matthew J; Miller, Jeffrey A; Wiseman, Rachel; Moorman, Anne C

    2017-04-01

    Although transmission of hepatitis A virus (HAV) through blood transfusion has been documented, transmission through organ transplantation has not been reported. In August 2015, state health officials in Texas, USA, were notified of 2 home health nurses with HAV infection whose only common exposure was a child who had undergone multi-visceral organ transplantation 9 months earlier. Specimens from the nurses, organ donor, and all organ recipients were tested and medical records reviewed to determine a possible infection source. Identical HAV RNA sequences were detected from the serum of both nurses and the organ donor, as well as from the multi-visceral organ recipient's serum and feces; this recipient's posttransplant liver and intestine biopsy specimens also had detectable virus. The other organ recipients tested negative for HAV RNA. Vaccination of the donor might have prevented infection in the recipient and subsequent transmission to the healthcare workers.

  15. Transfusion-related transmission of yellow fever vaccine virus--California, 2009.

    PubMed

    2010-01-22

    In the United States, yellow fever (YF) vaccination is recommended for travelers and active duty military members visiting endemic areas of sub-Saharan Africa and Central/South America. The American Red Cross recommends that recipients of YF vaccine defer blood product donation for 2 weeks because of the theoretical risk for transmission from a viremic donor. On April 10, 2009, a hospital blood bank supervisor learned that, on March 27, blood products had been collected from 89 U.S. active duty trainees who had received YF vaccine 4 days before donation. This report summarizes the subsequent investigation by the hospital and CDC to identify lapses in donor deferral and to determine whether transfusion-related transmission of YF vaccine virus occurred. The investigation found that a recent change in the timing of trainee vaccination had occurred and that vaccinees had not reported recent YF vaccination status at time of donation. Despite a prompt recall, six units of blood products were transfused into five patients. No clinical evidence or laboratory abnormalities consistent with a serious adverse reaction were identified in four recipients within the first month after transfusion; the fifth patient, who had prostate cancer and end-stage, transfusion-dependent, B-cell lymphoma, died while in hospice care. Three of the four surviving patients had evidence of serologic response to YF vaccine virus. This report provides evidence that transfusion-related transmission of YF vaccine virus can occur and underscores the need for careful screening and deferral of recently vaccinated blood donors.

  16. Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response.

    PubMed

    Laevens, H; Koenen, F; Deluyker, H; de Kruif, A

    1999-08-28

    The spread of classical swine fever virus was investigated in an isolation unit containing four pens, each containing six slaughter pigs. One pig in the middle pen of three adjacent pens was inoculated intramuscularly and intranasally with the virus. The fourth pen was located in a separate compartment. The pens were visited in a strict order to study, first, the effect of indirect contact via contaminated clothing and footwear on the spread of the virus to adjacent pens and, secondly, the airborne transmission of the virus between compartments. The pigs were examined and blood samples were taken every other day for 62 days for virological and serological analyses. The virus was highly contagious for the five pigs that were in direct contact with the inoculated pig, but spread to the other pens only after all the pigs in the originally infected pen had become viraemic. The spread of the virus was promoted by contaminated clothing and footwear, but airborne transmission contributed considerably to the spread of the virus within the pighouse. The first clinical signs observed after the virus was introduced into a pen were decreased feed intake, increased mean rectal temperature and apathy. Neither the clinical course of the infection, nor the pattern of seroconversion observed over time, was affected by the differences in the intensity of contact with the virus between the pigs in the different pens.

  17. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector

    PubMed Central

    Liu, Si; Xie, Jiatao; Cheng, Jiasen; Li, Bo; Chen, Tao; Fu, Yanping; Li, Guoqing; Wang, Manqun; Jin, Huanan; Wan, Hu; Jiang, Daohong

    2016-01-01

    Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua. Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1–like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage. PMID:27791095

  18. Genetic variation affecting host-parasite interactions: different genes affect different aspects of sigma virus replication and transmission in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Kim, Kang-Wook; Webster, Claire L; Jiggins, Francis M

    2008-04-01

    In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Drosophila melanogaster and its natural pathogen the vertically transmitted sigma virus. We show that considerable genetic variation affects transmission of the virus from parent to offspring. However, maternal and paternal transmission of the virus is affected by different genes. Maternal transmission is a simple Mendelian trait: most of the genetic variation is explained by a polymorphism in ref(2)P, a gene already well known to affect resistance to sigma. In contrast, there is considerable genetic variation in paternal transmission that cannot be explained by ref(2)P and is caused by other loci on chromosome 2. Furthermore, we found no genetic correlation between paternal transmission of the virus and resistance to infection by the sigma virus following injection. This suggests that different loci affect viral replication and paternal transmission.

  19. Genetics, Receptor Binding Property, and Transmissibility in Mammals of Naturally Isolated H9N2 Avian Influenza Viruses

    PubMed Central

    Deng, Guohua; Zhang, Qianyi; Wang, Jinliang; He, Xijun; Wang, Kaicheng; Chen, Jiming; Li, Yuanyuan; Fan, Jun; Kong, Huiui; Gu, Chunyang; Guan, Yuantao; Suzuki, Yasuo; Kawaoka, Yoshihiro; Liu, Liling; Jiang, Yongping; Tian, Guobin; Li, Yanbing; Bu, Zhigao; Chen, Hualan

    2014-01-01

    H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans. PMID:25411973

  20. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    DTIC Science & Technology

    1984-03-14

    demonstrated that infection with tick-borne encephalitis (TBE) virus or Langat virus leads to the appearance of two populations of autoreactive T...cells formed in mice ^fected wiA the TBE or Langat viruses exert a protective effect by preventing the maturation of the ACTL precursor cells Into

  1. Potential for human immunodeficiency virus parenteral transmission in the Middle East and North Africa: An analysis using hepatitis C virus as a proxy biomarker

    PubMed Central

    Mohamoud, Yousra A; Miller, F DeWolfe; Abu-Raddad, Laith J

    2014-01-01

    The Middle East and North Africa (MENA) region has endured several major events of infection parenteral transmission. Recent work has established the utility of using hepatitis C virus (HCV) as a proxy biomarker for assessing the epidemic potential for human immunodeficiency virus (HIV) parenteral transmission. In this review, we use data on the prevalence of HCV infection antibody (seroprevalence) among general population and high risk population groups to assess the potential for HIV parenteral transmission in MENA. Relatively low prevalence of HCV infection in the general population groups was reported in most MENA countries indicating that parenteral HIV transmission at endemic levels does not appear to be a cause for concern. Nonetheless, there could be opportunities for localized HIV outbreaks and transmission of other blood-borne infections in some settings such as healthcare facilities. Though there have been steady improvements in safety measures related to parenteral modes of transmission in the region, these improvements have not been uniform across all countries. More precautions, including infection control training programs, surveillance systems for nosocomial infections and wider coverage and evaluation of hepatitis B virus immunization programs need to be implemented to avoid the unnecessary spread of HIV, HCV, and other blood-borne pathogens along the parenteral modes of transmission. PMID:25278675

  2. Vertical transmission of Prunus necrotic ringspot virus: hitch-hiking from gametes to seedling.

    PubMed

    Amari, Khalid; Burgos, Lorenzo; Pallás, Vicente; Sánchez-Pina, Maria Amelia

    2009-07-01

    The aim of this work was to follow Prunus necrotic ringspot virus (PNRSV) infection in apricot reproductive tissues and transmission of the virus to the next generation. For this, an analysis of viral distribution in apricot reproductive organs was carried out at different developmental stages. PNRSV was detected in reproductive tissues during gametogenesis. The virus was always present in the nucellus and, in some cases, in the embryo sac. Studies within infected seeds at the embryo globular stage revealed that PNRSV infects all parts of the seed, including embryo, endosperm and testa. In the torpedo and bent cotyledon developmental stages, high concentrations of the virus were detected in the testa and endosperm. At seed maturity, PNRSV accumulated slightly more in the embryo than in the cotyledons. In situ hybridization showed the presence of PNRSV RNA in embryos obtained following hand-pollination of virus-free pistils with infected pollen. Interestingly, tissue-printing from fruits obtained from these pistils showed viral RNA in the periphery of the fruits, whereas crosses between infected pistils and infected pollen resulted in a total invasion of the fruits. Taken together, these results shed light on the vertical transmission of PNRSV from gametes to seedlings.

  3. Rare occurrence of natural transovarial transmission of dengue virus and elimination of infected foci as a possible intervention method.

    PubMed

    Angel, Annette; Angel, Bennet; Joshi, Vinod

    2016-03-01

    Transovarial transmission of dengue virus has been studied in 33 districts of Rajasthan, India. Small proportion (1.09%) of breeding containers positive for the virus and their elimination has been demonstrated as a possible intervention method of disease control. Dengue virus was isolated from individual mosquitoes employing Indirect Fluorescence Antibody Test and Reverse Transcriptase Polymerase Chain Reaction. Out of 1,30,525 containers examined only 1432(1.09%) showed transovarially transmitted virus activity. Elimination of larvae from all the 1432 virus positive containers resulted in substantial control over prospective transmission of dengue. The study highlights rarity of transovarial transmission under natural conditions and sensitizes whether elimination of vertically infected foci could be used as a new intervention method. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    Lakdawala, Seema S.; Lamirande, Elaine W.; Suguitan, Amorsolo L.; Wang, Weijia; Santos, Celia P.; Vogel, Leatrice; Matsuoka, Yumiko; Lindsley, William G.; Jin, Hong; Subbarao, Kanta

    2011-01-01

    The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus. PMID:22241979

  5. Vertical transmission of infectious hematopoietic necrosis virus in sockeye salmon (Oncorhynchus nerka): Isolation of virus from dead eggs and fry

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.

    1985-01-01

    The control of epizootics of infectious haematopoietic necrosis (IHN) virus in salmonid fishes is presently based on examination and certification of adult brood fish to prevent the introduction of virus-infected eggs into hatcheries (Canadian Fisheries and Marine Service 1976; McDaniel 1979). This strategy is based on the assumption that the virus is vertically transmitted in association with the gametes. However, evidence for vertical transmission of IHN virus is circumstantial, based mostly on the appearance of the disease outside the enzootic area (the west coast of North America) in fish hatched from eggs obtained from within that area (Plumb 1972; Holway & Smith 1973; Wolf, Quimby, Pettijohn & Landolt 1973; Sano, Nishimura, Okamoto, Yamazaki, Hanada & Watanabe1977; Carlisle, Schat & Elston 1979). An indirect demonstration of vertical transmission was made by placing known virus-free fish in the water above and below raceways containing fish that suffered an IHN epizootic in an effort to eliminate waterborne virus as a source of infection (Wingfield & Chan 1970). The fish placed below the raceway developed IHN, due to waterborne virus released from the affected fish in the raceway, but the fish placed above the raceway failed to develop IHN. These results suggested that the source of infection of the fish in the raceway was not the water supply, although it is possible that the virus was no longer present in the water supply at the time the sentinel fish were exposed to the water.

  6. Natural vertical transmission of Ndumu virus in Culex pipiens (Diptera; Culicidae) mosquitoes collected as larvae

    USDA-ARS?s Scientific Manuscript database

    Ndumu virus (NDUV) is a member of the Family: Togaviridae and Genus: Alphavirus. In Kenya the virus has been isolated from a range of mosquito species but has not been associated with human or animal morbidity. Little is know about the transmission dynamics or vertebrate reservoirs of this virus. We...

  7. Exploring of Primate Models of Tick-Borne Flaviviruses Infection for Evaluation of Vaccines and Drugs Efficacy

    PubMed Central

    Pripuzova, Natalia S.; Gmyl, Larissa V.; Romanova, Lidiya Iu.; Tereshkina, Natalia V.; Rogova, Yulia V.; Terekhina, Liubov L.; Kozlovskaya, Liubov I.; Vorovitch, Mikhail F.; Grishina, Karina G.; Timofeev, Andrey V.; Karganova, Galina G.

    2013-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8–16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C

  8. Transmission of West Nile virus from an organ donor to four transplant recipients.

    PubMed

    Iwamoto, Martha; Jernigan, Daniel B; Guasch, Antonio; Trepka, Mary Jo; Blackmore, Carina G; Hellinger, Walter C; Pham, Si M; Zaki, Sherif; Lanciotti, Robert S; Lance-Parker, Susan E; DiazGranados, Carlos A; Winquist, Andrea G; Perlino, Carl A; Wiersma, Steven; Hillyer, Krista L; Goodman, Jesse L; Marfin, Anthony A; Chamberland, Mary E; Petersen, Lyle R

    2003-05-29

    In August 2002, fever and mental-status changes developed in recipients of organs from a common donor. Transmission of West Nile virus through organ transplantation was suspected. We reviewed medical records, conducted interviews, and collected blood and tissue samples for testing with a variety of assays. Persons who donated blood to the organ donor and associated blood components were identified and tested for West Nile virus. We identified West Nile virus infection in the organ donor and in all four organ recipients. Encephalitis developed in three of the organ recipients, and febrile illness developed in one. Three recipients became seropositive for West Nile virus IgM antibody; the fourth recipient had brain tissue that was positive for West Nile virus by isolation and nucleic acid and antigen assays. Serum specimens obtained from the organ donor before and immediately after blood transfusions showed no evidence of West Nile virus; however, serum and plasma samples obtained at the time of organ recovery were positive on viral nucleic acid testing and viral culture. The organ donor had received blood transfusions from 63 donors. A review of blood donors and follow-up testing identified one donor who had viremia at the time of donation and who became seropositive for West Nile virus IgM antibodies during the next two months. Our investigation of this cluster documents the transmission of West Nile virus by organ transplantation. Organ recipients receiving immunosuppressive drugs may be at high risk for severe disease after West Nile virus infection. Blood transfusion was the probable source of the West Nile virus viremia in the organ donor. Copyright 2003 Massachusetts Medical Society

  9. Simulated Transmission of the Dengue Virus Across the US-Mexico Border Using Remotely Sensed and Ground Based Weather Data

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Quattrochi, Dale A.

    2015-01-01

    Incidence of dengue fever, caused by a mosquito transmitted virus, have increased in the Americas during recent decades. In the US, local transmission has been reported in southern Texas and Florida. However, despite its close proximity to dengue endemic areas in Mexico and the presence of a primary mosquito vector, there are no reports of local transmission in Arizona. Many studies have demonstrated that weather influences dengue virus transmission by regulating vector development rates, vector habitat availability, and the duration of the virus extrinsic incubation period (EIP). The EIP, the period between mosquito infection and the ability for it to retransmit the virus, is especially important given its high sensitivity to temperature and the short lifespan of mosquitoes. Other studies, however, have suggested that human related factors such as socioeconomic status and herd immunity may explain much of the disparity in dengue incidence in the US-Mexico border region. Using a meteorologically driven model of vector population dynamics and virus transmission we compare simulations of dengue fever cases in southern Arizona and northern Mexico. A Monte Carlo approach is employed to select parameter values by evaluating simulations in Hermosillo Mexico with reported dengue fever case data. Simulations that replicate the case data best are retained and rerun using remotely sensed climate data from other Arizona and Mexico locations to determine the relative influence of weather on virus transmission. Although human and environmental factors undoubtedly influence dengue transmission in the US-Mexico border regions, weather is a major facilitator of the transmission process.

  10. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    PubMed

    Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  11. Discovery and Targeted LC-MS/MS of Purified Polerovirus Reveals Differences in the Virus-Host Interactome Associated with Altered Aphid Transmission

    PubMed Central

    Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947

  12. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The potential for sexual transmission to compromise control of Ebola virus outbreaks.

    PubMed

    Vinson, John E; Drake, John M; Rohani, Pejman; Park, Andrew W

    2016-06-01

    Recent evidence suggests that sexual contact may give rise to transmission of Ebola virus long after infection has been cleared from blood. We develop a simple mathematical model that incorporates contact transmission and sexual transmission parametrized from data relating to the 2013-2015 West African Ebola epidemic. The model explores scenarios where contact transmission is reduced following infection events, capturing behaviour change, and quantifies how these actions reducing transmission may be compromised by sexual transmission in terms of increasing likelihood, size and duration of outbreaks. We characterize the extent to which sexual transmission operates in terms of the probability of initial infection resolving to sexual infectiousness and the sexual transmission rate, and relate these parameters to the overall case burden. We find that sexual transmission can have large effects on epidemic dynamics (increasing attack ratios from 25% in scenarios without sexual transmission but with contact-transmission-reducing behaviour, up to 80% in equivalent scenarios with sexual transmission). © 2016 The Author(s).

  14. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  15. The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus.

    PubMed

    Valdazo-González, Begoña; Kim, Jan T; Soubeyrand, Samuel; Wadsworth, Jemma; Knowles, Nick J; Haydon, Daniel T; King, Donald P

    2015-06-01

    Full-genome sequences have been used to monitor the fine-scale dynamics of epidemics caused by RNA viruses. However, the ability of this approach to confidently reconstruct transmission trees is limited by the knowledge of the genetic diversity of viruses that exist within different epidemiological units. In order to address this question, this study investigated the variability of 45 foot-and-mouth disease virus (FMDV) genome sequences (from 33 animals) that were collected during 2007 from eight premises (10 different herds) in the United Kingdom. Bayesian and statistical parsimony analysis demonstrated that these sequences exhibited clustering which was consistent with a transmission scenario describing herd-to-herd spread of the virus. As an alternative to analysing all of the available samples in future epidemics, the impact of randomly selecting one sequence from each of these herds was used to assess cost-effective methods that might be used to infer transmission trees during FMD outbreaks. Using these approaches, 85% and 91% of the resulting topologies were either identical or differed by only one edge from a reference tree comprising all of the sequences generated within the outbreak. The sequence distances that accrued during sequential transmission events between epidemiological units was estimated to be 4.6 nucleotides, although the genetic variability between viruses recovered from chronic carrier animals was higher than between viruses from animals with acute-stage infection: an observation which poses challenges for the use of simple approaches to infer transmission trees. This study helps to develop strategies for sampling during FMD outbreaks, and provides data that will guide the development of further models to support control policies in the event of virus incursions into FMD free countries. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Tonsil Epithelial Factors May Influence Oropharyngeal Human Immunodeficiency Virus Transmission

    PubMed Central

    Moutsopoulos, Niki M.; Nares, Salvador; Nikitakis, Nikolaos; Rangel, Zoila; Wen, Jie; Munson, Peter; Sauk, John; Wahl, Sharon M.

    2007-01-01

    Tonsil epithelium has been implicated in human immunodeficiency virus (HIV) pathogenesis, but its role in oral transmission remains controversial. To study characteristics of this tissue, which may influence susceptibility or resistance to HIV, we performed microarray analysis of the tonsil epithelium. Our data revealed that genes related to immune functions such as antibody production and antigen processing were increasingly expressed in tonsil compared with the epithelium of another oropharyngeal site, the gingival epithelium. Importantly, tonsil epithelium highly expressed genes associated with HIV entrapment and/or transmission, including the HIV co-receptor CXCR4 and the potential HIV-binding molecules FcRγIII, complement receptor 2, and various complement components. Immunohistochemical staining confirmed the increased presence of CXCR4 in the tonsil epithelium compared with multiple oral epithelial sites, particularly in basal and parabasal layers. This increased expression of molecules involved in viral recognition, binding, and entry may favor virus-epithelium interactions in an environment with reduced innate antiviral mechanisms. Specifically, secretory leukocyte protease inhibitor, an innate molecule with anti-HIV activity, was minimal in the tonsil epithelium, in contrast to oral mucosa. Collectively, our data suggest that increased expression of molecules associated with HIV binding and entry coupled with decreased innate antiviral factors may render the tonsil a potential site for oral transmission. PMID:17620369

  17. Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models

    PubMed Central

    Eckert, Alissa M.; Tumpey, Terrence M.; Maines, Taronna R.

    2016-01-01

    SUMMARY Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. PMID:27412880

  18. Tick-borne encephalitis among U.S. travelers to Europe and Asia - 2000-2009.

    PubMed

    2010-03-26

    Tick-borne encephalitis virus (TBEV) is the most common arbovirus transmitted by ticks in Europe. Approximately 10,000 cases of tick-borne encephalitis (TBE) are reported annually in Europe and Russia. Although TBE is endemic in parts of China, information regarding its incidence is limited. TBEV is closely related to Powassan virus (POWV), another tick-borne flavivirus that is a rare cause of encephalitis in North America and Russia; TBEV and POWV can cross-react in serologic tests. Before 2000, two cases of TBE in North American travelers to Europe were reported. State health officials or clinicians send specimens from patients with unexplained encephalitis to CDC as part of routine surveillance and diagnostic testing. CDC recently reviewed all 2000-2009 laboratory records to identify cases of TBE among U.S. travelers; the five cases identified are summarized in this report. All five cases had TBEV or POWV immunoglobulin M (IgM) antibodies in serum and were confirmed as acute TBE cases by plaque-reduction neutralization tests against both viruses. All four patients who had traveled to Europe or Russia had biphasic illnesses (a common feature of TBE) and made nearly complete recoveries. The fifth patient, the first reported case of TBE in a U.S. traveler to China, had a monophasic illness with severe encephalitis and neurologic sequelae. Health-care providers should be aware of TBE, should counsel travelers about measures to reduce exposure to tick bites, and should consider the diagnosis of TBE in travelers returning from TBE-endemic countries with meningitis or encephalitis.

  19. Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs.

    PubMed

    Park, Sehee; Lee, Ilseob; Kim, Jin Il; Bae, Joon-Yong; Yoo, Kirim; Kim, Juwon; Nam, Misun; Park, Miso; Yun, Soo-Hyeon; Cho, Woo In; Kim, Yeong-Su; Ko, Yun Young; Park, Man-Seong

    2016-10-14

    Avian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    PubMed Central

    Obadan, Adebimpe O.; Kimble, Brian J.; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J. S.; Vincent, Amy

    2015-01-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  1. Transmission of the L-Zagreb mumps vaccine virus, Croatia, 2005-2008.

    PubMed

    Kaic, B; Gjenero-Margan, I; Aleraj, B; Ljubin-Sternak, S; Vilibic-Cavlek, T; Kilvain, S; Pavic, I; Stojanovic, D; Ilic, A

    2008-04-17

    We report on three cases of symptomatic transmission of the L-Zagreb mumps vaccine virus from three vaccinated children to five adult contacts. The five contact cases were parents of the vaccinated children and presented with parotitis and in one case also with aseptic meningitis. The etiology of the contacts' illness was determined by viral culture, genomic sequencing, serology and epidemiological linking. Two of the vaccinated children developed vaccine associated parotitis as an adverse event three weeks following immunization. Symptoms in contact cases developed five to seven weeks after the vaccination of the children. The five contact cases, as well as the three children with adverse events recovered completely. The children had been vaccinated with MMR vaccine produced by the Institute of Immunology Zagreb, each of them with a different lot. One of the possible explanations for these adverse events is that the very low levels of wild mumps virus circulation in the last decade, combined with waning immunity in those who received one dose of vaccine or suffered from mumps in childhood, resulted in susceptible young adults and that this unique epidemiological situation allows us to detect horizontal transmission of mumps vaccine virus.

  2. Potential Impact of Sexual Transmission on Ebola Virus Epidemiology: Sierra Leone as a Case Study.

    PubMed

    Abbate, Jessica L; Murall, Carmen Lia; Richner, Heinz; Althaus, Christian L

    2016-05-01

    Sexual transmission of Ebola virus disease (EVD) 6 months after onset of symptoms has been recently documented, and Ebola virus RNA has been detected in semen of survivors up to 9 months after onset of symptoms. As countries affected by the 2013-2015 epidemic in West Africa, by far the largest to date, are declared free of Ebola virus disease (EVD), it remains unclear what threat is posed by rare sexual transmission events that could arise from survivors. We devised a compartmental mathematical model that includes sexual transmission from convalescent survivors: a SEICR (susceptible-exposed-infectious-convalescent-recovered) transmission model. We fitted the model to weekly incidence of EVD cases from the 2014-2015 epidemic in Sierra Leone. Sensitivity analyses and Monte Carlo simulations showed that a 0.1% per sex act transmission probability and a 3-month convalescent period (the two key unknown parameters of sexual transmission) create very few additional cases, but would extend the epidemic by 83 days [95% CI: 68-98 days] (p < 0.0001) on average. Strikingly, a 6-month convalescent period extended the average epidemic by 540 days (95% CI: 508-572 days), doubling the current length, despite an insignificant rise in the number of new cases generated. Our results show that reductions in the per sex act transmission probability via abstinence and condom use should reduce the number of sporadic sexual transmission events, but will not significantly reduce the epidemic size and may only minimally shorten the length of time the public health community must maintain response preparedness. While the number of infectious survivors is expected to greatly decline over the coming months, our results show that transmission events may still be expected for quite some time as each event results in a new potential cluster of non-sexual transmission. Precise measurement of the convalescent period is thus important for planning ongoing surveillance efforts.

  3. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean

    PubMed Central

    Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid

  4. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    PubMed

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  5. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry.

    PubMed

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M; Clark, Andrew; Swayne, David E

    2017-11-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.

  6. Tick-borne Encephalitis Associated with Consumption of Raw Goat Milk, Slovenia, 2012

    PubMed Central

    Hudopisk, Neda; Korva, Miša; Janet, Evgen; Simetinger, Marjana; Grgič-Vitek, Marta; Gubenšek, Jakob; Natek, Vladimir; Kraigher, Alenka; Strle, Franc

    2013-01-01

    Tick-borne encephalitis (TBE) developed in 3 persons in Slovenia who drank raw milk; a fourth person, who had been vaccinated against TBE, remained healthy. TBE virus RNA was detected in serum and milk of the source goat. Persons in TBE-endemic areas should be encouraged to drink only boiled/pasteurized milk and to be vaccinated. PMID:23697658

  7. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs.

    PubMed

    Zhu, H; Wang, D; Kelvin, D J; Li, L; Zheng, Z; Yoon, S-W; Wong, S-S; Farooqui, A; Wang, J; Banner, D; Chen, R; Zheng, R; Zhou, J; Zhang, Y; Hong, W; Dong, W; Cai, Q; Roehrl, M H A; Huang, S S H; Kelvin, A A; Yao, T; Zhou, B; Chen, X; Leung, G M; Poon, L L M; Webster, R G; Webby, R J; Peiris, J S M; Guan, Y; Shu, Y

    2013-07-12

    The emergence of the H7N9 influenza virus in humans in Eastern China has raised concerns that a new influenza pandemic could occur. Here, we used a ferret model to evaluate the infectivity and transmissibility of A/Shanghai/2/2013 (SH2), a human H7N9 virus isolate. This virus replicated in the upper and lower respiratory tracts of the ferrets and was shed at high titers for 6 to 7 days, with ferrets showing relatively mild clinical signs. SH2 was efficiently transmitted between ferrets via direct contact, but less efficiently by airborne exposure. Pigs were productively infected by SH2 and shed virus for 6 days but were unable to transmit the virus to naïve pigs or ferrets. Under appropriate conditions, human-to-human transmission of the H7N9 virus may be possible.

  8. Transmission of influenza A viruses between pigs and people, Iowa, 2002-2004.

    PubMed

    Terebuh, Pauline; Olsen, Christopher W; Wright, Jennifer; Klimov, Alexander; Karasin, Alexander; Todd, Karla; Zhou, Hong; Hall, Henrietta; Xu, Xiyan; Kniffen, Tim; Madsen, David; Garten, Rebecca; Bridges, Carolyn B

    2010-11-01

    Triple-reassortant (tr) viruses of human, avian, and swine origin, including H1N1, H1N2, and H3N2 subtypes, emerged in North American swine herds in 1998 and have become predominant. While sporadic human infections with classical influenza A (H1N1) and with tr-swine influenza viruses have been reported, relatively few have been documented in occupationally exposed swine workers (SW). We conducted a 2-year (2002-2004) prospective cohort study of transmission of influenza viruses between pigs and SW from a single pork production company in Iowa. Respiratory samples were collected and tested for influenza viruses from SW and from pigs under their care through surveillance for influenza-like illnesses (ILI). Serial blood samples from study participants were tested by hemagglutination inhibition (HI) for antibody seroconversion against human and swine influenza viruses (SIV), and antibody seroprevalence was compared to age-matched urban Iowa blood donors. During the first year, 15 of 88 SW had ILI and were sampled; all were culture-negative for influenza. During the second year, 11 of 76 SW had ILI and were sampled; one was culture-positive for a human seasonal H3N2 virus. Among 20 swine herd ILI outbreaks sampled, influenza A virus was detected by rRT-PCR from 17 with 11 trH1N1 and five trH3N2 virus isolates cultured. During both years, HI geometric mean titers were significantly higher among SW compared to blood donor controls for three SIV: classical swine Sw/WI/238/97 (H1N1), tr Sw/IN/9K035/99 (H1N2), and trSw/IA/H02NJ56371/02 (H1N1)] (P < 0·0001). SW had serologic evidence for infection with both swine and human influenza viruses and were exposed to diverse influenza virus strains circulating in pigs. Influenza virus surveillance among pigs and SW should be encouraged to better understand cross-species transmission and diversity of influenza viruses at the human-swine interface. © 2010 Blackwell Publishing Ltd.

  9. Vertical transmission of infectious haematopoietic necrosis virus in sockeye salmon, Oncorhynchus nerka (Walbaum): isolation of virus from dead eggs and fry

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.

    1985-01-01

    The control of epizootics of infectious haematopoietic necrosis (IIHN) virus in salmonid fishes is presently based on examination and certification of adult brood fish to prevent the introduction of virus-infected eggs into hatcheries (Canadian Fisherics and Marine Service 1976; McDaniel 1979). This strategy is based on the assumption that the virus is vertically transmitted in association with the gametes. However, evidence for vertical transmission of lHN virus is circumstantial, based mostly on the appearance of the disease outside the enzootic area (the west coast of North America) in fish hatched from eggs obtained from within that area (Plumb 1972; Holway & Smith 1973; Wolf, Quimby, Pettijohn & Landolt 1973, Sano, Nishimura, Okamoto, Yamazaki, Hanada & Watanabe 1977. Carlisle, Schat & Elston 1979). An indirect demonstration of vertical transmission was made by placing known virus-free fish in the water above and below raceways containing fish that suffered an IEEN epizootic in an cffort to climinate waterborne virus as a source of infection (Wingficid & Chan 1970). The fish placed below the raceway developed IHN, due to waterborne virus released from the affected fish in the raceway, but the fish placed above the raceway failed to develop IHN. These results suggested that the source of infection of the fish in the raceway was not the water supply, although it is possible that the virus was no longer present in the water supply at the time the sentinel fish were exposed to the water.

  10. Sexual transmission of human T-cell lymphotropic virus type 1.

    PubMed

    Paiva, Arthur; Casseb, Jorge

    2014-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2), and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax), a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.

  11. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens.

    PubMed

    Lv, Jing; Wei, Liangmeng; Yang, Yan; Wang, Bingxiao; Liang, Wei; Gao, Yuwei; Xia, Xianzhu; Gao, Lili; Cai, Yumei; Hou, Peiqiang; Yang, Huili; Wang, Airong; Huang, Rong; Gao, Jing; Chai, Tongjie

    2015-04-18

    Cases of H9N2 avian influenza virus (AIV) in poultry are increasing throughout many Eurasian countries, and co-infections with other pathogens have resulted in high morbidity and mortality in poultry. Few studies have investigated the genetic factors of virus airborne transmission which determine the scope of this epidemic. In this study, we used specific-pathogen-free chickens housed in isolators to investigate the airborne transmissibility of five recombinant H9N2 AIV rescued by reverse genetic technology. The results show that airborne transmission of A/Chicken/Shandong/01/2008 (SD01) virus was related to the neuraminidase (NA) gene, and four amino acid mutations (D368E, S370L, E313K and G381D) within the head region of the SD01 NA, reduced virus replication in the respiratory tract of chickens, reduced virus NA activity, and resulted in a loss of airborne transmission ability in chickens. Similarly, reverse mutations of these four amino acids in the NA protein of r01/NASS virus, conferred an airborne transmission ability to the recombinant virus. We conclude that these four NA residues may be significant genetic markers for evaluating potential disease outbreak of H9N2 AIV, and propose that immediate attention should be paid to the airborne transmission of this virus.

  12. Update: Ongoing Zika Virus Transmission - Puerto Rico, November 1, 2015-April 14, 2016.

    PubMed

    Dirlikov, Emilio; Ryff, Kyle R; Torres-Aponte, Jomil; Thomas, Dana L; Perez-Padilla, Janice; Munoz-Jordan, Jorge; Caraballo, Elba V; Garcia, Myriam; Segarra, Marangely Olivero; Malave, Graciela; Simeone, Regina M; Shapiro-Mendoza, Carrie K; Reyes, Lourdes Romero; Alvarado-Ramy, Francisco; Harris, Angela F; Rivera, Aidsa; Major, Chelsea G; Mayshack, Marrielle; Alvarado, Luisa I; Lenhart, Audrey; Valencia-Prado, Miguel; Waterman, Steve; Sharp, Tyler M; Rivera-Garcia, Brenda

    2016-05-06

    Zika virus is a flavivirus transmitted primarily by Aedes species mosquitoes, and symptoms of infection can include rash, fever, arthralgia, and conjunctivitis (1).* Zika virus infection during pregnancy is a cause of microcephaly and other severe brain defects (2). Infection has also been associated with Guillain-Barré syndrome (3). In December 2015, Puerto Rico became the first U.S. jurisdiction to report local transmission of Zika virus, with the index patient reporting symptom onset on November 23, 2015 (4). This report provides an update to the epidemiology of and public health response to ongoing Zika virus transmission in Puerto Rico. During November 1, 2015-April 14, 2016, a total of 6,157 specimens from suspected Zika virus-infected patients were evaluated by the Puerto Rico Department of Health (PRDH) and CDC Dengue Branch (which is located in San Juan, Puerto Rico), and 683 (11%) had laboratory evidence of current or recent Zika virus infection by one or more tests: reverse transcription-polymerase chain reaction (RT-PCR) or immunoglobulin M (IgM) enzyme-linked immunosorbent assay (ELISA). Zika virus-infected patients resided in 50 (64%) of 78 municipalities in Puerto Rico. Median age was 34 years (range = 35 days-89 years). The most frequently reported signs and symptoms were rash (74%), myalgia (68%), headache (63%), fever (63%), and arthralgia (63%). There were 65 (10%) symptomatic pregnant women who tested positive by RT-PCR or IgM ELISA. A total of 17 (2%) patients required hospitalization, including 5 (1%) patients with suspected Guillain-Barré syndrome. One (<1%) patient died after developing severe thrombocytopenia. The public health response to the outbreak has included increased laboratory capacity to test for Zika virus infection (including blood donor screening), implementation of enhanced surveillance systems, and prevention activities focused on pregnant women. Vector control activities include indoor and outdoor residual spraying and

  13. Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models.

    PubMed

    Belser, Jessica A; Eckert, Alissa M; Tumpey, Terrence M; Maines, Taronna R

    2016-09-01

    Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Black fly involvement in the epidemic transmission of vesicular stomatitis New Jersey virus (Rhabdoviridae: Vesiculovirus).

    PubMed

    Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E

    2004-01-01

    The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.

  15. Factors That Influence the Transmission of West Nile Virus in Florida.

    PubMed

    Day, Jonathan F; Tabachnick, Walter J; Smartt, Chelsea T

    2015-09-01

    West Nile virus (WNV) was first detected in North America in New York City during the late summer of 1999 and was first detected in Florida in 2001. Although WNV has been responsible for widespread and extensive epidemics in human populations and epizootics in domestic animals and wildlife throughout North America, comparable epidemics have never materialized in Florida. Here, we review some of the reasons why WNV has yet to cause an extensive outbreak in Florida. The primary vector of mosquito-borne encephalitis virus in Florida is Culex nigripalpus Theobald. Rainfall, drought, and temperature are the primary factors that regulate annual populations of this species. Cx. nigripalpus is a competent vector of WNV, St. Louis encephalitis virus, and eastern equine encephalitis virus in Florida, and populations of this species can support focal amplification and transmission of these arboviruses. We propose that a combination of environmental factors influencing Cx. nigripalpus oviposition, blood-feeding behavior, and vector competence have limited WNV transmission in Florida to relatively small focal outbreaks and kept the state free of a major epidemic. Florida must remain vigilant to the danger from WNV, because a change in these environmental factors could easily result in a substantial WNV epidemic rivaling those seen elsewhere in the United States. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Using egg production data to quantify within-flock transmission of low pathogenic avian influenza virus in commercial layer chickens.

    PubMed

    Gonzales, J L; Elbers, A R W; van der Goot, J A; Bontje, D; Koch, G; de Wit, J J; Stegeman, J A

    2012-12-01

    Even though low pathogenic avian influenza viruses (LPAIv) affect the poultry industry of several countries in the world, information about their transmission characteristics in poultry is sparse. Outbreak reports of LPAIv in layer chickens have described drops in egg production that appear to be correlated with the virus transmission dynamics. The objective of this study was to use egg production data from LPAIv infected layer flocks to quantify the within-flock transmission parameters of the virus. Egg production data from two commercial layer chicken flocks which were infected with an H7N3 LPAIv were used for this study. In addition, an isolate of the H7N3 LPAIv causing these outbreaks was used in a transmission experiment. The field and experimental estimates showed that this is a virus with high transmission characteristics. Furthermore, with the field method, the day of introduction of the virus into the flock was estimated. The method here presented uses compartmental models that assume homogeneous mixing. This method is, therefore, best suited to study transmission in commercial flocks with a litter (floor-reared) housing system. It would also perform better, when used to study transmission retrospectively, after the outbreak has finished and there is egg production data from recovered chickens. This method cannot be used when a flock was affected with a LPAIv with low transmission characteristics (R(0)<2), since the drop in egg production would be low and likely to be confounded with the expected decrease in production due to aging of the flock. Because only two flocks were used for this analysis, this study is a preliminary basis for a proof of principle that transmission parameters of LPAIv infections in layer chicken flocks could be quantified using the egg production data from affected flocks. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry

    PubMed Central

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M.; Clark, Andrew

    2017-01-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus–naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry. PMID:29047426

  18. Feline immunodeficiency virus cross-species transmission: Implications for emergence of new lentiviral infections

    USGS Publications Warehouse

    Lee, Justin; Malmberg, Jennifer L.; Wood, Britta A.; Hladky, Sahaja; Troyer, Ryan; Roelke, Melody; Cunningham, Mark W.; McBride, Roy; Vickers, Winston; Boyce, Walter; Boydston, Erin E.; Serieys, Laurel E.K.; Riley, Seth P D; Crooks, Kevin R.; VandeWoude, Sue

    2016-01-01

    Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of HIV emergence following human exposures to SIV, understanding processes that promote successful cross-species lentiviral transmissions is highly relevant. We have previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats (Lynx rufus) and mountain lions (Puma concolor) in a small number of animals in California and Florida. In this study we investigate host-specific selection pressures, within-host viral fitness, and inter- vs. intra-species transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analysis of proviral and viral RNA levels demonstrates that PLVA fitness is severely restricted in mountain lions compared to bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but did not detect selection among twenty PLVA isolates from bobcats. These findings support that PLVA is a bobcat-adapted virus, which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals intraspecific PLVA transmission has occurred among panthers (Puma concolor coryi) in Florida following initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to emergence of HIV from nonhuman primates.IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which outcome will occur are complex, and the risk of new virus emergence is therefore difficult to predict. Here

  19. [West Nile virus transmission risk in the Czech Republic].

    PubMed

    Vlčková, J; Rupeš, V; Horáková, D; Kollárová, H; Holý, O

    2015-06-01

    West Nile Virus (WNV) belongs to the family Flaviviridae. It is transmitted to humans by mosquitoes, capable of sucking blood on birds and mammals, most often by mosquitoes of the genus Culex. In humans, the virus was first identified in 1937 in the West Nile region, Uganda, Africa. Later, the virus spread and caused more or less severe epidemics of West Nile fever in North Africa, Europe, Asia, and North and South America. During the last two decades, WNV has been on the rise and is currently ranked as one of the most prevalent arboviruses in the world. In humans, WNV infection mostly occurs as asymptomatic, but may have a more severe or even fatal course in older and weakened patients. Humans may become infected not only by mosquitoes that acquire the virus from infected birds, but also through a blood transfusion, organ transplant, breast milk and transplacental transmission, or contact with infected animals, their blood, and tissues. The first autochthonous human case of West Nile fever in the Czech Republic was reported from South Moravia in 1997. In 2013, another case of West Nile fever emerged in this country, in the Ostrava area. The issue of WNV has recently been studied from many different perspectives, as evidenced by many original and review papers. This article briefly reviews the essential knowledge about this virus and its spread.

  20. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs

    PubMed Central

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling

    2017-01-01

    ABSTRACT Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  1. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  2. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    PubMed

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  3. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    PubMed

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  4. The effect of vaccination with the PAV-250 strain classical swine fever (CSF) virus on the airborne transmission of CSF virus.

    PubMed

    Gonzalez, C; Pijoan, C; Ciprian, A; Correa, P; Mendoza, S

    2001-09-01

    The airborne transmission of Classical Swine Fever (CSF) virus to susceptible pigs, as well as the effect of vaccination with the CSF virus PAV-250 strain was investigated on this mode of transmission. Experiment I: four pigs were inoculated with the ALD CSFV strain (10(4.3) 50% TCID) by the intramuscular route, and at the onset of fever, they were introduced into an enclosed chamber. At the end of the experiment surviving pigs were sedated, anesthetized and euthanatized. Experiment II: four pigs were previously vaccinated with the CSF virus PAV-250 strain, and at 14 days post-vaccination they were challenged with the CSF virus ALD strain. In both experiments, four susceptible pigs were exposed to infectious aerosols by placing them in a chamber connected by a duct to the adjacent pen containing the infected animals and were kept there for 86 hs. In Experiment I, pigs exposed to contaminated air died as a result of infection with CSF virus on days 14, 21 and 28 post-inhalation. These four pigs seroconverted from day 12 post-inhalation. CSF virus was isolated from these animals, and the fluorescent antibody test on tonsils was positive. In Experiment II, a vaccinated pig exposed to contaminated air did not seroconvert, nor was CSF virus isolated from lymphoid tissues. However, mild fluorescence in tonsil sections from these pigs was observed. In conclusion, CSF virus was shown to be transmitted by air at a distance of 1 m to susceptible pigs. Vaccination with the PAV-250 CSF virus strain protected the pigs from clinical disease under the same conditions.

  5. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses.

    PubMed

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Baek, Yun Hee; Kwon, Hyeok-il; Park, Su-Jin; Choi, Eun Hye; Lim, Gyo-Jin; Lee, Ok-Jun; Kim, Si-Wook; Kim, Chul-Joong; Sung, Moon Hee; Kim, Myung Hee; Yoon, Sun-Woo; Govorkova, Elena A; Webby, Richard J; Webster, Robert G; Choi, Young-Ki

    2012-09-25

    Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.

  6. Transmission and molecular characterisation of wild measles virus in Romania, 2008 to 2012.

    PubMed

    Necula, G; Lazar, M; Stanescu, A; Pistol, A; Santibanez, S; Mankertz, A; Lupulescu, E

    2013-12-12

    Molecular characterisation of measles virus is a powerful tool for tracing transmission. Genotyping may prove the absence of endemic circulation of measles virus, i.e. transmission for more than 12 months, which is one of the criteria for verifying elimination of the disease. We have genetically characterised measles viruses detected in Romania from 2008 to 2012, focusing on the recent outbreaks from 2010 to 2012 that affected mainly groups with limited access to healthcare and schools. The findings emphasise the importance of genotyping during the different phases of an outbreak. A total of 8,170 cases were notified, and 5,093 (62%) of the 7,559 possible cases were serologically confirmed. RT-PCR was performed for 104 samples: from the 101 positive samples obtained from sporadic measles cases or clusters from different counties, 73 were genotyped. Sporadic measles cases associated with D4 and D5 viruses were observed from2008 to 2009. Genotype D4-Manchester was predominant in 2011 and 2012. In addition, the related variant D4-Maramures and MVs/Limoges.FRA/17.10[D4] and a few D4-Hamburg strains were detected. The detection of several distinct MV-D4 genotypes suggests multiple virus importations to Romania. The outbreak associated with D4 genotype is the second largest outbreak in Romania in less than 10 years.

  7. Transmission of Equine Influenza Virus during an Outbreak Is Characterized by Frequent Mixed Infections and Loose Transmission Bottlenecks

    PubMed Central

    Hughes, Joseph; Allen, Richard C.; Baguelin, Marc; Hampson, Katie; Baillie, Gregory J.; Elton, Debra; Newton, J. Richard; Kellam, Paul; Wood, James L. N.; Holmes, Edward C.; Murcia, Pablo R.

    2012-01-01

    The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics. PMID:23308065

  8. Experimental milk-borne transmission of Powassan virus in the goat.

    PubMed

    Woodall, J P; Roz, A

    1977-01-01

    A lactating goat with a 74-day-old kid was inoculated with 10(3) mouse 50% lethal dose (LD50) of Powassan virus. No ensuing viremia could be detected, but virus was secreted in the milk on postinoculation days 7 through 15, with a titer of 10(5) LD50/ml on day 12. Neutralizing antibody was found in the serum on days 22 through 36 and in the milk on day 36. The offspring was not inoculated but was allowed to continue feeding on its mother's milk. It developed neutralizing antibody by day 22. Since the kid was past the age when it could resorb antibody from the milk, its serum antibody was evidence of active infection. Neither animal showed any clinical sign of illness. A serum survey of 499 goats in New York State showed that 9 had neutralizing antibodies to Powassan virus. These immune goats came from widely scattered localities, including counties where human cases have been confirmed. The findings suggest the possibility of milk-borne transmission of Powassan virus from goat to man.

  9. Personal clothing as a potential vector of respiratory virus transmission in childcare settings.

    PubMed

    Gralton, Jan; McLaws, Mary-Louise; Rawlinson, William D

    2015-06-01

    Previous investigations of fomite transmission have focused on the presence of pathogens on inanimate objects in clinical settings. There has been limited investigation of fomite transmission in non-clinical pediatric settings where there is a high prevalence of respiratory virus infections. Over a 5 week period, this study investigated whether the personal clothing of teachers working in childcare centers was contaminated with viral RNA, and potentially could mediate virus transmission. Matched morning and evening clothing and nasal samples were collected for 313 teacher work days (TWDs). Human rhinoviruses (hRV) RNA were detected from samples using real-time PCR. Human rhinovirus RNA was detected in clothing samples on 16 TWDs and in nasal samples on 32 TWDs. There were no TWDs when teachers provided both positive nasal and clothing samples and only three TWDs when hRV persisted on clothing for the entire day. The detection of hRV RNA was significantly predicted by self-recognition of symptomatic illness by the teacher 2 days prior to detection. These findings suggest that teachers' personal clothing in childcare settings is unlikely to facilitate the transmission of hRV. © 2015 Wiley Periodicals, Inc.

  10. Mapping the Transmission Risk of Zika Virus using Machine Learning Models.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Ding, Fangyu; Fu, Jingying; Li, Meng

    2018-06-19

    Zika virus, which has been linked to severe congenital abnormalities, is exacerbating global public health problems with its rapid transnational expansion fueled by increased global travel and trade. Suitability mapping of the transmission risk of Zika virus is essential for drafting public health plans and disease control strategies, which are especially important in areas where medical resources are relatively scarce. Predicting the risk of Zika virus outbreak has been studied in recent years, but the published literature rarely includes multiple model comparisons or predictive uncertainty analysis. Here, three relatively popular machine learning models including backward propagation neural network (BPNN), gradient boosting machine (GBM) and random forest (RF) were adopted to map the probability of Zika epidemic outbreak at the global level, pairing high-dimensional multidisciplinary covariate layers with comprehensive location data on recorded Zika virus infection in humans. The results show that the predicted high-risk areas for Zika transmission are concentrated in four regions: Southeastern North America, Eastern South America, Central Africa and Eastern Asia. To evaluate the performance of machine learning models, the 50 modeling processes were conducted based on a training dataset. The BPNN model obtained the highest predictive accuracy with a 10-fold cross-validation area under the curve (AUC) of 0.966 [95% confidence interval (CI) 0.965-0.967], followed by the GBM model (10-fold cross-validation AUC = 0.964[0.963-0.965]) and the RF model (10-fold cross-validation AUC = 0.963[0.962-0.964]). Based on training samples, compared with the BPNN-based model, we find that significant differences (p = 0.0258* and p = 0.0001***, respectively) are observed for prediction accuracies achieved by the GBM and RF models. Importantly, the prediction uncertainty introduced by the selection of absence data was quantified and could provide more accurate

  11. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  12. Horizontal transmission of the Leningrad-3 live attenuated mumps vaccine virus.

    PubMed

    Atrasheuskaya, A V; Neverov, A A; Rubin, S; Ignatyev, G M

    2006-03-06

    Here we describe symptomatic transmission of the Leningrad-3 mumps vaccine virus from healthy vaccinees to previously vaccinated contacts. Throat swab and serum samples were taken from six symptomatic mumps cases and from 13 family contacts. Assessment of serum IgG and IgM anti-mumps virus antibodies and IgG avidity testing was performed using commercial test kits. Sera neutralizing antibodies were measured by plaque reduction neutralization assay using the L-3 vaccine mumps virus as the target. All six of the symptomatic mumps cases and three contact subjects tested positive for mumps by RT-PCR. The genomic sequences tested (F, SH and HN genes) of all nine of these samples were identical to the L-3 mumps vaccine strain. All 13 contacts were asymptomatic; however clear serological evidence of mumps infection was found in some of them. The likely epidemiological source of the transmitted L-3 mumps virus was children who were recently vaccinated at the schools attended by the six symptomatic mumps patients described here. The L-3 mumps vaccine virus can be shed and transmitted horizontally, even to subjects previously vaccinated with the same virus.

  13. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study.

    PubMed

    Faye, Ousmane; Boëlle, Pierre-Yves; Heleze, Emmanuel; Faye, Oumar; Loucoubar, Cheikh; Magassouba, N'Faly; Soropogui, Barré; Keita, Sakoba; Gakou, Tata; Bah, El Hadji Ibrahima; Koivogui, Lamine; Sall, Amadou Alpha; Cauchemez, Simon

    2015-03-01

    An epidemic of Ebola virus disease of unprecedented size continues in parts of west Africa. For the first time, large urban centres such as Conakry, the capital of Guinea, are affected. We did an observational study of patients with Ebola virus disease in three regions of Guinea, including Conakry, aiming to map the routes of transmission and assess the effect of interventions. Between Feb 10, 2014, and Aug 25, 2014, we obtained data from the linelist of all confirmed and probable cases in Guinea (as of Sept 16, 2014), a laboratory database of information about patients, and interviews with patients and their families and neighbours. With this information, we mapped chains of transmission, identified which setting infections most probably originated from (community, hospitals, or funerals), and computed the context-specific and overall reproduction numbers. Of 193 confirmed and probable cases of Ebola virus disease reported in Conakry, Boffa, and Télimélé, 152 (79%) were positioned in chains of transmission. Health-care workers contributed little to transmission. In March, 2014, individuals with Ebola virus disease who were not health-care workers infected a mean of 2·3 people (95% CI 1·6-3·2): 1·4 (0·9-2·2) in the community, 0·4 (0·1-0·9) in hospitals, and 0·5 (0·2-1·0) at funerals. After the implementation of infection control in April, the reproduction number in hospitals and at funerals reduced to lower than 0·1. In the community, the reproduction number dropped by 50% for patients that were admitted to hospital, but remained unchanged for those that were not. In March, hospital transmissions constituted 35% (seven of 20) of all transmissions and funeral transmissions constituted 15% (three); but from April to the end of the study period, they constituted only 9% (11 of 128) and 4% (five), respectively. 82% (119 of 145) of transmission occurred in the community and 72% (105) between family members. Our simulations show that a 10% increase in

  14. Mumps virus F gene and HN gene sequencing as a molecular tool to study mumps virus transmission.

    PubMed

    Gouma, Sigrid; Cremer, Jeroen; Parkkali, Saara; Veldhuijzen, Irene; van Binnendijk, Rob S; Koopmans, Marion P G

    2016-11-01

    Various mumps outbreaks have occurred in the Netherlands since 2004, particularly among persons who had received 2 doses of measles, mumps, and rubella (MMR) vaccination. Genomic typing of pathogens can be used to track outbreaks, but the established genotyping of mumps virus based on the small hydrophobic (SH) gene sequences did not provide sufficient resolution. Therefore, we expanded the sequencing to include fusion (F) gene and haemagglutinin-neuraminidase (HN) gene sequences in addition to the SH gene sequences from 109 mumps virus genotype G strains obtained between 2004 and mid 2015 in the Netherlands. When the molecular information from these 3 genes was combined, we were able to identify separate mumps virus clusters and track mumps virus transmission. The analyses suggested that multiple mumps virus introductions occurred in the Netherlands between 2004 and 2015 resulting in several mumps outbreaks throughout this period, whereas during some local outbreaks the molecular data pointed towards endemic circulation. Combined analysis of epidemiological data and sequence data collected in 2015 showed good support for the phylogenetic clustering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A virus responds instantly to the presence of the vector on the host and forms transmission morphs

    PubMed Central

    Martinière, Alexandre; Bak, Aurélie; Macia, Jean-Luc; Lautredou, Nicole; Gargani, Daniel; Doumayrou, Juliette; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto; Blanc, Stéphane; Drucker, Martin

    2013-01-01

    Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001 PMID:23358702

  16. Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015

    PubMed Central

    Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.

    2016-01-01

    ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research

  17. Exosomes Mediate Intercellular Transmission of Porcine Reproductive and Respiratory Syndrome Virus.

    PubMed

    Wang, Ting; Fang, Liurong; Zhao, Fuwei; Wang, Dang; Xiao, Shaobo

    2018-02-15

    Exosomes are small membrane-enclosed vesicles produced by various cells and actively released into the extracellular space. They participate in intercellular communication and transfer of biologically active proteins, lipids, and nucleic acids. Accumulating evidence suggests that exosomes derived from cells infected by some viruses selectively encapsulate viral proteins, genetic materials, or even virions to mediate cell-to-cell communication and/or virus transmission. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the global swine industry since the late 1980s. Recent studies have shown that major proteins secreted from PRRSV-infected cells are exosomal proteins and that the serum-derived exosomes from PRRSV-infected pigs contain viral proteins. However, the role of exosomes in PRRSV infection remains unclear. In this study, purified exosomes isolated from PRRSV-infected cells were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes from PRRSV-infected cells established productive infection in both PRRSV-susceptible and -nonsusceptible cells. More importantly, exosome-mediated infection was not completely blocked by PRRSV-specific neutralizing antibodies. In summary, this study demonstrated that exosomes can mediate PRRSV transmission and are even resistant to antibody neutralization, identifying a potential immune evasion mechanism utilized by PRRSV. IMPORTANCE Exosomes have recently been characterized as bioactive vesicles that function to promote intercellular communication. The exosomes from virally infected cells containing altered compositions confer numerous novel functionalities. A study of the secretome of cells infected with PRRSV indicated that the exosomal pathway is strongly activated by PRRSV infection. Here, we demonstrate that PRRSV can utilize host exosomes to infect naive healthy cells. Furthermore

  18. Increased Relative Risk of Tick-Borne Encephalitis in Warmer Weather.

    PubMed

    Daniel, Milan; Danielová, Vlasta; Fialová, Alena; Malý, Marek; Kříž, Bohumír; Nuttall, Patricia A

    2018-01-01

    Tick-borne encephalitis (TBE) is a serious acute neuroinfection of humans caused by a tick-borne flavivirus. The disease is typically seasonal, linked to the host-seeking activity of Ixodes ricinus (predominantly nymphs), the principal European tick vector species. To address the need for accurate risk predictions of contracting TBE, data on 4,044 TBE cases reported in the Czech Republic during 2001-2006 were compared with questing activity of I. ricinus nymphs monitored weekly at a defined location for the same 6-year period. A time shift of 21 days between infected tick bite and recorded disease onset provided the optimal model for comparing the number of cases of TBE with numbers of questing nymphs. Mean annual distribution of TBE cases and tick counts showed a similar bimodal distribution. Significantly, the ratio of TBE cases to questing nymphs was highest in the summer-autumn period even though the number of questing nymphs peaked in the spring-summer period. However, this pattern changed during a period of extreme meteorological events of flooding and abnormally high temperatures, indicating that changes in climate affect the incidence of TBE. Previous studies failed to link human behavior with changes in incidence of TBE but showed extrinsic temperature impacts arbovirus replication. Hence, we hypothesize the apparent discrepancy between peak nymphal tick activity and greatest risk of contracting TBE is due to the effect of temperature on virus replication in the tick vector. Relative proportions of questing nymphs and the numbers of weeks in which they were found were greater in summer-autumn compared with spring-summer at near-ground temperatures >5°C and at standard day and weekly average temperatures of >15°C. Thus, during the summer-autumn period, the virus dose in infected tick bites is likely greater owing to increased virus replication at higher microclimatic temperatures, consequently increasing the relative risk of contracting TBE per summer

  19. The complex relationship between weather and dengue virus transmission in Thailand.

    PubMed

    Campbell, Karen M; Lin, C D; Iamsirithaworn, Sopon; Scott, Thomas W

    2013-12-01

    Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively.

  20. Potential for Zika virus introduction and transmission in resource limited countries in Africa and Asia-Pacific: A modeling study

    PubMed Central

    German, Matthew; Creatore, Maria I.; Brent, Shannon; Watts, Alexander G.; Hay, Simon I.; Kulkarni, Manisha A.; Brownstein, John S.; Khan, Kamran

    2016-01-01

    Summary Background As the epidemic of Zika virus expands in the Americas, countries across Africa and the Asia-Pacific region are becoming increasingly susceptible to the importation and possible local spread of the virus. To support public health readiness, we aim to identify regions and times where the potential health, economic, and social effects from Zika virus are greatest, focusing on resource-limited countries in Africa and the Asia-Pacific region. Methods Our model combined transportation network analysis, ecological modelling of mosquito occurrences, and vector competence for flavivirus transmission, using data from the International Air Transport Association, entomological observations from Zika’s primary vector species, and climate conditions using WorldClim. We overlaid monthly flows of airline travellers arriving to Africa and the Asia-Pacific region from areas of the Americas suitable for year-round transmission of Zika virus with monthly maps of climatic suitability for mosquito-borne transmission of Zika virus within Africa and the Asia-Pacific region. Findings An estimated 2·6 billion people live in areas of Africa and the Asia-Pacific region where the presence of competent mosquito vectors and suitable climatic conditions could support local transmission of Zika virus. Countries with large volumes of travellers arriving from Zika affected areas of the Americas and large populations at risk of mosquito-borne Zika virus infection include, India (67 422 travellers arriving per year; 1·2 billion residents in potential Zika transmission areas), China (238 415 travellers; 242 million residents), Indonesia (13 865 travellers; 197 million residents), Philippines (35 635 travellers; 70 million residents), and Thailand (29 241 travellers; 59 million residents). Interpretation Many countries across Africa and the Asia-Pacific region are vulnerable to Zika virus. Strategic use of available health and human resources is essential to prevent or mitigate

  1. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    PubMed

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  2. Viral Determinants and Vector Competence of Zika Virus Transmission.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod; Ooi, Man K; Chew, Miaw-Fang

    2018-01-01

    Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus . The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus , have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies.

  3. Viral Determinants and Vector Competence of Zika Virus Transmission

    PubMed Central

    Tham, Hong-Wai; Balasubramaniam, Vinod; Ooi, Man K.; Chew, Miaw-Fang

    2018-01-01

    Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies. PMID:29875751

  4. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Integrated prevention of mother-to-child transmission for human immunodeficiency virus, syphilis and hepatitis B virus in China.

    PubMed

    Wang, Ai-Ling; Qiao, Ya-Ping; Wang, Lin-Hong; Fang, Li-Wen; Wang, Fang; Jin, Xi; Qiu, Jie; Wang, Xiao-Yan; Wang, Qian; Wu, Jiu-Ling; Vermund, Sten H; Song, Li

    2015-01-01

    China continues to face challenges in eliminating mother-to-child transmission of human immunodeficiency virus (HIV), syphilis and hepatitis B virus (HBV). In 2010, a programme that integrated and standardized prevention of mother-to-child transmission (PMTCT) efforts for HIV, syphilis and HBV was implemented in 1156 counties. At participating antenatal care clinics, pregnant women were offered all three tests concurrently and free of charge. Further interventions such as free treatment, prophylaxis and testing for mothers and their children were provided for HIV and syphilis. China's national PMTCT HIV programme started in 2003, at which time there were no national programmes for perinatal syphilis and HBV. In 2009, the rate of maternal-to-child transmission of HIV was 8.1% (57/702). Reported congenital syphilis was 60.8 per 100,000 live births. HBV infection was 7.2% of the overall population infected. Between 2010 and 2013 the number of pregnant women attending antenatal care clinics with integrated PMTCT services increased from 5.5 million to 13.1 million. In 2013, 12.7 million pregnant women were tested for HIV, 12.6 million for syphilis and 12.7 million for HBV. Mother-to-child transmission of HIV fell to 6.7% in 2013. Data on syphilis transmission are not yet available. Integrated PMTCT services proved to be feasible and effective, and they are now part of the routine maternal and child health services provided to infected women. The services are provided through a collaboration between maternal and child health clinics, the national and local Centers for Disease Control and Prevention, and general hospitals.

  6. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    PubMed Central

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  7. Prevention of human immunodeficiency virus-1 transmission to the infant through breastfeeding: new developments.

    PubMed

    Kourtis, Athena P; Jamieson, Denise J; de Vincenzi, Isabelle; Taylor, Allan; Thigpen, Michael C; Dao, Halima; Farley, Timothy; Fowler, Mary Glenn

    2007-09-01

    Breastfeeding accounts for up to half of all infant human immunodeficiency virus (HIV) infections worldwide and carries an estimated transmission risk of about 15% when continued into the second year of life. Because replacement feeding is not safely available, culturally acceptable, or affordable in many parts of the world and because breastfeeding provides protection against other causes of infant mortality, approaches that reduce breastfeeding mother-to child transmission of HIV are being explored. These include exclusive breastfeeding for the infant's first few months of life followed by rapid weaning, treatments of expressed milk to inactivate the virus, and antiretroviral prophylaxis taken by the infant or mother during breastfeeding, which are strategies currently being tested in clinical trials. Passive (antibodies) and active (vaccine) immunoprophylaxis will also soon begin to be tested. This paper focuses on current and planned research on strategies to prevent breastfeeding transmission of HIV.

  8. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    NASA Astrophysics Data System (ADS)

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  9. Elimination of Ebola Virus Transmission in Liberia - September 3, 2015.

    PubMed

    Bawo, Luke; Fallah, Mosoka; Kateh, Francis; Nagbe, Thomas; Clement, Peter; Gasasira, Alex; Mahmoud, Nuha; Musa, Emmanuel; Lo, Terrence Q; Pillai, Satish K; Seeman, Sara; Sunshine, Brittany J; Weidle, Paul J; Nyensweh, Tolbert

    2015-09-11

    Following 42 days since the last Ebola virus disease (Ebola) patient was discharged from a Liberian Ebola treatment unit (ETU), September 3, 2015, marks the second time in a 4-month period that the World Health Organization (WHO) has declared Liberia free of Ebola virus transmission (1). The first confirmed Ebola cases in West Africa were identified in southeastern Guinea on March 23, 2014, and within 1 week, cases were identified and confirmed in Liberia (1). Since then, Liberia has reported 5,036 confirmed and probable Ebola cases and 4,808 Ebola-related deaths. The epidemic in Liberia peaked in late summer and early fall of 2014, when more than 200 confirmed and probable cases were reported each week .

  10. Experimental transmission of Crimean-Congo hemorrhagic fever virus by west African wild ground-feeding birds to Hyalomma marginatum rufipes ticks.

    PubMed

    Zeller, H G; Cornet, J P; Camicas, J L

    1994-06-01

    Hyalomma (H.) marginatum rufipes ticks commonly infest birds and are potential vectors of Crimean-Congo hemorrhagic fever (CCHF) virus in west Africa. An experimental model for investigating the role of birds in the CCHF virus transmission cycle was developed. Following CCHF virus inoculation, antibodies were detected by enzyme-linked immunosorbent assay in one red-beaked hornbill and one glossy starling, but not in two laughing doves and six domestic chickens. None of the birds showed a detectable viremia. Hyalomma marginatum rufipes larvae were placed on three red-beaked hornbills and one glossy starling. These birds were then inoculated with CCHF virus (10(1.5) 50% mouse intracerebral lethal doses). Virus transmission to larvae or nymphs was obtained and seroconversions in birds were recorded. Virus was also detected in 90% of the individually tested nymphs, as well as in adults. The virus was then successfully transmitted by adult ticks to rabbits and the engorged females were allowed to oviposit. Progeny larvae were placed on another group of birds and one of three birds showed seroconversion. The cycle of transmission of virus between ticks and aviremic ground-feeding birds represent a potential reservoir and amplification mechanism of CCHF virus in west Africa.

  11. Co-housing of Rift Valley Fever Virus Infected Lambs with Immunocompetent or Immunosuppressed Lambs Does Not Result in Virus Transmission

    PubMed Central

    Wichgers Schreur, Paul J.; van Keulen, Lucien; Kant, Jet; Oreshkova, Nadia; Moormann, Rob J. M.; Kortekaas, Jeroen

    2016-01-01

    Rift Valley fever virus (RVFV) is transmitted among susceptible animals by mosquito vectors. Although the virus can be isolated from nasal and oral swabs of infected animals and is known to be highly infectious when administered experimentally via oral or respiratory route, horizontal transmission of the virus is only sporadically reported in literature. We considered that immunosuppression resulting from stressful conditions in the field may increase the susceptibility to horizontally transmitted RVFV. Additionally, we reasoned that horizontal transmission may induce immune responses that could affect the susceptibility of contact-exposed animals to subsequent infection via mosquito vectors. To address these two hypotheses, viremic lambs were brought into contact with sentinel lambs. One group of sentinel lambs was treated with the immunosuppressive synthetic glucocorticosteroid dexamethasone and monitored for signs of disease and presence of virus in the blood and target organs. Another group of contact-exposed sentinel lambs remained untreated for three weeks and was subsequently challenged with RVFV. We found that none of the dexamethasone-treated contact-exposed lambs developed detectable viremia, antibody responses or significant increases in cytokine mRNA levels. Susceptibility of immunocompetent lambs to RVFV infection was not influenced by previous contact-exposure. Our results are discussed in light of previous findings. PMID:27014211

  12. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    PubMed

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  13. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs.

    PubMed

    Nolting, J M; Midla, J; Whittington, M S; Scheer, S D; Bowman, A S

    2018-02-01

    Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health. © 2017 Blackwell Verlag GmbH.

  14. Resource Manual for Handling Body Fluids in the School Setting To Prevent the Transmission of Human Immunodeficiency Virus and Hepatitis B Virus.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Health and Mental Hygiene, Baltimore.

    Guidelines to prevent the transmission of blood-borne diseases, especially those caused by the Human Immunodeficiency Virus (HIV) and the Hepatitis B Virus (HBV), in the school setting are provided in this resource manual for school staff. Sections include information on the reasons for the development of this manual; a summary of the means of HIV…

  15. [HIV-1 virus transmission through maternal milk].

    PubMed

    Avila, M M; Gazpio, M; Liberatore, D; Casanueva, E; Camarieri, G; Libonatti, O; Martínez Peralta, L

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) may be vertically transmitted during the pre, peri or postpartum period. Postnatal transmission as well as an increased risk of vertical transmission with breastfeeding has been shown for HIV-1 in several reports. Breastfeeding was here analyzed as a risk of HIV-1 transmission in a group of infants born to HIV-1 infected mothers. Among the 215 children studied in our population a significant difference was detected between those who were breastfed vs those who were bottle fed and finally became infected (p < 0.000000, R.R. = 4.29). We also report the case of a postnatal infection in a baby born to an HIV-1 seropositive father and a seronegative mother. Due to the risk of infection of the mother she had been thoroughly controlled when pregnant and after delivery. Mother and child were negative when retested at delivery, and at 10 months post-partum. At the age of 32 months the child attended the outpatient clinic with generalized lymphadenopathy and right parotitis. HIV-1 infection was then confirmed in both mother and child. At that time it was discovered that the baby had been breastfed up to the age of 24 months. This is the first reported child in Argentina whose infection may undoubtedly be attributed to breastfeeding.

  16. Resource Manual for Handling Body Fluids in the School Setting To Prevent Transmission of Human Immunodeficiency Virus and Hepatitis B Virus. Revised Edition.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Health and Mental Hygiene, Baltimore.

    This Maryland resource manual provides local education agencies with guidelines on how to handle body fluids to prevent the transmission of diseases, especially Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV), in the school setting. The first section summarizes the reasons for development of the manual. The second section summarizes…

  17. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of porcine epidemic diarrhea virus (PEDV) following inoculation of 4 week-old feeder pigs

    USDA-ARS?s Scientific Manuscript database

    Porcine epidemic diarrhea virus (PEDV) emerged in the U.S. in April 2013 and caused significant losses to the swine industry. The purpose of this investigation was to determine tissue localization, shedding patterns, virus carriage, antibody response, and aerosol transmission of PEDV following inocu...

  18. Compartmentalization and Transmission of Multiple Epstein-Barr Virus Strains in Asymptomatic Carriers

    PubMed Central

    Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy

    2003-01-01

    Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought. PMID:12525618

  19. Compartmentalization and transmission of multiple epstein-barr virus strains in asymptomatic carriers.

    PubMed

    Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy

    2003-02-01

    Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought.

  20. Implication of the Whitefly Bemisia tabaci Cyclophilin B Protein in the Transmission of Tomato yellow leaf curl virus

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Tomato yellow leaf curl virus (TYLCV) is a single-stranded (ssDNA) begomoviruses that causes severe damage to tomato and several other crops worldwide. TYLCV is exclusively transmitted by the sweetpotato whitefly, Bemisia tabaci in a persistent circulative and propagative manner. Previous studies have shown that the transmission, retention, and circulation of TYLCV in its vector involves interaction with insect and endosymbiont proteins, which aid in the transmission of the virus, or have a protective role in response to the presence of the virus in the insect body. However, only a low number of such proteins have been identified. Here, the role of B. tabaci Cyclophilin B (CypB) in the transmission of TYLCV protein was investigated. Cyclophilins are a large family of cellular prolyl isomerases that have many molecular roles including facilitating protein-protein interactions in the cell. One cyclophilin protein has been implicated in aphid-luteovirus interactions. We demonstrate that the expression of CypB from B. tabaci is altered upon TYLCV acquisition and retention. Further experiments used immunocapture-PCR and co-immunolocalization and demonstrated a specific interaction and colocalization between CypB and TYLCV in the the midgut, eggs, and salivary glands. Membrane feeding of anti-CypB antibodies and TYLCV-infected plants showed a decrease in TYLCV transmission, suggesting a critical role that CypB plays in TYLCV transmission. Further experiments, which used membrane feeding with the CypB inhibitor Cyclosporin A showed decrease in CypB-TYLCV colocalization in the midgut and virus transmission. Altogether, our results indicate that CypB plays an important role in TYLCV transmission by B. tabaci. PMID:27895657

  1. Implication of the Whitefly Bemisia tabaci Cyclophilin B Protein in the Transmission of Tomato yellow leaf curl virus.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Tomato yellow leaf curl virus (TYLCV) is a single-stranded (ssDNA) begomoviruses that causes severe damage to tomato and several other crops worldwide. TYLCV is exclusively transmitted by the sweetpotato whitefly, Bemisia tabaci in a persistent circulative and propagative manner. Previous studies have shown that the transmission, retention, and circulation of TYLCV in its vector involves interaction with insect and endosymbiont proteins, which aid in the transmission of the virus, or have a protective role in response to the presence of the virus in the insect body. However, only a low number of such proteins have been identified. Here, the role of B. tabaci Cyclophilin B (CypB) in the transmission of TYLCV protein was investigated. Cyclophilins are a large family of cellular prolyl isomerases that have many molecular roles including facilitating protein-protein interactions in the cell. One cyclophilin protein has been implicated in aphid-luteovirus interactions. We demonstrate that the expression of CypB from B. tabaci is altered upon TYLCV acquisition and retention. Further experiments used immunocapture-PCR and co-immunolocalization and demonstrated a specific interaction and colocalization between CypB and TYLCV in the the midgut, eggs, and salivary glands. Membrane feeding of anti-CypB antibodies and TYLCV-infected plants showed a decrease in TYLCV transmission, suggesting a critical role that CypB plays in TYLCV transmission. Further experiments, which used membrane feeding with the CypB inhibitor Cyclosporin A showed decrease in CypB-TYLCV colocalization in the midgut and virus transmission. Altogether, our results indicate that CypB plays an important role in TYLCV transmission by B. tabaci .

  2. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.

    PubMed

    Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R; Smith, Thomas J

    2017-10-01

    Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus , is transmitted in nature via zoospores of the fungus Olpidium bornovanus While a number of plant viruses are transmitted via insect vectors

  3. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission

    PubMed Central

    Sherman, Michael B.; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R.

    2017-01-01

    ABSTRACT Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus. As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus, is transmitted in nature via zoospores of the fungus Olpidium bornovanus. While a number of plant viruses are transmitted via insect

  4. Plant viruses in aqueous environment - survival, water mediated transmission and detection.

    PubMed

    Mehle, Nataša; Ravnikar, Maja

    2012-10-15

    The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas. The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window.

    PubMed

    James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K; Barclay, Wendy S; Shelton, Holly

    2016-10-01

    Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness - infectivity, spread and pathogenesis - is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field.

  6. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model

    PubMed Central

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  7. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission.

    PubMed Central

    van't Wout, A B; Kootstra, N A; Mulder-Kampinga, G A; Albrecht-van Lent, N; Scherpbier, H J; Veenstra, J; Boer, K; Coutinho, R A; Miedema, F; Schuitemaker, H

    1994-01-01

    Macrophage-tropic, non-syncytium-inducing, HIV-1 variants predominate in the asymptomatic phase of infection and may be responsible for establishing infection in an individual exposed to the mixture of HIV-1 variants. Here, genotypical and phenotypical characteristics of virus populations, present in sexual, parenteral, or vertical donor-recipient pairs, were studied. Sequence analysis of the V3 domain confirmed the presence of a homogeneous virus population in recently infected individuals. Biological HIV-1 clones were further characterized for syncytium inducing capacity on the MT2 cell line and for macrophage tropism as defined by the appearance of proviral DNA upon inoculation of monocyte-derived macrophages. Both sexual and parenteral transmission cases revealed a selective outgrowth in the recipient of the most macrophage-tropic variant(s) present in the donor. In three out of five vertical transmission cases, more than one highly macrophage-tropic virus variant was present in the child shortly after birth, suggestive of transmission of multiple variants. In three primary infection cases, homogeneous virus populations of macrophage-tropic, non-syncytium-inducing variants were present prior to seroconversion, thus excluding humoral immunity as the selective pressure in favour of macrophage-tropic variants. These observations may have important implications for vaccine development. PMID:7962552

  8. Non-Simian Foamy Viruses: Molecular Virology, Tropism and Prevalence and Zoonotic/Interspecies Transmission

    PubMed Central

    Kehl, Timo; Tan, Juan; Materniak, Magdalena

    2013-01-01

    Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology. PMID:24064793

  9. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease.

    PubMed

    Torres, J M; Ramírez, M A; Morales, M; Bárcena, J; Vázquez, B; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2000-09-15

    We have recently developed a transmissible vaccine to immunize rabbits against myxomatosis and rabbit haemorrhagic disease based on a recombinant myxoma virus (MV) expressing the rabbit haemorrhagic disease virus (RHDV) capsid protein [Bárcena et al. Horizontal transmissible protection against myxomatosis and rabbit haemorragic disease using a recombinant myxoma virus. J. Virol. 2000;74:1114-23]. Administration of the recombinant virus protects rabbits against lethal RHDV and MV challenges. Furthermore, the recombinant virus is capable of horizontal spreading promoting protection of contact animals, thus providing the opportunity to immunize wild rabbit populations. However, potential risks must be extensively evaluated before considering its field use. In this study several safety issues concerning the proposed vaccine have been evaluated under laboratory conditions. Results indicated that vaccine administration is safe even at a 100-fold overdose. No undesirable effects were detected upon administration to immunosuppressed or pregnant rabbits. The recombinant virus maintained its attenuated phenotype after 10 passages in vivo.

  10. Transmission dynamics and changing epidemiology of West Nile virus.

    PubMed

    Blitvich, Bradley J

    2008-06-01

    West Nile virus (WNV) is a flavivirus that is maintained in a bird-mosquito transmission cycle. Humans, horses and other non-avian vertebrates are usually incidental hosts, but evidence is accumulating that this might not always be the case. Historically, WNV has been associated with asymptomatic infections and sporadic disease outbreaks in humans and horses in Africa, Europe, Asia and Australia. However, since 1994, the virus has caused frequent outbreaks of severe neuroinvasive disease in humans and horses in Europe and the Mediterranean Basin. In 1999, WNV underwent a dramatic expansion of its geographic range, and was reported for the first time in the Western Hemisphere during an outbreak of human and equine encephalitis in New York City. The outbreak was accompanied by extensive and unprecedented avian mortality. Since then, WNV has dispersed across the Western Hemisphere and is now found throughout the USA, Canada, Mexico and the Caribbean, and parts of Central and South America. WNV has been responsible for >27,000 human cases, >25,000 equine cases and hundreds of thousands of avian deaths in the USA but, surprisingly, there have been only sparse reports of WNV disease in vertebrates in the Caribbean and Latin America. This review summarizes our current understanding of WNV with particular emphasis on its transmission dynamics and changing epidemiology.

  11. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors*

    PubMed Central

    Pinheiro, Patricia V.; Ghanim, Murad; Rebelo, Ana Rita; Santos, Rogerio S.; Orsburn, Benjamin C.; Gray, Stewart

    2017-01-01

    The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. PMID:27932519

  12. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  13. Vertical and venereal transmission of Chandipura virus (Rhabdoviridae) by Aedes aegypti (Diptera: Culicidae).

    PubMed

    Mavale, M S; Geevarghese, G; Ghodke, Y S; Fulmali, P V; Singh, Anand; Mishra, A C

    2005-09-01

    Experiments in the laboratory documented vertical and venereal transmission of Chandipura virus (CHPV) in Aedes aegypti (L.). The minimum filial infection rate among the progeny of infected females was 1.2%; the rate among male and female progeny was 0.9 and 1.4%, respectively. The venereal infection rate of CHPV among inseminated females was 32.7%. Our study indicates the possible occurrence of vertical and venereal transmission of CHPV in insect vectors.

  14. Guillain-Barré Syndrome During Ongoing Zika Virus Transmission - Puerto Rico, January 1-July 31, 2016.

    PubMed

    Dirlikov, Emilio; Major, Chelsea G; Mayshack, Marrielle; Medina, Nicole; Matos, Desiree; Ryff, Kyle R; Torres-Aponte, Jomil; Alkis, Rebecca; Munoz-Jordan, Jorge; Colon-Sanchez, Candimar; Salinas, Jorge L; Pastula, Daniel M; Garcia, Myriam; Segarra, Marangely Olivero; Malave, Graciela; Thomas, Dana L; Rodríguez-Vega, Gloria M; Luciano, Carlos A; Sejvar, James; Sharp, Tyler M; Rivera-Garcia, Brenda

    2016-09-02

    Guillain-Barré syndrome (GBS) is a postinfectious autoimmune disorder characterized by bilateral flaccid limb weakness attributable to peripheral nerve damage (1). Increased GBS incidence has been reported in countries with local transmission of Zika virus, a flavivirus transmitted primarily by certain Aedes species mosquitoes (2). In Puerto Rico, three arthropod-borne viruses (arboviruses) are currently circulating: Zika, dengue, and chikungunya. The first locally acquired Zika virus infection in Puerto Rico was reported in December 2015 (3). In February 2016, the Puerto Rico Department of Health (PRDH), with assistance from CDC, implemented the GBS Passive Surveillance System (GBPSS) to identify new cases of suspected GBS (4). Fifty-six suspected cases of GBS with onset of neurologic signs during January 1-July 31, 2016, were identified. Thirty-four (61%) patients had evidence of Zika virus or flavivirus infection; the median age of these patients was 55 years (range = 21-88 years), and 20 (59%) patients were female. These 34 patients were residents of seven of eight PRDH public health regions. All 34 patients were hospitalized and treated with intravenous immunoglobulin G (IVIg), the standard treatment for GBS; 21 (62%) required intensive care unit admission, including 12 (35%) who required endotracheal intubation and mechanical ventilation. One patient died of septic shock after treatment for GBS. Additionally, 26 cases of neurologic conditions other than GBS were reported through GBPSS, including seven (27%) in patients with evidence of Zika virus or flavivirus infection. Residents of and travelers to Puerto Rico and countries with active Zika virus transmission should follow recommendations for prevention of Zika virus infections.* Persons with signs or symptoms consistent with GBS should promptly seek medical attention. Health care providers in areas with ongoing local transmission seeing patients with neurologic illnesses should consider GBS and report

  15. Vertical transmission of honey bee viruses in a Belgian queen breeding program.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C

    2015-03-14

    The Member States of European Union are encouraged to improve the general conditions for the production and marketing of apicultural products. In Belgium, programmes on the restocking of honey bee hives have run for many years. Overall, the success ratio of this queen breeding programme has been only around 50%. To tackle this low efficacy, we organized sanitary controls of the breeding queens in 2012 and 2014. We found a high quantity of viruses, with more than 75% of the egg samples being infected with at least one virus. The most abundant viruses were Deformed Wing Virus and Sacbrood Virus (≥40%), although Lake Sinai Virus and Acute Bee Paralysis Virus were also occasionally detected (between 10-30%). In addition, Aphid Lethal Paralysis Virus strain Brookings, Black Queen Cell Virus, Chronic Bee Paralysis Virus and Varroa destructor Macula-like Virus occurred at very low prevalences (≤5%). Remarkably, we found Apis mellifera carnica bees to be less infected with Deformed Wing Virus than Buckfast bees (p < 0.01), and also found them to have a lower average total number of infecting viruses (p < 0.001). This is a significant finding, given that Deformed Wing Virus has earlier been shown to be a contributory factor to winter mortality and Colony Collapse Disorder. Moreover, negative-strand detection of Sacbrood Virus in eggs was demonstrated for the first time. High pathogen loads were observed in this sanitary control program. We documented for the first time vertical transmission of some viruses, as well as significant differences between two honey bee races in being affected by Deformed Wing Virus. Nevertheless, we could not demonstrate a correlation between the presence of viruses and queen breeding efficacies.

  16. Swine-to-Human Transmission of Influenza A(H3N2) Virus at Agricultural Fairs, Ohio, USA, 2012

    PubMed Central

    Nelson, Sarah W.; Page, Shannon L.; Nolting, Jacqueline M.; Killian, Mary L.; Sreevatsan, Srinand; Slemons, Richard D.

    2014-01-01

    Agricultural fairs provide an opportunity for bidirectional transmission of influenza A viruses. We sought to determine influenza A virus activity among swine at fairs in the United States. As part of an ongoing active influenza A virus surveillance project, nasal swab samples were collected from exhibition swine at 40 selected Ohio agricultural fairs during 2012. Influenza A(H3N2) virus was isolated from swine at 10 of the fairs. According to a concurrent public health investigation, 7 of the 10 fairs were epidemiologically linked to confirmed human infections with influenza A(H3N2) variant virus. Comparison of genome sequences of the subtype H3N2 isolates recovered from humans and swine from each fair revealed nucleotide identities of >99.7%, confirming zoonotic transmission between swine and humans. All influenza A(H3N2) viruses isolated in this study, regardless of host species or fair, were >99.5% identical, indicating that 1 virus strain was widely circulating among exhibition swine in Ohio during 2012. PMID:25148572

  17. Assessment of oral transmission using cell-free human immunodeficiency virus-1 in mice reconstituted with human peripheral blood leucocyte

    PubMed Central

    Nakao, Ryoma; Hanada, Nobuhiro; Asano, Toshihiko; Hara, Takashi; Abdus Salam, MD; Matin, Khairul; Shimazu, Yoshihito; Nakasone, Tadashi; Horibata, Shigeo; Aoba, Takaaki; Honda, Mitsuo; Amagasa, Teruo; Senpuku, Hidenobu

    2003-01-01

    Oral–genital contact is one of the risk factors for the transmission of human immunodeficiency virus (HIV) in adults. In recent reports, oral exposure to simian immunodeficiency virus (SIV) was found to have important implications for the achievement of mucosal transmission of HIV in a rhesus monkey animal model. In the present study, we aimed first to establish a small animal model which did not develop tonsils suitable for HIV oral mucosa transmission, using non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and NOD/SCID B2mnull mice grafted with human peripheral blood leucocytes (hu-PBL) and stimulated with interleukin (IL)-4, and second to investigate whether oral exposure to cell-free R5 and X4 HIV-1 could lead to oral transmission of HIV through intact or traumatized mucosal tissues in humanized mice. Both low and high concentrations of cell-free R5 and X4 viruses failed to cause oral transmission with or without trauma in hu-PBL-NOD/SCID and NOD/SCID Β2mnull mice, which presented a number of CD4+ cells in gingival tissues and oral cavities with or without tissue injury. The present results show that IL-4-administrated NOD/SCID B2mnull mice are useful as a small-humanized model for the study of HIV oral infection, which may help to define the window of opportunity for oral transmission by the HIV virus in animal model experiments. PMID:12757623

  18. The Complex Relationship between Weather and Dengue Virus Transmission in Thailand

    PubMed Central

    Campbell, Karen M.; Lin, C. D.; Iamsirithaworn, Sopon; Scott, Thomas W.

    2013-01-01

    Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983–2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission “weather-space,” basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27–29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively. PMID:23958906

  19. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    PubMed

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Transmission of Human Respiratory Syncytial Virus in the Immunocompromised Ferret Model

    PubMed Central

    de Waal, Leon; Smits, Saskia L.; Veldhuis Kroeze, Edwin J. B.; van Amerongen, Geert; Pohl, Marie O.; Osterhaus, Albert D. M. E.; Stittelaar, Koert J.

    2018-01-01

    Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV. PMID:29301313

  1. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    PubMed

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  2. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice.

    PubMed

    Belser, Jessica A; Gustin, Kortney M; Pearce, Melissa B; Maines, Taronna R; Zeng, Hui; Pappas, Claudia; Sun, Xiangjie; Carney, Paul J; Villanueva, Julie M; Stevens, James; Katz, Jacqueline M; Tumpey, Terrence M

    2013-09-26

    On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.

  3. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study.

    PubMed

    Bogoch, Isaac I; Brady, Oliver J; Kraemer, Moritz U G; German, Matthew; Creatore, Maria I; Brent, Shannon; Watts, Alexander G; Hay, Simon I; Kulkarni, Manisha A; Brownstein, John S; Khan, Kamran

    2016-11-01

    As the epidemic of Zika virus expands in the Americas, countries across Africa and the Asia-Pacific region are becoming increasingly susceptible to the importation and possible local spread of the virus. To support public health readiness, we aim to identify regions and times where the potential health, economic, and social effects from Zika virus are greatest, focusing on resource-limited countries in Africa and the Asia-Pacific region. Our model combined transportation network analysis, ecological modelling of mosquito occurrences, and vector competence for flavivirus transmission, using data from the International Air Transport Association, entomological observations from Zika's primary vector species, and climate conditions using WorldClim. We overlaid monthly flows of airline travellers arriving to Africa and the Asia-Pacific region from areas of the Americas suitable for year-round transmission of Zika virus with monthly maps of climatic suitability for mosquito-borne transmission of Zika virus within Africa and the Asia-Pacific region. An estimated 2·6 billion people live in areas of Africa and the Asia-Pacific region where the presence of competent mosquito vectors and suitable climatic conditions could support local transmission of Zika virus. Countries with large volumes of travellers arriving from Zika virus-affected areas of the Americas and large populations at risk of mosquito-borne Zika virus infection include India (67 422 travellers arriving per year; 1·2 billion residents in potential Zika transmission areas), China (238 415 travellers; 242 million residents), Indonesia (13 865 travellers; 197 million residents), Philippines (35 635 travellers; 70 million residents), and Thailand (29 241 travellers; 59 million residents). Many countries across Africa and the Asia-Pacific region are vulnerable to Zika virus. Strategic use of available health and human resources is essential to prevent or mitigate the health, economic, and social

  4. Zika Virus: Transmission, Detection, Control, and Prevention

    PubMed Central

    Sharma, Anshika; Lal, Sunil K.

    2017-01-01

    Zika virus (ZIKV) is a mosquito-borne Flavivirus discovered in Uganda in the 1940s. To date, three major ZIKV outbreaks have been reported. ZIKV infections have known to be primarily asymptomatic while causing mild illness in a few cases. However, the recent emergence and spread of ZIKV in the Americas has resulted in the declaration of “Public Health Emergency of International Concern” due to the potential association between the infection and prenatal microcephaly or other brain anomalies. In Brazil, a 20-fold increase in prenatal microcephaly cases and 19% increase in Guillain-Barré Syndrome (GBS) cases were reported in 2015, as compared to the preceding year. The probable deleterious effects of ZIKV infection prompt the urgent development of diagnostics and therapeutics. To this end, the existing evidences supporting the increasingly common prenatal microcephaly and GBS association and the current known ZIKV transmission dynamics, modes of detection (molecular and serology-based), and current control strategies are summarized in this review. This review also emphasizes the importance of understanding ZIKV transmission in order to design a sensitive yet cost and time-efficient detection technique. Development of an efficient detection technique would subsequently allow for better surveillance and control of ZIKV infection. Currently, limited literature is available on the pathogenesis of ZIKV, hence, focusing on the modes of ZIKV transmission could potentially contribute to the understanding of the disease spectrum and formulation of targeted treatment and control. PMID:28217114

  5. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window

    PubMed Central

    James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K.; Barclay, Wendy S.

    2016-01-01

    Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness – infectivity, spread and pathogenesis – is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field. PMID:27558742

  6. Anatomy of a Hotspot: Chain and Seroepidemiology of Ebola Virus Transmission, Sukudu, Sierra Leone, 2015-16.

    PubMed

    Kelly, J Daniel; Barrie, Mohamed Bailor; Mesman, Annelies W; Karku, Sahr; Quiwa, Komba; Drasher, Michael; Schlough, Gabriel Warren; Dierberg, Kerry; Koedoyoma, Songor; Lindan, Christina P; Jones, James Holland; Chamie, Gabriel; Worden, Lee; Greenhouse, Bryan; Weiser, Sheri D; Porco, Travis C; Rutherford, George W; Richardson, Eugene T

    2018-03-28

    Studies have yet to include minimally symptomatic Ebola virus (EBOV) infections and unrecognized Ebola virus disease (EVD) in Ebola-related transmission chains and epidemiologic risk estimates. We conducted a cross-sectional, sero-epidemiological survey from October 2015 to January 2016 among 221 individuals living in quarantined households from November 2014 to February 2015 during the Ebola outbreak in the village of Sukudu, Sierra Leone. Of 48 EBOV-infected persons, 25% (95% confidence interval [CI], 14%-40%) had minimally symptomatic EBOV infections and 4% (95% CI, 1%-14%) were unrecognized EVD cases. The pattern of minimally symptomatic EBOV infections in the transmission chain was nonrandom (P < .001, permutation test). Not having lived in the same house as an EVD case was significantly associated with minimally symptomatic infection. This is the first study to investigate a chain of EBOV transmission inclusive of minimally symptomatic EBOV infections and unrecognized EVD. Our findings provide new insights into Ebola transmission dynamics and quarantine practices.

  7. Unusual occurrence of a DAG motif in the Ipomovirus Cassava brown streak virus and implications for its vector transmission.

    PubMed

    Ateka, Elijah; Alicai, Titus; Ndunguru, Joseph; Tairo, Fred; Sseruwagi, Peter; Kiarie, Samuel; Makori, Timothy; Kehoe, Monica A; Boykin, Laura M

    2017-01-01

    Cassava is the main staple food for over 800 million people globally. Its production in eastern Africa is being constrained by two devastating Ipomoviruses that cause cassava brown streak disease (CBSD); Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), with up to 100% yield loss for smallholder farmers in the region. To date, vector studies have not resulted in reproducible and highly efficient transmission of CBSV and UCBSV. Most virus transmission studies have used Bemisia tabaci (whitefly), but a maximum of 41% U/CBSV transmission efficiency has been documented for this vector. With the advent of next generation sequencing, researchers are generating whole genome sequences for both CBSV and UCBSV from throughout eastern Africa. Our initial goal for this study was to characterize U/CBSV whole genomes from CBSD symptomatic cassava plants sampled in Kenya. We have generated 8 new whole genomes (3 CBSV and 5 UCBSV) from Kenya, and in the process of analyzing these genomes together with 26 previously published sequences, we uncovered the aphid transmission associated DAG motif within coat protein genes of all CBSV whole genomes at amino acid positions 52-54, but not in UCBSV. Upon further investigation, the DAG motif was also found at the same positions in two other Ipomoviruses: Squash vein yellowing virus (SqVYV), Coccinia mottle virus (CocMoV). Until this study, the highly-conserved DAG motif, which is associated with aphid transmission was only noticed once, in SqVYV but discounted as being of minimal importance. This study represents the first comprehensive look at Ipomovirus genomes to determine the extent of DAG motif presence and significance for vector relations. The presence of this motif suggests that aphids could potentially be a vector of CBSV, SqVYV and CocMov. Further transmission and ipomoviral protein evolutionary studies are needed to confirm this hypothesis.

  8. Amino Acid Substitutions in PB1 of Avian Influenza Viruses Influence Pathogenicity and Transmissibility in Chickens

    PubMed Central

    Suzuki, Yasushi; Uchida, Yuko; Tanikawa, Taichiro; Maeda, Naohiro; Takemae, Nobuhiro

    2014-01-01

    ABSTRACT Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686–2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. IMPORTANCE We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of

  9. Mother-to-Child HIV Transmission Bottleneck Selects for Consensus Virus with Lower Gag-Protease-Driven Replication Capacity

    PubMed Central

    Naidoo, Vanessa L.; Mann, Jaclyn K.; Noble, Christie; Adland, Emily; Carlson, Jonathan M.; Thomas, Jake; Brumme, Chanson J.; Thobakgale-Tshabalala, Christina F.; Brumme, Zabrina L.; Goulder, Philip J. R.

    2017-01-01

    ABSTRACT In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities. IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT

  10. Nosocomial Transmission of Respiratory Syncytial Virus in an Outpatient Cancer Center

    PubMed Central

    Chu, Helen Y.; Englund, Janet A.; Podczervinski, Sara; Kuypers, Jane; Campbell, Angela P.; Boeckh, Michael; Pergam, Steven A.; Casper, Crey

    2014-01-01

    Background Respiratory syncytial virus (RSV) outbreaks in inpatient settings are associated with poor outcomes in cancer patients. The use of molecular epidemiology to document RSV transmission in the outpatient setting has not been well described. Methods We performed a retrospective cohort study of two nosocomial outbreaks of RSV at the Seattle Cancer Care Alliance (SCCA). Subjects included patients seen at the SCCA with RSV detected in two outbreaks in 2007-2008 and 2012, and all employees with respiratory viruses detected in the 2007-2008 outbreak. A subset of samples was sequenced using semi-nested polymerase chain reaction targeting the RSV attachment glycoprotein coding region. Results Fifty-one cases of RSV were identified in 2007-2008. Clustering of identical viral strains was detected in 10 (67%) of 15 patients with RSV sequenced from 2007-2008. As part of a multimodal infection control strategy implemented as a response to the outbreak, symptomatic employees had nasal washes collected. Of 254 employee samples, 91 (34%) tested positive for a respiratory virus, including 14 with RSV. In another RSV outbreak in 2012, 24 cases of RSV were identified; nine (90%) of 10 patients had the same viral strain, and 1 (10%) had another viral strain. Conclusions We document spread of clonal strains within an outpatient cancer care setting. Infection control interventions should be implemented in outpatient, as well as inpatient, settings to reduce person-to-person transmission and limit progression of RSV outbreaks. PMID:24607551

  11. Ross River Virus Transmission, Infection, and Disease: a Cross-Disciplinary Review

    PubMed Central

    Harley, David; Sleigh, Adrian; Ritchie, Scott

    2001-01-01

    Ross River virus (RRV) is a fascinating, important arbovirus that is endemic and enzootic in Australia and Papua New Guinea and was epidemic in the South Pacific in 1979 and 1980. Infection with RRV may cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis, sometimes with fever and rash. RRV disease notifications in Australia average 5,000 per year. The first well-described outbreak occurred in 1928. During World War II there were more outbreaks, and the name epidemic polyarthritis was applied. During a 1956 outbreak, epidemic polyarthritis was linked serologically to a group A arbovirus (Alphavirus). The virus was subsequently isolated from Aedes vigilax mosquitoes in 1963 and then from epidemic polyarthritis patients. We review the literature on the evolutionary biology of RRV, immune response to infection, pathogenesis, serologic diagnosis, disease manifestations, the extraordinary variety of vertebrate hosts, mosquito vectors, and transmission cycles, antibody prevalence, epidemiology of asymptomatic and symptomatic human infection, infection risks, and public health impact. RRV arthritis is due to joint infection, and treatment is currently based on empirical anti-inflammatory regimens. Further research on pathogenesis may improve understanding of the natural history of this disease and lead to new treatment strategies. The burden of morbidity is considerable, and the virus could spread to other countries. To justify and design preventive programs, we need accurate data on economic costs and better understanding of transmission and behavioral and environmental risks. PMID:11585790

  12. Zika Virus (ZIKV): a review of proposed mechanisms of transmission and associated congenital abnormalities

    PubMed Central

    Desai, Sruti K; Hartman, Steven D; Jayarajan, Shilpa; Liu, Stephanie; Gallicano, G Ian

    2017-01-01

    Zika virus (ZIKV) has been of major international public health concern following large outbreaks in the Americas occurring in 2015-2016. Most notably, ZIKV has been seen to pose dangers in pregnancy due to its association with congenital abnormalities such as microcephaly. Numerous experimental approaches have been taken to address how the virus can cross the placenta, alter normal fetal development, and disrupt specific cellular functions. Many areas concerning the mechanisms of transmission, especially from mother to fetus, are largely unknown but demand further research. Several promising new studies are presented that provide insight into possible mechanisms of transmission, different cell types affected, and immune responses towards the virus. By aiming to better understand the processes behind altered fetal neuronal development due to ZIKV infection, the hope is to find ways to increase protection of the fetus and prevent congenital abnormalities such as microcephaly. As ZIKV infection is spreading to increasingly more areas and bringing harmful outcomes and birth defects with it, it is imperative to identify the mechanisms of transmitting this infectious agent, consider different genetic backgrounds of hosts and strain types, and navigate methods to protect those affected from the detrimental effects of this newly emerging virus. PMID:28804687

  13. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors.

    PubMed

    Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle

    2017-04-01

    The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Probable Congenital Transmission of Reticuloendotheliosis Virus Caused by Vaccination with Contaminated Vaccines

    PubMed Central

    Zhu, Shufen; Guo, Wenlong; Sheng, Pengcheng; Wang, Zunmin; Zhao, Changliang; Zhao, Qingyou; Zhu, Ruiliang

    2012-01-01

    Contaminated vaccine is one unexpected and potential origin of virus infection. In order to investigate the most likely cause of disease in a broiler breeder company of Shandong Province, all 17 batches of live-virus vaccines used in the affected flocks and 478 tissue samples were tested by dot-blot hybridization, nested PCR, and IFA. The results suggested the outbreak of disease was most probably due to the vaccination of REV-contaminated MD-CVI988/Rispens vaccines and ND-LaSota+IB-H120 vaccines. Furthermore, the REV was probably transmitted to the commercial chickens through congenital transmission. PMID:22912872

  15. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    PubMed

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  16. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs.

  17. Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain

    PubMed Central

    2013-01-01

    Background Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. Methods Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. Results No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. Conclusions Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck. PMID:23587185

  18. Hepatitis B virus lineages in mammalian hosts: Potential for bidirectional cross-species transmission

    PubMed Central

    Bonvicino, Cibele R; Moreira, Miguel A; Soares, Marcelo A

    2014-01-01

    The hepatitis B virus (HBV) is a cosmopolitan infectious agent currently affecting over 350 million people worldwide, presently accounting for more than two billion infections. In addition to man, other hepatitis virus strains infect species of several mammalian families of the Primates, Rodentia and Chiroptera orders, in addition to birds. The mounting evidence of HBV infection in African, Asian and neotropical primates draws attention to the potential cross-species, zoonotic transmission of these viruses to man. Moreover, recent evidence also suggests the humans may also function as a source of viral infection to other mammals, particularly to domestic animals like poultry and swine. In this review, we list all evidence of HBV and HBV-like infection of nonhuman mammals and discuss their potential roles as donors or recipients of these viruses to humans and to other closely-related species. PMID:24976704

  19. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricault, Christine A.; Perry, Keith L., E-mail: KLP3@cornell.edu

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majoritymore » of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.« less

  20. Right Place, Wrong Species: A 20-Year Review of Rabies Virus Cross Species Transmission among Terrestrial Mammals in the United States

    PubMed Central

    Wallace, Ryan M.; Gilbert, Amy; Slate, Dennis; Chipman, Richard; Singh, Amber; Cassie Wedd; Blanton, Jesse D.

    2014-01-01

    Introduction In the continental US, four terrestrial mammalian species are reservoirs for seven antigenic rabies virus variants. Cross species transmission (CST) occurs when a rabies virus variant causes disease in non-reservoir species. Methods This study analyzed national surveillance data for rabies in terrestrial mammals. The CST rate was defined as: number of rabid non-reservoir animals/number of rabid reservoir animals. CST rates were analyzed for trend. Clusters of high CST rate counties were evaluated using space-time scanning statistics. Results The number of counties reporting a raccoon variant CST rate >1.0 increased from 75 in 1992 to 187 in 2011; counties with skunk variant CST rates >1.0 remained unchanged during the same period. As of 2011, for every rabid raccoon reported within the raccoon variant region, there were 0.73 cases of this variant reported in non-reservoir animals. Skunks were the most common non-reservoir animal reported with the raccoon rabies variant. Domestic animals were the most common non-reservoir animal diagnosed with a skunk rabies virus variant (n = 1,601). Cross species transmission rates increased fastest among domestic animals. Conclusions Cross species transmission of rabies virus variants into non-reservoir animals increases the risk of human exposures and threatens current advances toward rabies control. Cross species transmission in raccoon rabies enzootic regions increased dramatically during the study period. Pet owners should vaccinate their dogs and cats to ensure against CST, particularly in regions with active foci of rabies circulation. Clusters of high CST activity represent areas for further study to better understand interspecies disease transmission dynamics. Each CST event has the potential to result in a rabies virus adapted for sustained transmission in a new species; therefore further understanding of the dynamics of CST may help in early detection or prevention of the emergence of new terrestrial

  1. Right place, wrong species: a 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States.

    PubMed

    Wallace, Ryan M; Gilbert, Amy; Slate, Dennis; Chipman, Richard; Singh, Amber; Cassie Wedd; Blanton, Jesse D

    2014-01-01

    In the continental US, four terrestrial mammalian species are reservoirs for seven antigenic rabies virus variants. Cross species transmission (CST) occurs when a rabies virus variant causes disease in non-reservoir species. This study analyzed national surveillance data for rabies in terrestrial mammals. The CST rate was defined as: number of rabid non-reservoir animals/number of rabid reservoir animals. CST rates were analyzed for trend. Clusters of high CST rate counties were evaluated using space-time scanning statistics. The number of counties reporting a raccoon variant CST rate >1.0 increased from 75 in 1992 to 187 in 2011; counties with skunk variant CST rates >1.0 remained unchanged during the same period. As of 2011, for every rabid raccoon reported within the raccoon variant region, there were 0.73 cases of this variant reported in non-reservoir animals. Skunks were the most common non-reservoir animal reported with the raccoon rabies variant. Domestic animals were the most common non-reservoir animal diagnosed with a skunk rabies virus variant (n = 1,601). Cross species transmission rates increased fastest among domestic animals. Cross species transmission of rabies virus variants into non-reservoir animals increases the risk of human exposures and threatens current advances toward rabies control. Cross species transmission in raccoon rabies enzootic regions increased dramatically during the study period. Pet owners should vaccinate their dogs and cats to ensure against CST, particularly in regions with active foci of rabies circulation. Clusters of high CST activity represent areas for further study to better understand interspecies disease transmission dynamics. Each CST event has the potential to result in a rabies virus adapted for sustained transmission in a new species; therefore further understanding of the dynamics of CST may help in early detection or prevention of the emergence of new terrestrial rabies virus variants.

  2. Natural history of chronic hepatitis B virus infection in children in Japan: a comparison of mother-to-child transmission with horizontal transmission.

    PubMed

    Takano, Tomoko; Tajiri, Hitoshi; Hosono, Satoyo; Inui, Ayano; Murakami, Jun; Ushijima, Kosuke; Miyoshi, Yoko; Etani, Yuri; Abukawa, Daiki; Suzuki, Mitsuyoshi; Brooks, Stephen

    2017-09-01

    It is necessary to evaluate the natural history of children with hepatitis B virus (HBV) infection in each country to consider their long-term management. A multi-center observational study of children with chronic HBV infection who were diagnosed at age ≤15 years was carried out in 18 hospitals in Japan. We reviewed children with HBV infection including 381 with mother-to-child transmission (MTCT) and 154 with horizontal transmission, genotype C being the most prevalent virus genotype (83%). Children with horizontal transmission were more frequently infected with HBV genotype A or B and more likely to receive interferon therapy than those infected by MTCT. The HBeAg seroconversion rate at 15 years of age was 42% in the MTCT group and 38% in the horizontal group. It was lower in children with genotype C infection than in those infected with other genotypes (33 versus 45%). Hepatitis developed at any age but before 4 years of age the incidence was high in the horizontal group. At 3 years after the onset of the hepatitis, 26% of children with MTCT and 30% of those with horizontal transmission became inactive carriers. The incidences of hepatocellular carcinoma (HCC) at 30 years of age were 6% in the MTCT group and 11% in the horizontal group. Patients with childhood-onset HBV infection with MTCT and horizontal transmission developed hepatitis and seroconverted to anti-HBe at any age and had a lifetime risk of developing HCC.

  3. Persistent West Nile Virus Transmission and the Apparent Displacement St. Louis Encephalitis Virus in Southeastern California, 2003−2006

    PubMed Central

    REISEN, WILLIAM K.; LOTHROP, HUGH D.; WHEELER, SARAH S.; KENNSINGTON, MARC; GUTIERREZ, ARTURO; FANG, YING; GARCIA, SANDRA; LOTHROP, BRANKA

    2008-01-01

    West Nile virus (family Flaviviridae, genus Flavivirus, WNV) invaded the Colorado Desert biome of southern California during summer 2003 and seemed to displace previously endemic St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV, an antigenically similar Flavivirus in the Japanese encephalitis virus serocomplex). Western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), an antigenically distinct Alphavirus, was detected during 2005 and 2006, indicating that conditions were suitable for encephalitis virus introduction and detection. Cross-protective “avian herd immunity” due to WNV infection possibly may have prevented SLEV reintroduction and/or amplification to detectable levels. During 2003−2006, WNV was consistently active at wetlands and agricultural habitats surrounding the Salton Sea where Culex tarsalis Coquillett served as the primary enzootic maintenance and amplification vector. Based on published laboratory infection studies and the current seroprevalence estimates, house sparrows, house finches, and several Ardeidae may have been important avian amplifying hosts in this region. Transmission efficiency may have been dampened by high infection rates in incompetent avian hosts, including Gamble's quail, mourning doves, common ground doves, and domestic pigeons. Early season WNV amplification and dispersal from North Shore in the southeastern portion of the Coachella Valley resulted in sporadic WNV incursions into the urbanized Upper Valley near Palm Springs, where Culex pipiens quinquefasciatus Say was the primary enzootic and bridge vector. Although relatively few human cases were detected during the 2003−2006 period, all were concentrated in the Upper Valley and were associated with high human population density and WNV infection in peridomestic populations of Cx. p. quinquefasciatus. Intensive early mosquito control during 2006 seemed to interrupt and delay transmission, perhaps setting the stage

  4. Establishment and cryptic transmission of Zika virus in Brazil and the Americas

    NASA Astrophysics Data System (ADS)

    Faria, N. R.; Quick, J.; Claro, I. M.; Thézé, J.; de Jesus, J. G.; Giovanetti, M.; Kraemer, M. U. G.; Hill, S. C.; Black, A.; da Costa, A. C.; Franco, L. C.; Silva, S. P.; Wu, C.-H.; Raghwani, J.; Cauchemez, S.; Du Plessis, L.; Verotti, M. P.; de Oliveira, W. K.; Carmo, E. H.; Coelho, G. E.; Santelli, A. C. F. S.; Vinhal, L. C.; Henriques, C. M.; Simpson, J. T.; Loose, M.; Andersen, K. G.; Grubaugh, N. D.; Somasekar, S.; Chiu, C. Y.; Muñoz-Medina, J. E.; Gonzalez-Bonilla, C. R.; Arias, C. F.; Lewis-Ximenez, L. L.; Baylis, S. A.; Chieppe, A. O.; Aguiar, S. F.; Fernandes, C. A.; Lemos, P. S.; Nascimento, B. L. S.; Monteiro, H. A. O.; Siqueira, I. C.; de Queiroz, M. G.; de Souza, T. R.; Bezerra, J. F.; Lemos, M. R.; Pereira, G. F.; Loudal, D.; Moura, L. C.; Dhalia, R.; França, R. F.; Magalhães, T.; Marques, E. T.; Jaenisch, T.; Wallau, G. L.; de Lima, M. C.; Nascimento, V.; de Cerqueira, E. M.; de Lima, M. M.; Mascarenhas, D. L.; Neto, J. P. Moura; Levin, A. S.; Tozetto-Mendoza, T. R.; Fonseca, S. N.; Mendes-Correa, M. C.; Milagres, F. P.; Segurado, A.; Holmes, E. C.; Rambaut, A.; Bedford, T.; Nunes, M. R. T.; Sabino, E. C.; Alcantara, L. C. J.; Loman, N. J.; Pybus, O. G.

    2017-06-01

    Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.

  5. Establishment and cryptic transmission of Zika virus in Brazil and the Americas.

    PubMed

    Faria, N R; Quick, J; Claro, I M; Thézé, J; de Jesus, J G; Giovanetti, M; Kraemer, M U G; Hill, S C; Black, A; da Costa, A C; Franco, L C; Silva, S P; Wu, C-H; Raghwani, J; Cauchemez, S; du Plessis, L; Verotti, M P; de Oliveira, W K; Carmo, E H; Coelho, G E; Santelli, A C F S; Vinhal, L C; Henriques, C M; Simpson, J T; Loose, M; Andersen, K G; Grubaugh, N D; Somasekar, S; Chiu, C Y; Muñoz-Medina, J E; Gonzalez-Bonilla, C R; Arias, C F; Lewis-Ximenez, L L; Baylis, S A; Chieppe, A O; Aguiar, S F; Fernandes, C A; Lemos, P S; Nascimento, B L S; Monteiro, H A O; Siqueira, I C; de Queiroz, M G; de Souza, T R; Bezerra, J F; Lemos, M R; Pereira, G F; Loudal, D; Moura, L C; Dhalia, R; França, R F; Magalhães, T; Marques, E T; Jaenisch, T; Wallau, G L; de Lima, M C; Nascimento, V; de Cerqueira, E M; de Lima, M M; Mascarenhas, D L; Neto, J P Moura; Levin, A S; Tozetto-Mendoza, T R; Fonseca, S N; Mendes-Correa, M C; Milagres, F P; Segurado, A; Holmes, E C; Rambaut, A; Bedford, T; Nunes, M R T; Sabino, E C; Alcantara, L C J; Loman, N J; Pybus, O G

    2017-06-15

    Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.

  6. Establishment and cryptic transmission of Zika virus in Brazil and the Americas

    PubMed Central

    Faria, R.N.; Quick, J.; Morales, I.; Thézé, J.; Jesus, J.G.; Giovanetti, M.; Kraemer, M. U. G.; Hill, S. C.; Black, A.; da Costa, A. C.; Franco, L. C.; Silva, S. P.; Wu, C.-H.; Raghwani, J.; Cauchemez, S.; du Plessis, L.; Verotti, M. P.; de Oliveira, W. K.; Carmo, E. H.; Coelho, G. E.; Santelli, A. C. F. S.; Vinhal, L. C.; Henriques, C. M.; Simpson, J. T.; Loose, M.; Andersen, K. G.; Grubaugh, N. D.; Somasekar, S.; Chiu, C. Y.; Muñoz-Medina, J. E.; Gonzalez-Bonilla, C. R.; Arias, C. F.; Lewis-Ximenez, L. L.; Baylis, S.A.; Chieppe, A. O.; Aguiar, S. F.; Fernandes, C. A.; Lemos, P. S.; Nascimento, B. L. S.; Monteiro, H. A. O.; Siqueira, I. C.; de Queiroz, M. G.; de Souza, T. R.; Bezerra, J. F.; Lemos, M. R.; Pereira, G. F.; Loudal, D.; Moura, L. C.; Dhalia, R.; França, R. F.; Magalhães, T.; Marques, E. T.; Jaenisch, T.; Wallau, G. L.; de Lima, M. C.; Nascimento, V.; de Cerqueira, E. M.; de Lima, M. M.; Mascarenhas, D. L.; Moura Neto, J. P.; Levin, A. S.; Tozetto-Mendoza, T. R.; Fonseca, S. N.; Mendes-Correa, M. C.; Milagres, F.P.; Segurado, A.; Holmes, E. C.; Rambaut, A.; Bedford, T.; Nunes, M. R. T.; Sabino, E. C.; Alcantara, L. C. J.; Loman, N.; Pybus, O. G.

    2017-01-01

    Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil1. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 20162) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 20162). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease3. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus. PMID:28538727

  7. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process.

    PubMed

    Secundino, Nagila Francinete Costa; Chaves, Barbara Aparecida; Orfano, Alessandra Silva; Silveira, Karine Renata Dias; Rodrigues, Nilton Barnabe; Campolina, Thais Bonifácio; Nacif-Pimenta, Rafael; Villegas, Luiz Eduardo Martinez; Silva, Breno Melo; Lacerda, Marcus Vinícius Guimarães; Norris, Douglas Eric; Pimenta, Paulo Filemon Paolucci

    2017-07-20

    Zika disease has transformed into a serious global health problem due to the rapid spread of the arbovirus and alarming severity including congenital complications, microcephaly and Guillain-Barré syndrome. Zika virus (ZIKV) is primarily transmitted to humans through the bite of an infective mosquito, with Aedes aegypti being the main vector. We successfully developed a ZIKV experimental transmission model by single infectious Ae. aegypti bite to a laboratory mouse using circulating Brazilian strains of both arbovirus and vector. Mosquitoes were orally infected and single Ae. aegypti were allowed to feed on mouse ears 14 days post-infection. Additionally, salivary gland (SG) homogenates from infected mosquitoes were intrathoracically inoculated into naïve Ae. aegypti. Mosquito and mouse tissue samples were cultured in C6/36 cells and processed by quantitative real-time PCR. A total of 26 Ae. aegypti were allowed to feed individually on mouse ears. Of these, 17 mosquitoes fed, all to full engorgement. The transmission rate of ZIKV by bite from these engorged mosquitoes to mouse ears was 100%. The amount of virus inoculated into the ears by bites ranged from 2 × 10 2 -2.1 × 10 10 ZIKV cDNA copies and was positively correlated with ZIKV cDNA quantified from SGs dissected from mosquitoes post-feeding. Replicating ZIKV was confirmed in macerated SGs (2.45 × 10 7 cDNA copies), mouse ear tissue (1.15 × 10 3 cDNA copies, and mosquitoes 14 days post-intrathoracic inoculation (1.49 × 10 7 cDNA copies) by cytopathic effect in C6/36 cell culture and qPCR. Our model illustrates successful transmission of ZIKV by an infectious mosquito bite to a live vertebrate host. This approach offers a comprehensive tool for evaluating the development of infection in and transmission from mosquitoes, and the vertebrate-ZIKV interaction and progression of infection following a natural transmission process.

  8. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission

    USDA-ARS?s Scientific Manuscript database

    The transmission of viruses in the Luteoviridae, such as Cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus proteins, plant proteins, and aphid proteins. These viruses are retained in the phloem for aphid acquisition and are transmitted by aphids...

  9. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.

    PubMed

    Vloet, Rianka P M; Vogels, Chantal B F; Koenraadt, Constantianus J M; Pijlman, Gorben P; Eiden, Martin; Gonzales, Jose L; van Keulen, Lucien J M; Wichgers Schreur, Paul J; Kortekaas, Jeroen

    2017-12-01

    Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory

  10. Identification of Unequally Represented Founder Viruses Among Tissues in Very Early SIV Rectal Transmission

    PubMed Central

    Chen, Jian; Ren, Yanqin; Daharsh, Lance; Liu, Lu; Kang, Guobin; Li, Qingsheng; Wei, Qiang; Wan, Yanmin; Xu, Jianqing

    2018-01-01

    Characterizing the transmitted/founder (T/F) viruses of multi-variant SIV infection may shed new light on the understanding of mucosal transmission. We intrarectally inoculated six Chinese rhesus macaques with a single high dose of SIVmac251 (3.1 × 104 TCID50) and obtained 985 full-length env sequences from multiple tissues at 6 and 10 days post-infection by single genome amplification (SGA). All 6 monkeys were infected with a range of 2 to 8 T/F viruses and the dominant variants from the inoculum were still dominant in different tissues from each monkey. Interestingly, our data showed that a cluster of rare T/F viruses was unequally represented in different tissues. This cluster of rare T/F viruses phylogenetically related to the non-dominant SIV variants in the inoculum and was not detected in any rectum tissues, but could be identified in the descending colon, jejunum, spleen, or plasma. In 2 out of 6 macaques, identical SIVmac251 variants belonging to this cluster were detected simultaneously in descending colon/jejunum and the inoculum. We also demonstrated that the average CG dinucleotide frequency of these rare T/F viruses found in tissues, as well as non-dominant variants in the inoculum, was significantly higher than the dominant T/F viruses in tissues and the inoculum. Collectively, these findings suggest that descending colon/jejunum might be more susceptible than rectum to SIV in the very early phase of infection. And host CG suppression, which was previously shown to inhibit HIV replication in vitro, may also contribute to the bottleneck selection during in vivo transmission. PMID:29651274

  11. Increased risk of mother-to-infant transmission of hepatitis C virus by intrapartum infantile exposure to maternal blood.

    PubMed

    Steininger, Christoph; Kundi, Michael; Jatzko, Gerlinde; Kiss, Herbert; Lischka, Andreas; Holzmann, Heidemarie

    2003-02-01

    Virological and clinical data from 73 hepatitis C virus (HCV)-infected pregnant women who gave birth to 75 children were merged retrospectively, by logistic regression analysis, to investigate risk factors for vertical transmission of HCV. Eighty-two percent of the HCV-infected mothers were HCV-RNA-positive during pregnancy, and 10% were coinfected with human immunodeficiency virus (HIV). Nine children were HCV infected, 1 was HIV infected, but none was HIV-HCV coinfected. Among vaginal deliveries, the mean HCV load of mothers who transmitted HCV to their infants was higher than that of those who did not (8.1 x 10(5) vs. 1.4 x 10(4) copies/mL; P=.056). A reduction in umbilical cord-blood pH (relative risk, 3.9; P=.04) or the occurrence of perineal or vaginal laceration (relative risk, 6.4; P=.028) during vaginal delivery significantly increased the risk of vertical HCV transmission. In conclusion, high maternal viremia, infantile hypoxia, and intrapartum exposure to virus-contaminated maternal blood increased the risk of HCV transmission during vaginal deliveries. Consequently, cesarean section may reduce the risk of vertical HCV transmission in selected cases.

  12. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission.

    PubMed

    Wacharapluesadee, Supaporn; Boongird, Kalyanee; Wanghongsa, Sawai; Ratanasetyuth, Nitipon; Supavonwong, Pornpun; Saengsen, Detchat; Gongal, G N; Hemachudha, Thiravat

    2010-03-01

    After 12 serial Nipah virus outbreaks in humans since 1998, it has been noted that all except the initial event in Malaysia occurred during the first 5 months of the year. Increasingly higher morbidity and mortality have been observed in subsequent outbreaks in India and Bangladesh. This may have been related to different virus strains and transmission capability from bat to human without the need for an amplifying host and direct human-to-human transmission. A survey of virus strains in Pteropus lylei and seasonal preference for spillover of these viruses was completed in seven provinces of Central Thailand between May 2005 and June 2007. Nipah virus RNA sequences, which belonged to those of the Malaysian and Bangladesh strains, were detected in the urine of these bats, with the Bangladesh strain being dominant. Highest recovery of Nipah virus RNA was observed in May. Of two provincial sites where monthly surveys were done, the Bangladesh strain was almost exclusively detected during April to June. The Malaysian strain was found dispersed during December to June. Although direct contact during breeding (in December to April) was believed to be an important transmission factor, our results may not entirely support the role of breeding activities in spillage of virus. Greater virus shedding over extended periods in the case of the Malaysian strain and the highest peak of virus detection in May in the case of the Bangladesh strain when offspring started to separate may suggest that there may be responsible mechanisms other than direct contact during breeding in the same roost. Knowledge of seasonal preferences of Nipah virus shedding in P. lylei will help us to better understand the dynamics of Nipah virus transmission and have implications for disease management.

  13. Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV).

    PubMed

    Denner, Joachim

    2016-12-20

    Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni , the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.

  14. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus.

    PubMed

    Martinière, Alexandre; Gargani, Daniel; Uzest, Marilyne; Lautredou, Nicole; Blanc, Stéphane; Drucker, Martin

    2009-04-01

    Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  15. Assessing Virulence and Transmission Rates of White Spot Syndrome Virus (WSSV) in Two Ecologically Important Palaemonid Shrimp

    NASA Astrophysics Data System (ADS)

    Bernard, C.; Keesee, B.; Philippoff, C.; Curran, S.; Lotz, J.; Powell, E.

    2016-02-01

    Investigators, including three REU interns, conducted an experiment to quantify parameters for an epidemiological model designed to estimate disease transmission in marine invertebrates. White spot syndrome virus (WSSV) is a highly pathogenic disease affecting commercially important penaeid shrimp fisheries worldwide. The virus devastates penaeid shrimp but other varieties of decapods may serve as reservoirs for disease by being less susceptible to WSSV or refractory to disease. Non-penaeid crustaceans are less susceptible to WSSV, and different species have variable resistance to the disease leading to different potential to serve as reservoirs for transmission of the disease to coastal penaeid fisheries. This study investigates virulence and transmission rates of WSSV in two palaemonid shrimp which are keystone members of coastal food webs, and effects of species interactions on transmission rates of WSSV are estimated in a laboratory setting as a proxy for natural habitats. Two species of grass shrimp were exposed to a Chinese strain of WSSV through feeding the test individuals with previously prepared, inoculated penaeid shrimp. Replicated tanks containing 30 animals were exposed to the virus in arenas containing one or both species for 24 hours, then isolated in 1 liter tanks and monitored. During the isolation period moribund individuals were preserved for later analysis. After 7 days all test individuals were analyzed using qPCR to determine WSSV presence and load in DNA. From these data transmission rates, mortality, and viral concentration were quantified and used as parameters in a simple epidemiological model.

  16. Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center.

    PubMed

    Chu, Helen Y; Englund, Janet A; Podczervinski, Sara; Kuypers, Jane; Campbell, Angela P; Boeckh, Michael; Pergam, Steven A; Casper, Corey

    2014-06-01

    Respiratory syncytial virus (RSV) outbreaks in inpatient settings are associated with poor outcomes in cancer patients. The use of molecular epidemiology to document RSV transmission in the outpatient setting has not been well described. We performed a retrospective cohort study of 2 nosocomial outbreaks of RSV at the Seattle Cancer Care Alliance. Subjects included patients seen at the Seattle Cancer Care Alliance with RSV detected in 2 outbreaks in 2007-2008 and 2012 and all employees with respiratory viruses detected in the 2007-2008 outbreak. A subset of samples was sequenced using semi-nested PCR targeting the RSV attachment glycoprotein coding region. Fifty-one cases of RSV were identified in 2007-2008. Clustering of identical viral strains was detected in 10 of 15 patients (67%) with RSV sequenced from 2007 to 2008. As part of a multimodal infection control strategy implemented as a response to the outbreak, symptomatic employees had nasal washes collected. Of 254 employee samples, 91 (34%) tested positive for a respiratory virus, including 14 with RSV. In another RSV outbreak in 2012, 24 cases of RSV were identified; 9 of 10 patients (90%) had the same viral strain, and 1 (10%) had another viral strain. We document spread of clonal strains within an outpatient cancer care setting. Infection control interventions should be implemented in outpatient, as well as inpatient, settings to reduce person-to-person transmission and limit progression of RSV outbreaks. Copyright © 2014 American Society for Blood and Marrow Transplantation. All rights reserved.

  17. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans.

    PubMed

    Jones, Jeremy C; Sonnberg, Stephanie; Koçer, Zeynep A; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J; Webster, Robert G

    2014-03-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds' potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus.

  18. Possible Role of Songbirds and Parakeets in Transmission of Influenza A(H7N9) Virus to Humans

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Koçer, Zeynep A.; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J.

    2014-01-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds’ potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus. PMID:24572739

  19. Risk factors for vertical transmission of hepatitis C virus: a single center experience with 710 HCV-infected mothers.

    PubMed

    Garcia-Tejedor, Amparo; Maiques-Montesinos, Vicente; Diago-Almela, Vicente José; Pereda-Perez, Antonio; Alberola-Cuñat, Vicente; López-Hontangas, José Luís; Perales-Puchalt, Alfredo; Perales, Alfredo

    2015-11-01

    The aim of this study was to analyze the risk factors on the perinatal transmission of hepatitis C virus (HCV). A retrospective cohort study with 711 infants born to 710 HCV-infected mothers was conducted at the Hospital La Fe, in Valencia, Spain, from 1986 to 2011. As potential risk factors for transmission we analyzed: maternal age, mode of acquisition of HCV infection, HIV co-infection, antiretroviral treatment against HIV, CD4 cell count, HIV and HCV viral load, liver enzyme levels during pregnancy, smoking habit, gestational age, intrapartum invasive procedures, length of rupture of membranes, length of labor, mode of delivery, episiotomy, birth weight, newborn gender and type of feeding. Overall perinatal HCV transmission rate was 2.4%. The significant risk factors related with HCV transmission were maternal virus load >615copies/mL (OR 9.3 [95% CI 1.11-78.72]), intrapartum invasive procedures (OR 10.1 [95% CI 2.6-39.02]) and episiotomy (OR 4.2 [95% CI 1.2-14.16]). HIV co-infection and newborn female were near significance (p=0.081 and 0.075, respectively). Invasive procedures as fetal scalp blood sampling or internal electrode and episiotomy increase vertical transmission of HCV, especially in patients with positive HCV RNA virus load at delivery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak

    PubMed Central

    Klepac, Petra; Pomeroy, Laura W.; Bjørnstad, Ottar N.; Kuiken, Thijs; Osterhaus, Albert D.M.E.; Rijks, Jolianne M.

    2009-01-01

    Heterogeneities in transmission among hosts can be very important in shaping infectious disease dynamics. In mammals with strong social organization, such heterogeneities are often structured by functional stage: juveniles, subadults and adults. We investigate the importance of such stage-related heterogeneities in shaping the 2002 phocine distemper virus (PDV) outbreak in the Dutch Wadden Sea, when more than 40 per cent of the harbour seals were killed. We do this by comparing the statistical fit of a hierarchy of models with varying transmission complexity: homogeneous versus heterogeneous mixing and density- versus frequency-dependent transmission. We use the stranding data as a proxy for incidence and use Poisson likelihoods to estimate the ‘who acquires infection from whom’ (WAIFW) matrix. Statistically, the model with strong heterogeneous mixing and density-dependent transmission was found to best describe the transmission dynamics. However, patterns of incidence support a model of frequency-dependent transmission among adults and juveniles. Based on the maximum-likelihood WAIFW matrix estimates, we use the next-generation formalism to calculate an R0 between 2 and 2.5 for the Dutch 2002 PDV epidemic. PMID:19364743

  1. Modeling the transmission dynamics of Ebola virus disease in Liberia.

    PubMed

    Xia, Zhi-Qiang; Wang, Shi-Fu; Li, Shen-Long; Huang, Liu-Yu; Zhang, Wen-Yi; Sun, Gui-Quan; Gai, Zhong-Tao; Jin, Zhen

    2015-09-08

    Ebola virus disease (EVD) has erupted many times in some zones since it was first found in 1976. The 2014 EVD outbreak in West Africa is the largest ever, which has caused a large number of deaths and the most serious country is Liberia during the outbreak period. Based on the data released by World Health Organization and the actual transmission situations, we investigate the impact of different transmission routes on the EVD outbreak in Liberia and estimate the basic reproduction number R0 = 2.012 in the absence of effective control measures. Through sensitivity and uncertainty analysis, we reveal that the transmission coefficients of suspected and probable cases have stronger correlations on the basic reproduction number. Furthermore, we study the influence of control measures (isolation and safe burial measures) on EVD outbreak. It is found that if combined control measures are taken, the basic reproduction number will be less than one and thus EVD in Liberia may be well contained. The obtained results may provide new guidance to prevent and control the spread of disease.

  2. Indirect Transmission of Influenza A Virus between Pig Populations under Two Different Biosecurity Settings

    PubMed Central

    Allerson, Matt W.; Cardona, Carol J.; Torremorell, Montserrat

    2013-01-01

    Respiratory disease due to influenza virus is common in both human and swine populations around the world with multiple transmission routes capable of transmitting influenza virus, including indirect routes. The objective of this study was to evaluate the role of fomites in influenza A virus (IAV) transmission between pig populations separated by two different biosecurity settings. Thirty-five pigs were divided into four experimental groups: 10 pigs (1 replicate) were assigned to the infected group (I), 10 pigs (2 replicates of 5 pigs) were assigned to the low biosecurity sentinel group (LB), 10 pigs (2 replicates of 5 pigs) were assigned to the medium biosecurity sentinel group (MB), and 5 pigs (1 replicate) were assigned to the negative control group (NC). Eight of 10 pigs in the infected group were inoculated with IAV and 36 hours following inoculation, personnel movement events took place in order to move potentially infectious clothing and personal protective equipment (PPE) to sentinel pig rooms. Following contact with the infected group, personnel moved to the MB group after designated hygiene measures while personnel moved directly to the LB group. Nasal swabs and blood samples were collected from pigs to assess IAV infection status and fomites were sampled and tested via RRT-PCR. All experimentally inoculated pigs were infected with IAV and 11 of the 144 fomite samples collected following contact with infected pigs were low level positive for IAV genome. One replicate of each sentinel groups LB and MB became infected with IAV and all five pigs were infected over time. This study provides evidence that fomites can serve as an IAV transmission route from infected to sentinel pigs and highlights the need to focus on indirect routes as well as direct routes of transmission for IAV. PMID:23805306

  3. Transmission of lymphocystis disease virus to cultured gilthead seabream, Sparus aurata L., larvae.

    PubMed

    Cano, I; Valverde, E J; Garcia-Rosado, E; Alonso, M C; Lopez-Jimena, B; Ortiz-Delgado, J B; Borrego, J J; Sarasquete, C; Castro, D

    2013-06-01

    The transmission of lymphocystis disease virus (LCDV) to gilthead seabream, Sparus aurata L., larvae was investigated using fertilized eggs from a farm with previous reports of lymphocystis disease. LCDV genome was detected by PCR-hybridization in blood samples from 17.5% of the asymptomatic gilthead seabream broodstock analysed. Using the same methodology, eggs spawned from these animals were LCDV positive, as well as larvae hatched from them. The presence of infective viral particles was confirmed by cytopathic effects development on SAF-1 cells. Whole-mount in situ hybridization (ISH) and immunohistochemistry (IHC) showed the presence of LCDV in the epidermis of larvae hatched from LCDV-positive eggs. When fertilized eggs were disinfected with iodine, no viral DNA was detected either in eggs (analysed by PCR-hybridization) or in larvae (PCR-hybridization and ISH). These results suggest the vertical transmission of LCDV, the virus being transmitted on the egg surface. Larvae hatched from disinfected eggs remain LCDV negative during the endotrophic phase, as showed by PCR-hybridization, ISH and IHC. After feeding on LCDV-positive rotifers, viral antigens were observed in the digestive tract, which suggests that viral entry could be achieved via the alimentary canal, and that rotifers can act as a vector in LCDV transmission to gilthead seabream larvae. © 2012 Blackwell Publishing Ltd.

  4. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.

    PubMed

    Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kim, Hyun Soo; Seo, Sang Heui

    2014-02-01

    Previous studies have shown that the H7N9 avian influenza virus cannot be transmitted efficiently between ferrets via respiratory droplets. Here, we studied the infectivity of the H7N9 avian influenza virus in chickens and its transmissibility from infected to naïve chickens and ferrets. The H7N9 virus (A/Anhui/1/2013) replicated poorly in chickens and could not be transmitted efficiently from infected chickens to naïve chickens and ferrets. H7N9 virus was shed from chicken tracheae for only 2 days after infection and from chicken cloacae for only 1 day after infection, while the H9N2 avian influenza virus, which is endemic in chickens in many Asian countries, was shed from tracheae and cloacae for 8 days after infection. Taken together, our results suggest that chickens may be a poor agent of transmission for the H7N9 virus to other chickens and to mammals, including humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mitigation strategies to reduce the generation and transmission of airborne highly pathogenic avian influenza virus particles during processing of infected poultry.

    PubMed

    Bertran, Kateri; Clark, Andrew; Swayne, David E

    2018-06-08

    Airborne transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses has occurred among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry, and such transmission has been experimentally reproduced. In this study, we investigated simple, practical changes in the processing of H5N1 virus-infected chickens to reduce infectious airborne particles and their transmission. Our findings suggest that containing the birds during the killing and bleeding first step by using a disposable plastic bag, a commonly available cooking pot widely used in Egypt (halla), or a bucket significantly reduces generation of infectious airborne particles and transmission to ferrets. Similarly, lack of infectious airborne particles was observed when processing vaccinated chickens that had been challenged with HPAI virus. Moreover, the use of a mechanical defeatherer significantly increased total number of particles in the air compared to manual defeathering. This study confirms that simple changes in poultry processing can efficiently mitigate generation of infectious airborne particles and their transmission to humans. Published by Elsevier GmbH.

  6. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap?

    PubMed

    Nikolay, Birgit

    2015-10-01

    Due to the increasing global spread of arboviruses, the geographic extent of virus co-circulation is expanding. This complicates the diagnosis of febrile conditions and can have direct effects on the epidemiology. As previously demonstrated, subsequent infections by two closely related viruses, such as those belonging to the Japanese encephalitis virus (JEV) serocomplex, can lead to partial or complete cross-immunity, altering the risk of infections or the outcome of disease. Two flaviviruses that may interact at population level are West Nile virus (WNV) and Usutu virus (USUV). These pathogens have antigenic cross-reactivity and affect human and animal populations throughout Europe. This systematic review investigates the overlap of WNV and USUV transmission cycles, not only geographically but also in terms of host and vector ranges. Co-circulation of WNV and USUV was reported in 10 countries and the viruses were found to infect 34 common bird species belonging to 11 orders. Moreover, four mosquito species are potential vectors for both viruses. Taken together, these data suggest that WNV and USUV transmission overlaps substantially in Europe and highlight the importance of further studies investigating the interactions between the two viruses within host and vector populations. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe.

    PubMed

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L; Huang, Yan-Jang S; Lounibos, L Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-05-01

    Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous

  8. Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

    PubMed Central

    Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Mousson, Laurence; Vazeille, Marie; Fuchs, Sappho; Yébakima, André; Gustave, Joel; Girod, Romain; Dusfour, Isabelle; Leparc-Goffart, Isabelle; Vanlandingham, Dana L.; Huang, Yan-Jang S.; Lounibos, L. Philip; Mohamed Ali, Souand; Nougairede, Antoine; de Lamballerie, Xavier; Failloux, Anna-Bella

    2015-01-01

    Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae

  9. Hydrologic variability and the dynamics of West Nile virus transmission

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.

    2011-12-01

    West Nile virus (WNV) first emerged in North America in New York City during 1999 and since that time has spread throughout the continent and settled into a pattern of local endemicity in which outbreaks of variable size develop in some years but not others. Predicting where and when these outbreaks will develop is an issue of considerable public health importance. Spillover transmission of WNV to humans typically occurs when infection rates among vector mosquitoes are elevated. Mosquito infection rates are not constant through time but instead increase when newly emergent mosquitoes can more readily acquire WNV by blood-meal feeding on available, infected animal hosts. Such an increase of vector mosquito infection rates is termed amplification and is facilitated for WNV by intense zoonotic transmission of the virus among vector mosquitoes and avian hosts. Theory, observation and model simulations indicate that amplification is favored when mosquito breeding habitats and bird nesting and roosting habitats overlap. Both vector mosquitoes and vertebrate hosts depend on water resources; mosquitoes are critically dependent on the availability of standing water, as the first 3 stages of the mosquito life cycle, egg, larvae, pupae, are aquatic. Here it is shown that hydrologic variability often determines where and when vector mosquitoes and avian hosts congregate together, and when the amplification of WNV is more likely. Measures of land surface wetness and pooling, from ground observation, satellite observation, or numerical modeling, can provide reliable estimates of where and when WNV transmission hotspots will arise. Examples of this linkage between hydrology and WNV activity are given for Florida, Colorado and New York, and an operational system for monitoring and forecasting WNV risk in space and time is presented for Florida.

  10. Long-term transmission of measles virus in Central and continental Western Europe.

    PubMed

    Santibanez, S; Hübschen, J M; Muller, C P; Freymuth, F; Mosquera, M M; Mamou, M Ben; Mulders, M N; Brown, K E; Myers, R; Mankertz, A

    2015-02-01

    The World Health Organization (WHO) has adopted an elimination goal for measles and rubella, which is supposed to be met in the WHO European Region (EUR) by 2015. For verification of elimination, it is required that the genotyping data of detected measles viruses provide evidence for the interruption of endemic transmission. In order to record and assess the extent of endemic measles virus (MV) circulation in a part of the EUR, we analyzed transmission chains of the epidemiologically most relevant MV variants identified in Central and continental Western Europe (CCWE) from 2006 to 2013. Based on MV sequence data deposited in the WHO global database for molecular surveillance of measles (MeaNS), the circulation period was calculated for each MV variant at the country-level and for the entire region of CCWE. The MV variants "D5-Okinawa," "D4-Hamburg," "D4-Manchester," and "D8-Frankfurt-Main" spread widely in CCWE; they caused large and long-lasting outbreaks with secondary spread that resulted in additional outbreaks. Nation-wide outbreaks (epidemics) with thousands of measles cases occurred in four countries (Switzerland, France, Bulgaria, and Romania) and were characterized by continuous detection of the same MV variant for more than 12 months suggesting endemic transmission. In the entire region of CCWE, the circulation period of the four predominant MV variants ranged from 18 to 44 months. The long-lasting MV transmission which affected predominantly unvaccinated individuals in different hard-to-reach groups and in the general population is not consistent with the measles elimination goal. Additional efforts are necessary to meet the elimination target in the EUR.

  11. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance.

    PubMed

    Heinz, F X; Stiasny, K; Holzmann, H; Kundi, M; Sixl, W; Wenk, M; Kainz, W; Essl, A; Kunz, C

    2015-04-02

    Human infections with tick-borne encephalitis (TBE)virus are a public health concern in certain regions of Europe, central and eastern Asia. Expansions of endemic areas and increased incidences have been associated with different factors including ecological changes supporting tick reproduction, socioeconomic changes increasing human outdoor activities and climatic changes favouring virus circulation in natural foci. Austria is among the most strongly affected countries in Central Europe, but the annual number of cases has strongly declined due to vaccination. Here,we have analysed changes of the incidence of TBE in the unvaccinated population of all federal states of Austria over a period of 42 years. The overall incidence in Austria has remained constant, but new strongly affected endemic regions have emerged in alpine valleys in the west of Austria. In parallel, the incidence in low-land regions in the north-east of the country is decreasing. There is no evidence for a shift to higher altitudes of infection sites in the traditional TBE zones,but the average altitudes of some newly established endemic areas in the west are significantly higher. Our analyses underscore the focal nature of TBE endemic areas and the potential of TBE virus to emerge in previously unaffected regions.

  12. Molecular Determinants of Human T-lymphotropic Virus Type 1 Transmission and Spread

    PubMed Central

    Lairmore, Michael D.; Anupam, Rajaneesh; Bowden, Nadine; Haines, Robyn; Haynes, Rashade A. H.; Ratner, Lee; Green, Patrick L.

    2011-01-01

    Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1. PMID:21994774

  13. [Explantation method of isolating a persistent tick-borne encephalitis virus from the organs of infected monkeys].

    PubMed

    Levina, L S; Pogodina, V V

    1981-01-01

    The method of explantation was used to examine 63 organs from M. rhesus monkeys 92-783 days after intracerebral and subcutaneous inoculation with the Vasilchenko, Aina/1448 and 41/65 strains of tick-borne encephalitis virus. The optimal time for examination of the explants by tests of the hemagglutinating, cytopathogenic activity of the virus and its pathogenicity for mice was found to be the 15th day of cultivation. A comparative study of the properties of 3 isolates obtained from explants of the spleen, liver and subcortical cerebral ganglia 202 and 307 days after inoculation of monkeys was carried out. The isolates differed from the parental TBE virus strains by their capacity to form small plaques in PEKV cell cultures (pig embryo kidney cells in versen medium).

  14. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-07-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  15. Detection of infectious haematopoietic necrosis virus in river water and demonstration of waterborne transmission

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    In a study of the possible role of waterborne infectious haematopoietic necrosis virus in transmission of the disease among spawning sockeye salmon, Oncorhynchus nerka (Walbaum), both infection rates and virus titres were higher in fish held at high density in a side channel than in fish in the adjacent river. Virus was never isolated from river water, but was found in water from the side channel at levels ranging from 32.5 to 1600 plaque-forming units (p.f.u.)/ml. Uninfected yearling sockeye salmon held in a box in the side channel developed localized gill infections with IHN virus. The disease did not progress to the viscera until a threshold titre of about 105 p.f.u./g was reached in the gill. The effectiveness of the gill as a barrier limiting development of systemic infections means that waterborne IHN virus probably does not greatly increase the infection rate in a sockeye salmon population during spawning.

  16. Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Pascho, Ronald J.; Jenes, C.K.

    1983-01-01

    In a study of the possible role of waterborne infectious haematopoietic necrosis virus in transmission of the disease among spawning sockeye salmon, Oncorhynchus nerka (Walbaum), both infection rates and virus titres were higher in fish held at high density in a side channel than in fish in the adjacent river. Virus was never isolated from river water, but was found in water from the side channel at levels ranging from 32.5 to 1600 plaque-forming units (p.f.u.)/ml. Uninfected yearling sockeye salmon held in a box in the side channel developed localized gill infections with IHN virus. The disease did not progress to the viscera until a threshold titre of about 105 p.f.u./g was reached in the gill. The effectiveness of the gill as a barrier limiting development of systemic infections means that waterborne IHN virus probably does not greatly increase the infection rate in a sockeye salmon population during spawning.

  17. Molecular evidence of father-to-child transmission of hepatitis B virus.

    PubMed

    Tajiri, Hitoshi; Tanaka, Yasuhito; Kagimoto, Seiiti; Murakami, Jun; Tokuhara, Daisuke; Mizokami, Masashi

    2007-07-01

    At present in Japan, only high-risk infants born to chronic hepatitis B virus (HBV)-infected mothers are given HBV vaccine. However, children can contract the virus from other HBV-infected family members, including fathers. The aim of this study is to present substantial and unequivocal evidence of father-to-child transmission of HBV infection using techniques including homology analysis and phylogenetic analysis. Thirteen chronic HBV-infected members of five families that included eight children and their respective fathers were enrolled in this study. Homology analysis and phylogenetic analyses of 2 coding region, the S gene and X gene, from the HBV genome were performed comparing the 13 nucleotide sequences from the 13 subjects. The nucleotide homology among the five sets of fathers and children was quite high (99.3-100%). A phylogenetic tree constructed on the 13 nucleotide sequences showed that all 5 sets of fathers and children were grouped into the same cluster with high bootstrap values. These results strongly indicate that father-to-child transmission is an important route of HBV infection in Japan and it is recommend that universal vaccination against HBV infection be instituted immediately in Japan for all children, in accordance with the WHO recommendation of 1997.

  18. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission.

    PubMed

    Chen, Yuting; Cassone, Bryan J; Bai, Xiaodong; Redinbaugh, Margaret G; Michel, Andrew P

    2012-01-01

    Leafhoppers (HEmiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.

  19. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    PubMed

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.

  20. The NSs Protein of Tomato spotted wilt virus Is Required for Persistent Infection and Transmission by Frankliniella occidentalis

    PubMed Central

    Margaria, P.; Bosco, L.; Vallino, M.; Ciuffo, M.; Mautino, G. C.; Tavella, L.

    2014-01-01

    ABSTRACT Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. IMPORTANCE Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches. PMID:24623427

  1. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant.

    PubMed Central

    Marks, P. J.; Vipond, I. B.; Carlisle, D.; Deakin, D.; Fey, R. E.; Caul, E. O.

    2000-01-01

    An outbreak of gastroenteritis followed a meal in a large hotel during which one of the diners vomited. The clinical features of the illness suggested Norwalk-like virus (NLV, small round structured virus) infection, and this was confirmed by electron microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) of stool samples. Further characterization of the virus by nucleotide sequence analysis of the PCR amplicons revealed identical strains in all the affected individuals. The foods served at the meal could not be demonstrated to be the cause of the outbreak. Analysis of attack rates by dining table showed an inverse relationship with the distance from the person who vomited. No one eating in a separate restaurant reported illness. Transmission from person-to-person or direct contamination of food seems unlikely in this outbreak. However, the findings are consistent with airborne spread of NLV with infection by inhalation with subsequent ingestion of virus particles. PMID:10982072

  2. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant.

    PubMed

    Marks, P J; Vipond, I B; Carlisle, D; Deakin, D; Fey, R E; Caul, E O

    2000-06-01

    An outbreak of gastroenteritis followed a meal in a large hotel during which one of the diners vomited. The clinical features of the illness suggested Norwalk-like virus (NLV, small round structured virus) infection, and this was confirmed by electron microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) of stool samples. Further characterization of the virus by nucleotide sequence analysis of the PCR amplicons revealed identical strains in all the affected individuals. The foods served at the meal could not be demonstrated to be the cause of the outbreak. Analysis of attack rates by dining table showed an inverse relationship with the distance from the person who vomited. No one eating in a separate restaurant reported illness. Transmission from person-to-person or direct contamination of food seems unlikely in this outbreak. However, the findings are consistent with airborne spread of NLV with infection by inhalation with subsequent ingestion of virus particles.

  3. Chapter 4. Recent epidemiology of tick-borne encephalitis an effect of climate change?

    PubMed

    Korenberg, E I

    2009-01-01

    Consideration is given to the opinion of some specialists that the rise in tick-borne encephalitis (TBE) morbidity at the turn of the century has been accounted for by new features of TBE epidemiology as well as by global climate change. It is shown that neither the reputed current expansion of the ranges of main TBE vectors, the taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks, nor the significant rise of their abundance and TBE virus prevalence in them are confirmed by any objective data. The concept of recent tick expansion to large cities and human TBE infection in newly formed urban foci disagrees with the facts repeatedly described during the past four decades. There is no reliable information on the expansion of TBE nosological range. The influence of newly formed anthropurgic foci and of changes in the contribution of city dwellers to the general morbidity structure on the current epidemiological situation is estimated. As in the case of any other zoonosis with natural focality, the level of epidemiological manifestation of TBE foci is determined by two main parameters: the intensity of virus circulation in the foci (i.e., their loimopotential) and the frequency of human contact with them. Attention is paid to the character of interaction between these two factors, which accounted for a major outbreak of TBE morbidity at the end of the twentieth century, followed by a long-term decrease in its level.

  4. Tick Saliva Enhances Powassan Virus Transmission to the Host, Influencing Its Dissemination and the Course of Disease

    PubMed Central

    Hermance, Meghan E.

    2015-01-01

    ABSTRACT Powassan virus (POWV) is an encephalitic tick-borne flavivirus which can result in serious neuroinvasive disease with up to a 10% case fatality rate. The study objective was to determine whether the salivary gland extract (SGE) from Ixodes scapularis ticks facilitates the transmission and dissemination of POWV in a process known as saliva-activated transmission. Groups of BALB/c mice were footpad inoculated with either a high dose of POWV with and without SGE or a low dose of POWV with and without SGE. Mice from each group were sacrificed daily. Organ viral loads and gene expression profiles were evaluated by quantitative real-time PCR. Both groups of mice infected with high-dose POWV showed severe neurological signs of disease preceding death. The presence of SGE did not affect POWV transmission or disease outcome for mice infected with the high dose of POWV. Neuroinvasion, paralysis, and death occurred for all mice infected with the low dose of POWV plus SGE; however, for mice infected with the low dose of POWV in the absence of SGE, there were no clinical signs of infection and no mice succumbed to disease. Although this group displayed low-level viremias, all mice were completely healthy, and it was the only group in which POWV was cleared from the lymph nodes. We conclude that saliva-activated transmission occurs in mice infected with a low dose of POWV. Our study is the first to demonstrate virus dose-dependent saliva-activated transmission, warranting further investigation of the specific salivary factors responsible for enhancing POWV transmission. IMPORTANCE Powassan virus (POWV) is a tick-borne flavivirus that continues to emerge in the United States, as is evident by the surge in number and expanding geographic range of confirmed cases in the past decade. This neuroinvasive virus is transmitted to humans by infected tick bites. Successful tick feeding is facilitated by a collection of pharmacologically active factors in tick saliva. In a process

  5. Tick Saliva Enhances Powassan Virus Transmission to the Host, Influencing Its Dissemination and the Course of Disease.

    PubMed

    Hermance, Meghan E; Thangamani, Saravanan

    2015-08-01

    Powassan virus (POWV) is an encephalitic tick-borne flavivirus which can result in serious neuroinvasive disease with up to a 10% case fatality rate. The study objective was to determine whether the salivary gland extract (SGE) from Ixodes scapularis ticks facilitates the transmission and dissemination of POWV in a process known as saliva-activated transmission. Groups of BALB/c mice were footpad inoculated with either a high dose of POWV with and without SGE or a low dose of POWV with and without SGE. Mice from each group were sacrificed daily. Organ viral loads and gene expression profiles were evaluated by quantitative real-time PCR. Both groups of mice infected with high-dose POWV showed severe neurological signs of disease preceding death. The presence of SGE did not affect POWV transmission or disease outcome for mice infected with the high dose of POWV. Neuroinvasion, paralysis, and death occurred for all mice infected with the low dose of POWV plus SGE; however, for mice infected with the low dose of POWV in the absence of SGE, there were no clinical signs of infection and no mice succumbed to disease. Although this group displayed low-level viremias, all mice were completely healthy, and it was the only group in which POWV was cleared from the lymph nodes. We conclude that saliva-activated transmission occurs in mice infected with a low dose of POWV. Our study is the first to demonstrate virus dose-dependent saliva-activated transmission, warranting further investigation of the specific salivary factors responsible for enhancing POWV transmission. Powassan virus (POWV) is a tick-borne flavivirus that continues to emerge in the United States, as is evident by the surge in number and expanding geographic range of confirmed cases in the past decade. This neuroinvasive virus is transmitted to humans by infected tick bites. Successful tick feeding is facilitated by a collection of pharmacologically active factors in tick saliva. In a process known as saliva

  6. The increased concentration of macrophage migration inhibitory factor in serum and cerebrospinal fluid of patients with tick-borne encephalitis.

    PubMed

    Grygorczuk, Sambor; Parczewski, Miłosz; Świerzbińska, Renata; Czupryna, Piotr; Moniuszko, Anna; Dunaj, Justyna; Kondrusik, Maciej; Pancewicz, Sławomir

    2017-06-24

    Host factors determining the clinical presentation of tick-borne encephalitis (TBE) are not fully elucidated. The peripheral inflammatory response to TBE virus is hypothesized to facilitate its entry into central nervous system by disrupting the blood-brain barrier with the involvement of a signaling route including Toll-like receptor 3 (TLR3) and pro-inflammatory cytokines macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNFα), and interleukin-1 beta (IL-1β). Concentrations of MIF, TNFα, and IL-1β were measured with commercial ELISA in serum and cerebrospinal fluid (CSF) from 36 hospitalized TBE patients, 7 patients with non-TBE meningitis, and 6 controls. The CSF albumin quotient (AQ) was used as a marker of blood-brain barrier permeability. Single nucleotide polymorphisms rs3775291, rs5743305 (associated with TLR3 expression), and rs755622 (associated with MIF expression) were assessed in blood samples from 108 TBE patients and 72 non-TBE controls. The data were analyzed with non-parametric tests, and p < 0.05 was considered significant. The median serum and CSF concentrations of MIF and IL-1β were significantly increased in TBE group compared to controls. MIF concentration in serum tended to correlate with AQ in TBE, but not in non-TBE meningitis. The serum concentration of TNFα was increased in TBE patients bearing a high-expression TLR3 rs5743305 TT genotype, which also associated with the increased risk of TBE. The low-expression rs3775291 TLR3 genotype TT associated with a prolonged increase of CSF protein concentration. The high-expression MIF rs755622 genotype CC tended to correlate with an increased risk of TBE, and within TBE group, it was associated with a mild presentation. The results point to the signaling route involving TLR3, MIF, and TNFα being active in TBE virus infection and contributing to the risk of an overt neuroinvasive disease. The same factors may play a protective role intrathecally contributing to the

  7. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  8. [Mechanisms of viral emergence and interspecies transmission: the exemple of simian foamy viruses in Central Africa].

    PubMed

    Gessain, Antoine

    2013-12-01

    A large proportion of viral pathogens that have emerged during the last decades in humans are considered to have originated from various animal species. This is well exemplified by several recent epidemics such as those of Nipah, Severe Acute Respiratory Syndrome, Avian flu, Ebola, Monkeypox, and Hantaviruses. After the initial interspecies transmission per se, the viruses can disseminate into the human population through various and distinct mechanisms. Some of them are well characterized and understood, thus allowing a certain level of risk control and prevention. Surprisingly and in contrast, the initial steps that lead to the emergence of several viruses, and of their associated diseases, remain still poorly understood. Epidemiological field studies conducted in certain specific high-risk populations are thus necessary to obtain new insights into the early events of this emergence process. Human infections by simian viruses represent increasing public health concerns. Indeed, by virtue of their genetic andphysiological similarities, non-human primates (NHPs) are considered to be likely the sources of viruses that can infect humans and thus may pose a significant threat to human population. This is well illustrated by retroviruses, which have the ability to cross species, adapt to a new host and sometimes spread within these new species. Sequence comparison and phylogenetic studies have thus clearly showed that the emergence of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in humans have resulted from several independent interspecies transmissions of different SIV types from Chimpanzees and African monkeys (including sooty mangabeys), respectively, probably during the first part of the last century. The situation for Human T cell Lymphotropic virus type 1 (HTLV-1) is, for certain aspects, quite comparable. Indeed, the origin of most HTLV-1 subtypes appears to be linked to interspecies transmission between STLV-1-infected monkeys and humans, followed by

  9. Genetic insights into Graminella nigrifrons Competence for maize fine streak virus infection and transmission.

    PubMed

    Cassone, Bryan J; Cisneros Carter, Fiorella M; Michel, Andrew P; Stewart, Lucy R; Redinbaugh, Margaret G

    2014-01-01

    Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process.

  10. Genetic Insights into Graminella nigrifrons Competence for Maize fine streak virus Infection and Transmission

    PubMed Central

    Michel, Andrew P.; Stewart, Lucy R.; Redinbaugh, Margaret G.

    2014-01-01

    Background Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. Methodology RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. Results/Significance Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process. PMID:25420026

  11. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions.

    PubMed

    Guinat, Claire; Gogin, Andrey; Blome, Sandra; Keil, Guenther; Pollin, Reiko; Pfeiffer, Dirk U; Dixon, Linda

    2016-03-12

    African swine fever (ASF) is a major threat to the pig industry in Europe. Since 2007, ASF outbreaks have been ongoing in the Caucasus, Eastern Europe and the Baltic countries, causing severe economic losses for many pig farmers and pork producers. In addition, the number of ASF cases in wild boar populations has dramatically increased over the past few years. Evidence supports direct contact with infectious domestic pigs and wild boars, and consumption of contaminated feed, as the main transmission routes of ASF virus (ASFV) to domestic pigs. However, significant knowledge gaps highlight the urgent need for research to investigate the dynamics of indirect transmission via the environment, the minimal infective doses for contaminated feed ingestion, the probability of effective contacts between infectious wild boars and domestic pigs, the potential for recovered animals to become carriers and a reservoir for transmission, the potential virus persistence within wild boar populations and the influence of human behaviour for the spread of ASFV. This will provide an improved scientific basis to optimise current interventions and develop new tools and strategies to reduce the risk of ASFV transmission to domestic pigs. British Veterinary Association.

  12. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions

    PubMed Central

    Guinat, Claire; Gogin, Andrey; Blome, Sandra; Keil, Guenther; Pollin, Reiko; Pfeiffer, Dirk U.; Dixon, Linda

    2016-01-01

    African swine fever (ASF) is a major threat to the pig industry in Europe. Since 2007, ASF outbreaks have been ongoing in the Caucasus, Eastern Europe and the Baltic countries, causing severe economic losses for many pig farmers and pork producers. In addition, the number of ASF cases in wild boar populations has dramatically increased over the past few years. Evidence supports direct contact with infectious domestic pigs and wild boars, and consumption of contaminated feed, as the main transmission routes of ASF virus (ASFV) to domestic pigs. However, significant knowledge gaps highlight the urgent need for research to investigate the dynamics of indirect transmission via the environment, the minimal infective doses for contaminated feed ingestion, the probability of effective contacts between infectious wild boars and domestic pigs, the potential for recovered animals to become carriers and a reservoir for transmission, the potential virus persistence within wild boar populations and the influence of human behaviour for the spread of ASFV. This will provide an improved scientific basis to optimise current interventions and develop new tools and strategies to reduce the risk of ASFV transmission to domestic pigs. PMID:26966305

  13. Variability in Intrahousehold Transmission of Ebola Virus, and Estimation of the Household Secondary Attack Rate.

    PubMed

    Glynn, Judith R; Bower, Hilary; Johnson, Sembia; Turay, Cecilia; Sesay, Daniel; Mansaray, Saidu H; Kamara, Osman; Kamara, Alie Joshua; Bangura, Mohammed S; Checchi, Francesco

    2018-01-04

    Transmission between family members accounts for most Ebola virus transmission, but little is known about determinants of intrahousehold spread. From detailed exposure histories, intrahousehold transmission chains were created for 94 households of Ebola survivors in Sierra Leone: 109 (co-)primary cases gave rise to 317 subsequent cases (0-100% of those exposed). Larger households were more likely to have subsequent cases, and the proportion of household members affected depended on individual and household-level factors. More transmissions occurred from older than from younger cases, and from those with more severe disease. The estimated household secondary attack rate was 18%. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  15. A novel role for APOBEC3: Susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS) is aggravated in APOBEC3 deficient mice

    PubMed Central

    2012-01-01

    Background APOBEC3 proteins are host factors that restrict infection by retroviruses like HIV, MMTV, and MLV and are variably expressed in hematopoietic and non-hematopoietic cells, such as macrophages, lymphocytes, dendritic, and epithelia cells. Previously, we showed that APOBEC3 expressed in mammary epithelia cells function to limit milk-borne transmission of the beta-retrovirus, mouse mammary tumor virus. In this present study, we used APOBEC3 knockout mice and their wild type counterpart to query the role of APOBEC3 in sexual transmission of LP-BM5 MLV – the etiological agent of murine AIDs (mAIDs). Results We show that mouse APOBEC3 is expressed in murine genital tract tissues and gametes and that genital tract tissue of APOBEC3-deficient mice are more susceptible to infection by LP-BM5 virus. APOBEC3 expressed in genital tract tissues most likely plays a role in decreasing virus transmission via the sexual route, since mice deficient in APOBEC3 gene have higher genitalia and seminal plasma virus load and sexually transmit the virus more efficiently to their partners compared to APOBEC3+ mice. Moreover, we show that female mice sexually infected with LP-BM5 virus transmit the virus to their off-spring in APOBEC3-dependent manner. Conclusion Our data indicate that genital tissue intrinsic APOBEC3 restricts genital tract infection and limits sexual transmission of LP-BM5 virus. PMID:22691411

  16. Frequent global transmission of H1N1pdm09 influenza viruses from humans to swine, 2009-2011

    USDA-ARS?s Scientific Manuscript database

    Using a large-scale phylogenetic approach we identify at least 52 human-to-swine transmission events of pandemic A/H1N1/09 influenza virus. These results highlight the global frequency of swine exposure to human influenza viruses and the permeability of the human-swine species barrier, even followin...

  17. [Role of the poultry red mite (Dermanyssus gallinae) in the transmission of avian influenza A virus].

    PubMed

    Sommer, D; Heffels-Redmann, U; Köhler, K; Lierz, M; Kaleta, E F

    2016-01-01

    The aim of this study was to investigate the role of the poultry red mite (Dermanyssus [D.] gallinae) in the horizontal transmission of avian influenza A virus (AIV) to chickens. This mite is the most common ectoparasite in poultry worldwide, and may play a role in the spread of infectious agents including AIV. Currently, the control of mites is difficult due to frequently developed resistance to many acaricides, their nocturnality and their ability to survive hidden without feeding for months. D. gallinae were collected in a commercial layer farm and housed in self-made fibreboard boxes. SPF chickens were intravenously infected with AIV strain A/turkey/Ontario/7732/1966 (H5N9). The viraemia in chickens was monitored and at an appropriate time point about 1000 mites were allowed to suck on the AIV infected chickens. Re-isolation of the virus from blood-filled mites was tried daily for 14 days using chicken embryo fibroblast cultures and embryonated chicken eggs. Subsequently, the virus containing mites were placed into boxes that contained naïve SPF chickens to enable virus transmission from mites to chickens. Possible transmission to the chickens was examined using clinical signs, serology, gross lesions, histopathology and immunohistochemistry. Chickens developed a dose-dependent viraemia one day after infection, therefore this day was chosen for the bloodmeal of the mites. AIV was detected in mites after bloodsucking on AIV-infected chickens over a 10-day period. Naïve SPF chickens were infected during bloodsucking of AIV carrying mites. AIV isolates in mites and in chickens were undistinguishable from the original AIV inoculum by RT-PCR. D. gallinae ingested AIV during bloodmeals on AIV infected chickens and are able to transmit AIV to SPF chickens. Therefore, mites serve as mechanical vector of AIV and may play a major role in the circulation of AIV within a facility or area although the life span of infectious virus in the mite is limited. The proven

  18. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  19. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model

    PubMed Central

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M.; Collin, Emily A.; Knudsen, David E. B.; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S.

    2015-01-01

    ABSTRACT Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. IMPORTANCE Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts

  20. Experimental transmission of Zika virus by mosquitoes from central Europe.

    PubMed

    Heitmann, Anna; Jansen, Stephanie; Lühken, Renke; Leggewie, Mayke; Badusche, Marlis; Pluskota, Björn; Becker, Norbert; Vapalahti, Olli; Schmidt-Chanasit, Jonas; Tannich, Egbert

    2017-01-12

    Mosquitoes collected in Germany in 2016, including Culex pipiens pipiens biotype pipiens, Culex torrentium and Aedes albopictus, as well as Culex pipiens pipiens biotype molestus (in colony since 2011) were experimentally infected with Zika virus (ZIKV) at 18 °C or 27 °C. None of the Culex taxa showed vector competence for ZIKV. In contrast, Aedes albopictus were susceptible for ZIKV but only at 27 °C, with transmission rates similar to an Aedes aegypti laboratory colony tested in parallel. This article is copyright of The Authors, 2017.

  1. BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Liesl K.; Madden, Vicki; Webster-Cyriaque, Jennifer, E-mail: jennifer@med.unc.ed

    Background: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. Results: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BKmore » virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. Conclusion: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.« less

  2. Genetics, Receptor Binding, Replication, and Mammalian Transmission of H4 Avian Influenza Viruses Isolated from Live Poultry Markets in China

    PubMed Central

    Liang, Libin; Deng, Guohua; Shi, Jianzhong; Wang, Shuai; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Guan, Yuntao; Suzuki, Yasuo; Li, Yanbing; Jiang, Yongping; Tian, Guobin; Liu, Liling

    2015-01-01

    ABSTRACT H4 avian influenza virus (AIV) is one of the most prevalent influenza virus subtypes in the world. However, whether H4 AIVs pose a threat to public health remains largely unclear. Here, we analyzed the phylogenetic relationships, receptor binding properties, replication, and transmissibility in mammals of H4 AIVs isolated from live poultry markets in China between 2009 and 2012. Genomic sequence analysis of 36 representative H4 viruses revealed 32 different genotypes, indicating that these viruses are undergoing complex and frequent reassortment events. All 32 viruses tested could replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that the H4 AIVs bound to α-2,6-linked glycans, although they retained the binding preference for α-2,3-linked glycans. When we tested the direct-contact transmission of 10 H4 viruses in guinea pigs, we found that three viruses did not transmit to any of the contact animals, one virus transmitted to one of three contact animals, and six viruses transmitted to all three contact animals. When we further tested the respiratory droplet transmissibility of four of the viruses that transmitted efficiently via direct contact, we found that three of them could transmit to one or two of the five exposed animals. Our study demonstrates that the current circulating H4 AIVs can infect, replicate in, and transmit to mammalian hosts, thereby posing a potential threat to human health. These findings emphasize the continual need for enhanced surveillance of H4 AIVs. IMPORTANCE Numerous surveillance studies have documented the wide distribution of H4 AIVs throughout the world, yet the biological properties of H4 viruses have not been well studied. In this study, we found that multiple genotypes of H4 viruses are cocirculating in the live poultry markets of China and that H4 viruses can replicate in mice, possess human-type receptor binding specificity, and transmit between

  3. A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication.

    PubMed

    Tang, William Weihao; Young, Matthew Perry; Mamidi, Anila; Regla-Nava, Jose Angel; Kim, Kenneth; Shresta, Sujan

    2016-12-20

    Case reports of Zika virus (ZIKV) sexual transmission and genital persistence are mounting. Venereal transmission and genital persistence threaten public health within and beyond the range of ZIKV's mosquito vectors. In this study, we administered ZIKV into the vaginas of AG129 mice and LysMCre + IFNAR fl/fl C57BL/6 mice after hormonal treatments. Mice infected during estrus-like phase were resistant to vaginal infection. In contrast, when infected during diestrus-like phase, AG129 mice succumbed to infection, whereas LysMCre + IFNAR fl/fl mice experienced transient illness. Patency of transgenital transmission (TGT) in diestrus-like mice was demonstrated by detection of viremia and ZIKV replication in spleen and brain, and viral RNA persisted in vaginal washes as late as 10 days post-infection. In these lethal and sublethal mouse models, this study indicates that intravaginal deposition of ZIKV can cause TGT, hormonal changes in the female reproductive tract (FRT) influence transmission, and ZIKV replication persists in the FRT for several days. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus

    PubMed Central

    Tamborindeguy, Cecilia; Bereman, Michael S.; DeBlasio, Stacy; Igwe, David; Smith, Dawn M.; White, Frank; MacCoss, Michael J.; Gray, Stewart M.; Cilia, Michelle

    2013-01-01

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S . graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport

  5. Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma

    PubMed Central

    Kumar, Amit; Smith, Claire E. P.; Giorgi, Elena E.; Martinez, David R.; Yusim, Karina; Stamper, Lisa; McGuire, Erin; Montefiori, David C.

    2018-01-01

    Despite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant’s infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood. In this study, we amplified HIV-1 env genes by single genome amplification from 16 mother-infant transmitting pairs from the U.S. pre-antiretroviral era Women Infant Transmission Study (WITS). Infant T/F and representative maternal non-transmitted Env variants from plasma were identified and used to generate pseudoviruses for paired maternal plasma neutralization sensitivity analysis. Eighteen out of 21 (85%) infant T/F Env pseudoviruses were neutralization resistant to paired maternal plasma. Yet, all infant T/F viruses were neutralization sensitive to a panel of HIV-1 broadly neutralizing antibodies and variably sensitive to heterologous plasma neutralizing antibodies. Also, these infant T/F pseudoviruses were overall more neutralization resistant to paired maternal plasma in comparison to pseudoviruses from maternal non-transmitted variants (p = 0.012). Altogether, our findings suggest that autologous neutralization of circulating viruses by maternal plasma antibodies select for neutralization-resistant viruses that initiate peripartum transmission, raising the speculation that enhancement of this response at the end of pregnancy could further reduce infant HIV-1 infection risk. PMID:29672607

  6. Transcriptome of the Plant Virus Vector Graminella nigrifrons, and the Molecular Interactions of Maize fine streak rhabdovirus Transmission

    PubMed Central

    Chen, Yuting; Cassone, Bryan J.; Bai, Xiaodong; Redinbaugh, Margaret G.; Michel, Andrew P.

    2012-01-01

    Background Leafhoppers (Hemiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. Results RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP – SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Conclusions Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence. PMID:22808205

  7. West Nile virus transmission: results from the integrated surveillance system in Italy, 2008 to 2015.

    PubMed

    Rizzo, Caterina; Napoli, Christian; Venturi, Giulietta; Pupella, Simonetta; Lombardini, Letizia; Calistri, Paolo; Monaco, Federica; Cagarelli, Roberto; Angelini, Paola; Bellini, Romeo; Tamba, Marco; Piatti, Alessandra; Russo, Francesca; Palù, Giorgio; Chiari, Mario; Lavazza, Antonio; Bella, Antonino

    2016-09-15

    In Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control. This article is copyright of The Authors, 2016.

  8. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Jialing, E-mail: hjialing@mail.med.upenn.edu; Lazear, Helen M., E-mail: Hlazear@DOM.wustl.edu; Friedman, Harvey M., E-mail: hfriedma@mail.med.upenn.ed

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infectedmore » with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.« less

  9. Ebola virus disease in Africa: epidemiology and nosocomial transmission.

    PubMed

    Shears, P; O'Dempsey, T J D

    2015-05-01

    The 2014 Ebola outbreak in West Africa, primarily affecting Guinea, Sierra Leone, and Liberia, has exceeded all previous Ebola outbreaks in the number of cases and in international response. There have been 20 significant outbreaks of Ebola virus disease in Sub-Saharan Africa prior to the 2014 outbreak, the largest being that in Uganda in 2000, with 425 cases and a mortality of 53%. Since the first outbreaks in Sudan and Zaire in 1976, transmission within health facilities has been of major concern, affecting healthcare workers and acting as amplifiers of spread into the community. The lack of resources for infection control and personal protective equipment are the main reasons for nosocomial transmission. Local strategies to improve infection control, and a greater understanding of local community views on the disease, have helped to bring outbreaks under control. Recommendations from previous outbreaks include improved disease surveillance to enable more rapid health responses, the wider availability of personal protective equipment, and greater international preparedness. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia

    PubMed Central

    Tokarevich, Nikolay K.; Tronin, Andrey A.; Blinova, Olga V.; Buzinov, Roman V.; Boltenkov, Vitaliy P.; Yurasova, Elena D.; Nurse, Jo

    2011-01-01

    Background The increase in tick-borne encephalitis (TBE) incidence is observed in recent decades in a number of subarctic countries. The reasons of it are widely discussed in scientific publications. The objective of this study was to understand if the climate change in Arkhangelsk Oblast (AO) situated in the north of European subarctic zone of Russia has real impact on the northward expansion of Ixodid ticks and stipulates the increase in TBE incidence. Methods This study analyzes: TBE incidence in AO and throughout Russia, the results of Ixodid ticks collecting in a number of sites in AO, and TBE virus prevalence in those ticks, the data on tick bite incidence in AO, and meteorological data on AO mean annual air temperatures and precipitations. Results It is established that in recent years TBE incidence in AO tended to increase contrary to its apparent decrease nationwide. In last 10 years, there was nearly 50-fold rise in TBE incidence in AO when compared with 1980–1989. Probably, the increase both in mean annual air temperatures and temperatures during tick active season resulted in the northward expansion of Ixodes Persulcatus, main TBE virus vector. The Ixodid ticks expansion is confirmed both by the results of ticks flagging from the surface vegetation and by the tick bite incidence in the population of AO locations earlier free from ticks. Our mathematical (correlation and regression) analysis of available data revealed a distinct correlation between TBE incidence and the growth of mean annual air temperatures in AO in 1990–2009. Conclusion Not ruling out other factors, we conclude that climate change contributed much to the TBE incidence increase in AO. PMID:22028678

  11. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia.

    PubMed

    Shchuchinova, L D; Kozlova, I V; Zlobin, V I

    2015-04-01

    The Altai Republic is a highly endemic area as far as tick-borne encephalitis (TBE) is concerned. The aim of the research was to study the effect of altitude on the risk of tick-borne encephalitis infection in the Altai Republic. The paper analyzes the following data: the study of ixodid ticks collected from the vegetation in 116 sites at the 200-2383m elevation above sea level in 2012-2014, TBE virus prevalence of these vectors, tick-bite incidence rate, and TBE incidence rate of the population. Species identification of 4503 specimens has shown that the most common species are Dermacentor nuttalli (45.3%), Ixodes persulcatus (33.1%), Dermacentor silvarum (9.4%), Dermacentor reticulatus (8.9%), and Haemaphysalis concinna (5.0%). A total of 2997 adult ixodid ticks were studied for the presence of the TBE virus; 2163 samples were examined by ELISA, while 834 specimens were tested by PCR. The TBE virus prevalence of Dermacentor spp. ticks in both reactions was significantly higher than of Ixodes persulcatus ticks (p<0.001). The work shows that the altitude is an important factor in the development of the epidemiological situation of tick-borne encephalitis: the higher the elevation of the area above sea level, the smaller the range of vectors. There is also a change of a leading species: in middle altitude (800-1700m above sea level) the virus is transmitted by ticks of D. nuttalli along with I. persulcatus, and in high mountains (above 1700m above sea level) D. nuttalli becomes an absolute dominant species. However, these species of ticks are less effective vectors than I. persulcatus. With the increase of altitude the tick-bite incidence rate decreases (r=-0.78, p<0.05), and TBE incidence also reduces (r=-0.67, p<0.05). Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Diverse Contexts of Zoonotic Transmission of Simian Foamy Viruses in Asia

    PubMed Central

    May, Cynthia C.; Engel, Gregory A.; Steinkraus, Katherine A.; Schillaci, Michael A.; Fuentes, Agustin; Rompis, Aida; Chalise, Mukesh K.; Aggimarangsee, Nantiya; Feeroz, Mohammed M.; Grant, Richard; Allan, Jonathan S.; Putra, Arta; Wandia, I. Nengah; Watanabe, Robin; Kuller, LaRene; Thongsawat, Satawat; Chaiwarith, Romanee; Kyes, Randall C.; Linial, Maxine L.

    2008-01-01

    In Asia, contact between persons and nonhuman primates is widespread in multiple occupational and nonoccupational contexts. Simian foamy viruses (SFVs) are retroviruses that are prevalent in all species of nonhuman primates. To determine SFV prevalence in humans, we tested 305 persons who lived or worked around nonhuman primates in several South and Southeast Asian countries; 8 (2.6%) were confirmed SFV positive by Western blot and, for some, by PCR. The interspecies interactions that likely resulted in virus transmission were diverse; 5 macaque taxa were implicated as a potential source of infection. Phylogenetic analysis showed that SFV from 3 infected persons was similar to that from the nonhuman primate populations with which the infected persons reported contact. Thus, SFV infections are likely to be prevalent among persons who live or work near nonhuman primates in Asia. PMID:18680642

  13. Human immunodeficiency virus type 1 mother-to-child transmission and prevention: successes and controversies.

    PubMed

    Cavarelli, M; Scarlatti, G

    2011-12-01

    The World Health Organization (WHO) and United Nations Programme on HIV/AIDS (UNAIDS) estimated that an additional 370 000 new human immunodeficiency virus type 1 (HIV-1) infections occurred in children in 2009, mainly through mother-to-child transmission (MTCT). Intrapartum transmission contributes to approximately 20-25% of infections, in utero transmission to 5-10% and postnatal transmission to an additional 10-15% of cases. MTCT accounts for only a few hundred infected newborns in those countries in which services are established for voluntary counselling and testing of pregnant women, and a supply of antiretroviral drugs is available throughout pregnancy with recommendations for elective Caesarean section and avoidance of breastfeeding. The single-dose nevirapine regimen has provided the momentum to initiate MTCT programmes in many resource-limited countries; however, regimens using a combination of antiretroviral drugs are needed also to effectively reduce transmission via breastfeeding. 2011 The Association for the Publication of the Journal of Internal Medicine.

  14. Estimation of hepatitis C virus infections resulting from vertical transmission in Egypt.

    PubMed

    Benova, Lenka; Awad, Susanne F; Miller, F DeWolfe; Abu-Raddad, Laith J

    2015-03-01

    Despite having the highest hepatitis C virus (HCV) prevalence in the world, the ongoing level of HCV incidence in Egypt and its drivers are poorly understood. Whereas HCV mother-to-child infection is a well-established transmission route, there are no estimates of HCV infections resulting from vertical transmission for any country, including Egypt. The aim of this study was to estimate the absolute number of new HCV infections resulting from vertical transmission in Egypt. We developed a conceptual framework of HCV vertical transmission, expressed in terms of a mathematical model and based on maternal HCV antibody and viremia. The mathematical model estimated the number of HCV vertical infections nationally and for six subnational areas. Applying two vertical transmission risk estimates to the 2008 Egyptian birth cohort, we estimated that between 3,080 and 5,167 HCV infections resulted from vertical transmission among children born in 2008. HCV vertical transmission may account for half of incident cases in the <5-year age group. Disproportionately higher proportions of vertical infections were estimated in Lower Rural and Upper Rural subnational areas. This geographical clustering was a result of higher-area-level HCV prevalence among women and higher fertility rates. Vertical transmission is one of the primary HCV infection routes among children<5 years in Egypt. The absolute number of vertical transmissions and the young age at infection highlight a public health concern. These findings also emphasize the need to quantify the relative contributions of other transmission routes to HCV incidence in Egypt. © 2014 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  15. Super-spreaders and the rate of transmission of the SARS virus

    NASA Astrophysics Data System (ADS)

    Small, Michael; Tse, C. K.; Walker, David M.

    2006-03-01

    We describe a stochastic small-world network model of transmission of the SARS virus. Unlike the standard Susceptible-Infected-Removed models of disease transmission, our model exhibits both geographically localised outbreaks and “super-spreaders”. Moreover, the combination of localised and long range links allows for more accurate modelling of partial isolation and various public health policies. From this model, we derive an expression for the probability of a widespread outbreak and a condition to ensure that the epidemic is controlled. Moreover, multiple simulations are used to make predictions of the likelihood of various eventual scenarios for fixed initial conditions. The main conclusions of this study are: (i) “super-spreaders” may occur even if the infectiousness of all infected individuals is constant; (ii) consistent with previous reports, extended exposure time beyond 3-5 days (i.e. significant nosocomial transmission) was the key factor in the severity of the SARS outbreak in Hong Kong; and, (iii) the spread of SARS can be effectively controlled by either limiting long range links (imposing a partial quarantine) or enforcing rapid hospitalisation and isolation of symptomatic individuals.

  16. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  17. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets.

    PubMed

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2016-07-15

    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007

    PubMed Central

    Cottam, Eleanor M.; Wadsworth, Jemma; Shaw, Andrew E.; Rowlands, Rebecca J.; Goatley, Lynnette; Maan, Sushila; Maan, Narender S.; Mertens, Peter P. C.; Ebert, Katja; Li, Yanmin; Ryan, Eoin D.; Juleff, Nicholas; Ferris, Nigel P.; Wilesmith, John W.; Haydon, Daniel T.; King, Donald P.; Paton, David J.; Knowles, Nick J.

    2008-01-01

    Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O1 BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes. PMID:18421380

  19. Projected Zika Virus Importation and Subsequent Ongoing Transmission after Travel to the 2016 Olympic and Paralympic Games - Country-Specific Assessment, July 2016.

    PubMed

    Grills, Ardath; Morrison, Stephanie; Nelson, Bradley; Miniota, Jennifer; Watts, Alexander; Cetron, Martin S

    2016-07-22

    Zika virus belongs to the genus Flavivirus of the family Flaviviridae; it is transmitted to humans primarily through the bite of an infected Aedes species mosquito (e.g., Ae. aegypti and Ae. albopictus) (1). Zika virus has been identified as a cause of congenital microcephaly and other serious brain defects (2). As of June 30, 2016, CDC had issued travel notices for 49 countries and U.S. territories across much of the Western hemisphere (3), including Brazil, where the 2016 Olympic and Paralympic Games (Games of the XXXI Olympiad, also known as Rio 2016; Games) will be hosted in Rio de Janeiro in August and September 2016. During the Games, mosquito-borne Zika virus transmission is expected to be low because August and September are winter months in Brazil, when cooler and drier weather typically reduces mosquito populations (4). CDC conducted a risk assessment to predict those countries susceptible to ongoing Zika virus transmission resulting from introduction by a single traveler to the Games. Whereas all countries are at risk for travel-associated importation of Zika virus, CDC estimated that 19 countries currently not reporting Zika outbreaks have the environmental conditions and population susceptibility to sustain mosquito-borne transmission of Zika virus if a case were imported from infection at the Games. For 15 of these 19 countries, travel to Rio de Janeiro during the Games is not estimated to increase substantially the level of risk above that incurred by the usual aviation travel baseline for these countries. The remaining four countries, Chad, Djibouti, Eritrea, and Yemen, are unique in that they do not have a substantial number of travelers to any country with local Zika virus transmission, except for anticipated travel to the Games. These four countries will be represented by a projected, combined total of 19 athletes (plus a projected delegation of about 60 persons), a tiny fraction of the 350,000-500,000 visitors expected at the Games.* Overall

  20. Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence

    PubMed Central

    Carpentier, Alexandre; Barez, Pierre-Yves; Hamaidia, Malik; Gazon, Hélène; de Brogniez, Alix; Perike, Srikanth; Gillet, Nicolas; Willems, Luc

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes cancer (Adult T cell Leukemia, ATL) and a spectrum of inflammatory diseases (mainly HTLV-associated myelopathy—tropical spastic paraparesis, HAM/TSP). Since virions are particularly unstable, HTLV-1 transmission primarily occurs by transfer of a cell carrying an integrated provirus. After transcription, the viral genomic RNA undergoes reverse transcription and integration into the chromosomal DNA of a cell from the newly infected host. The virus then replicates by either one of two modes: (i) an infectious cycle by virus budding and infection of new targets and (ii) mitotic division of cells harboring an integrated provirus. HTLV-1 replication initiates a series of mechanisms in the host including antiviral immunity and checkpoint control of cell proliferation. HTLV-1 has elaborated strategies to counteract these defense mechanisms allowing continuous persistence in humans. PMID:26198240

  1. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models

    PubMed Central

    Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Zeng, Hui; Lewis, Amanda; Shieh, Wun-Ju; Tumpey, Terrence M.

    2016-01-01

    ABSTRACT Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. IMPORTANCE H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low

  2. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies

    PubMed Central

    Froissart, R.; Doumayrou, J.; Vuillaume, F.; Alizon, S.; Michalakis, Y.

    2010-01-01

    The adaptive hypothesis invoked to explain why parasites harm their hosts is known as the trade-off hypothesis, which states that increased parasite transmission comes at the cost of shorter infection duration. This correlation arises because both transmission and disease-induced mortality (i.e. virulence) are increasing functions of parasite within-host density. There is, however, a glaring lack of empirical data to support this hypothesis. Here, we review empirical investigations reporting to what extent within-host viral accumulation determines the transmission rate and the virulence of vector-borne plant viruses. Studies suggest that the correlation between within-plant viral accumulation and transmission rate of natural isolates is positive. Unfortunately, results on the correlation between viral accumulation and virulence are very scarce. We found only very few appropriate studies testing such a correlation, themselves limited by the fact that they use symptoms as a proxy for virulence and are based on very few viral genotypes. Overall, the available evidence does not allow us to confirm or refute the existence of a transmission–virulence trade-off for vector-borne plant viruses. We discuss the type of data that should be collected and how theoretical models can help us refine testable predictions of virulence evolution. PMID:20478886

  3. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread.

    PubMed

    Carmo-Sousa, Michele; Moreno, Aranzazu; Garzo, Elisa; Fereres, Alberto

    2014-06-24

    Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly, generally adapting to each type of virus-vector relationship in a way that enhances transmission efficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission

  4. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission.

    PubMed

    Do, Thao; Murphy, Gavin; Earl, Lesley A; Del Prete, Gregory Q; Grandinetti, Giovanna; Li, Guan-Han; Estes, Jacob D; Rao, Prashant; Trubey, Charles M; Thomas, James; Spector, Jeffrey; Bliss, Donald; Nath, Avindra; Lifson, Jeffrey D; Subramaniam, Sriram

    2014-09-01

    HIV transmission efficiency is greatly increased when viruses are transmitted at virological synapses formed between infected and uninfected cells. We have previously shown that virological synapses formed between HIV-pulsed mature dendritic cells (DCs) and uninfected T cells contain interdigitated membrane surfaces, with T cell filopodia extending toward virions sequestered deep inside invaginations formed on the DC membrane. To explore membrane structural changes relevant to HIV transmission across other types of intercellular conjugates, we used a combination of light and focused ion beam scanning electron microscopy (FIB-SEM) to determine the three-dimensional (3D) architectures of contact regions between HIV-1-infected CD4(+) T cells and either uninfected human CD4(+) T cells or human fetal astrocytes. We present evidence that in each case, membrane extensions that originate from the uninfected cells, either as membrane sheets or filopodial bridges, are present and may be involved in HIV transmission from infected to uninfected cells. We show that individual virions are distributed along the length of astrocyte filopodia, suggesting that virus transfer to the astrocytes is mediated, at least in part, by processes originating from the astrocyte itself. Mechanisms that selectively disrupt the polarization and formation of such membrane extensions could thus represent a possible target for reducing viral spread. Our findings lead to new insights into unique aspects of HIV transmission in the brain and at T cell-T cell synapses, which are thought to be a predominant mode of rapid HIV transmission early in the infection process. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia.

    PubMed

    Potkonjak, Aleksandar; Petrović, Tamaš; Ristanović, Elizabeta; Lalić, Ivica; Vračar, Vuk; Savić, Sara; Turkulov, Vesna; Čanak, Grozdana; Milošević, Vesna; Vidanović, Dejan; Jurišić, Aleksandar; Petrović, Aleksandra; Petrović, Vladimir

    2017-12-01

    Tick-borne encephalitis (TBE) is a zoonotic flaviviral infection that is a growing public health concern in European countries. The aims of this research were to detect and characterize tick-borne encephalitis virus (TBEV) in Ixodes ricinus ticks at presumed natural foci in Serbia, and to determine seroprevalence of TBEV IgG antibodies in humans and animals. A total of 500 I. ricinus ticks were examined for the presence of TBEV by real-time RT-PCR, and conventional nested PCR and sequencing. To determine TBEV seroprevalence, 267 human sera samples were collected, as were 200 sera samples from different animal species. All sera samples were examined by ELISA for the presence of anti-TBEV antibodies. To exclude cross-reactivity, all sera samples were tested for anti-West Nile virus (WNV) antibodies and all human sera samples were also tested for anti-Usutu virus antibodies by ELISA. Results of this preliminary study indicated TBEV activity in Serbia at two microfoci. Several decades after the previous documentation of TBEV in Serbia, we have demonstrated the presence of TBEV in I. ricinus questing nymphs (prevalence 2% and 6.6% at the two different localities) and anti-TBEV antibodies in humans (seroprevalence 0.37%). Moreover, we show for the first time TBEV seroprevalence in several animal species in Serbia, including dogs (seroprevalence 17.5%), horses (5%), wild boars (12.5%), cattle (2.5%), and roe deer (2.5%). None of the goats tested was positive for anti-TBEV IgG antibodies. TBEV isolate from I. ricinus tick in this study belonged to the Western European subtype. To understand the true public health concern in Serbia, detailed epidemiological, clinical, virological, and acarological research are required. This is important for implementation of effective control measures to reduce the incidence of TBE in Serbia.

  6. Using Mathematical Transmission Modelling to Investigate Drivers of Respiratory Syncytial Virus Seasonality in Children in the Philippines

    PubMed Central

    Paynter, Stuart; Yakob, Laith; Simões, Eric A. F.; Lucero, Marilla G.; Tallo, Veronica; Nohynek, Hanna; Ware, Robert S.; Weinstein, Philip; Williams, Gail; Sly, Peter D.

    2014-01-01

    We used a mathematical transmission model to estimate when ecological drivers of respiratory syncytial virus (RSV) transmissibility would need to act in order to produce the observed seasonality of RSV in the Philippines. We estimated that a seasonal peak in transmissibility would need to occur approximately 51 days prior to the observed peak in RSV cases (range 49 to 67 days). We then compared this estimated seasonal pattern of transmissibility to the seasonal patterns of possible ecological drivers of transmissibility: rainfall, humidity and temperature patterns, nutritional status, and school holidays. The timing of the seasonal patterns of nutritional status and rainfall were both consistent with the estimated seasonal pattern of transmissibility and these are both plausible drivers of the seasonality of RSV in this setting. PMID:24587222

  7. Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    PubMed Central

    Crabtree, Mary B.; Kent Crockett, Rebekah J.; Bird, Brian H.; Nichol, Stuart T.; Erickson, Bobbie Rae; Biggerstaff, Brad J.; Horiuchi, Kalanthe; Miller, Barry R.

    2012-01-01

    Background Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Methodology and Principal Findings Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. Conclusions/Significance In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes. PMID:22563517

  8. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    PubMed

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  9. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.

    PubMed

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-06-01

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  10. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes

    PubMed Central

    Doceul, Virginie; Bagdassarian, Eugénie; Demange, Antonin; Pavio, Nicole

    2016-01-01

    During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources. PMID:27706110

  11. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.).

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz; Stańczak, Joanna; Masny, Aleksander; Werszko, Joanna

    2016-01-01

    Tick borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is the causative agent of tick-borne encephalitis (TBE), a potentially fatal neurological infection. The disease is endemic in a large region in Eurasia, where is transmitted mainly by hard ticks: Ixodes ricinus and I. persulcatus. It is known that also Dermacentor reticulatus is involved in a circulation of TBEV, but the knowledge of its importance in the TBE epidemiology is still insufficient. The Białowieża Primeval Forest is located in eastern Poland and it is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tick-borne encephalitis virus (TBEV) in Dermacentor reticulatus ticks collected from European bison (Bison bonasus bonasus), an important host of hard ticks in the Białowieża Primeval Forest. In the years 2008-2009, a total of 114 adult D. reticulatus ticks were collected from 7 European bison and examined individually for the presence of TBEV RNA using nested RT-PCR assay. Positive results were noted in 18.42% of ticks. This is the first record of TBEV infection in ticks collected from European bison.

  12. Residue 41 of the Eurasian Avian-Like Swine Influenza A Virus Matrix Protein Modulates Virion Filament Length and Efficiency of Contact Transmission

    PubMed Central

    Campbell, Patricia J.; Kyriakis, Constantinos S.; Marshall, Nicolle; Suppiah, Suganthi; Seladi-Schulman, Jill; Danzy, Shamika; Lowen, Anice C.

    2014-01-01

    ABSTRACT Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw

  13. The Impact of Cycling Temperature on the Transmission of West Nile Virus.

    PubMed

    Danforth, Mary E; Reisen, William K; Barker, Christopher M

    2016-05-01

    West Nile virus (WNV) is an important cause of disease in humans and animals. Risk of WNV infection varies seasonally, with the greatest risk during the warmest parts of the year due in part to the accelerated extrinsic incubation rate of the virus in mosquitoes. Rates of extrinsic incubation have been shown in constant-temperature studies to increase as an approximately linear function of temperature, but for other vector-borne pathogens, such as malaria or dengue virus, nonlinear relationships have been demonstrated under cycling temperatures near the thermal limits of pathogen replication. Using typical daily air temperature profiles from three key periods of WNV amplification in a hyperendemic area of WNV activity in California's Central Valley, as well as a fourth temperature profile based on exposures that would result from daily mosquito host-seeking and resting behavior, we explored the impacts of cycling temperatures on WNV transmission by Culex tarsalis Coquillett, one of the principal vectors in the western United States. The daily cycling temperature ranges studied were representative of those that occur across much of California, but they did not significantly alter the extrinsic incubation period of WNV compared with estimates from mean temperatures alone. This suggests that within the relatively broad range we studied, WNV incubation rates are a simple function of mean temperature. Realistic daily temperature patterns that reflected mosquitoes' avoidance of daytime high temperatures during summer reduced transmission over time compared with air temperatures, indicating that adjustment for mosquito exposure temperatures would be prudent for calculating risk. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Vertical Transmission of H9N2 Avian Influenza Virus in Goose.

    PubMed

    Yu, Guanliu; Wang, Aihua; Tang, Yi; Diao, Youxiang

    2017-01-01

    During a study on high mortality cases of goose embryo in Shandong Province, China (2014-2015), we isolated an H9N2 avian influenza virus (AIV) strain (A/goose/Shandong/DP01/2014, DP01), which was supposedly the causative agent for goose embryo death. Sequence analysis revealed that DP01 shared 99.9% homology in the HA gene with a classic immune suppression strain SD06. To study the potential vertical transmission ability of the DP01 strain in breeder goose, a total of 105 Taizhou breeder geese, which were 360 days old, were equally divided into five groups (A, B, C, D, and E) for experimental infection. H9N2 AIV (DP01) was used for inoculating through intravenous (group A), intranasal instillation (group B), and throat inoculation (group C) routes, respectively. The geese in group D were inoculated with phosphate buffer solution (PBS) and those in group E were the non-treated group. At 24 h post inoculation, H9N2 viral RNA could be detected at vitelline membrane, embryos, and allantoic fluid of goose embryos from H9N2 inoculated groups. Furthermore, the HA gene of H9N2 virus from vitelline membrane, embryo, allantoic fluid, and gosling shared almost 100% homology with an H9N2 virus isolated from the ovary of breeder goose, which laid these eggs, indicating that H9N2 AIV can be vertically transmitted in goose. The present research study provides evidence that vertical transmission of H9N2 AIV from breeding goose to goslings is possible.

  15. Intraspecies and interspecies transmission of mink H9N2 influenza virus.

    PubMed

    Yong-Feng, Zhao; Fei-Fei, Diao; Jia-Yu, Yu; Feng-Xia, Zhang; Chang-Qing, Jiang; Jian-Li, Wang; Shou-Yu, Guo; Kai, Cui; Chuan-Yi, Liu; Xue-Hua, Wei; Jiang, Shi-Jin; Zhi-Jing, Xie

    2017-08-07

    H9N2 influenza A virus (IAV) causes low pathogenic respiratory disease and infects a wide range of hosts. In this study, six IAVs were isolated from mink and identified as H9N2 IAV. Sequence analysis revealed that the six isolates continued to evolve, and their PB2 genes shared high nucleotide sequence identity with H7N9 IAV. The six isolates contained an amino acid motif PSRSSR↓GL at the hemagglutinin cleavage site, which is a characteristic of low pathogenic influenza viruses. A serosurvey demonstrated that H9N2 IAV had spread widely in mink and was prevalent in foxes and raccoon dogs. Transmission experiments showed that close contact between H9N2-infected mink and naive mink, foxes and raccoon dogs resulted in spread of the virus to the contact animals. Furthermore, H9N2 challenge experiments in foxes and raccoon dogs showed that H9N2 IAV could infect these hosts. Virological and epidemiological surveillance of H9N2 IAV should be strengthened for the fur animal industry.

  16. Patient-to-patient transmission of hepatitis C virus (HCV) during colonoscopy diagnosis

    PubMed Central

    2010-01-01

    Background No recognized risk factors can be identified in 10-40% of hepatitis C virus (HCV)-infected patients suggesting that the modes of transmission involved could be underestimated or unidentified. Invasive diagnostic procedures, such as endoscopy, have been considered as a potential HCV transmission route; although the actual extent of transmission in endoscopy procedures remains controversial. Most reported HCV outbreaks related to nosocomial acquisition have been attributed to unsafe injection practices and use of multi-dose vials. Only a few cases of likely patient-to-patient HCV transmission via a contaminated colonoscope have been reported to date. Nosocomial HCV infection may have important medical and legal implications and, therefore, possible transmission routes should be investigated. In this study, a case of nosocomial transmission of HCV from a common source to two patients who underwent colonoscopy in an endoscopy unit is reported. Results A retrospective epidemiological search after detection of index cases revealed several potentially infective procedures: sample blood collection, use of a peripheral catheter, anesthesia and colonoscopy procedures. The epidemiological investigation showed breaches in colonoscope reprocessing and deficiencies in the recording of valuable tracing data. Direct sequences from the NS5B region were obtained to determine the extent of the outbreak and cloned sequences from the E1-E2 region were used to establish the relationships among intrapatient viral populations. Phylogenetic analyses of individual sequences from viral populations infecting the three patients involved in the outbreak confirmed the patient pointed out by the epidemiological search as the source of the outbreak. Furthermore, the sequential order in which the patients underwent colonoscopy correlates with viral genetic variability estimates. Conclusions Patient-to-patient transmission of HCV could be demonstrated although the precise route of

  17. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission.

    PubMed

    Zhu, T; Wang, N; Carr, A; Nam, D S; Moor-Jankowski, R; Cooper, D A; Ho, D D

    1996-05-01

    To explore the mechanism of sexual transmission of human immunodeficiency virus type 1 (HIV-1), we compared HIV-1 gp120 sequences in longitudinal samples from five acute seroconvertors with those from their corresponding sexual partners (transmitters). We used a quantitative homoduplex tracking assay to compare the overall genetic composition of HIV-1 quasispecies in each transmission pair and to track the transmitted viruses during the acute and asymptomatic stages of HIV-1 infection. In the chronically infected transmitters, HIV-1 variants in genital secretions differed from those in blood and variants in cells differed from those in cell-free plasma, indicating remarkable sequence heterogeneity in these subjects as well as compartmentalization of the virus in different bodily sites. Conversely, two of five seroconvertors had only a few related variants and three of five harbored only one viral population, indicating that in these subjects the transmitted viruses were typically homogeneous. Transmitted viruses were evident in the donor's seminal plasma (one of five cases) and even more so in their seminal cells (three of five cases), suggesting that both cell-associated and cell-free viruses can be transmitted. In every pair studied, the transmitted variant(s) represents only a minor population in the semen of the corresponding transmitter, thereby providing evidence that HIV-1 selection indeed occurs during sexual transmission.

  18. Prevalence of Hepatitis B Virus, Hepatitis C Virus, and HIV in Overseas Job Seekers of Bangladesh with the Possible Routes of Transmission.

    PubMed

    Jobayer, M; Chowdhury, S S; Shamsuzzaman, S M; Islam, M S

    2016-07-01

    Hepatitis and AIDS are major public health problem globally. The aim of this study was to determine the sero-prevalence of hepatitis B, C virus and HIV infection among Bangladeshi overseas job seekers. This cross sectional study was carried out in the Department of Microbiology of Dhaka Medical College, Dhaka, Bangladesh from February 2013 to August 2013. A total of 2254 adult (18-45 years) male job seekers to Malaysia attending for health check up were enrolled. HBsAg, Anti-HCV, Anti-HIV were detected from venous blood by ELISA method using commercial kits. From the positive people, further history and information were collected by predesigned questionnaire. Prevalence of HBV was 2.35%, HCV was 0.13% and none was found positive for HIV. Prevalence of hepatitis was higher in the age group of 21-30 year and infection was more prevalent in married group. No significant relationship was found between hepatitis infection and religion, localities, profession. Only a few cases had history of possible major known route of transmission of virus. But most of them had history of taking injection or sharing blades in barber shop and history of circumcision. About 96% population had no history of hepatitis B vaccination. None was co-infected with HBV and HCV. Prevalence of hepatitis B virus infection in adult population appears to be on decline and hepatitis C and HIV infection is still low in Bangladesh. In majority of the positive person, routes of transmission of viruses were not well established.

  19. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model.

    PubMed

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M; Collin, Emily A; Knudsen, David E B; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S; Li, Feng

    2015-12-01

    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs

  20. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    USDA-ARS?s Scientific Manuscript database

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  1. Hepatitis B virus transmissions associated with a portable dental clinic, West Virginia, 2009

    PubMed Central

    Radcliffe, Rachel A.; Bixler, Danae; Moorman, Anne; Hogan, Vicki A.; Greenfield, Vickie S.; Gaviria, Diana M.; Patel, Priti R.; Schaefer, Melissa K.; Collins, Amy S.; Khudyakov, Yury E.; Drobeniuc, Jan; Gooch, Barbara F.; Cleveland, Jennifer L.

    2017-01-01

    Background Although hepatitis B virus (HBV) transmission in dental settings is rare, in 2009 a cluster of acute HBV infections was reported among attendees of a two-day portable dental clinic in West Virginia. Methods The authors conducted a retrospective investigation by using treatment records and volunteer logs, interviews of patients and volunteers with acute HBV infection as well as of other clinic volunteers, and molecular sequencing of the virus from those acutely infected. Results The clinic was held under the auspices of a charitable organization in a gymnasium staffed by 750 volunteers, including dental care providers who treated 1,137 adults. Five acute HBV infections—involving three patients and two volunteers—were identified by the local and state health departments. Of four viral isolates available for testing, all were genotype D. Three case patients underwent extractions; one received restorations and one a dental prophylaxis. None shared a treatment provider with any of the others. One case volunteer worked in maintenance; the other directed patients from triage to the treatment waiting area. Case patients reported no behavioral risk factors for HBV infection. The investigation revealed numerous infection control breaches. Conclusions Transmission of HBV to three patients and two volunteers is likely to have occurred at a portable dental clinic. Specific breaches in infection control could not be linked to these HBV transmissions. Practical Implications All dental settings should adhere to recommended infection control practices, including oversight; training in prevention of bloodborne pathogens transmission; receipt of HBV vaccination for staff who may come into contact with blood or body fluids; use of appropriate personal protective equipment, sterilization and disinfection procedures; and use of measures, such as high-volume suction, to minimize the spread of blood. PMID:24080927

  2. Seminal transmission of lumpy skin disease virus in heifers.

    PubMed

    Annandale, C H; Holm, D E; Ebersohn, K; Venter, E H

    2014-10-01

    It is known that lumpy skin disease virus (LSDV) can be shed in bull semen following infection and also that artificial insemination (AI) poses a biosecurity risk. However, it is not known whether the use of LSDV infected semen in AI poses a biosecurity risk. The aim of this study was to investigate whether LSDV, transmitted through semen, can infect cows and their embryos. Two controlled trials were performed simultaneously. Eleven young beef heifers, naïve to LSDV, were synchronized using an OvSynch protocol and inseminated on Day 0 with fresh semen spiked with a field strain of LSDV on day 0. Six of the heifers were superovulated on Day 1 using pregnant mare serum gonadotropin, and embryos were flushed from these heifers on Day 6. Blood and serum samples were collected from Day 4 until Day 27 to determine the presence of LSDV by PCR and virus isolation, and the presence of antibodies against LSDV by SNT. The first clinical signs of LSD were noticed on Day 10, followed by severe generalized LSD in three heifers and mild LSD in two more heifers. Two heifers were humanely euthanized due to severe unresponsive stranguria. LSDV was detected by PCR, virus isolation or electron microscopy in blood, embryos and organs of experimentally infected animals; and eight heifers had seroconverted by Day 27. Two control animals were not affected. This is the first report of experimental seminal transmission of LSDV in cattle. © 2013 Blackwell Verlag GmbH.

  3. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models.

    PubMed

    Sun, Xiangjie; Belser, Jessica A; Pulit-Penaloza, Joanna A; Zeng, Hui; Lewis, Amanda; Shieh, Wun-Ju; Tumpey, Terrence M; Maines, Taronna R

    2016-12-01

    Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza

  4. Additional recommendations to reduce sexual and drug abuse-related transmission of human T-lymphotropic virus type III/lymphadenopathy-associated virus.

    PubMed

    1986-03-14

    Previous US Public Health Service recommendations pertaining to sexual, IV drug abuse, and perinatal transmission of human-T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) have been published. Reduction of sexual and IV transmission of HTLV-III/LAV should be enhanced by using available serologic tests to give asymptomatic, infected individuals in high-risk groups the opportunity to know their status so they can take appropriate steps to prevent the further transmission of this virus. Since the objective of these additional recommendations is to help interrupt transmission by encouraging testing and counseling among persons in high-risk groups, careful attention must be paid to maintaining confidentiality and to protecting records from any unauthorized disclosure. The ability of health departments to assure confidentiality, and the public confidence in that ability, are crucial to efforts to increase the number of persons requesting such testing and counseling. Persons at increased risk of HTLV-III/LAV infection include: homosexual and bisexual men; present or past IV drug abusers; persons with clinical or laboratory evidence of infection, such as those with signs or symptoms compatible with acquired immune deficiency syndrome (AIDS) or AIDS-related complex (ARC); persons born in countries where heterosexual transmission is thought to play a major role; male or female prostitutes and their sex partners; sex partners of infected persons or persons at increased risk; all persons with hemophilia who have received clotting-factor products; and newborn infants of high-risk or infected mothers. Recommendations include: community health education programs should be aimed at members of high-risk groups to increase knowledge of AIDS, to facilitate behavioral changes to reduce risks of HTLV-III/LAV infection, and encourage voluntary testing and counseling; counseling and voluntary serologic testing for HTLV-III/LAV should be routinely offered to

  5. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  6. Socio-environmental predictors of Barmah forest virus transmission in coastal areas, Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; Dale, Pat; McMichael, Anthony J; Tong, Shilu

    2009-02-01

    To assess the socio-environmental predictors of Barmah forest virus (BFV) transmission in coastal areas, Queensland, Australia. Data on BFV notified cases, climate, tidal levels and socioeconomic index for area (SEIFA) in six coastal cities, Queensland, for the period 1992-2001 were obtained from the relevant government agencies. Negative binomial regression models were used to assess the socio-environmental predictors of BFV transmission. The results show that maximum and minimum temperature, rainfall, relative humidity, high and low tide were statistically significantly associated with BFV incidence at lags 0-2 months. The fitted negative binomial regression models indicate a significant independent association of each of maximum temperature (beta = 0.139, P = 0.000), high tide (beta = 0.005, P = 0.000) and SEIFA index (beta = -0.010, P = 0.000) with BFV transmission after adjustment for confounding variables. The transmission of BFV disease in Queensland coastal areas seemed to be determined by a combination of local social and environmental factors. The model developed in this study may have applications in the control and prevention of BFV disease in these areas.

  7. VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA

    PubMed Central

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border. PMID:24626420

  8. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    PubMed

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Transmission efficiency of the sigma virus in natural populations of its host, Drosophila melanogaster.

    PubMed

    Fleuriet, A

    1982-01-01

    A study of the viral samples collected in French natural populations of Drosophila melanogaster since 1969, indicates that natural populations include, as expected, both stabilized and non stabilized infected individuals. In agreement with previous observations made on other characters of the virus, the viral samples collected appear to be homogeneous for the efficiency of the hereditary transmission. However, this efficiency is greater than the average value observed with virus perpetuated in infected laboratory fly strains. One sample collected in Gabon and three in the U.S.A. appear to differ from the French samples for one at least of the traits studied in these experiments.

  10. Experimental Transmission of Eastern Equine Encephalitis Virus by Strains of Aedes albopictus and A. taeniorhynchus (Diptera: Culicidae)

    DTIC Science & Technology

    1994-01-01

    AD-A281 335 0 Experimental Transmission of Eastern Equine Encephaliti Vi 4 by Strains of Aedes albopictus and A. taeniorhynch &1j (Diptera: Culicidae...co m •strains of Aedes albopictus (Skuse) was assessed for eastern equine encephalitis (EEE) virus isolated from Ae. albopictus collected in Polk...County, Florida. Both species became infected with and transmitted EEE virus by bite after feeding on 1-d-old chicks that had _been inoculated with EEE

  11. Persistent infections after natural transmission of bovine viral diarrhoea virus from cattle to goats and among goats

    PubMed Central

    2013-01-01

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable. PMID:23675947

  12. Persistent infections after natural transmission of bovine viral diarrhoea virus from cattle to goats and among goats.

    PubMed

    Bachofen, Claudia; Vogt, Hans-Rudolf; Stalder, Hanspeter; Mathys, Tanja; Zanoni, Reto; Hilbe, Monika; Schweizer, Matthias; Peterhans, Ernst

    2013-05-15

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable.

  13. Face mask use and control of respiratory virus transmission in households.

    PubMed

    MacIntyre, C Raina; Cauchemez, Simon; Dwyer, Dominic E; Seale, Holly; Cheung, Pamela; Browne, Gary; Fasher, Michael; Wood, James; Gao, Zhanhai; Booy, Robert; Ferguson, Neil

    2009-02-01

    Many countries are stockpiling face masks for use as a nonpharmaceutical intervention to control virus transmission during an influenza pandemic. We conducted a prospective cluster-randomized trial comparing surgical masks, non-fit-tested P2 masks, and no masks in prevention of influenza-like illness (ILI) in households. Mask use adherence was self-reported. During the 2006 and 2007 winter seasons, 286 exposed adults from 143 households who had been exposed to a child with clinical respiratory illness were recruited. We found that adherence to mask use significantly reduced the risk for ILI-associated infection, but <50% of participants wore masks most of the time. We concluded that household use of face masks is associated with low adherence and is ineffective for controlling seasonal respiratory disease. However, during a severe pandemic when use of face masks might be greater, pandemic transmission in households could be reduced.

  14. Factors Associated with Siman Immunodeficiency Virus Transmission in a Natural African Nonhuman Primate Host in the Wild

    PubMed Central

    Ma, Dongzhu; Jasinska, Anna J.; Feyertag, Felix; Wijewardana, Viskam; Kristoff, Jan; He, Tianyu; Raehtz, Kevin; Schmitt, Christopher A.; Jung, Yoon; Cramer, Jennifer Danzy; Dione, Michel; Antonio, Martin; Tracy, Russell; Turner, Trudy; Robertson, David L.; Pandrea, Ivona; Freimer, Nelson

    2014-01-01

    ABSTRACT African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history

  15. Update: Ongoing Zika Virus Transmission - Puerto Rico, November 1, 2015-July 7, 2016.

    PubMed

    Adams, Laura; Bello-Pagan, Melissa; Lozier, Matthew; Ryff, Kyle R; Espinet, Carla; Torres, Jomil; Perez-Padilla, Janice; Febo, Mitchelle Flores; Dirlikov, Emilio; Martinez, Alma; Munoz-Jordan, Jorge; Garcia, Myriam; Segarra, Marangely Olivero; Malave, Graciela; Rivera, Aidsa; Shapiro-Mendoza, Carrie; Rosinger, Asher; Kuehnert, Matthew J; Chung, Koo-Whang; Pate, Lisa L; Harris, Angela; Hemme, Ryan R; Lenhart, Audrey; Aquino, Gustavo; Zaki, Sherif; Read, Jennifer S; Waterman, Stephen H; Alvarado, Luisa I; Alvarado-Ramy, Francisco; Valencia-Prado, Miguel; Thomas, Dana; Sharp, Tyler M; Rivera-Garcia, Brenda

    2016-08-05

    Zika virus is a flavivirus transmitted primarily by Aedes aegypti and Aedes albopictus mosquitoes, and infection can be asymptomatic or result in an acute febrile illness with rash (1). Zika virus infection during pregnancy is a cause of microcephaly and other severe birth defects (2). Infection has also been associated with Guillain-Barré syndrome (GBS) (3) and severe thrombocytopenia (4,5). In December 2015, the Puerto Rico Department of Health (PRDH) reported the first locally acquired case of Zika virus infection. This report provides an update to the epidemiology of and public health response to ongoing Zika virus transmission in Puerto Rico (6,7). A confirmed case of Zika virus infection is defined as a positive result for Zika virus testing by reverse transcription-polymerase chain reaction (RT-PCR) for Zika virus in a blood or urine specimen. A presumptive case is defined as a positive result by Zika virus immunoglobulin M (IgM) enzyme-linked immunosorbent assay (MAC-ELISA)* and a negative result by dengue virus IgM ELISA, or a positive test result by Zika IgM MAC-ELISA in a pregnant woman. An unspecified flavivirus case is defined as positive or equivocal results for both Zika and dengue virus by IgM ELISA. During November 1, 2015-July 7, 2016, a total of 23,487 persons were evaluated by PRDH and CDC Dengue Branch for Zika virus infection, including asymptomatic pregnant women and persons with signs or symptoms consistent with Zika virus disease or suspected GBS; 5,582 (24%) confirmed and presumptive Zika virus cases were identified. Persons with Zika virus infection were residents of 77 (99%) of Puerto Rico's 78 municipalities. During 2016, the percentage of positive Zika virus infection cases among symptomatic males and nonpregnant females who were tested increased from 14% in February to 64% in June. Among 9,343 pregnant women tested, 672 had confirmed or presumptive Zika virus infection, including 441 (66%) symptomatic women and 231 (34%) asymptomatic

  16. Spectrum of Rift Valley Fever Virus Transmission in Kenya: Insights from three Distinct Regions

    PubMed Central

    Labeaud, A. Desiree; Ochiai, Yoshitsugu; Peters, C.J.; Muchiri, Eric M.; King, Charles H.

    2008-01-01

    Rift Valley fever virus (RVFV) is an emerging pathogen that maintains high biodefense priority based on its threat to livestock, its ability to cause human hemorrhagic fever, and its potential for aerosol spread. To define the range of human transmission during inter-epidemic and epidemic periods in Kenya, we tested archived sera from defined populations (N = 1,263) for anti-RVFV IgG by ELISA and plaque reduction neutralization testing. RVFV seroprevalence was 10.8% overall and varied significantly by location, sex, and age. In NW Kenya, high seroprevalence among those born before 1980 indicates that an undetected epidemic may have occurred then. Seroconversion documented in highland areas suggests previously unsuspected inter-epidemic transmission. RVFV seroprevalence is strikingly high in certain Kenyan areas, suggesting endemic transmission patterns that may preclude accurate estimation of regional acute outbreak incidence. The extent of both epidemic and inter-epidemic RVFV transmission in Kenya is greater than previously documented. PMID:17488893

  17. Transovarial transmission of dengue 1 virus in Aedes aegypti larvae: real-time PCR analysis in a Brazilian city with high mosquito population density.

    PubMed

    Moraes, Alexsander; Cortelli, Filipe C; Miranda, Taís B; Aquino, Davi R; Cortelli, José R; Guimarães, Maria Isabel A; Costa, Fernando O; Cortelli, Sheila C

    2018-06-01

    Transovarial transmission is among the reported factors able to influence environmental maintenance of dengue virus (DENV). Endemic areas with active transmission of dengue are suitable for studying transovarial transmission. Brazil is a country where dengue is endemic and where DENV-1 is the most common disease-related virus serotype. This study aimed to identify transovarial transmission of DENV-1 in Aedes aegypti larvae by reverse-transcriptase nested real-time polymerase chain reaction. Between March and October 2016, Culicidae larvae were collected using traps in 3 locations in Taubaté, São Paulo, Brazil, which has a high occurrence of dengue. The collected larvae were sacrificed in the 3rd or 4th larval stage, classified, and stored at -20 °C. The A. aegypti larvae samples (n = 910) were separated into 91 pools of 10 specimens each from which RNA was extracted, reverse transcribed into cDNA, and analyzed by nested qPCR. None of the pools tested positive for DENV-1. Due to the absence of detectable virus in the evaluated samples, we concluded that transovarial transmission may not be the primary mechanism for maintenance of DENV-1 in this particular environment.

  18. Investigation of Host Range, Infectivity, and Spread of Turnip Vein Clearing Virus and a Possible Mechanism for Non-Seed Transmission

    USDA-ARS?s Scientific Manuscript database

    In this study we investigated the host range, transmission and symptom development of TVCV in several species of plants, as a step toward developing management strategy against seed transmissible viruses. While several species of plants failed to show symptoms of TVCV infection, we report that bush ...

  19. Transmission of dengue virus from deceased donors to solid organ transplant recipients: case report and literature review.

    PubMed

    Rosso, Fernando; Pineda, Juan C; Sanz, Ana M; Cedano, Jorge A; Caicedo, Luis A

    Dengue fever is a vector-transmitted viral infection. Non-vectorial forms of transmission can occur through organ transplantation. We reviewed medical records of donors and recipients with suspected dengue in the first post-transplant week. We used serologic and molecular analysis to confirm the infection. Herein, we describe four cases of dengue virus transmission through solid organ transplantation. The recipients had positive serology and RT-PCR. Infection in donors was detected through serology. All cases presented with fever within the first week after transplantation. There were no fatal cases. After these cases, we implemented dengue screening with NS1 antigen detection in donors during dengue outbreaks, and no new cases were detected. In the literature review, additional cases had been published through August 2017. Transmission of Dengue virus can occur through organ donation. In endemic regions, it is important to suspect and screen for dengue in febrile and thrombocytopenic recipients in the postoperative period. Copyright © 2018 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. [Emerging viral diseases in Europe].

    PubMed

    Löbermann, M; Gürtler, L G; Eichler-Löbermann, B; Reisinger, E C

    2012-04-01

    Emergence of viral agents in Europe is influenced by various factors. Climatic changes influencing possible vectors, insufficient vaccination, and travel of man and goods are among the most important reasons to explain these changes. Fever and arthralgia are the leading symptoms in infection with Dengue, Sindbis, or Chikungunya virus. In contrast, tick-born encephalitis (TBE), Toscana, or West Nile virus infections mainly lead to meningo-encephalitis. In Europe, hemorrhagic fever is caused by Crimean Congo and Hanta virus. Protective vaccines are available for emerging viral agents like TBE, influenza and measles. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    PubMed Central

    Amorim, Ariane Ribeiro; Fornells, Luz Alba Maria Garcete; Reis, Felicidade da Costa; Rezende, Daiana Jacinto; Mendes, Gabriella da Silva; Couceiro, José Nelson dos Santos Silva; Santos, Norma Suely de Oliveira

    2013-01-01

    Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330) were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9%) influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs. PMID:23903968

  2. Mother to child transmission of hepatitis C virus: prospective study of risk factors and timing of infection in children born to women seronegative for HIV-1

    PubMed Central

    Resti, Massimo; Azzari, Chiara; Mannelli, Francesco; Moriondo, Maria; Novembre, Elio; de Martino, Maurizio; Vierucci, Alberto

    1998-01-01

    Objective: To determine the risk factors for and timing of vertical transmission of hepatitis C virus in women who are not infected with HIV-1. Design: Follow up for a median of 28 (range 24-38) months of babies born to women with antibodies to hepatitis C virus but not HIV-1. Subjects: 442 mothers and babies, of whom 403 completed the study. Main outcome measures: Presence of antibodies to hepatitis C virus and viral RNA and alanine aminotransferase activity in babies. Presence of viral RNA, method of infection with hepatitis C, method of delivery, and type of infant feeding in mothers. Results: 13 of the 403 children had acquired hepatitis C virus infection at the end of follow up. All these children were born to women positive for hepatitis C virus RNA; none of the 128 RNA negative mothers passed on the infection (difference 5%, 95% confidence interval 2% to 7%). 6 children had viral RNA immediately after birth. 111 women had used intravenous drugs and 20 had received blood transfusions. 11 of the infected children were born to these women compared with 2 to the 144 with no known risk factor (difference 7%, 2% to 12%). Conclusions: This study suggests that in women not infected with HIV only those with hepatitis C virus RNA are at risk of infecting their babies. Transmission does seem to occur in utero, and the rate of transmission is higher in women who have had blood transfusions or used intravenous drugs than in women with no known risk factor for infection. Key messages Little information exists on vertical transmission of hepatitis C virus in women not infected with HIV This study in a large unselected population of infants born to HIV-1 negative mothers suggests that intravenous drug use itself is an important risk factor for transmission of hepatitis C virus Maternal post-transfusional hepatitis is also an important risk factor for infection of infants Viral genotype, maternal viraemia, type of delivery (vaginal delivery or caesarean section) and breast

  3. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus

    PubMed Central

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard

    2017-01-01

    ABSTRACT Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro, and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for

  4. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.

    PubMed

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard; Wan, Xiu-Feng

    2017-11-01

    Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro , and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for avian

  5. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011

    USDA-ARS?s Scientific Manuscript database

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in U.S. since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the U.S. was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotype...

  6. Pathogenicity and horizontal transmission studies of caprine parainfluenza virus type 3 JS2013 strain in goats.

    PubMed

    Li, Wenliang; Hao, Fei; Mao, Li; Wang, Zhongyu; Zhou, Tianci; Deng, Jiawu; Li, Jizong; Zhang, Wenwen; Yang, Leilei; Lv, Yingjun; Jiang, Jieyuan

    2016-09-02

    Parainfluenza virus type 3 (PIV3) is one of the most important viral respiratory pathogens for humans and for many animals, but goat infection has been rarely reported. In 2014, one novel PIV3 strain was first isolated from goats suffered respiratory diseases in Jiangsu and Anhui provinces of eastern China and named as caprine PIV3 (CPIV3) JS2013. In order to systematically evaluate the pathogenicity and horizontal transmission ability of this new virus, experimental infection of goats with the CPIV3 strain was done. The virus-inoculated goats (challenge control (CC) group) displayed coughing and nasal discharges from 3days post infection (dpi) and lasted for about 2 weeks. Two goats in group CC showed fever between 7 and 12dpi. As detected by a TaqMan real time quantitative RT-PCR (qRT-PCR), viremia was detected during 3-11dpi, peaked at 6dpi; and virus shedding from nasal discharge and faeces were confirmed during 3-21dpi and 4-21dpi, respectively. Virus-specific HI antibodies and neutralizing antibodies (NAs) became positive since 7dpi and 14dpi; peaked at 14dpi and 28dpi, respectively; and lasted at least 70days. Pathological lesions were mainly found on the lungs and tracheas. In addition, viruses were also detected in part of the tracheal secretion and lung samples, and the viral load in tracheal secretion was higher than that in lungs. Goats in horizontal infected group (hCC, kept in different cages in the same house with CC group) showed to be horizontally infected, with slightly milder clinical signs and pathological changes; and slightly shorter period of viremia and virus shedding. This was the first report of the detailed pathogenicity characterization of the novel CPIV3 and demonstrated its horizontal transmission ability. The results would be helpful for further studies on the preventive and control strategies for CPIV3 infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Respiratory virus transmission dynamics determine timing of asthma exacerbation peaks: Evidence from a population-level model.

    PubMed

    Eggo, Rosalind M; Scott, James G; Galvani, Alison P; Meyers, Lauren Ancel

    2016-02-23

    Asthma exacerbations exhibit a consistent annual pattern, closely mirroring the school calendar. Although respiratory viruses--the "common cold" viruses--are implicated as a principal cause, there is little evidence to link viral prevalence to seasonal differences in risk. We jointly fit a common cold transmission model and a model of biological and environmental exacerbation triggers to estimate effects on hospitalization risk. Asthma hospitalization rate, influenza prevalence, and air quality measures are available, but common cold circulation is not; therefore, we generate estimates of viral prevalence using a transmission model. Our deterministic multivirus transmission model includes transmission rates that vary when school is closed. We jointly fit the two models to 7 y of daily asthma hospitalizations in adults and children (66,000 events) in eight metropolitan areas. For children, we find that daily viral prevalence is the strongest predictor of asthma hospitalizations, with transmission reduced by 45% (95% credible interval =41-49%) during school closures. We detect a transient period of nonspecific immunity between infections lasting 19 (17-21) d. For adults, hospitalizations are more variable, with influenza driving wintertime peaks. Neither particulate matter nor ozone was an important predictor, perhaps because of the large geographic area of the populations. The school calendar clearly and predictably drives seasonal variation in common cold prevalence, which results in the "back-to-school" asthma exacerbation pattern seen in children and indirectly contributes to exacerbation risk in adults. This study provides a framework for anticipating the seasonal dynamics of common colds and the associated risks for asthmatics.

  8. Predictable ecology and geography of West Nile virus transmission in the central United States.

    PubMed

    Peterson, A Townsend; Robbins, Amber; Restifo, Robert; Howell, James; Nasci, Roger

    2008-12-01

    West Nile virus (WNV) arrived in North America and spread rapidly through the western hemisphere. We present a series of tests to determine whether ecological factors are consistently associated with WNV transmission to humans. We analyzed human WNV cases in the states of Illinois, Indiana, and Ohio in 2002 and 2003, building ecological niche models to associate WNV case occurrences with ecological and environmental parameters. In essentially all tests, both within states, among states, between years, and across the region, we found high predictivity of WNV case distributions, suggesting that one or more elements in the WNV transmission cycle has a strong ecological determination. Areas in the geographic region included in this study predicted as suitable for WNV transmission tended to have lower values of the vegetation indices in the summer months, pointing to consistent ecological differences between suitable and unsuitable areas.

  9. Mass Determination of Rous Sarcoma Virus Virions by Scanning Transmission Electron Microscopy

    PubMed Central

    Vogt, Volker M.; Simon, Martha N.

    1999-01-01

    The internal structural protein of retroviruses, Gag, comprises most of the mass of the virion, and Gag itself can give rise to virus-like particles when expressed in appropriate cells. Previously the stoichiometry of Gag in virions was inferred from indirect measurements carried out 2 decades ago. We now have directly determined the masses of individual particles of the prototypic avian retrovirus, Rous sarcoma virus (RSV), by using scanning transmission electron microscopy. In this technique, the number of scattered electrons in the dark-field image integrated over an individual freeze-dried virus particle on a grid is directly proportional to its mass. The RSV virions had a mean mass of 2.5 × 108 Da, corresponding to about 1,500 Gag molecules per virion. The population of virions was not homogeneous, with about one-third to two-thirds of the virions deviating from the mean by more than 10% of the mass in two respective preparations. The mean masses for virions carrying genomes of 7.4 or 9.3 kb were indistinguishable, suggesting that mass variability is not due to differences in RNA incorporation. PMID:10400808

  10. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus.

    PubMed

    Ludlow, Martin; de Vries, Rory D; Lemon, Ken; McQuaid, Stephen; Millar, Emma; van Amerongen, Geert; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; de Swart, Rik L; Duprex, W Paul

    2013-09-01

    Measles virus (MV), a member of the family Paramyxoviridae, remains a major cause of morbidity and mortality in the developing world. MV is spread by aerosols but the mechanism(s) responsible for the high transmissibility of MV are largely unknown. We previously infected macaques with enhanced green fluorescent protein-expressing recombinant MV and euthanized them at a range of time points. In this study a comprehensive pathological analysis has been performed of tissues from the respiratory tract around the peak of virus replication. Isolation of virus from nose and throat swab samples showed that high levels of both cell-associated and cell-free virus were present in the upper respiratory tract. Analysis of tissue sections from lung and primary bronchus revealed localized infection of epithelial cells, concomitant infiltration of MV-infected immune cells into the epithelium and localized shedding of cells or cell debris into the lumen. While high numbers of MV-infected cells were present in the tongue, these were largely encapsulated by intact keratinocyte cell layers that likely limit virus transmission. In contrast, the integrity of tonsillar and adenoidal epithelia was disrupted with high numbers of MV-infected epithelial cells and infiltrating immune cells present throughout epithelial cell layers. Disruption was associated with large numbers of MV-infected cells or cell debris 'spilling' from epithelia into the respiratory tract. The coughing and sneezing response induced by disruption of the ciliated epithelium, leading to the expulsion of MV-infected cells, cell debris and cell-free virus, contributes to the highly infectious nature of MV.

  11. Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone

    PubMed Central

    Fang, Li-Qun; Yang, Yang; Jiang, Jia-Fu; Yao, Hong-Wu; Kargbo, David; Li, Xin-Lou; Jiang, Bao-Gui; Kargbo, Brima; Tong, Yi-Gang; Wang, Ya-Wei; Liu, Kun; Kamara, Abdul; Dafae, Foday; Kanu, Alex; Jiang, Rui-Ruo; Sun, Ye; Sun, Ruo-Xi; Chen, Wan-Jun; Ma, Mai-Juan; Dean, Natalie E.; Thomas, Harold; Longini, Ira M.; Halloran, M. Elizabeth; Cao, Wu-Chun

    2016-01-01

    Sierra Leone is the most severely affected country by an unprecedented outbreak of Ebola virus disease (EVD) in West Africa. Although successfully contained, the transmission dynamics of EVD and the impact of interventions in the country remain unclear. We established a database of confirmed and suspected EVD cases from May 2014 to September 2015 in Sierra Leone and mapped the spatiotemporal distribution of cases at the chiefdom level. A Poisson transmission model revealed that the transmissibility at the chiefdom level, estimated as the average number of secondary infections caused by a patient per week, was reduced by 43% [95% confidence interval (CI): 30%, 52%] after October 2014, when the strategic plan of the United Nations Mission for Emergency Ebola Response was initiated, and by 65% (95% CI: 57%, 71%) after the end of December 2014, when 100% case isolation and safe burials were essentially achieved, both compared with before October 2014. Population density, proximity to Ebola treatment centers, cropland coverage, and atmospheric temperature were associated with EVD transmission. The household secondary attack rate (SAR) was estimated to be 0.059 (95% CI: 0.050, 0.070) for the overall outbreak. The household SAR was reduced by 82%, from 0.093 to 0.017, after the nationwide campaign to achieve 100% case isolation and safe burials had been conducted. This study provides a complete overview of the transmission dynamics of the 2014−2015 EVD outbreak in Sierra Leone at both chiefdom and household levels. The interventions implemented in Sierra Leone seem effective in containing the epidemic, particularly in interrupting household transmission. PMID:27035948

  12. Mapping influenza transmission in the ferret model to transmission in humans

    PubMed Central

    Buhnerkempe, Michael G; Gostic, Katelyn; Park, Miran; Ahsan, Prianna; Belser, Jessica A; Lloyd-Smith, James O

    2015-01-01

    The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI: http://dx.doi.org/10.7554/eLife.07969.001 PMID:26329460

  13. Evidence of possible vertical transmission of Tembusu virus in ducks.

    PubMed

    Zhang, Ying; Li, Xiuli; Chen, Hao; Ti, Jinfeng; Yang, Guoping; Zhang, Lu; Lu, Yunjian; Diao, Youxiang

    2015-09-30

    In 2013, Tembusu virus (TMUV) infection was successively observed on several breeding duck farms in Shandong province, China. Affected ducks showed consistently acute anorexia, diarrhea and egg production drop. 125 hatching eggs produced by TMUV infected breeding ducks from four duck farms were collected. Among them, 35 hatching eggs were selected randomly from all before incubation for vitelline membrane samples collection. The rest of 90 hatching eggs were incubated routinely. As a result, 16 hatching eggs were found non-embryonated, 28 duck embryos died during incubation and 46 newly hatched ducklings were obtained. Vitelline membranes of non-embryonated hatching eggs, vitelline membrane, brain or liver samples of dead embryos and brain samples of newly hatched ducklings were collected for virus detection. Samples collected from one egg, embryo or duckling were treated as one. Consequently, 18 of 35 (51.43%) hatching eggs, 2 of 16 (12.50%) non-embryonated duck eggs, 17 of 28 (60.71%) dead duck embryos and 5 of 46 (10.87%) newly hatched ducklings were detected positive for TMUV using NS3-based RT-PCR. Overall, 42 of 125 (33.6%) eggs were positive for TMUV. A virus strain, designated as TMUV-SDDE, was isolated from one of these dead duck embryos which were detected TMUV positive. The results of phylogenetic analysis showed that E gene of TMUV-SDDE virus was closely related to other TMUV strains isolated in China during 2010-2013. Pathogenicity studies showed that TMUV-SDDE strain was virulent to ducklings. This is the first report that TMUV is isolated from duck embryos. The findings provide evidence of possible vertical transmission of TMUV from breeding ducks to ducklings. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus.

    PubMed

    VanderWaal, Kimberly; Perez, Andres; Torremorrell, Montse; Morrison, Robert M; Craft, Meggan

    2018-04-12

    Epidemiological models of the spread of pathogens in livestock populations primarily focus on direct contact between farms based on animal movement data, and in some cases, local spatial spread based on proximity between premises. The roles of other types of indirect contact among farms is rarely accounted for. In addition, data on animal movements is seldom available in the United States. However, the spread of porcine epidemic diarrhea virus (PEDv) in U.S. swine represents one of the best documented emergences of a highly infectious pathogen in the U.S. livestock industry, providing an opportunity to parameterize models of pathogen spread via direct and indirect transmission mechanisms in swine. Using observed data on pig movements during the initial phase of the PEDv epidemic, we developed a network-based and spatially explicit epidemiological model that simulates the spread of PEDv via both indirect and direct movement-related contact in order to answer unresolved questions concerning factors facilitating between-farm transmission. By modifying the likelihood of each transmission mechanism and fitting this model to observed epidemiological dynamics, our results suggest that between-farm transmission was primarily driven by direct mechanisms related to animal movement and indirect mechanisms related to local spatial spread based on geographic proximity. However, other forms of indirect transmission among farms, including contact via contaminated vehicles and feed, were responsible for high consequence transmission events resulting in the introduction of the virus into new geographic areas. This research is among the first reports of farm-level animal movements in the U.S. swine industry and, to our knowledge, represents the first epidemiological model of commercial U.S. swine using actual data on farm-level animal movement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Comparison of transmission of Papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex

    PubMed Central

    Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng

    2015-01-01

    Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs. PMID:26486606

  16. Comparison of transmission of Papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex.

    PubMed

    Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng

    2015-10-21

    Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs.

  17. The Genetic Bottleneck in Vertical Transmission of Subtype C HIV-1 Is Not Driven by Selection of Especially Neutralization-Resistant Virus from the Maternal Viral Population ▿ †

    PubMed Central

    Russell, Elizabeth S.; Kwiek, Jesse J.; Keys, Jessica; Barton, Kirston; Mwapasa, Victor; Montefiori, David C.; Meshnick, Steven R.; Swanstrom, Ronald

    2011-01-01

    Subtype C human immunodeficiency virus type 1 (HIV-1C) continues to cause the majority of new cases of mother-to-child transmission (MTCT), and yet there are limited data on HIV-1C transmission. We amplified env from plasma RNA for 19 HIV-1C MTCT pairs, 10 transmitting in utero (IU) and 9 transmitting intrapartum (IP). There was a strong genetic bottleneck between all mother-infant pairs, with a majority of transmission events involving the transmission of a single virus. env genes of viruses transmitted to infants IP, but not IU, encoded Env proteins that were shorter and had fewer putative N-linked glycosylation sites in the V1-V5 region than matched maternal sequences. Viruses pseudotyped with env clones representative of each maternal and infant population were tested for neutralization sensitivity. The 50% inhibitory concentration of autologous serum was similar against both transmitted (infant) and nontransmitted (maternal) viruses in a paired analysis. Mother and infant Env proteins were also similar in sensitivity to soluble CD4, to a panel of monoclonal antibodies, and to heterologous HIV-1C sera. In addition, there was no difference in the breadth or potency of neutralizing antibodies between sera from 50 nontransmitting and 23 IU and 23 IP transmitting HIV-1C-infected women against four Env proteins from heterologous viruses. Thus, while a strong genetic bottleneck was detected during MCTC, with viruses of shorter and fewer glycosylation sites in env present in IP transmission, our data do not support this bottleneck being driven by selective resistance to antibodies. PMID:21593171

  18. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    PubMed

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. Accounting for Space—Quantification of Cell-To-Cell Transmission Kinetics Using Virus Dynamics Models.

    PubMed

    Kumberger, Peter; Durso-Cain, Karina; Uprichard, Susan L; Dahari, Harel; Graw, Frederik

    2018-04-17

    Mathematical models based on ordinary differential equations (ODE) that describe the population dynamics of viruses and infected cells have been an essential tool to characterize and quantify viral infection dynamics. Although an important aspect of viral infection is the dynamics of viral spread, which includes transmission by cell-free virions and direct cell-to-cell transmission, models used so far ignored cell-to-cell transmission completely, or accounted for this process by simple mass-action kinetics between infected and uninfected cells. In this study, we show that the simple mass-action approach falls short when describing viral spread in a spatially-defined environment. Using simulated data, we present a model extension that allows correct quantification of cell-to-cell transmission dynamics within a monolayer of cells. By considering the decreasing proportion of cells that can contribute to cell-to-cell spread with progressing infection, our extension accounts for the transmission dynamics on a single cell level while still remaining applicable to standard population-based experimental measurements. While the ability to infer the proportion of cells infected by either of the transmission modes depends on the viral diffusion rate, the improved estimates obtained using our novel approach emphasize the need to correctly account for spatial aspects when analyzing viral spread.

  20. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes.

    PubMed

    Doceul, Virginie; Bagdassarian, Eugénie; Demange, Antonin; Pavio, Nicole

    2016-10-03

    During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources.