Sample records for tce groundwater plume

  1. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    PubMed

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  2. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    PubMed

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  3. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    PubMed

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  5. Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system

    NASA Astrophysics Data System (ADS)

    Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

    2009-05-01

    The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 μg/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain

  6. COMPLETE NATURAL ATTENUATION OF A PCE AND TCE PLUME AFTER SOURCE REMOVAL

    EPA Science Inventory

    Disposal of the chlorinated solvents PCE and TCE at the Twin Cities Army Ammunition Plant (TCAAP) resulted in the contamination of groundwater in a shallow, unconsolidated sand aquifer. The resulting plume had moved over 1000 feet from the disposal source area and had impacted p...

  7. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume.

    PubMed

    Karges, Ursula; Becker, Johannes; Püttmann, Wilhelm

    2018-04-01

    An effective and sensitive method for the analysis of 1,4-dioxane in water has been available since 2008 (EPA 522). This method is increasingly being applied to investigate the distribution of 1,4-dioxane in the aquatic environment. However, there is a need for more information about the possible occurrence of 1,4-dioxane in groundwater in Europe in general, and in Germany in particular, where virtually no data have been collected so far. The possible contamination of groundwater with 1,4-dioxane is of relevance to Germany because up to 70% of Germany's drinking water is obtained from groundwater and about 17% from river bank filtrate, which contains variable proportions of groundwater. The aim of the present study is to investigate selected and representative groundwater sites in Germany that have suspected occurrences of 1,4-dioxane. Five of the sites are well known for their volatile chlorinated hydrocarbon contamination, two sites have representative landfill leachate characteristics, and one site is negatively impacted by a detergent manufacturing plant. The presence of 1,4-dioxane was observed at each of these sites. Measured maximum concentration values ranged from 0.15μg/L to 152μg/L. An aquifer containing a trichloroethylene (TCE) plume with 1,4-dioxane as a co-contaminant was investigated in more detail. A perfect match was found between the concentrations of 1,4-dioxane and TCE in the vertical and horizontal distribution profiles. The results indicate the necessity for investigating groundwater contamination by 1,4-dioxane at sites with known 1,1,1-trichloroethane (TCA) and TCE contaminations, in landfill leachates, and at sites of detergent production. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    PubMed

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  9. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.

    PubMed

    Ross, James L; Andersen, Peter F

    2018-04-17

    The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. © 2018, National Ground Water Association.

  10. Characteristics of permanganate oxidation of TCE at low reagent concentrations.

    PubMed

    Woo, N C; Hyun, S G; Park, W W; Lee, E S; Schwartz, F W

    2009-12-01

    A controlled-release technique using potassium permanganate (KMnO4) has been recently developed as a long-term and semi-passive remediation scheme for dilute groundwater plumes of chlorinated solvents such as trichloroethylene (TCE) and perchloroethylene. Batch experiments were performed to evaluate TCE removal efficiencies of a low concentration of permanganate (MnO4-) solution and to estimate the optimum dose of permanganate required to remove low levels of TCE from groundwater plumes without leaving intermediate organic forms. Experimental results indicated that when the molar ratio of [MnO4-]0/[TCE]0 was about 10, 95% of the TCE in the plume was removed within less than 90 min, and about 90% of the chloride in the organic forms was converted into inorganic ions, while the TCE removal rates and the chloride conversion rates were considerably lower when the [TCE]0/ [MnO4-]0 values were lower. These data suggested that the [MnO4-]0 and the [MnO4-]0/[TCE]0 values would have strong effects on the efficiency and completeness of TCE oxidation. Further detailed investigations of the effect of [MnO4-]0 and [MnO4-]0/[TCE]0 values on the removal efficiencies and completeness of the TCE oxidation are warranted for successful application of the controlled-release KMnO4 technique in practice.

  11. Remediation of TCE-contaminated groundwater using nanocatalyst and bacteria.

    PubMed

    Kang, Ser Ku; Seo, Hyunhee; Sun, Eunyoung; Kim, Inseon; Roh, Yul

    2011-08-01

    The objective of this study was to develop and evaluate the remediation of trichloroethene (TCE)-contaminated groundwater using both a nanocatalyst (bio-Zn-magnetite) and bacterium (similar to Clostridium quinii) in anoxic environments. Of the 7 nanocatalysts tested, bio-Zn-magnetite showed the highest TCE dechlorination efficiency, with an average of ca. 90% within 8 days in a batch experiment. The column tests confirmed that the application of bio-Zn-magnetite in combination with the bacterium achieved high degradation efficiency (ca. 90%) of TCE within 5 days compared to the nanocatalyst only, which degraded only 30% of the TCE. These results suggest that the application of a nanocatalyst and the bacterium have potential for the remediation of TCE-contaminated groundwater in subsurface environments.

  12. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the latemore » 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.« less

  13. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.

    PubMed

    Liang, S H; Chen, K F; Wu, C S; Lin, Y H; Kao, C M

    2014-05-01

    The objective of this study was to develop a controlled-oxidant-release technology combining in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) concepts to remediate trichloroethene (TCE)-contaminated groundwater. In this study, a potassium permanganate (KMnO4)-releasing composite (PRC) was designed for KMnO4 release. The components of this PRC included polycaprolactone (PCL), KMnO4, and starch with a weight ratio of 1.14:2:0.96. Approximately 64% (w/w) of the KMnO4 was released from the PRC after 76 days of operation in a batch system. The results indicate that the released KMnO4 could oxidize TCE effectively. The results from a column study show that the KMnO4 released from 200 g of PRC could effectively remediate 101 pore volumes (PV) of TCE-contaminated groundwater (initial TCE concentration = 0.5 mg/L) and achieve up to 95% TCE removal. The effectiveness of the PRC system was verified by the following characteristics of the effluents collected after the PRC columns (barrier): (1) decreased TCE concentrations, (2) increased ORP and pH values, and (3) increased MnO2 and KMnO4 concentrations. The results of environmental scanning electron microscope (ESEM) analysis show that the PCL and starch completely filled up the pore spaces of the PRC, creating a composite with low porosity. Secondary micro-scale capillary permeability causes the KMnO4 release, mainly through a reaction-diffusion mechanism. The PRC developed could be used as an ISCO-based passive barrier system for plume control, and it has the potential to become a cost-effective alternative for the remediation of chlorinated solvent-contaminated groundwater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.

    PubMed

    Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A

    2008-11-14

    This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard

  15. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation.

    PubMed

    Doty, Sharon L; Freeman, John L; Cohu, Christopher M; Burken, Joel G; Firrincieli, Andrea; Simon, Andrew; Khan, Zareen; Isebrands, J G; Lukas, Joseph; Blaylock, Michael J

    2017-09-05

    Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 μg/L upstream of the planted area to less than 5 μg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 μg/L to less than 5 μg/L and trans-1,2-dichloroethene decreasing from 3.1 μg/L to less than 0.5 μg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 μg/L, respectively, to below the reporting limit of 0.5 μg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up

  16. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downwardmore » into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.« less

  17. Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater.

    PubMed

    Xin, Jia; Tang, Fenglin; Yan, Jing; La, Chenghong; Zheng, Xilai; Liu, Wei

    2018-06-01

    In this study, long-term column experiments were conducted in three media (Milli-Q water, fresh groundwater and saline groundwater) to evaluate the trichloroethylene (TCE) removal performance, electron efficiency (EE), and permeability loss of a microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) under different field conditions. A potential scenario of in situ contamination plume remediation was simulated by adding a TCE-containing influent to columns filled with mixed mZVI particles and silica sand at a flow rate of 4 mL h -1 for 6 months. Results showed that, over the course of 100 pore volumes (PV) for 6 months, mZVI displayed the lowest TCE breakthrough rate (0.0026 PV -1 ) and highest TCE removal capacity (43.72 mg) but the poorest EE value (25-40%) in saline groundwater. Mineral characterization (SEM, XRD), ion concentration analysis, and geochemical modeling corroborated that different dominant solid precipitates (magnetite, siderite, dolomite/magnetite) were identified inside the three columns. The column containing saline groundwater experienced the greatest porosity loss, approximately 30.23 mL over the course of 100 PVs. This study illustrates that, to improve designs of mZVI-IRZs, EE as well as hydraulic conductivity should be taken into consideration for predictive evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE.

    PubMed

    Weyens, Nele; Taghavi, Safiyh; Barac, Tanja; van der Lelie, Daniel; Boulet, Jana; Artois, Tom; Carleer, Robert; Vangronsveld, Jaco

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites

  19. Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Taghavi, S.

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. Inmore » this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its

  20. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  1. Compound-specific isotope analysis: Questioning the origins of a trichloroethene plume

    USGS Publications Warehouse

    Eberts, S.M.; Braun, C.; Jones, S.

    2008-01-01

    Stable carbon isotope ratios of trichloroethene (TCE), cis-1,2- dichloroethene, and trans-1,2-dichloroethene were determined by use of gas chromatography-combustion-isotope ratio mass spectroscopy to determine whether compound-specific stable carbon isotopes could be used to help understand the origin and history of a TCE groundwater plume in Fort Worth, TX. Calculated ??13C values for total chlorinated ethenes in groundwater samples, which can approximate the ??13C of a spilled solvent if all degradation products are accounted for, were useful for determining whether separate lobes of the plume resulted from different sources. Most notably, values for one lobe, where tetrachloroethene (PCE) has been detected periodically, were outside the range for manufactured TCE but within the range for manufactured PCE, whereas values for a separate lobe, which is downgradient of reported TCE spills, were within the range for manufactured TCE. Copyright ?? Taylor & Francis Group, LLC.

  2. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water

  4. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  5. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

    PubMed

    Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

    2012-10-01

    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  7. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT (CD-ROM)

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...

  8. Characterization of redox conditions in groundwater contaminant plumes

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  9. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation

    NASA Astrophysics Data System (ADS)

    Pierce, Amanda A.; Chapman, Steven W.; Zimmerman, Laura K.; Hurley, Jennifer C.; Aravena, Ramon; Cherry, John A.; Parker, Beth L.

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i

  10. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.

    PubMed

    Pierce, Amanda A; Chapman, Steven W; Zimmerman, Laura K; Hurley, Jennifer C; Aravena, Ramon; Cherry, John A; Parker, Beth L

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i

  11. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  12. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    PubMed

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  13. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater

    PubMed Central

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  14. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Chlorinated ethenes from groundwater in tree trunks

    USGS Publications Warehouse

    Vroblesky, Don A.; Nietch, C.T.; Morris, J.T.

    1999-01-01

    The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lesser amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30−70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site. 

  16. Chlorinated ethenes from groundwater in tree trunks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vroblesky, D.A.; Nietch, C.T.; Morris, J.T.

    1999-02-01

    The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lessermore » amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30--70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site.« less

  17. Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: Application to urban plume in Verl, Germany

    USGS Publications Warehouse

    Limmer, M.A.; Balouet, J.-C.; Karg, F.; Vroblesky, D.A.; Burken, J.G.

    2011-01-01

    Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times. ?? 2011 American Chemical Society.

  18. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  19. Effects of Reduced Sulfur Compounds on Pd-catalytic Hydrodechlorination of TCE in Groundwater by Cathodic H2 under Electrochemically-induced Oxidizing Conditions

    PubMed Central

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N.

    2014-01-01

    Reduced sulfur compounds (RSCs) poison Pd catalysts for catalytic hydrodechlorination of contaminants in anoxic groundwater. This study investigates the effects of RSCs on Pd-catalytic hydrodechlorination of trichloroethylene (TCE) in oxic groundwater. Water electrolysis in an undivided electrolytic cell is used to produce H2 for TCE hydrodechlorination under oxidizing conditions. TCE is efficiently hydrodechlorinated to ethane, with significant accumulation of H2O2 under acidic conditions. Presence of sulfide at concentrations less than 93.8 μM moderately inhibits TCE hydrodechlorination and H2O2 production. Presence of sulfite at low concentrations (≤ 1 mM) significantly enhances TCE decay, while at high concentration (3 mM) inhibits initially and enhances afterwards when sulfite concentration declines to less than 1 mM. Using radical scavenging experiments and electron spin resonance assay, SO3•− which is generated from sulfite under oxidizing conditions is validated as the new reactive species contributing to the enhancement. This study reveals a distinct mechanism of effect of sulfite on TCE hydrodechlorination by Pd and H2 in oxic groundwater and presents an alternative approach to increasing resistance of Pd to RSCs poisoning. PMID:23962132

  20. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  1. Nature's Helpers: Using Microorganisms to Remove Trichloroethene (TCE) from Groundwater

    NASA Astrophysics Data System (ADS)

    Delgado, A. G.; Krajmlanik-Brown, R.; Fajardo-Williams, D.; Halloum, I.

    2015-12-01

    Organic chlorinated solvents, such as perchloroethene (PCE) and trichloroethene (TCE), are toxic pollutants threatening ground water quality worldwide and present at many superfund sites. Bioremediation using microorganisms is a promising, green, efficient, and sustainable approach to remove PCE and TCE contamination from soil and groundwater. Under anaerobic conditions, specialized microorganisms (dechlorinators) can reduce these chlorinated ethenes to ethene, an innocuous product, and gain energy for growth by a process known as reductive dechlorination. Dechlorinators are most often present in the environment and in dechlorinating cultures alongside other microbes such as fermenters, methanogens, and acetogens. Fermenters, methanogens, and acetogens syntrophically provide essential nutrients and growth factors to dechlorinators, most specifically to the only members able to reduce TCE all the way to ethene: Dehalococcoides; unfortunately, they also compete with dechlorinators for electron donors. My laboratory devises reductive chlorination platforms to study competition and syntrophy among Dehalococcoides, and other microbes to optimize remediation reactions and transport in the subsurface. We look at competing processes present as part of the natural soil chemistry and microbiology and address these challenges through a combination of enrichment techniques, molecular microbial ecology (deep sequencing), water chemistry, and electron balances. We have applied knowledge gathered in my laboratory to: 1) enrich microbial dechlorinating cultures capable of some of the fastest rates of TCE to ethene dechlorination ever reported, and 2) successfully design and operate three different continuous dechlorinating reactor types. We attribute our successful reactor operations to our multidisciplinary approach which links microbiology and engineering. Our reactors produce robust dechlorinating cultures used for in-situ bioaugmentation of PCE and TCE at contaminated sites

  2. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration.

    PubMed

    Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang

    2018-03-15

    Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    PubMed

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  4. Investigation of the potential source area, contamination pathway, and probable release history of chlorinated-solvent-contaminated groundwater at the Capital City Plume Site, Montgomery, Alabama, 2008-2010

    USGS Publications Warehouse

    Landmeyer, James E.; Miller, Scott; Campbell, Bruce G.; Vroblesky, Don A.; Gill, Amy C.; Clark, Athena P.

    2011-01-01

    Detection of the organic solvent perchloroethylene (PCE) in a shallow public-supply well in 1991 and exposure of workers in 1993 to solvent vapors during excavation activities to depths near the water table provided evidence that the shallow aquifer beneath the capital city of Montgomery, Alabama, was contaminated. Investigations conducted from 1993 to 1999 by State and Federal agencies confirmed the detection of PCE in the shallow aquifer, as well as the detection of the organic solvent trichloroethylene (TCE) and various inorganic compounds, but the source of the groundwater contamination was not determined. In May 2000 the U.S. Environmental Protection Agency proposed that the site, called the Capital City Plume (CCP) Site, be a candidate for the National Priorities List. Between 2000 and 2007, numerous site-investigation activities also did not determine the source of the groundwater contamination. In 2008, additional assessments were conducted at the CCP Site to investigate the potential source area, contamination pathway, and the probable release history of the chlorinated-solvent-contaminated groundwater. The assessments included the collection of (1) pore water in 2008 from the hyporheic zone of a creek using passive-diffusion bag samplers; (2) tissue samples in 2008 and 2009 from trees growing in areas of downtown Montgomery characterized by groundwater contamination and from trees growing in riparian zones along the Alabama River and Cypress Creek; and (3) groundwater samples in 2009 and 2010. The data collected were used to investigate the potential source area of contaminants detected in groundwater, the pathway of groundwater contamination, and constraints on the probable contaminant-release history. The data collected between 2008 and 2010 indicate that the PCE and TCE contamination of the shallow aquifer beneath the CCP Site most likely resulted from the past use and disposal of industrial wastewater from printing operations containing chlorinated

  5. Monitoring TCE Degradation by In-situ Bioremediation in TCE-Contaminated site

    NASA Astrophysics Data System (ADS)

    Han, K.; Hong, U.; Ahn, G.; Jiang, H.; Yoo, H.; Park, S.; Kim, N.; Ahn, H.; Kwon, S.; Kim, Y.

    2012-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we investigated two different tests (i.e., biostimulation and bioaugmentation) of biological remediation through the Well-to-Well test (injection well to extraction well) in TCE-contaminated site. Also solutions (Electron donor & acceptor, tracer) were injected into the aquifer using a liquid coupled with nitrogen gas sparging. In biostimulation, we use 3 phases to monitoring biological remediation. Phase 1: we inject formate solution to get electron donor hydrogen (hydrogen can be generated from fermentation of formate). We also inject bromide as tracer. Phase 2: we made injection solution by formate, bromide and sulfate. The reason why we inject sulfate is that as a kind of electron accepter, sulfate reduction process is helpful to create anaerobic condition. Phase 3: we inject mixed solution made by formate, sulfate, fumarate, and bromide. The degradation of fumarate has the same mechanism and condition with TCE degradation, so we added fumarate to make sure that if the anaerobic TCE degradation by indigenous microorganisms started up (Because low TCE concentration by gas sparging). In the bioaugmentation test, we inject the Evanite culture (containing dehalococcoides spp) and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the field by measuring TCE and VC reductases.

  6. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  7. Delineation of discharge areas of two contaminant plumes by use of diffusion samplers, Johns Pond, Cape Cod, Massachusetts, 1998

    USGS Publications Warehouse

    Savoie, Jennifer G.; LeBlanc, D.R.; Blackwood, D.S.; McCobb, T.D.; Rendigs, R. R.; Clifford, Scott

    2000-01-01

    Diffusion samplers were installed in the bottom of Johns Pond, Cape Cod, Massachusetts, to confirm that volatile organic compounds from the Storm Drain-5 (SD-5) plume emanating from the Massachusetts Military Reservation (MMR) were discharging into the pond. An array of 134 vapor-diffusion samplers was buried by divers about 0.5 feet below the pond bottom in the presumed discharge area of the SD-5 plume and left in place for about 2 weeks to equilibrate. Two areas of high concentrations of volatile organic compounds (VOCs) were identified. Samples from the first area contained trichloroethene (TCE) and tetrachloroethene with concentrations in vapor as high as 890 and 667 parts per billion by volume, respectively. This discharge area is about 1,000 feet wide, extends from 100 to 350 feet offshore, and is interpreted to be the discharge area of the SD-5 plume. Samples from the second area were located closer to shore than the discharge area of the SD-5 plume and contained unexpectedly high vapor concentrations of TCE (more than 40,000 parts per billion by volume). Ground-water samples collected with a drive-point sampler near the second area had aqueous TCE concentrations as high as 1,100 micrograms per liter. Subsequently, a more closely spaced array of 110 vapor-diffusion samplers was installed to map the area of elevated TCE concentrations . The discharge area detected with the samplers is about 75 feet wide and extends from about 25 to 200 feet offshore . TCE vapor concentrations in this area were as high as 42,800 parts per billion by volume. TCE concentrations in micrograms per liter in water-diffusion samples from 15 selected sites in the two discharge areas were about 35 times lower than the TCE concentrations in parts per billion by volume in corresponding vapor-diffusion samples. The difference in values is due to the volatile nature of TCE and the different units of measure. TCE was detected in diffusion samplers set in the pond water column above the

  8. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, Robert A; Kubilius, Walter P.

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less

  9. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  10. Potential for Methanotroph-Mediated Natural Attenuation of TCE in a Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Newby, D. T.; Reed, D. W.; Igoe, A.; Petzke, L.; Delwiche, M. E.; McKinley, J. P.; Roberto, F. F.; Whiticar, M. J.

    2002-12-01

    Methanotrophic bacteria are one of the microbial communities believed to be responsible for natural attenuation of a trichloroethylene (TCE) plume in the Snake River Plain Aquifer (SRPA). To better understand the role that indigenous methanotrophs may have in TCE degradation in the aquifer, groundwater was collected from four SRPA wells and analyzed for geochemical properties and methanotroph diversity. Dissolved methane concentrations in the aquifer ranged from 1 to >1000 nM. Stable carbon isotope ratios for dissolved methane suggest a microbial source for the methane (del 13C values of ca. -61 per mil in three wells). The combination of 13C enriched methane and 13C depleted-dissolved inorganic carbon in one of the wells suggests that microbial oxidation of methane occurs. Filtered groundwater yielded microorganisms that were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target taxonomic (type I and type II 16S rDNA) or functional (mmoX and pmoA methane monooxygenase subunits) genes were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. DNA sequencing and alignment results suggest that clones with sequences most similar to Methylocystis sp. (a type II methanotroph) and Methylobacter sp. (a type I methanotroph) are frequently present in filtered groundwater with the former often represented in enrichment cultures as well. Methanotroph genes are detected in the aquifer even in wells having methane concentrations as low as 1 nM. Methanotroph presence and a microbial origin for the dissolved methane indicate that microbial cycling of this key gas may play a role in the destruction of TCE in the aquifer.

  11. REMEDIATION OF SITES CONTAMINATED WITH TCE

    EPA Science Inventory

    Widespread use of trichloroethylene (TCE) in the U.S. has resulted in its frequent detection in soil and groundwater. TCE can become a health hazard after being processed in the human liver; or reductive dehalogenation in the environment may result in production of vinyl chloride...

  12. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.

    PubMed

    Weatherill, John; Krause, Stefan; Voyce, Kevin; Drijfhout, Falko; Levy, Amir; Cassidy, Nigel

    2014-03-01

    Integrated approaches for the identification of pollutant linkages between aquifers and streams are of crucial importance for evaluating the environmental risks posed by industrial contaminants like trichloroethene (TCE). This study presents a systematic, multi-scale approach to characterising groundwater TCE discharge to a 'gaining' UK lowland stream receiving baseflow from a major Permo-Triassic sandstone aquifer. Beginning with a limited number of initial monitoring points, we aim to provide a 'first pass' mechanistic understanding of the plume's fate at the aquifer/stream interface using a novel combination of streambed diffusion samplers, riparian monitoring wells and drive-point mini-piezometers in a spatially nested sampling configuration. Our results indicate the potential discharge zone of the plume to extend along a stream reach of 120 m in length, delineated by a network of 60 in-situ diffusion samplers. Within this section, a 40 m long sub-reach of higher concentration (>10 μg L(-1)) was identified; centred on a meander bend in the floodplain. 25 multi-level mini-piezometers installed to target this down-scaled reach revealed even higher TCE concentrations (20-40 μg L(-1)), significantly above alluvial groundwater samples (<6 μg L(-1)) from 15 riparian monitoring wells. Significant lateral and vertical spatial heterogeneity in TCE concentrations within the top 1m of the streambed was observed with the decimetre-scale vertical resolution provided by multi-level mini-piezometers. It appears that the distribution of fine-grained material in the Holocene deposits of the riparian floodplain and below the channel is exerting significant local-scale geological controls on the location and magnitude of the TCE discharge. Large-scale in-situ biodegradation of the plume was not evident during the monitoring campaigns. However, detections of cis-1,2-dichloroethene and vinyl chloride in discrete sections of the sediment profile indicate that shallow (e.g., <20

  13. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece.

    PubMed

    Panagiotakis, I; Dermatas, D; Vatseris, C; Chrysochoou, M; Papassiopi, N; Xenidis, A; Vaxevanidou, K

    2015-01-08

    A forensic investigation was conducted with the aim of decoupling the contribution of geogenic and anthropogenic Cr(VI) sources in the wider area of Thiva. Groundwater and topsoil samples were collected from two Cr(VI) groundwater plumes of 160 μg/L and 75 μg/L. A series of evidence support the view that the origin of Cr(VI) detected in groundwater is mainly geogenic. These are: (a) the presence of Cr in topsoil of the wider area, (b) the moderate Cr(VI) groundwater concentrations, (c) the high Ni levels within the Cr(VI) plumes, (d) the predominance of Mn(IV), which is a prerequisite for Cr(III) oxidation to Cr(VI), and (e) the absence of co-contaminants. The present study also revealed that, although both Cr(VI) plumes are clearly of geogenic origin, the plume with the elevated Cr(VI) values, in the north of Thiva town, exhibits also an anthropogenic component, which can potentially be attributed to the alkaline environment associated with the old uncontrolled landfill of Thiva and the industrial cluster located in this area. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.

    PubMed

    Xie, Wenjing; Yuan, Songhu; Mao, Xuhui; Hu, Wei; Liao, Peng; Tong, Man; Alshawabkeh, Akram N

    2013-07-01

    A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.

    PubMed

    Chee, Gab-Joo

    2011-09-30

    Trichloroethylene (TCE) is a toxic, recalcitrant groundwater pollutant. TCE-degrading microorganisms were isolated from various environments. The aerobic bacteria isolated from toluene- and tryptophan-containing media were Pseudomonas sp. strain ASA86 and Burkholderia sp. strain TAM17, respectively; these are necessary for inducing TCE biodegradation in a selective medium. The half-degradation time of TCE to a concentration of 1mg/L was 18 h for strain ASA86 and 7 days for strain TAM17. While identifying toluene/TCE degradation genes, we found that in strain ASA86, the gene was the same as the todC1 gene product encoding toluene dioxygenase identified in Pseudomonas putida F1, and that in strain TAM17, the gene was similar to the tecA1 gene product encoding chlorobenzene dioxygenase identified in Burkholderia sp. PS12. A novel TCE biosensor was developed using strain ASA86 as the inducer of toluene under aerobic conditions. The TCE biosensor exhibited a linear relationship below 3 ppm TCE. Detection limit of the biosensor was 0.05 ppm TCE. The response time of the biosensor was less than 10 min. The biosensor response displayed a constant level during a 2 day period. The TCE biosensor displayed sufficient sensitivity for monitoring TCE in environmental systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Chloroethene dechlorination in acidic groundwater: Implications for combining fenton's treatment with natural attenuation

    USGS Publications Warehouse

    Bradley, Paul M.; Singletary , Michael A.; Chapelle, Francis H.

    2007-01-01

    A sulfuric acid leak in 1988 at a chloroethene-contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long-term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's-based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30-m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides-type bacteria within the sulfuric acid/chloroethene co-contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C-TCE and 14C-VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co-contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's-based source area treatment) do not necessarily preclude efficient chloroethene degradation.

  17. TCE treatment pasta-bilities.

    PubMed Central

    Holton, W C

    1999-01-01

    Monsanto's "Lasagna" process uses layers of treatment zones spaced between buried electrodes to remove trichloroethylene (TCE) from contaminated soil and groundwater. TCE is used primarily as a metal degreaser as well as in products such as dyes, printing ink, and paint. TCE can eventually make its way into the environment and is prevalent in the water and soil of industrialized nations. Although TCE breaks down in a few days when released into the atmosphere, it degrades much more slowly in soil, taking months or years. Moreover, it is often broken down by microbes into toxic substances such as vinylidene chloride (a suspected human carcinogen) and vinyl chloride (a known human carcinogen). The Lasagna process is based on the principle of electro-osmosis, in which an electric current draws water from low--permeability soils such as clays, silts, and fine sands. To remove TCE from contaminated soils, Monsanto scientists added layers of filtering media, which attack the contaminant as it is pulled from electrode to electrode. The technology has been tested at the Paducah Gaseous Diffusion Plant in western Kentucky, where it removed over 98% of TCE from contaminated soil. PMID:10464086

  18. Mercury speciation and mobilization in a wastewater-contaminated groundwater plume

    USGS Publications Warehouse

    Lamborg, Carl H.; Kent, Doug B.; Swarr, Gretchen J.; Munson, Kathleen M.; Kading, Tristan; O'Connor, Alison E.; Fairchild, Gillian M.; LeBlanc, Denis R.; Wiatrowski, Heather A.

    2013-01-01

    We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg(II) to Hg0 within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone.

  19. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.

    PubMed

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N

    2013-01-01

    A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are

  1. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    NASA Astrophysics Data System (ADS)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  2. PCE/TCE DEGRADATION USING MULCH BIOWALLS

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  3. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  4. Changes in Groundwater Flow and Volatile Organic Compound Concentrations at the Fischer and Porter Superfund Site, Warminster Township, Bucks County, Pennsylvania, 1993-2009

    USGS Publications Warehouse

    Sloto, Ronald A.

    2010-01-01

    The 38-acre Fischer and Porter Company Superfund Site is in Warminster Township, Bucks County, Pa. Historically, as part of the manufacturing process, trichloroethylene (TCE) degreasers were used for parts cleaning. In 1979, the Bucks County Health Department detected TCE and other volatile organic compounds (VOCs) in water from the Fischer and Porter on-site supply wells and nearby public-supply wells. The Fischer and Porter Site was designated as a Superfund Site and placed on the National Priorities List in September 1983. A 1984 Record of Decision for the site required the Fischer and Porter Company to pump and treat groundwater contaminated by VOCs from three on-site wells at a combined rate of 75 gallons per minute to contain groundwater contamination on the property. Additionally, the Record of Decision recognized the need for treatment of the water from two nearby privately owned supply wells operated by the Warminster Heights Home Ownership Association. In 2004, the Warminster Heights Home Ownership Association sold its water distribution system, and both wells were taken out of service. The report describes changes in groundwater levels and contaminant concentrations and migration caused by the shutdown of the Warminster Heights supply wells and presents a delineation of the off-site groundwater-contamination plume. The U.S. Geological Survey (USGS) conducted this study (2006-09) in cooperation with the U.S. Environmental Protection Agency (USEPA). The Fischer and Porter Site and surrounding area are underlain by sedimentary rocks of the Stockton Formation of Late Triassic age. The rocks are chiefly interbedded arkosic sandstone and siltstone. The Stockton aquifer system is comprised of a series of gently dipping lithologic units with different hydraulic properties. A three-dimensional lithostratigraphic model was developed for the site on the basis of rock cores and borehole geophysical logs. The model was simplified by combining individual lithologic

  5. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

    PubMed

    Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich; Trapp, Stefan

    2017-08-01

    Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

  6. 76 FR 2112 - Peach Orchard Road Groundwater Plume Site, Augusta, Richmond County, GA; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2010-0965 FRL-9251-5] Peach Orchard Road... Orchard Road Groundwater Plume Site located in Augusta, Richmond County, Georgia for publication. DATES..., identified by Docket ID No. EPA-RO4- SFUND-2010-0965 or Site name Peach Orchard Road Groundwater Plume...

  7. INDEPENDENT TECHNICAL REVIEW OF THE BUILDING 100 PLUME, FORMER DOE PINELLAS SITE (YOUNG - RAINEY STAR CENTER), LARGO, FLORIDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, C.; Rossabi, J.; Amidon, M.

    2010-07-30

    Contaminated groundwater associated with Building 100 at the Young-Rainey Science, Technology, and Research Center, formerly the DOE Pinellas plant, is the primary remedial challenge that remains to be addressed at the site. Currently, Building 100 is an active industrial facility that is now owned and operated by the Pinellas county government. Groundwater samples collected from monitoring wells recently installed near the southern boundary of the site suggest that contaminated groundwater has migrated off the plant site. In response to the challenges presented by the Building 100 plume, the Office of Legacy Management (LM) requested assistance from the DOE Office ofmore » Groundwater and Soil Remediation (EM-32) to provide a review team to make technical recommendations so that they can efficiently and effectively address characterization and remediation of the plume. The review team was unanimous in the conclusion that a dynamic strategy that combines a phased implementation of direct push samplers, sensors, and tools can be used to better delineate the extent of contamination, control plume migration, and rapidly remediate the contaminated groundwater at the site. The initial efforts of the team focused on reviewing the site history and data, organizing the information into a conceptual model, identifying appropriate technologies, and recommending an integrated strategy. The current groundwater data from the site indicate a two-lobed plume extending to the east and south. To the east vinyl chloride is the primary contaminant of concern, to the south, vinyl chloride and cis1, 2-DCE are the primary contaminants. The limited data that are available suggest that reductive dechlorination of the TCE is already occurring but is not sufficient to prevent offsite migration of low concentrations of TCE daughter products. The team recommends that DOE pursue a strategy that builds on the natural cleansing capacity of the subsurface with reductive methods including

  8. Characterization of TCE DNAPL and Dissolved Phase Transport in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2015-12-01

    Trichloroethylene (TCE) contaminated sites are a threat to the environment and human health. Of particular concerns is the contamination of karst groundwater systems (KGWSs). Their heterogeneous character, rapid flow through conduits, high permeability zones, and strong storage capacity in the rock porous-matrix pose a high risk of exposure over large areas and temporal scales. To achieve effective remedial actions for TCE removal, it is important to understand and quantify the fate and transport process of trichloroethylene in these systems. This research studies the fate, transport, and distribution of TCE Non-Aqueous Phase Liquids (NAPLs) and associated dissolved species in KGWSs. Experiments are conducted in a karstified limestone physical model, a limestone rock mimicking a saturated confined karst aquifer. After injecting TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed for TCE NAPL and dissolved phases. Data analysis shows the rapid detection of TCE NAPL and high aqueous concentrations along preferential pathway, even at distances far away from the injection point. Temporal distribution curves exhibit spatial variations related to the limestone rock heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing indicates rate-limited diffusive transport in the rock matrix. Overall, results indicate that karstified limestone has a high capacity to rapidly transport pure and dissolved TCE along preferential flow paths, and to store and slowly release TCE over long periods of time.

  9. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media.

    PubMed

    Hudak, Paul F

    2018-02-01

    A groundwater flow and mass transport model tested the capability of shallow excavations filled with coarse, reactive media to remediate a hypothetical unconfined aquifer with a maximum saturated thickness of 5 m. Modeled as contaminant sinks, the rectangular excavations were 10 m downgradient of an initial contaminant plume originating from a source at the top of the aquifer. The initial plume was approximately 259 m long, 23 m wide, and 5 m thick, with a downgradient tip located approximately 100 m upgradient of the site boundary. The smallest trench capable of preventing offsite migration was 11 m long (measured perpendicular to groundwater flow), 4 m wide (measured parallel to groundwater flow), and 3 m deep. Results of this study suggest that shallow trenches filled with coarse filter media that partially penetrate unconfined aquifers may be a viable alternative for remediating contaminated groundwater at some sites.

  10. Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aleisa C

    2015-01-01

    Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE Aleisa Bloom, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA) Robert Lyon (bob.lyon@aecom.com), Laurie Stenberg, and Holly Brown (AECOM, Germantown, Maryland, USA) ABSTRACT: Past disposal practices at Dover Air Force Base (AFB), Delaware, created a large solvent plume called Area 6 (about 1 mile long, 2,000 feet wide, and 345 acres). The main contaminants are PCE, TCE, and their degradation products. The remedy is in-situ accelerated anaerobic bioremediation (AAB). AAB started in 2006 and is focusing on source areas and downgradient plume cores. Direct-push injections occurred in source areas wheremore » contamination is typically between 5 and 20 feet below ground surface. Lower concentration dissolved-phased contamination is present downgradient at 35 and 50 feet below ground surface. Here, permanent injection/extraction wells installed in transects perpendicular to the flow of groundwater are used to apply AAB. The AAB substrate is a mix of sodium lactate, emulsified vegetable oil, and nutrients. After eight years, dissolved contaminant mass within the main 80-acre treatment area has been reduced by over 98 percent. This successful application of AAB has stopped the flux of contaminants to the more distal portions of the plume. While more time is needed for effects to be seen in the distal plume, AAB injections will soon cease, and the remedy will transition to natural attenuation. INTRODUCTION Oak Ridge National Laboratory Environmental Science Division (ORNL) and AECOM (formerly URS Corporation) have successfully implemented in situ accelerated anaerobic bioremediation (AAB) to remediate chlorinated solvent contamination in a large, multi-sourced groundwater plume at Dover Air Force Base (AFB). AAB has resulted in significant reductions of dissolved phase chlorinated solvent concentrations. This plume, called Area 6, was originally over 1 mile in length and over 2,000 feet wide

  11. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  12. Field demonstration and evaluation of the Passive Flux Meter on a CAH groundwater plume.

    PubMed

    Verreydt, G; Annable, M D; Kaskassian, S; Van Keer, I; Bronders, J; Diels, L; Vanderauwera, P

    2013-07-01

    This study comprises the first application of the Passive Flux Meter (PFM) for the measurement of chlorinated aliphatic hydrocarbon (CAH) mass fluxes and Darcy water fluxes in groundwater at a European field site. The PFM was originally developed and applied to measurements near source zones. The focus of the PFM is extended from near source to plume zones. For this purpose, 48 PFMs of 1.4 m length were constructed and installed in eight different monitoring wells in the source and plume zone of a CAH-contaminated field site located in France. The PFMs were retrieved, sampled, and analyzed after 3 to 11 weeks of exposure time, depending on the expected contaminant flux. PFM evaluation criteria include analytical, technical, and practical aspects as well as conditions and applicability. PFM flux data were compared with so-called traditional soil and groundwater concentration data obtained using active sampling methods. The PFMs deliver reasonable results for source as well as plume zones. The limiting factor in the PFM applicability is the exposure time together with the groundwater flux. Measured groundwater velocities at the field site range from 2 to 41 cm/day. Measured contaminant flux data raise up to 13 g/m(2)/day for perchloroethylene in the plume zone. Calculated PFM flux averaged concentration data and traditional concentration data were of similar magnitude for most wells. However, both datasets need to be compared with reservation because of the different sampling nature and time. Two important issues are the PFM tracer loss during installation/extraction and the deviation of the groundwater flow field when passing the monitoring well and PFM. The demonstration of the PFM at a CAH-contaminated field site in Europe confirmed the efficiency of the flux measurement technique for source as well as plume zones. The PFM can be applied without concerns in monitoring wells with European standards. The acquired flux data are of great value for the purpose of site

  13. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: Groundwater biogeochemistry

    USGS Publications Warehouse

    Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.

    2002-01-01

    Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. LESSONS LEARNED FROM IN-SITU RESISTIVE HEATING OF TCE AT FORT LEWIS, WASHINGTON

    EPA Science Inventory

    The EGDY is the source of a potentially expanding, three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This i...

  15. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    PubMed

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  16. Efficient Degradation of TCE in Groundwater Using Pd and Electro-generated H2 and O2: A Shift in Pathway from Hydrodechlorination to Oxidation in the Presence of Ferrous Ions

    PubMed Central

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H2 and O2 is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H2O2 up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radical are detected due to decomposition of H2O2, slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na2SO4, NaCl, NaNO3, NaHCO3, K2SO4, CaSO4 and MgSO4 does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppresses degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

  17. Trichloroethene (TCE) hydrodechlorination by NiFe nanoparticles: Influence of aqueous anions on catalytic pathways.

    PubMed

    Han, Yanlai; Liu, Changjie; Horita, Juske; Yan, Weile

    2018-08-01

    Amending bulk and nanoscale zero-valent iron (ZVI) with catalytic metals significantly accelerates hydrodechlorination of groundwater contaminants such as trichloroethene (TCE). The bimetallic design benefits from a strong synergy between Ni and Fe in facilitating the production of active hydrogen for TCE reduction, and it is of research and practical interest to understand the impacts of common groundwater solutes on catalyst and ZVI functionality. In this study, TCE hydrodechlorination reaction was conducted using fresh NiFe bimetallic nanoparticles (NiFe BNPs) and those aged in chloride, sulfate, phosphate, and humic acid solutions with concurrent analysis of carbon fractionation of TCE and its daughter products. The apparent kinetics suggest that the reactivity of NiFe BNPs is relatively stable in pure water and chloride or humic acid solutions, in contrast to significant deactivation observed of PdFe bimetallic particles in similar media. Exposure to phosphate at greater than 0.1 mM led to a severe decrease in TCE reaction rate. The change in kinetic regimes from first to zeroth order with increasing phosphate concentration is consistent with consumption of reactive sites by phosphate. Despite severe kinetic effect, there is no significant shift in TCE 13 C bulk enrichment factor between the fresh and the phosphate-aged particles. Instead, pronounced retardation of TCE reaction by NiFe BNPs in deuterated water (D 2 O) points to the importance of hydrogen spillover in controlling TCE reduction rate by NiFe BNPs, and such process can be strongly affected by groundwater chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Investigating In-Situ Mass Transfer Processes in a Groundwater U Plume Influenced by Groundwater-River Hydrologic and Geochemical Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.

    2009-12-01

    The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during

  19. Fate of TCE in heated Fort Lewis soil.

    PubMed

    Costanza, Jed; Fletcher, Kelly E; Löffler, Frank E; Pennell, Kurt D

    2009-02-01

    This study explores the transformation of trichloroethene (TCE) caused by heating contaminated soil and groundwater samples obtained from the East Gate Disposal Yard (EGDY) located in Fort Lewis, WA. After field samples transferring into glass ampules and introducing 1.5 micromol of TCE, the sealed ampules were incubated at temperatures of 25, 50, and 95 degrees C for periods of up to 95.5 days. Although TCE was completely transformed into cis-1,2-dichloroethene (cis-DCE) after 42 days at 25 degrees C by microbial activity, this transformation was not observed at 50 or 95 degrees C. Chloride levels increased after 42 days at 25 degrees C corresponding to the mass of TCE transformed to cis-DCE, were constant at 50 degrees C, and increased at 95 degrees C yielding a TCE degradation half-life of 1.6-1.9 years. These findings indicate that indigenous microbes contribute to the partial dechlorination of TCE to cis-DCE at temperatures of less than 50 degrees C, whereas interphase mass transfer and physical recovery of TCE will predominate over in situ degradation processes at temperatures of greater than 50 degrees C during thermal treatment at the EGDY site.

  20. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.

    PubMed

    Sheu, Y T; Chen, S C; Chien, C C; Chen, C C; Kao, C M

    2015-03-02

    A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  3. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    PubMed

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the

  4. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between

  5. Persistence of a Groundwater Contaminant Plume after Hydraulic Source Containment at a Chlorinated-Solvent Contaminated Site

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Guo, Z.; Plaschke, M.; Carroll, K.C.; Brinker, F.

    2015-01-01

    The objective of this study was to characterize the behavior of a groundwater contaminant (trichloroethene) plume after implementation of a source-containment operation at a site in Arizona. The plume resides in a quasi three-layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start-up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of contaminant removed, and the integrated contaminant mass discharge. Concentrations of trichloroethene in groundwater pumped from the plume extraction wells have declined significantly over the course of operation, as have concentrations for groundwater sampled from 40 monitoring wells located within the plume. The total contaminant mass discharge associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within one year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in contaminant mass discharge for the plume, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass-removal behavior. Simulations produced with a simplified 3-D numerical model matched reasonably well to the measured data. The results of the study suggest that permeability heterogeneity, back diffusion, hydraulic factors associated with the specific well field system, and residual discharge from the source zone are all contributing to the observed persistence of the plume, as well as the asymptotic behavior currently observed for mass removal and for the reduction in contaminant mass discharge. PMID:26069436

  6. FRACTIONATION OF STABLE CARBON ISOTOPES DURING ABIOTIC TRANSFORMATION OF TCE

    EPA Science Inventory

    At a Superfund Site in Minnesota, ground water is contaminated with trichloroethylene (TCE) with the contaminant plume stretching over five miles long. The ground water is iron and manganese reducing, and the complete absence of dichloroethylene, vinyl chloride, and ethene in th...

  7. Hazardous organic compounds in groundwater near Tehran automobile industry.

    PubMed

    Dobaradaran, Sina; Mahvi, Amir Hossein; Nabizadeh, Ramin; Mesdaghinia, Alireza; Naddafi, Kazem; Yunesian, Masoud; Rastkari, Noushin; Nazmara, Shahrokh

    2010-11-01

    Potential of groundwater contamination by trichloroethylene (TCE) and other volatile organic compounds VOCs near car industry was conducted in this study. TCE, PCE, toluene, xylene, dichloromethane, cyclohexane, n-hexane and n-pentane were detected in all groundwaters. Mean TCE levels in groundwater ranged from 124.37 to 1,035.9 μg L⁻¹ with maximum level of 1,345.7 μg L⁻¹. Due to the data obtained from conventional wastewater treatment in car factory the TCE removal efficiency was only 24 percent which necessitates the TCE removal by advanced treatment processes before the use of well water.

  8. Distribution of Trichloroethylene and Geologic Controls on Contaminant Pathways near the Royal River, McKin Superfund Site Area, Gray, Maine

    USGS Publications Warehouse

    Lyford, Forest P.; Flight, L.E.; Stone, Janet Radway; Clifford, Scott

    1999-01-01

    Vapor-diffusion samplers were used in the autumn of 1997 to determine the lateral extent and distribution of concentrations of a trichloroethylene (TCE) plume in the ground-water discharge area near the McKin Superfund Site, Gray, Maine. Analyses of vapor in the samplers identified a plume about 800 feet wide entering the river near Boiling Springs, an area of ground-water discharge on the flood plain of the Royal River. The highest observed concentration of TCE in vapor was in an area of sand boils on the western bank of the river and about 200 feet downstream from Boiling Springs. Previous studies showed that most of the TCE load in the river originated in the area of the sand boils. In general, highest concentrations were observed on the western side of the river on the upgradient side of the plume, but TCE also was detected at numerous locations in the center and eastern bank of the river. The TCE plume discharges to the river where fine-grained glaciomarine sediments of the Presumpscot Formation are absent and where coarse-grained facies of buried glaciomarine fan deposits provide a pathway for ground-water flow. Based on results of analyses of vapor-diffusion samples and other previous studies, the plume appears to pass under and beyond the river near Boiling Springs and along the river for about 300 feet downstream from the sand boils. A coarse-grained, organic-rich layer at the base of the alluvial flood plain sediments is confined by overlying fine-grained alluvial sediments and may provide a conduit for ground-water leaking upward from buried glaciomarine fan deposits.

  9. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Chromium isotope variation along a contaminated groundwater plume: a coupled Cr(VI)- reduction, advective mixing perspective

    NASA Astrophysics Data System (ADS)

    Bullen, T.; Izbicki, J.

    2007-12-01

    Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) <4 ppb, and 13 samples with δ53Cr <+2‰ and Cr(VI) >15 ppb. Simple mixing lines between the

  11. Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  12. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  13. Groundwater contaminant plume maps and volumes, 100-K and 100-N Areas, Hanford Site, Washington

    USGS Publications Warehouse

    Johnson, Kenneth H.

    2016-09-27

    This study provides an independent estimate of the areal and volumetric extent of groundwater contaminant plumes which are affected by waste disposal in the 100-K and 100-N Areas (study area) along the Columbia River Corridor of the Hanford Site. The Hanford Natural Resource Trustee Council requested that the U.S. Geological Survey perform this interpolation to assess the accuracy of delineations previously conducted by the U.S. Department of Energy and its contractors, in order to assure that the Natural Resource Damage Assessment could rely on these analyses. This study is based on previously existing chemical (or radionuclide) sampling and analysis data downloaded from publicly available Hanford Site Internet sources, geostatistically selected and interpreted as representative of current (from 2009 through part of 2012) but average conditions for groundwater contamination in the study area. The study is limited in scope to five contaminants—hexavalent chromium, tritium, nitrate, strontium-90, and carbon-14, all detected at concentrations greater than regulatory limits in the past.All recent analytical concentrations (or activities) for each contaminant, adjusted for radioactive decay, non-detections, and co-located wells, were converted to log-normal distributions and these transformed values were averaged for each well location. The log-normally linearized well averages were spatially interpolated on a 50 × 50-meter (m) grid extending across the combined 100-N and 100-K Areas study area but limited to avoid unrepresentative extrapolation, using the minimum curvature geostatistical interpolation method provided by SURFER®data analysis software. Plume extents were interpreted by interpolating the log-normally transformed data, again using SURFER®, along lines of equal contaminant concentration at an appropriate established regulatory concentration . Total areas for each plume were calculated as an indicator of relative environmental damage. These plume

  14. Demonstration-site development and phytoremediation processes associated with trichloroethene (TCE) in ground water, Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Shah, Sachin D.; Braun, Christopher L.

    2004-01-01

    A field-scale phytoremediation demonstration study was initiated in 1996 by the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, at a site on Naval Air StationJoint Reserve Base Carswell Field (NAS–JRB) adjacent to Air Force Plant 4 (AFP4) in Fort Worth, Tex. (fig. 1). Trichloroethene (TCE) has been used at AFP4 in aircraft manufacturing processes for decades; spills and leaks from tanks in the manufacturing building have resulted in shallow ground-water contamination on-site and downgradient from the facility (Eberts and others, 2003). The objective of the study was to determine the effectiveness of eastern cottonwoods (Populus deltoides) in decreasing the mass of dissolved TCE in ground water through phytoremediation. Phytoremediation is a process by which plants decrease the mass of a contaminant through a variety of chemical, physical, and biological means. Before development of the phytoremediation demonstration site, natural attenuation of TCE at the site occurred by sorption, dispersion, dilution, and possibly volatilization (Eberts and others, 2003).Long-term, field-scale monitoring and evaluation of this site contribute to the understanding of the processes associated with phytoremediation and provide practical information about field-scale applications of the method. This fact sheet briefly summarizes the development of the phytoremediation demonstration site at NAS–JRB and describes some of the physical and chemical processes associated with phytoremediation. The phytoremediation demonstration site is on the southern edge of the central lobe of a TCE plume in the surficial (alluvial) aquifer. The plume originates at AFP4 about 0.9 mile upgradient from the site (fig. 1). The 9.5-acre site is in the northwestern corner of the golf course on NAS–JRB. The saturated thickness of the alluvial aquifer, which is composed of clay, silt, sand, and gravel, ranges from about 1.5 to 5 feet at the site. The total thickness of the alluvial

  15. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, Ronald W.; Barber, Larry B.

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted <7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80, n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (<5 · 108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  16. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B.; ,

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  17. The Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  18. The Relationship Between Partial Contaminant Source Zone Remediation and Groundwater Plume Attenuation

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J

  19. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  20. Remediation and its effect represented on long term monitoring data at a chlorinated ethenes contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Sun; Lee, Seung Hyun; Lee, Kang-Kun

    2016-04-01

    A research for the contamination of chlorinated ethenes such as trichloroethylene (TCE) at an industrial complex, Wonju, Korea, was carried out based on 17 rounds of groundwater quality data collection from 2009 to 2015. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones to groundwater discharge area like a stream. The remediation efficiency according to the remedial actions was evaluated by tracing a time-series of plume evaluation and temporal mass discharge at three transects (Source, Transect-1, Transect-2) which was assigned along the groundwater flow path. Also, based on long term monitoring data, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The results of temporal and spatial monitoring before remedial actions showed that a TCE plume originating from main and local source zones continues to be discharged to a stream. However, from the end of intensive remedial actions from 2012 to 2013, the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly. Especially, during the intensive remediation period, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Estimated initial dissolved concentration and residual mass of TCE in the initial stage of disposal decreased rapidly after an intensive remedial action in 2013 and it is expected to be continuously decreased from the end of remedial actions to 2020. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remedial actions at chlorinated ethenes contaminated site. Acknowledgements This project is supported by the Korea Ministry of Environment under "The GAIA

  1. Superfund record of decision (EPA Region 1): Otis Air National Guard (containment of 7 groundwater plumes), Falmouth, MA, September 25, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    The Massachusetts Military Reservation (MMR) on Cape Cod, Massachusettes lies within the boundaries of Bourne, Mashpee, and Sandwich, and abuts Falmouth. Seven groundwater contaminant plumes have migrated beyond or are approaching the installation boundary. This interim remedial action will intercept the contaminated groundwater plumes to prevent further downgradient movement of the contaminants. Extraction and treatment will continue until the final remedy for the site is chosen.

  2. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exitsmore » the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.« less

  3. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene.

    PubMed

    Phenrat, Tanapon; Schoenfelder, Daniel; Kirschling, Teresa L; Tilton, Robert D; Lowry, Gregory V

    2018-03-01

    For in situ groundwater remediation, polyelectrolyte-modified nanoscale zerovalent iron particles (NZVIs) have to be delivered into the subsurface, where they degrade pollutants such as trichloroethylene (TCE). The effect of groundwater organic and ionic solutes on TCE dechlorination using polyelectrolyte-modified NZVIs is unexplored, but is required for an effective remediation design. This study evaluates the TCE dechlorination rate and reaction by-products using poly(aspartate) (PAP)-modified and bare NZVIs in groundwater samples from actual TCE-contaminated sites in Florida, South Carolina, and Michigan. The effects of groundwater solutes on short- and intermediate-term dechlorination rates were evaluated. An adsorbed PAP layer on the NZVIs appeared to limit the adverse effect of groundwater solutes on the TCE dechlorination rate in the first TCE dechlorination cycle (short-term effect). Presumably, the pre-adsorption of PAP "trains" and the Donnan potential in the adsorbed PAP layer prevented groundwater solutes from further blocking NZVI reactive sites, which appeared to substantially decrease the TCE dechlorination rate of bare NZVIs. In the second and third TCE dechlorination cycles (intermediate-term effect), TCE dechlorination rates using PAP-modified NZVIs increased substantially (~100 and 200%, respectively, from the rate of the first spike). The desorption of PAP from the surface of NZVIs over time due to salt-induced desorption is hypothesized to restore NZVI reactivity with TCE. This study suggests that NZVI surface modification with small, charged macromolecules, such as PAP, helps to restore NZVI reactivity due to gradual PAP desorption in groundwater.

  4. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  5. Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2004-01-01

    Pump-and-treat systems that are installed to contain contaminated groundwater migration typically involve placement of extraction wells perpendicular to the regional groundwater flow direction at the down gradient edge of a contaminant plume. These wells capture contaminated water for above ground treatment and disposal, thereby preventing further migration of contaminated water down gradient. In this work, examining two-, three-, and four-well systems, we compare well configurations that are parallel and perpendicular to the regional groundwater flow direction. We show that orienting extraction wells co-linearly, parallel to regional flow, results in (1) a larger area of aquifer influenced by the wells at a given total well flow rate, (2) a center and ultimate capture zone width equal to the perpendicular configuration, and (3) more flexibility with regard to minimizing drawdown. Although not suited for some scenarios, we found orienting extraction wells parallel to regional flow along a plume centerline, when compared to a perpendicular configuration, reduces drawdown by up to 7% and minimizes the fraction of uncontaminated water captured.

  6. Water-quality and hydrologic conditions at a site of ground-water contamination by volatile organic compounds, South Grafton, Massachusetts, September and October 1994

    USGS Publications Warehouse

    DiSimone, L.A.; Barlow, P.M.

    1995-01-01

    Ground-water quality and hydrologic data were collected at a site contaminated by volatile organic compounds (VOCs) in South Grafton, Massachusetts, during September and October 1994. The VOCs have formed a plume of contaminated ground water at an abandoned textile mill adjacent to the Blackstone River. Concentrations of total VOCs in the plume ranged from less than 1 to more than 40,000 micrograms per liter. Trichloroethylene (TCE) was the primary chlorinated contaminant, comprising as much as 98 percent of the total VOCs. The highest concentration, 43,000 micrograms per liter, was higher than any previously measured concentration at the site; however, the maximum extent and distribution of concentrations in the VOC plume in September 1994 was similar to that found in July 1993 and in earlier rounds of sampling. In addition to TCE, 1,2-dichloroethene (1,2-DCE) and vinyl chloride were detected at most sites. Spatial and temporal changes in concentrations of TCE, 1,2-DCE, and vinyl chloride are consistent with the hypothesis that TCE biodegradation was the source of 1,2-DCE and vinyl chloride. Ground water at the site contained low to moderately high concentrations of dissolved solids (44 to 406 milligrams per liter), had a moderately high specific conductance (155 to 670 microsiemens per centimeter at 25 degrees Celsius), and was slightly acidic (pH=5.9 to 7.0). Concentrations of the major ions-calcium, sodium, chloride, and sulfate-were not related to VOC concentrations. Dissolved-oxygen concentrations were low (0 to 2 milligrams per liter) throughout most of the aquifer. Distribution of nitrogen species, iron, and manganese indicates that zones of varying oxidation-reduction potential were present in the aquifer. Concentrations of trace metals other than iron or manganese, including arsenic, cadmium, chromium, and copper, generally were less than analytical detection limits. Stream stage in the Blackstone River at the site during September and October 1994

  7. IDENTIFYING AND PREDICTING DIVING PLUME BEHAVIOR AT GROUNDWATER SITES CONTAINING MTBE: PART 1 SUPPLEMENTAL FUNDING FOR ACTIVITIES IN FY 2002

    EPA Science Inventory

    This work will complete work began under Identifying and Predicting Plume Diving Behavior at Groundwater Sites Containing MTBE: Part 1. As of September 2001, ORD Staff and ORD Contractors have characterized dividing MTBE plumes at Spring Green, Wisconsin; Milford, Michigan; and ...

  8. Hydrogeological characterization of soil/weathered zone and underlying fractured bedrocks in DNAPL contaminated areas using the electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Kang, E.; Yeo, I.

    2011-12-01

    Flowmeter tests were carried out to characterize hydrogeology at DNAPL contaminated site in Wonju, Korea. Aquifer and slug tests determined hydraulic conductivity of soil/weathered zone and underlying fractured bed rocks to be 2.95×10-6 to 7.11×10-6 m/sec and 9.14×10-7 to 2.59×10-6 m/sec, respectively. Ambient flowmeter tests under natural hydraulic conditions revealed that the inflow and outflow take place through the borehole of soil/weathered zone with a tendency of down flow in the borehole. In particular, the most permeable layer of 22 to 30 m below the surface was found to form a major groundwater flow channel. On the contrary, a slight inflow and outflow was observed in the borehole, and the groundwater that inflows in the bottom section of the fractured bedrock flows up and exits through to the most permeable layer. Hydraulic heads measured at nearby multi-level boreholes confirmed the down flow in the soil/weathered zone and the up flow in fractured bedrocks. It was also revealed that the groundwater flow converges to the most permeable layer. TCE concentration in groundwater was measured at different depths, and in the borehole of the soil/weathered zone, high TCE concentration was found with higher than 10 mg/L near to the water table and decreased to about 6 mg/L with depth. The fractured bedrocks have a relatively constant low TCE concentration through a 20 m thick screen at less than l mg/L. The hydrogeology of the up flow in the soil/weathered zone and the down flow in underlying fractured bedrock leads the groundwater flow, and subsequently TCE plume, mainly to the most permeable layer that also restricts the advective transport of TCE plume to underlying fractured bedrocks. The cross borehole flowmeter test was carried out to find any hydrogeological connection between the soil/weathered zone and underlying fractured bedrocks. When pumping groundwater from the soil/weathered zone, no induced flow by groundwater extraction was observed at the

  9. Uranium plume persistence impacted by hydrologic and geochemical heterogeneity in the groundwater and river water interaction zone of Hanford site

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.

    2015-12-01

    The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.

  10. Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.

    1998-01-01

    Remediation goals for the source areas of a chlorinated ethene‐contaminated groundwater plume were identified by assessing the natural attenuation capacity of the aquifer system. The redox chemistry of the site indicates that sulfate‐reducing (H2 ∼ 2 nanomoles [nM]) per liter conditions near the contaminant source grade to Fe(III)‐reducing conditions (H2 ∼ 0.5 nM) downgradient of the source. Sulfate‐reducing conditions facilitate the initial reduction of perchloroethene (PCE) to trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC). Subsequently, the Fe(III)‐reducing conditions drive the oxidation of cis‐DCE and VC to carbon dioxide and chloride. This sequence gives the aquifer a substantial capacity for biodegrading chlorinated ethenes. Natural attenuation capacity (the slope of the steady‐state contaminant concentration profile along a groundwater flowpath) is a function of biodegradation rates, aquifer dispersive characteristics, and groundwater flow velocity. The natural attenuation capacity at the Kings Bay, Georgia site was assessed by estimating groundwater flowrates (∼0.23 ± 0.12 m/d) and aquifer dispersivity (∼1 m) from hydrologic and scale considerations. Apparent biodegradation rate constants (PCE and TCE ∼ 0.01 d−1; cis‐DCE and VC ∼ 0.025 d−1) were estimated from observed contaminant concentration changes along aquifer flowpaths. A boundary‐value problem approach was used to estimate levels to which contaminant concentrations in the source areas must be lowered (by engineered removal), or groundwater flow velocities lowered (by pumping) for the natural attenuation capacity to achieve maximum concentration limits (MCLs) prior to reaching a predetermined regulatory point of compliance.

  11. Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Bilotta, S.E.; Mann, C.L.; Madsen, E.L.

    1997-01-01

    A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the

  12. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  13. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.

    PubMed

    Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan

    2015-01-01

    Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.

  14. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, Paul M.

    2000-01-01

     The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  15. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, P.M.

    2000-01-01

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  16. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  17. Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments

    NASA Astrophysics Data System (ADS)

    Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

    2006-12-01

    SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckhardt, D.A.V.; Pearsall, K.A.

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field. The cooling water is discharged after use to the water table aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated - the source plume, which has penetrated both aquifers, and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water inmore » the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. 38 refs., 11 figs., 8 tabs.« less

  19. Chlorinated organic compounds in ground water at Roosevelt Field, Nassau County, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Pearsall, K.A.

    1989-01-01

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field, a 200-acre area that is now a large shopping mall and office-building complex. The cooling water is discharged after use to the water table (upper glacial) aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated--the source plume, which has penetrated both aquifers , and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water in the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. (USGS)

  20. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    PubMed

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  2. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    PubMed

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  4. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  5. Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia.

    PubMed

    Mao, Xinwei; Oremland, Ronald S; Liu, Tong; Gushgari, Sara; Landers, Abigail A; Baesman, Shaun M; Alvarez-Cohen, Lisa

    2017-02-21

    Acetylene (C 2 H 2 ) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C 2 H 2 is known to inhibit bacterial dechlorination. In this study, we show that while high C 2 H 2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C 2 H 2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C 2 H 2 -fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C 2 H 2 -inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C 2 H 2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C 2 H 2 .

  6. Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia

    USGS Publications Warehouse

    Mao, Xinwei; Oremland, Ronald S.; Liu, Tong; Landers, Abigail A; Baesman, Shaun; Alvarez-Cohen, Lisa

    2017-01-01

    Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.

  7. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    PubMed

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  8. FIELD SCALE EVALUATION OF TREATMENT OF TCE IN A BIOWALL AT THE OU-1 SITE

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  9. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

    PubMed

    Cai, Zuansi; Wilson, Ryan D; Lerner, David N

    2012-01-01

    Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  10. The legacy of chlorinated solvents in the Birmingham aquifer, UK: Observations spanning three decades and the challenge of future urban groundwater development

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Turner, Ryan J.; Glibbery (née Murcott), Penny; Cuthbert, Mark O.

    2012-10-01

    Licensed abstraction well data collected during 1986-2008 from a total of 77 wells mainly located at industrial sites combined with historic land use data from 1975 has allowed insight into the legacy of chlorinated solvent contamination in the Birmingham aquifer that underlies the UK's second largest city. This legacy, expected to be reasonably symptomatic of those occurring in other urban aquifers, was characterised by: dominance of parent solvents, particularly TCE (trichloroethene) that widely exceeded drinking-water quality criteria; greater TCE occurrence in wells in proximity to increased historic land use by the metal/engineering solvent-user industry (the relationship providing a first-pass indicator of future resource development potential); regional groundwater vulnerability controls; well abstraction changes (over months to decades) influential of observed concentration transients and anticipated plume capture or release; persistence of contamination over decades (with less soluble PCE (perchloroethene) showing increased persistence relative to TCE) that was reasonably ascribed to slow contaminant release from DNAPL (dense non-aqueous phase liquid) sources and, or low permeability layers; presence of dechlorination products arising from solvent (bio)degradation, although this key attenuation process appeared to have moderate to weak influence regionally on plumes; and, inadvertent, but significant solvent mass removal from the aquifer by industrial abstractions. Key challenges to realising future urban groundwater development were identified based on the observed legacy and well capture zone simulations. Despite the extensive contamination of the aquifer, it should still be possible to develop wells of high (several megalitres per day) capacity for drinking water supply (or other lower grade uses) without the requirement for solvent treatment. In those areas with higher risk of contamination, our dataset, together with application of emergent risk

  11. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source

    USGS Publications Warehouse

    Repert, D.A.; Barber, L.B.; Hess, K.M.; Keefe, S.H.; Kent, D.B.; LeBlanc, D.R.; Smith, R.L.

    2006-01-01

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m-2) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m-2) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  12. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect

    NASA Astrophysics Data System (ADS)

    Skubal, Karen L.; Barcelona, Michael J.; Adriaens, Peter

    2001-05-01

    Field biogeochemical characterization and laboratory microcosm studies were performed to assess the potential for future biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum hydrocarbons and chlorinated solvents at the former Wurtsmith Air Force Base in Oscoda, MI. In situ terminal electron accepting processes (TEAPs), contaminant composition and microbial phylogeny were studied at a plume transect 100 m downgradient of the source. The presence of reduced electron acceptors, relevant microbial communities, and elevated dissolved methane and carbon dioxide concentrations at the transect, as well as downgradient accumulation of BTEX metabolites and dechlorination products, indicated that past or current reductive dechlorination at the transect was likely driven by BTEX biodegradation in the methanogenic zone. However, TCE and toluene mineralization in sediment-groundwater microcosms without added electron acceptors did not exceed 5% during 300 days of incubation and was nearly invariant with original sediment TEAP, even following amendments of nitrogen and phosphorus. Mineralization rates were on the order of 0.0015-0.03 μmol/g day. After 8 months, microcosms showed evidence of methanogenesis, but CH 4 and CO 2 production arose from the degradation of contaminants other than toluene. Cis-dichloroethylene was observed in only one methanogenic microcosm after more than 500 days. It appears likely that spatially and temporally dynamic redox zonation at the plume transect will prevent future sustained reductive dehalogenation of highly chlorinated solvents, for during the course of a year, the predominant TEAP at the highly contaminated water table shifted from methanogenesis to iron- and sulfate-reduction. It is recommended that biotransformation studies combine considerations of long-term, spatially relevant changes in redox zonation with laboratory-scale studies of electron donor utilization and cometabolic substrate transformation

  13. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreedmore » to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The

  15. Geohydrology and distribution of volatile organic compounds in ground water in the Casey Village area, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.

    1998-01-01

    ) concentration in water samples collected from wells in Casey Village decreased only slightly. The highest concentration of PCE measured in water from one well decreased from 720 mg/L in 1993 to 630 mg/L in 1996.The distribution of TCE and PCE in ground water indicates the presence of separate PCE and TCE plumes, each with a different source area. The TCE plume appears to be moving in two directions away from the ground-water divide area. The pumping of a domestic well may have caused TCE migration into the ground-water divide area. From the divide area, the TCE plume appears to be moving both to the east and the west under the natural hydraulic gradient.Aquifer-isolation tests conducted in the well with the highest TCE concentrations showed that concentrations of TCE in water samples from the isolated intervals were similar but slightly lower in the deeper isolated zones than in the shallower isolated zones. Upward flow was measured in this well during geophysical logging. If the source of TCE to the well was from shallow fractures, upward flow of less contaminated water could be flushing TCE from the immediate vicinity of this well. This may help explain why the concentration of TCE in water from this well decreased an order of magnitude between 1993 and 1996.

  16. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  17. Hydrogeology and trichloroethene contamination in the sea-level aquifer beneath the Logistics Center, Fort Lewis, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.

    2005-01-01

    locations north and northeast of the Logistics Center combined with the ridge beneath American Lake prevent TCE contaminated water beneath the Logistics Center from migrating toward municipal water-supply wells northeast of the site. The 1999-2000 TCE concentrations measured by the USGS at older wells screened in the sea-level aquifer were similar to those measured since 1995, but the known downgradient extent of the TCE contamination expanded nearly 2 miles after the Army installed and sampled new wells during 2003-04. Concentrations of TCE in the sea-level aquifer were consistently highest in the upper part of the aquifer throughout the plume, although TCE has spread throughout much of the thickness of the aquifer in the downgradient portions of the plume. Environmental tracer data indicated that the primary pathway for contaminant migration into the sea-level aquifer is through the previously identified confining unit window, an area where the predominately fine-grained confining unit is relatively coarse grained and more permeable. Other less substantial pathways for contaminant migration also were identified near the East Gate Disposal Yard and the I-5 pump-and-treat facilities. Those areas are near active pumping wells and ground-water reintroduction facilities, but there is no evidence that the contaminant migration was caused or enhanced by those activities. Within the sea-level aquifer, TCE concentrations continue to migrate westward in the flow field strongly influenced by ground-water recharge from American Lake. Historical data are not available to definitively determine if the 5-?g/L leading edge of the current TCE plume is stable or if it is still moving downgradient. However, an evaluation of the available data combined with TCE traveltime estimates indicates that the peak TCE concentrations in the sea-level aquifer may have not yet reached the wells near the currently defined leading edge of the plume. Hypothetically, the 5-?g/L leading edge

  18. Simulating Mass Removal of Groundwater Contaminant Plumes with Complex and Simple Models

    NASA Astrophysics Data System (ADS)

    Lopez, J.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Chlorinated solvents used in industrial, commercial, and other applications continue to pose significant threats to human health through contamination of groundwater resources. A recent National Research Council report concludes that it is unlikely that remediation of these complex sites will be achieved in a time frame of 50-100 years under current methods and standards (NRC, 2013). Pump and treat has been a common strategy at many sites to contain and treat groundwater contamination. In these sites, extensive retention of contaminant mass in low-permeability materials (tailing) has been observed after years or decades of pumping. Although transport models can be built that contain enough of the complex, 3D heterogeneity to simulate the tailing and long cleanup times, this is seldom done because of the large data and computational burdens. Hence, useful, reliable models to simulate various cleanup strategies are rare. The purpose of this study is to explore other potential ways to simulate the mass-removal processes with shorter time and less cost but still produce robust results by capturing effects of the heterogeneity and long-term retention of mass. A site containing a trichloroethylene groundwater plume was selected as the study area. The plume is located within alluvial sediments in the Tucson Basin. A fully heterogeneous domain is generated first and MODFLOW is used to simulate the flow field. Contaminant transport is simulated using both MT3D and RWHet for the fully heterogeneous model. Other approaches, including dual-domain mass transfer and heterogeneous chemical reactions, are manipulated to simulate the mass removal in a less heterogeneous, or homogeneous, domain and results are compared to the results obtained from complex models. The capability of these simpler models to simulate remediation processes, especially capture the late-time tailing, are examined.

  19. PGDP Trichloroethene Biodegradation Investigation Summary Report: Regional Gravel Aquifer & Northwest Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, Steve

    The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 ( 99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probesmore » (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.« less

  20. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    PubMed

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  1. Use of plume mapping data to estimate chlorinated solvent mass loss

    USGS Publications Warehouse

    Barbaro, J.R.; Neupane, P.P.

    2006-01-01

    Results from a plume mapping study from November 2000 through February 2001 in the sand-and-gravel surficial aquifer at Dover Air Force Base, Delaware, were used to assess the occurrence and extent of chlorinated solvent mass loss by calculating mass fluxes across two transverse cross sections and by observing changes in concentration ratios and mole fractions along a longitudinal cross section through the core of the plume. The plume mapping investigation was conducted to determine the spatial distribution of chlorinated solvents migrating from former waste disposal sites. Vertical contaminant concentration profiles were obtained with a direct-push drill rig and multilevel piezometers. These samples were supplemented with additional ground water samples collected with a minipiezometer from the bed of a perennial stream downgradient of the source areas. Results from the field program show that the plume, consisting mainly of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), was approximately 670 m in length and 120 m in width, extended across much of the 9- to 18-m thickness of the surficial aquifer, and discharged to the stream in some areas. The analyses of the plume mapping data show that losses of the parent compounds, PCE and TCE, were negligible downgradient of the source. In contrast, losses of cis-1,2-DCE, a daughter compound, were observed in this plume. These losses very likely resulted from biodegradation, but the specific reaction mechanism could not be identified. This study demonstrates that plume mapping data can be used to estimate the occurrence and extent of chlorinated solvent mass loss from biodegradation and assess the effectiveness of natural attenuation as a remedial measure.

  2. Injectable Silica–Permanganate Gel as a Slow-Release MnO 4 - Source for Groundwater Remediation. Rheological Properties and Release Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuo; Oostrom, Martinus; Truex, Michael J.

    2016-01-12

    Injectable slow-release permanganate gel (ISRPG), formed by mixing KMnO 4 solution with fumed silica powder, may have a potential application in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and flow cell experiments has been completed to test the gel behavior under a variety of conditions. The experiments have provided information on ISRPG rheology, permanganate (MnO 4 - ) release dynamics and distribution, and trichloroethene (TCE) degradation by ISRPG-released oxidant. The gel possesses remarkable shear thinning characteristics, resulting in a relative low viscosity during mixing, and facilitating its subsurface injection and distribution. Batch tests revealed that MnOmore » 4 - was diffused out from ISRPG into water while the gel did not dissolve or disperse into water but maintained its initial shape. Column experiments showed that MnO 4 - release from ISRPG lasted considerably longer than the release from aqueous solution. TCE degradation by ISRPG-released MnO 4 - was much more effective than that when MnO 4 - was delivered using aqueous solution injection. In two-dimensional flow cell experiments, it was demonstrated that ISRPG slowly released a long-lasting low concentration MnO 4 - plume sufficient for remediation and sustainable in an aquifer for a long period of time.« less

  3. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, J.L.; Sturchio, N.C.; Heraty, L.J.

    microbes, perhaps even under anaerobic conditions. Chloride, generated by degradation in such microenvironment is released rapidly into the water, as is CO{sub 2}, from respiration of the microorganisms. TCE and its organic degradation products are retained on the aquifer matrix by sorption, and released more slowly into the groundwater. In this process, chloride produced from the microbial reaction may become separated in the plume from the residual TCE. This may explain why the chloride isotope ratio and dissolved TCE do not correlate with the DIC isotope ratio. The relationship between the {delta}{sup 37}Cl values of TCE and dissolved inorganic chloride is consistent with what would be expected from the degradation of TCE, but is complicated by the elevated levels of background chloride, presumably due to agriculture practice, and complex behavior of TCE in the aquifer.« less

  5. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  6. Slow-release Permanganate Gel (SRP-G) for Groundwater Remediation: Spreading, Gelation, and Release in Porous and Low-Permeability Media

    NASA Astrophysics Data System (ADS)

    Lee, E. S.; Hastings, J.; Kim, Y.

    2015-12-01

    Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Pore-plugging by the solid oxidation product MnO2 and limited lateral dispersion of the oxidant are two common problems with existing in-situ chemical oxidation (ISCO) schemes that could be alleviated through the development of a delayed gelation method for oxidant delivery. The objective of the current study was to further develop and optimize slow-release permanganate gel (SRP-G), a solution comprising colloidal silica and KMnO4, as a novel low-cost treatment option for large and dilute TCE plumes in groundwater. Batch tests showed that gelation could be delayed through manipulation of KMnO4 concentration, pH, and silica particle size of the SRP-G solution. In flow-through columns and flow-tanks filled with saturated sands, silica concentration had little effect on the gelation lag stage and release rate, but increasing silica concentration was associated with increasing release duration. When compared to a pure KMnO4 solution, visual observations and [MnO4-] measurements from flow tank tests demonstrated that the SRP-G prolonged the release duration and enhanced lateral spreading of the oxidant.

  7. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  8. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  9. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate

    PubMed Central

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.

    2015-01-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  10. Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, P F; Jantos, J; Pedler, W H

    2005-09-20

    This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were burned on a portion of OU 1 called the Fire Drill Area (FDA) as part of firefighter training from 1962 and 1985. Cont Contamination is believed to be restricted to the unconfined A-aquifer, where water is reached at a depthmore » of approximately 60 to 80 feet below the ground surface; the aquifer is from 15 to 20 feet in thickness, and is bounded below by a dense clay layer, the Salinas Valley Aquitard. Soil excavation and bioremediation were initiated at the site of fire training activities in the late 1980s. Since that time a pump-and-treat operation has been operated close to the original area of contamination, and this system has been largely successful at reducing groundwater contamination in this source area. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In this report, we have augmented flow monitoring equipment permanently installed in an earlier project (Oldenburg et al., 2002) with two additional flow monitoring devices that could be deployed in existing monitoring wells, in an effort to better understand their performance in a nearly ideal, homogeneous sand aquifer, that we expected would exhibit laminar groundwater flow owing to the site's relatively simple hydrogeology. The three flow monitoring tools were the Hydrotechnics{reg_sign} In In-Situ Permeable Flow Sensor (ISPFS), the RAS Integrated Subsurface Evaluation Hydrophysical Logging tool (HPL), and the Lawrence Livermore National Laboratory Scanning Colloidal Borescope Flow Meter (SCBFM). All three devices produce groundwater

  11. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH.

    PubMed

    Wang, Na; Jia, Daqing; Jin, Yaoyao; Sun, Sheng-Peng; Ke, Qiang

    2017-07-01

    The present study investigated the degradation of trichloroethylene (TCE) in sand suspensions by Fenton-like reaction with magnetite (Fe 3 O 4 ) in the presence of various chelators at circumneutral pH. The results showed that ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) greatly improved the rate of TCE degradation, while [S,S]-ethylenediaminedisuccinic acid (s,s-EDDS), malonate, citrate, and phytic acid (IP6) have minimal effects on TCE degradation. Quenching tests suggested that TCE was mainly degraded by hydroxyl radical (HO · ) attack, with about 90% inhibition on TCE degradation by the addition of HO · scavenger 2-propanol. The presence of 0.1-0.5% Fe 3 O 4 /sand (w/w) contributed to 40% increase in TCE degradation rates. In particular, the use of chelators can avoid high concentrations of H 2 O 2 required for the Fenton-like reaction with Fe 3 O 4 , and moreover improve the stoichiometric efficiencies of TCE degradation to H 2 O 2 consumption. The suitable concentrations of chelators (EDTA and NTA) and H 2 O 2 were suggested to be 0.5 and 20 mM, respectively. Under the given conditions, degradation rate constants of TCE were obtained at 0.360 h -1 with EDTA and 0.526 h -1 with NTA, respectively. Enhanced degradation of TCE and decreased usage of H 2 O 2 in this investigation suggested that Fenton-like reaction of Fe 3 O 4 together with NTA (or EDTA) may be a promising process for remediation of TCE-contaminated groundwater.

  12. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    USGS Publications Warehouse

    Izbicki, John A.; Groover, Krishangi D.

    2016-01-22

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  13. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Rhia, B.; Jackson, D.

    2010-04-30

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia)more » - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on

  14. Abiotic Removal of TCE and cis-DCE by Magnetite under Aerobic Conditions in Ground Water (Maryland)

    EPA Science Inventory

    The former Twin Cities Army Ammunition Plant (TCAAP) is located just north of St. Paul, Minnesota. Disposal of chlorinated solvents at the Building102 site on the TCAAP contaminated groundwater in the shallow, unconsolidated sand aquifer with TCE and cis-DCE. Concentrations of ...

  15. A conservative evaluation of the transport of TCE from the confined aquifer beneath J-Field, Aberdeen Proving Ground, Maryland, to a hypothetical receptor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, L. E.; Patton, T. L.; Quinn, J. J.

    1999-01-04

    Past disposal operations at the Toxic Burn Pits (TBP) area of J-Field, Aberdeen Proving Ground, Maryland, have resulted in volatile organic compound (VOC) contamination of groundwater. Although the contaminant concentration is highest in the surficial aquifer, VOCs are also present in the confined aquifer, which is approximately 30 m (100 ft) deep at the TBP area. This study focuses on the confined aquifer, a sandy valley-fill Pleistocene unit in a paleochannel cut into Cretaceous sands and clays. This report documents the locations of the region's pumping wells, which are over 6 km (4 mi) away from the TBP. The distancesmore » to the pumping wells and the complex stratigraphy limit the likelihood of any contamination reaching a receptor well. Nonetheless, a worst-case scenario was evaluated with a model designed to simulate the transport of trichloroethylene (TCE), the main chemical of concern, from the confined aquifer beneath the TBP along a hypothetical, direct flowpath to a receptor well. The model was designed to be highly conservative (i.e., based on assumptions that promote the transport of contaminants). In addition to the direct flowpath assumption, the model uses the lowest literature value for the biodegradation rate of TCE, a low degree of sorption, a continuous-strength source, and a high flow velocity. Results from this conservative evaluation indicate that the simulated contaminant plume extends into areas offshore from J-Field, but decays before reaching a receptor well. The 5-ppb contour, for example, travels approximately 5 km (3 mi) before stagnating. Recent field analyses have documented that complete biodegradation of TCE to ethene and ethane is occurring directly below the TBP; therefore, the likelihood of TCE or its daughter products reaching a pumping well appears negligible. Thus, the model results may be useful in proposing either a no action or a natural attenuation alternative for the confined aquifer.« less

  16. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    EPA Science Inventory

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  17. HORIZONTAL LASAGNA TO BIOREMEDIATE TCE

    EPA Science Inventory

    Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNATM technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE. Electroosmosis was c...

  18. Arsenic cycling in hydrocarbon plumes: secondary effects of natural attenuation

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Schreiber, Madeline E.; Erickson, Melinda L.; Ziegler, Brady A.

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  19. Submarine Groundwater Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Island of Hawai`i; Part 3, Spatial and Temporal Patterns in Nearshore Waters and Coastal Groundwater Plumes, December 2003-April 2006

    USGS Publications Warehouse

    Grossman, Eric E.; Logan, Joshua B.; Presto, M. Katherine; Storlazzi, Curt D.

    2010-01-01

    During seven surveys between December 2003 and April 2006, 1,045 depth profiles of surface water temperature and salinity were collected to examine variability in water column properties and the influence of submarine groundwater discharge (SGD) on the nearshore waters and coral reef complex of Kaloko-Honokohau National Historical Park, Island of Hawai`i. This effort was made to characterize the variability in nearshore water properties with seasonality and hydrodynamic forcing (tides, winds, and waves) and to determine the spatial and vertical extent of influence of SGD plumes on the Park's marine biological resources. The results of this study reveal that nearshore waters of the Park were persistently influenced by plumes of submarine groundwater discharge that are generally colder, less saline, and more concentrated in nutrients than the surrounding seawater. These plumes extended between 100 and 1,000 m offshore to depths ranging between 1 and 5 m and often contained several million to hundreds of millions of gallons of brackish water. In essence, the Park's nearshore, like much of the arid west coast of Hawai`i, is estuarine. Although the groundwater plumes were persistent over the years studied, their spatial extent and volume varied tidally, seasonally, and annually. In one season, April 2004, an inverse relation of decreasing salinity with increasing temperature was found in the upper 5 m of the water column, unlike the other seasons, when surface water temperature and salinity were positively correlated. These data provide the first comprehensive record of nearshore water column properties within the Park boundaries and a baseline for detecting and assessing future conditions. Various resort, industrial, and municipal developments, either planned or under construction around the Park, will require significant groundwater supplies and will likely alter groundwater quantity and quality. The flux and quality of groundwater through the National Park are

  20. Post-audits of Three Groundwater Models for Evaluating Plume Containment

    NASA Astrophysics Data System (ADS)

    Andersen, P. F.

    2003-12-01

    Groundwater extraction systems were designed using numerical models at three sites within a U.S. Army Ammunition Plant in Tennessee. Each site, and hence model, has unique qualities such as boundary conditions, extensiveness of the contaminant plume, and quantity and quality of hydrogeologic data. Performance of each of these extraction systems has been evaluated throughout their operation, providing an opportunity to perform post-audits on the accuracy of the groundwater models that were used in their design. Areas of comparison between the models and the observed response in the natural systems include hydraulic head, drawdown, horizontal and vertical gradients, and extent of capture zones. The results of the post-audits show the importance of using all available data in the construction and calibration of the models, the importance of having sufficient data, and the critical nature of an accurate conceptual model. The post-audits also show that although it may be possible to assess the accuracy of the model predictions, it is often not possible to explain the reasons for discrepancies between predicted and observed results. From a practical perspective, parameter uncertainty is important to account for in the development of the models and subsequent design of the extraction systems.

  1. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    PubMed

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  2. CO2 driven weathering vs plume driven weathering as inferred from the groundwater of a persistently degassing basaltic volcano: Mt. Etna

    NASA Astrophysics Data System (ADS)

    Liotta, Marcello; D'Alessandro, Walter

    2016-04-01

    At Mt. Etna the presence of a persistent volcanic plume provides large amounts of volcanogenic elements to the bulk deposition along its flanks. The volcanic plume consists of solid particles, acidic droplets and gaseous species. After H2O and CO2, S, Cl and F represent the most abundant volatile elements emitted as gaseous species from the craters. During rain events acidic gases interact rapidly with droplets lowering the pH of rain. This process favors the dissolution and dissociation of the most acidic gases. Under these conditions, the chemical weathering of volcanic rocks and ashes is promoted by the acid rain during its infiltration. Subsequently during groundwater circulation, chemical weathering of volcanic rocks is also driven by the huge amount of deep magmatic carbon dioxide (CO2) coming up through the volcanic edifice and dissolving in the water. These two different weathering steps occur under very different conditions. The former occurs in a highly acidic environment (pH < 4) and the reaction rates depend strongly on the pH, while the latter usually occurs under slightly acidic conditions since the pH has been already neutralized by the interaction with volcanics rocks. The high content of chlorine is mainly derived from interactions between the plume and rainwater, while the total alkalinity can be completely ascribed to the dissociation of carbonic acid (H2CO3) after the hydration of CO2. The relative contributions of plume-derived elements/weathering and CO2-driven weathering has been computed for each element. In addition, the comparison between the chemical compositions of the bulk deposition and of groundwater provides a new understanding about the mobility of volatile elements. Other processes such as ion exchange, iddingsite formation, and carbonate precipitation can also play roles, but only to minor extents. The proposed approach has revealed that the persistent plume strongly affects the chemical composition of groundwater at Mt. Etna and

  3. Test Plan for Methanotrophic Bioreactor at Savannah River Site-TNX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.

    1994-10-04

    The primary purpose of this project is to demonstrate the feasibility and practicality of operating a methanotrophic mobile trickle filter bioreactor (MMB) unit to effectively reduce or eliminate trichloroethylene (TCE) and associated hydrocarbons from contaminated groundwater. The two-column trickle filter system can process 1.67 gallons per minute (gpm) of contaminated groundwater. During this project, the pilot system will evaluate, optimize, and demonstrate methanotrophic treatment technology (MTT). The mobile system will receive a 1--4% methane to air mixture for stimulating the methanotrophic TCE degrading bacteria, thereby increasing the rates of degradation of these contaminants. This project will also evaluate the efficacymore » of different bacteria for degrading TCE for use in the system at the laboratory-scale sample groundwater monitoring wells at TNX and set up the system for continued operation. The trickle filter system may be used to inexpensively treat other small-scale organic waste streams at SRS after the initial start-up. The MTT was demonstrated as an effective and efficient method of degrading TCE in the laboratory and during a field-scale in situ demonstration for degrading TCE in a groundwater plume at SRS. The methanotrophic bacteria increase significantly in population numbers and in the production of methane monooxygenase (MMO), an extremely powerful oxidizer. MMO was demonstrated as effective in oxidizing TCE and other recalcitrant compounds in laboratory studies. In the presence of MMO, TCE is oxidized to TCE-epoxide, which breaks down spontaneously into simple, easily degraded, daughter compounds. The system will receive a 1--4% methane to air mixture, which will effectively grow and maintain the methanotrophic bacteria that will degrade TCE. This demonstration will have broad applications to bioremediating contaminated groundwater systems where in situ bioremediation is not practical.« less

  4. Natural attenuation of trichloroethylene in fractured shale bedrock.

    PubMed

    Lenczewski, M; Jardine, P; McKay, L; Layton, A

    2003-07-01

    This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water

  5. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.

    PubMed

    Cozzarelli, Isabelle M; Schreiber, Madeline E; Erickson, Melinda L; Ziegler, Brady A

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction. © 2015, National Ground Water Association.

  6. Source, Transport, and Fate of Groundwater Contamination at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Landmeyer, James E.; Lowery, Mark A.

    2009-01-01

    Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater and the storm sewer. The southern plume originates at a nearby new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. Extensive biodegradation of the contamination takes place in the surficial aquifer; however, the biodegradation is insufficient to reduce trichloroethene to less than milligram-per-liter concentrations prior to discharging into the storm sewers. The groundwater volatile organic compounds entering the storm sewers are substantially diluted by tidal flushing upon entry and are subject to volatilization as they are transported through the storm sewer to a discharge point in a tributary to Ballast Creek. TCE concentrations of about 2-6 micrograms per liter were present in storm-sewer water near the discharge point (sampled at manhole STS26). On three out of four sampling events at manhole STS14, the storm-sewer water contained no vinyl chloride. During a time of relatively high groundwater levels, however, 20 micrograms per liter of vinyl chloride was present in STS14 storm-sewer water. Because groundwater leaks into that storm sewer and because the storm sewer upgradient from manhole STS14 is adjacent to part of the aquifer where 2,290 micrograms per liter of vinyl chloride have been detected, there is a potential for substantially increased concentrations of vinyl chloride to discharge at the storm-sewer outfall

  7. Experiments on Plume Spreading by Engineered Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  8. Chlorinated solvents in groundwater of the United States

    USGS Publications Warehouse

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  9. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hele-Shaw Experiments on Plume Stretching and Folding

    NASA Astrophysics Data System (ADS)

    Foster, M.; Mays, D. C.; Neupauer, R. M.

    2013-12-01

    Fluid mixing in laminar flow is important in a number of practical applications, including remediation of contaminated groundwater. Recent modeling studies have shown that mixing can be accelerated and amplified by imposing a flow that generates stretching and folding of an injected plume of treatment solution. Stretching and folding, in turn, results from engineered injection and extraction of clean water through an array of wells surrounding the treatment solution. This poster describes a series of experiments whose goal is to demonstrate plume stretching and folding in a Hele-Shaw apparatus. An initial plume of treatment solution is injected into the center of the Hele-Shaw apparatus, which is assumed to represent a zone of contaminated groundwater, with four wells spaced evenly around the treatment solution. In order to spread the treatment solution into the groundwater, the four wells perform a series of infusions and withdrawals that push and pull apart the plume of treatment solution. With the proper steps, it will be shown that the plume can be stretched and folded to greatly increase the reactive interface area between the treatment solution and the contaminated groundwater. Consideration is given to two qualitative differences with respect to previous modeling studies. First, constant volume is required by the no-flow boundary used at the edge of the Hele-Shaw cell; any pump that is withdrawing water must have a complementary pump adding water at the same rate. Second, in these experiments, mixing results from a physical process, namely Taylor dispersion, eliminating the uncertainty resulting from the need to assume dispersion mechanisms in numerical models. Therefore, these experiments further elucidate the benefits and challenges of imposing plume stretching and folding in systems (like aquifers) where dispersion is unavoidable, providing new insight into the required logistics of using this approach in groundwater treatment.

  11. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  12. Modelling reaction front formation and oscillatory behaviour in a contaminant plume

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura; Fowler, Andrew; Mitchell, Sarah; Winstanley, Henry

    2013-04-01

    Groundwater contamination is a concern in all industrialised countries that suffer countless spills and leaks of various contaminants. Often, the contaminated groundwater forms a plume that, under the influences of regional groundwater flow, could eventually migrate to streams or wells. This can have catastrophic consequences for human health and local wildlife. The process known as bioremediation removes pollutants in the contaminated groundwater through bacterial reactions. Microorganisms can transform the contaminant into less harmful metabolic products. It is important to be able to predict whether such bioremediation will be sufficient for the safe clean-up of a plume before it reaches wells or lakes. Borehole data from a contaminant plume which resulted from spillage at a coal carbonisation plant in Mansfield, England is the motivation behind modelling the properties of a contaminant plume. In the upper part of the plume, oxygen is consumed and a nitrate spike forms. Deep inside the plume, nitrate is depleted and oscillations of organic carbon and ammonium concentration profiles are observed. While there are various numerical models that predict the evolution of a contaminant plume, we aim to create a simplified model that captures the fundamental characteristics of the plume while being comparable in accuracy to the detailed numerical models that currently exist. To model the transport of a contaminant, we consider the redox reactions that occur in groundwater systems. These reactions deplete the contaminant while creating zones of dominant terminal electron accepting processes throughout the plume. The contaminant is depleted by a series of terminal electron acceptors, the order of which is typically oxygen, nitrate, manganese, iron, sulphate and carbon dioxide. We describe a reaction front, characteristic of a redox zone, by means of rapid reaction and slow diffusion. This aids in describing the depletion of oxygen in the upper part of the plume. To

  13. Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under TCE exposure.

    PubMed

    Doğan-Subaşi, Eylem; Bastiaens, Leen; Leys, Natalie; Boon, Nico; Dejonghe, Winnie

    2014-07-01

    This study aimed at monitoring the dynamics of phylogenetic and catabolic genes of a dechlorinating enrichment culture before, during, and after complete dechlorination of chlorinated compounds. More specifically, the effect of 40 μM trichloroethene (TCE) and 5.6 mM lactate on the gene abundance and activity of an enrichment culture was investigated for 40 days. Although tceA and vcrA gene copy numbers were relatively stable in DNA extracts over time, tceA and vcrA mRNA abundances were upregulated from undetectable levels to 2.96 × and 6.33 × 10⁴ transcripts/mL, respectively, only after exposure to TCE and lactate. While tceA gene transcripts decreased over time with TCE dechlorination, the vcrA gene was expressed steadily even when the concentration of vinyl chloride was at undetectable levels. In addition, ratios between catabolic and phylogenetic genes indicated that tceA and vcrA gene carrying organisms dechlorinated TCE and its produced daughter products, while vcrA gene was mainly responsible for the dechlorination of the lower VC concentrations in a later stage of degradation.

  14. HORIZONTAL LASAGNA^TM TO BIOREMEDIATE TCE

    EPA Science Inventory

    Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNA technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE.

    Electroosmosis wa...

  15. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issuedmore » by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  16. Public health assessment for Odessa Superfund Site (a/k/a Sprague Road Groundwater Plume) Ector, Ector County, Texas, Region 6: CERCLIS number TX0001407444. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-28

    The Sprague Road Groundwater Plume National Priorities List site, consists of three plumes of chromium contaminated water just outside the northern city limits of Odessa, Ector County, Texas. The chromium in the groundwater is a public health hazard to people who continue to use the chromium-contaminated water wells for drinking. Chromium in soil at Leigh Metal Plating Inc. presents a potential public health hazard. Although this facility is surrounded by a fence, access to the site is not entirely restricted. There is a five-foot pit on the National Chromium Corporation site that could present a physical hazard to children trespassingmore » on the site.« less

  17. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    NASA Astrophysics Data System (ADS)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  18. Spatial and temporal migration of a landfill leachate plume in alluvium

    USGS Publications Warehouse

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  19. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    PubMed

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater.

  20. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.

    PubMed

    Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa

    2016-04-05

    The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.

  1. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  2. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: Field evidence of anaerobic biodegradation

    USGS Publications Warehouse

    Lorah, Michelle M.; Olsen, Lisa D.

    1999-01-01

    Field evidence collected along two groundwater flow paths shows that anaerobic biodegradation naturally attenuates a plume of chlorinated volatile organic compounds as it discharges from an aerobic sand aquifer through wetland sediments. A decrease in concentrations of two parent contaminants, trichloroethylene (TCE) and 1,1,2,2‐tetrachloroethane (PCA), and a concomitant increase in concentrations of anaerobic daughter products occurs along upward flow paths through the wetland sediments. The daughter products 1,2‐dichloroethylene, vinyl chloride, 1,1,2‐trichloroethane, and 1,2‐dichloroethane are produced from hydrogenolysis of TCE and from PCA degradation through hydrogenolysis and dichloroelimination (reductive dechlorination) pathways. Total concentrations of TCE, PCA, and their degradation products, however, decrease to below detection levels within 0.15–0.30 m of land surface. The enhanced reductive dechlorination of TCE and PCA in the wetland sediments is associated with the naturally higher concentrations of dissolved organic carbon and the lower redox state of the groundwater compared to the aquifer. This field study indicates that wetlands and similar organic‐rich environments at groundwater/surface‐water interfaces may be important in intercepting groundwater contaminated with chlorinated organics and in naturally reducing concentrations and toxicity before sensitive surface‐water receptors are reached.

  3. The role of microbial reductive dechlorination of TCE at a phytoremediation site

    USGS Publications Warehouse

    Godsy, E.M.; Warren, E.; Paganelli, V.V.

    2003-01-01

    In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (???22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.

  4. RFI to CMS: An Approach to Regulatory Acceptance of Site Remediation Technologies

    NASA Technical Reports Server (NTRS)

    Rowland, Martin A.

    2001-01-01

    Lockheed Martin made a smooth transition from RCRA Facility Investigation (RFI) at the National Aeronautics and Space Administrations'(NASA) Michoud Assembly Facility (MA-F) to its Corrective Measures Study (CMS) phase within the RCRA Corrective Action Process. We located trichloroethylene (TCE) contamination that resulted from the manufacture of the Apollo Program Saturn V rocket and the Space Shuttle External Tank, began the cleanup, and identified appropriate technologies for final remedies. This was accomplished by establishing a close working relationship with the state environmental regulatory agency through each step of the process, and resulted in receiving approvals for each of those steps. The agency has designated Lockheed Martin's management of the TCE-contamination at the MAF site as a model for other manufacturing sites in a similar situation. In February 1984, the Louisiana Department of Environmental Quality (LDEQ) issued a compliance order to begin the clean up of groundwater contaminated with TCE. In April 1984 Lockheed Martin began operating a groundwater recovery well to capture the TCE plume. The well not only removes contaminants, but also sustains an inward groundwater hydraulic gradient so that the potential offsite migration of the TCE plume is greatly diminished. This effort was successful, and for the agency to give orders and for a regulated industry to follow them is standard procedure, but this is a passive approach to solving environmental problems. The goal of the company thereafter was to take a leadership, proactive role and guide the MAF contamination clean up to its best conclusion at minimum time and lowest cost to NASA. To accomplish this goal, we have established a positive working relationship with LDEQ, involving them interactively in the implementation of advanced remedial activities at MAF as outlined in the following paragraphs.

  5. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  6. Fate and transport modeling of selected chlorinated organic compounds at Operable Unit 3, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J. Hal

    2000-01-01

    Ground water contaminated by the chlorinated organic compounds trichloroethene (TCE), cis-dichloroethene (DCE), and vinyl chloride (VC) has been found in the surficial aquifer beneath the Naval Aviation Depot at the U.S. Naval Air Station, Jacksonville, Florida. The affected area is designated Operable Unit 3 (OU3) and covers 134 acres adjacent to the St. Johns River. Site-specific ground-water flow modeling was conducted at OU3 using MODFLOW, and solute-transport modeling was conducted using MT3DMS. Simulations using a low dispersivity value, which resulted in the highest concentration discharging to the St. Johns River, gave the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level that exceeded 1x103 micrograms per liter (ug/L). At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 3x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. Simulations using a first-order decay rate half-life of 13.5 years (the slowest documented) at Area G caused the TCE to degrade before reaching the St. Johns River. If the ratio of the concentrations of TCE to cis-DCE and VC remained relatively constant, these breakdown products would not reach the river. However, the actual breakdown rates of cis-DCE and VC are unknown. Simulations were repeated using average dispersivity values with the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level exceeding 4x102 ug/L. At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 1x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. 'Pump and treat' was simulated as a remedial alternative. The

  7. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  8. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume.

    PubMed

    Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2013-01-01

    Current vapor intrusion (VI) pathway assessment heavily weights concentrations from infrequent (monthly-seasonal) 24 h indoor air samples. This study collected a long-term and high-frequency data set that can be used to assess indoor air sampling strategies for answering key pathway assessment questions like: "Is VI occurring?", and "Will VI impacts exceed thresholds of concern?". Indoor air sampling was conducted for 2.5 years at 2-4 h intervals in a house overlying a dilute chlorinated solvent plume (10-50 μg/L TCE). Indoor air concentrations varied by 3 orders of magnitude (<0.01-10 ppbv TCE) with two recurring behaviors. The VI-active behavior, which was prevalent in fall, winter, and spring involved time-varying impacts intermixed with sporadic periods of inactivity; the VI-dormant behavior, which was prevalent in the summer, involved long periods of inactivity with sporadic VI impacts. These data were used to study outcomes of three simple sparse data sampling plans; the probabilities of false-negative and false-positive decisions were dependent on the ratio of the (action level/true mean of the data), the number of exceedances needed, and the sampling strategy. The analysis also suggested a significant potential for poor characterization of long-term mean concentrations with sparse sampling plans. The results point to a need for additional dense data sets and further investigation into the robustness of possible VI assessment paradigms. As this is the first data set of its kind, it is unknown if the results are representative of other VI-sites.

  9. Biodegradation of trichloroethylene (TCE) by methanotrophic community.

    PubMed

    Shukla, Awadhesh K; Vishwakarma, Pranjali; Upadhyay, S N; Tripathi, Anil K; Prasana, H C; Dubey, Suresh K

    2009-05-01

    Laboratory incubation experiments were carried out to assess the potential of methanotrophic culture for degrading TCE. Measurements of the growth rate and TCE degradation showed that the methanotrophs not only grew in presence of TCE but also degraded TCE. The rate of TCE degradation was found to be 0.19 ppm h(-1). The reverse transcriptase-PCR test was conducted to quantify expression of pmoA and mmoX genes. RT-PCR revealed expression of pmoA gene only. This observation provides evidence that the pmoA gene was functionally active for pMMO enzyme during the study. The diversity of the methanotrophs involved in TCE degradation was assessed by PCR amplification, cloning, restriction fragment length polymorphism and phylogenetic analysis of pmoA genes. Results suggested the occurrence of nine different phylotypes belonging to Type II methanotrophs in the enriched cultures. Out of the nine, five clustered with, genera Methylocystis and rest got clustered in to a separate group.

  10. Groundwater-quality data for a treated-wastewater plume near the Massachusetts Military Reservation, Ashumet Valley, Cape Cod, Massachusetts, 2006-08

    USGS Publications Warehouse

    Savoie, Jennifer G.; LeBlanc, Denis R.; Fairchild, Gillian M.; Smith, Richard L.; Kent, Douglas B.; Barber, Larry B.; Repert, Deborah A.; Hart, Charles P.; Keefe, Steffanie H.; Parsons, Luke A.

    2012-01-01

    A plume of contaminated groundwater extends from former disposal beds at the Massachusetts Military Reservation's wastewater-treatment plant toward Ashumet Pond, coastal ponds, and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected from monitoring wells, multilevel samplers, and profile borings to characterize the nature and extent of the contaminated groundwater and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected in 2007 from 394 wells (at 121 well-cluster locations) and 780 multilevel-sampler ports (at 42 locations) and in 2006-08 at 306 depth intervals in profile borings (at 20 locations) in and near the treated-wastewater plume. Analyses of these water samples for field parameters (specific conductance, pH, dissolved oxygen and phosphate concentrations, and alkalinity); absorbance of ultraviolet/visible light; and concentrations of nitrous oxide, dissolved organic carbon, methylene blue active substances, selected anions and nutrients, including nitrate and ammonium, and selected inorganic solutes, including cations, anions, and minor elements, are presented in tabular format. The natural restoration of the sand and gravel aquifer after removal of the treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume, have been documented in several published reports that are listed in the references.

  11. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  12. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents.

    PubMed

    Sercu, Bram; Jones, Antony D G; Wu, Cindy H; Escobar, Mauricio H; Serlin, Carol L; Knapp, Timothy A; Andersen, Gary L; Holden, Patricia A

    2013-01-01

    In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.

  13. Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.L.

    Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears tomore » be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.« less

  14. REMEDIATION OF TCE-CONTAMINATED GROUNDWATER BY A PERMEABLE REACTIVE BARRIER FILLED WITH PLANT MULCH (BIOWALL)

    EPA Science Inventory

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...

  15. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  16. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  17. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, F. S.; Crawford, R. L.; Sorenson, K.

    2005-09-01

    Acceptance of monitored natural attenuation (MNA) as a preferred treatment technology saves significant site restoration costs for DOE. However, in order to be accepted MNA requires direct evidence of which processes are responsible for the contaminant loss and also the rates of the contaminant loss. Our proposal aims to: 1) provide evidence for one example of MNA, namely the disappearance of the dissolved trichloroethylene (TCE) from the Snake River Plain aquifer (SRPA) at the Idaho National Laboratory’s Test Area North (TAN) site, 2) determine the rates at which aquifer microbes can co-metabolize TCE, and 3) determine whether there are othermore » examples of natural attenuation of chlorinated solvents occurring at DOE sites. To this end, our research has several objectives. First, we have conducted studies to characterize the microbial processes that are likely responsible for the co-metabolic destruction of TCE in the aquifer at TAN (University of Idaho and INL). Second, we are investigating realistic rates of TCE co-metabolism at the low catabolic activities typical of microorganisms existing under aquifer conditions (INL). Using the co-metabolism rate parameters derived in low-growth bioreactors, we will complete the models that predict the time until background levels of TCE are attained in the aquifer at TAN and validate the long-term stewardship of this plume. Coupled with the research on low catabolic activities of co-metabolic microbes we are determining the patterns of functional gene expression by these cells, patterns that may be used to diagnose the co-metabolic activity in the SRPA or other aquifers. Third, we have systematically considered the aquifer contaminants at different locations in plumes at other DOE sites in order to determine whether MNA is a broadly applicable remediation strategy for chlorinated hydrocarbons (North Wind Inc.). Realistic terms for co-metabolism of TCE will provide marked improvements in DOE’s ability to predict

  18. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis

  19. Simulated transport and biodegradation of chlorinated ethenes in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, Richard M.

    2002-01-01

    Leakage of trichloroethene (TCE) from a neutralization pond at a former manufacturing facility near Niagara Falls, N.Y. during 1950-87 into the Guelph Formation of the Lockport Group, a fractured dolomite aquifer, created a plume of TCE and its metabolites that, by 1990, extended about 4,300 feet south of the facility. A smaller plume of dense, nonaqueous-phase liquids (DNAPL) probably serves as a continuing source of TCE. The presence of the TCE metabolites cis-1,2-dichloroethene (DCE), vinyl chloride (VC), and ethene in the plume, and the results of previous laboratory microcosm studies, indicate that the TCE is being degraded by naturally occurring microorganisms. Biodegradation rates of TCE and its metabolites were estimated through simulation with BIOMOC, a solute-transport model that represents multispecies reactions through Monod kinetics. A fracture zone in the Guelph Formation was represented as a porous medium containing an extensive, 3-foot thick layer with several interconnected fractures; this layer is bounded above and below by subhorizontal stratigraphic contacts. The Monod reaction constants were estimated through nonlinear regression to minimize the difference between computed concentrations of TCE and its metabolites, and the concentrations measured before and during 5 years of pump-and-treat remediation.Transport simulations indicated that, by April 1998, the chlorinated ethene plume had reached a dynamic equilibrium between the rate of TCE dissolution and the rate of removal through pumping and biodegradation. Biodegradation of chlorinated ethenes at the site can be simulated as first-order reactions because the concentrations are generally less than the half-saturation constants estimated for Monod kinetics (320 mg/L for TCE, 10 mg/L for DCE, and 1 mg/L for VC). Computed degradation rates are proportional to the estimated ground-water velocity, which could vary by more than an order magnitude at the site, as indicated by the estimated range of

  20. Microbial degradation of chloroethenes in groundwater systems

    NASA Astrophysics Data System (ADS)

    Bradley, Paul M.

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichlor

  1. A nitrogen-rich septage-effluent plume in a glacial aquifer, Cape Cod, Massachusetts, February 1990 through December 1992

    USGS Publications Warehouse

    Desimone, Leslie A.; Barlow, Paul M.; Howes, Brian L.

    1996-01-01

    Physical, chemical, and microbial processes controlled transport of a nitrogen-rich ground-water plume through a glacial aquifer. Lithologic heterogeneity and vertical head gradients influenced plume movement and geometry. Nitrate was the predominant nitrogen form and oxygen was depleted in the ground-water plume. However, denitrification transformed only 2 percent of plume nitrogen because of limited organic-carbon availability. Aerobic respiration, nitrification and cation exchange (unsaturated zone) and ammonium sorption (saturated zone) had larger effects.

  2. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  3. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-07

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  4. Helping Students make the transition from novice learner of ground-water concepts to expert using the Plume Busters software

    USGS Publications Warehouse

    Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.

    2006-01-01

    Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

  5. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  6. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.

    PubMed

    Kocamemi, B Alpaslan; Ceçen, F

    2010-01-01

    In the present study, cometabolic TCE degradation was evaluated using NH(4)-N as the growth-substrate. At initial TCE concentrations up to 845 microg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (T(y)) of TCE, the amount of TCE degraded per unit mass of NH(4)-N, strongly depended on the initial NH(4)-N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH(4)-N concentrations, a linear relationship was developed between 1/T(y) and the initial NH(4)-N/TCE ratio. The estimated T(y) values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.

  7. Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.

    PubMed

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2015-09-01

    The simultaneous aerobic removal of a mixture of benzene, toluene, ethylbenzene, and o,m,p-xylene (BTEX); cis-dichloroethylene (cis-DCE); and trichloroethylene (TCE) from the artificially contaminated water using an indigenous bacterial isolate identified as Pseudomonas plecoglossicida immobilized on waste scrap tyres was investigated. Suspended and immobilized conditions were compared for the removal of these volatile organic compounds. For the immobilized system, toluene, benzene, and ethylbenzene were completely removed, while the highest removal efficiencies of 99.0 ± 0.1, 96.8 ± 0.3, 73.6 ± 2.5, and 61.6 ± 0.9% were obtained for o-xylene, m,p-xylene, TCE, and cis-DCE, respectively. The sorption kinetics of contaminants towards tyre surface was also evaluated, and the sorption capacity generally followed the order of toluene > benzene > m,p-xylene > o-xylene > ethylbenzene > TCE > cis-DCE. Scrap tyres showed a good capability for the simultaneous sorption and bioremoval of BTEX/cis-DCE/TCE mixture, implying a promising waste material for the removal of contaminant mixture from industrial wastewater or contaminated groundwater.

  8. Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.

    2001-12-01

    The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  9. In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, S. M.; Langry, K. C.; Ridley, M. N.

    1990-05-01

    We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} andmore » TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.« less

  10. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    PubMed

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  11. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  12. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    PubMed

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  13. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    PubMed

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  14. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers

    PubMed Central

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies. PMID:26422202

  15. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  16. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  17. Characterization Report to Support the Phytoremediation Efforts for Southern Sector, Savannah River Site, Aiken, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.

    1999-06-08

    In February, 1999, we conducted a small-scale characterization effort to support future remediation decisions for the Southern Sector of the upper Three Runs watershed. The study concentrated on groundwater adjacent to the seepline at Tim's Branch above and below Steed's Pond. the primary compounds of interest were the volatile organic contaminants (VOCs), trichlorethylene (TCE) and tetrachloroethylene (PCE). Due to the site topography and hydrogeology, samples collected north of Steed's Pond were from the M-Area (water table) aquifer; while those locations south of Steed's Pond provided samples from the Lost Lake aquifer. Results of the study suggest that the leading edgemore » of the A/M Area plume in the Lost Lake aquifer may be approaching the seepline at Tim's Branch below Steed's Pond, south of Road 2. Neither TCE nor PCE were detected int he samples targeting the seepline of the water table aquifer. The concentrations found for both TCE and PCE associated with the Lost Lake aquifer outcrop region were slightly above the detection limit of the analytical instrument used. The findings of this study are consistent with the conceptual model for the organic contaminant plume in the A/M Area of the Savannah River Site (SRS) -- the plume in the Southern Sector is known to be depth discrete and primarily in the Lost lake Aquifer. The sites with detected VOCs are in the most upstream accessible reaches of Tim's Branch where water from the Lost Lake Aquifer crops out. Additional characterization efforts should be directed near this region to confirm the results and to support future planning for the dilute-distal portions of the A/M Area plume. These data, combined with existing groundwater plume data and future characterization results will provide key information to estimate potential contaminant flux to the seepline and to assess the effectiveness of potential clean-up activities such as phytoremediation.« less

  18. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater.

    PubMed

    Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin

    2013-08-01

    Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.

  19. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.

    PubMed

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che

    2008-08-01

    Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.

  20. Hydrogeologic investigation of the Malvern TCE Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1997-01-01

    hydraulic gradient between the plant and the Catanach quarry is 0.019. Concentrations of VOC's in water from wells drilled northeast and donwgradient of the plant property boundary are one to two orders of magnitude less than concentrations in water from wells less than 100 ft away at the plant.A capture-zone analysis was performed for two wells at the plant area. The analysis showed that pumping well CC-19 at 20 gal/min would be sufficient to capture all ground-water flow from the plant area. Although water from other wells at the plant site contains higher concentrations of VOC's than water from well CC-19, pumping well CC-19 would induce the flow of water with higher concentrations of VOC's; however, pumping well CC-19 might causes VOC's to move lower into the aquifer.The disposal area is underlain by the Ledger Dolomite. The dolomite at the disposal area is much more fractured than the dolomite at the plant area. Although many of the fractures are filled or partially filled with clay, the dolomite at the disposal area yields more water than the dolomite at the plant area. Yields of eight wells at the disposal area range from 15 to more than 200 gal/min; the median yield is greater than 100 gal/min. Specific capacities range from 2 to 280 (gal/min)/ft. Aquifer tests were conducted in two wells; estimated transimissivities were 34,900 and 56,300 feet squared per day. Concentrations of VOC's in ground water are lower at the disposal area than at the plant area. Water samples collected from wells at the disposal area in 1996 had maximum concentrations of TCE of 768 ug/L, PCE of 111 ug/L, and TCA of 108 ug/L. These concentrations are lower than concentrations in water samples collected before cleanup of drums in the disposal area was completed in 1984.Ground water from the disposal area flows south-southeast toward Valley Creek. The hydraulic gradient between the disposal area and Valley Creek is 0.001. A well-defined plume of VOC’s in ground water extends downgradient

  1. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.

  2. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater

    PubMed Central

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h−1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7–6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42−, HCO3− and NO3− all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater. PMID:28264061

  3. SOURCES, EMISSION AND EXPOSURE TO TRICHLOROETHYLENE (TCE) AND RELATED CHEMICALS

    EPA Science Inventory

    This report documents the sources, emission, environmental fate and exposures for TCE, some of its metabolites, and some other chemicals known to produce identical metabolites. The major findings for TCE are:


    1. The primary sources releasing TCE to the environment ...

    2. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

      PubMed

      Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

      2012-12-01

      In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

    3. Launch Complex 39A, SWMU 008, Operations, Maintenance, and Monitoring Report, Kennedy Space Center, FL

      NASA Technical Reports Server (NTRS)

      Wilson, Deborah M.

      2016-01-01

      This Operations, Maintenance, and Monitoring Report (OMMR) presents the findings, observations, and results from Year 1 operation of the air sparging (AS) groundwater interim measure (IM) for High-Concentration Plumes (HCPs) and Low-Concentration Plumes (LCPs) within the perimeter fence line at Launch Complex 39A (LC39A) located at Kennedy Space Center (KSC), Florida. The objective of the LC39A groundwater IM is to actively decrease concentrations of trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) in groundwater in the HCP and LCP within the pad perimeter fence line via AS to levels less than Florida Department of Environmental Protection (FDEP) Groundwater Cleanup Target Levels (GCTLs). The objective was developed because LC39A is currently being leased to Space Exploration Technologies (SpaceX), and the original IM for monitored natural attenuation (MNA) over an extended period of time was not suitable for future planned site use.

    4. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

      NASA Astrophysics Data System (ADS)

      Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

      2015-11-01

      Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

    5. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes.

      PubMed

      Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

      2015-11-01

      Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature. Copyright © 2015 Elsevier B.V. All rights reserved.

    6. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

      PubMed

      Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

      2015-01-01

      Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

    7. Application of the UTCHEM simulator to DNAPL site characterization

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Butler, G.W.

      1995-12-31

      Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less

    8. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.

      PubMed

      Weyens, Nele; Croes, Sarah; Dupae, Joke; Newman, Lee; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

      2010-07-01

      The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

    9. Biophysical mechanisms of trichloroethene uptake and loss in baldcypress growing in shallow contaminated groundwater

      USGS Publications Warehouse

      Nietch, C.T.; Morris, J.T.; Vroblesky, D.A.

      1999-01-01

      Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass- carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that

    10. An innovative application of stable isotopes (δ2H and δ18O) for tracing pollutant plumes in groundwater.

      PubMed

      Negrel, Philippe; Ollivier, Patrick; Flehoc, Christine; Hube, Daniel

      2017-02-01

      The identification of the sources of contaminants present in groundwater at industrial sites is primordial to address environmental and industrial issues. However, available tools are often inadequate or expensive. Here, we present the data of stable isotopes (δ 18 O and δ 2 H) of the water molecule at an industrial site where electrochemistry plant occurs impacting the groundwater quality. High ClO 3 and ClO 4 contents and 2 H enrichment have been measured in groundwater. Recharge of aquifer relates to infiltration of rainwater and by subsurface inflow. On-site, industrial products are generated by electrolysis. We show that the electrolysis process leads to a large 2 H enrichment (+425‰) in solutions. In the absence of hydrothermal water input containing H 2 S, we demonstrate that the relationship between δ 18 O and δ 2 H can be easily used in a way to trace the origin of the ClO 3 and ClO 4 in groundwater. Isotopes evidenced first a leakage from end-product storage tanks or during the production process itself. Then, an accumulation and release of ClO 3 and ClO 4 from soil is demonstrated. Our study successfully shows that stable isotopes are a powerful and low cost tool for tracing pollutant plumes in an industrial context using electrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.

    11. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

      PubMed

      Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

      2011-10-01

      Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

    12. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Colwell, F.S.; Crawford, R.L.; Sorenson, K.

      2005-09-01

      Acceptance of monitored natural attenuation (MNA) as a preferred treatment technology saves significant site restoration costs for DOE. However, in order to be accepted MNA requires direct evidence of which processes are responsible for the contaminant loss and also the rates of the contaminant loss. Our proposal aims to: 1) provide evidence for one example of MNA, namely the disappearance of the dissolved trichloroethylene (TCE) from the Snake River Plain aquifer (SRPA) at the Idaho National Laboratory’s Test Area North (TAN) site, 2) determine the rates at which aquifer microbes can co-metabolize TCE, and 3) determine whether there are othermore » examples of natural attenuation of chlorinated solvents occurring at DOE sites. To this end, our research has several objectives. First, we have conducted studies to characterize the microbial processes that are likely responsible for the co-metabolic destruction of TCE in the aquifer at TAN (University of Idaho and INL). Second, we are investigating realistic rates of TCE co-metabolism at the low catabolic activities typical of microorganisms existing under aquifer conditions (INL). Using the co-metabolism rate parameters derived in low-growth bioreactors, we will complete the models that predict the time until background levels of TCE are attained in the aquifer at TAN and validate the long-term stewardship of this plume. Coupled with the research on low catabolic activities of co-metabolic microbes we are determining the patterns of functional gene expression by these cells, patterns that may be used to diagnose the co-metabolic activity in the SRPA or other aquifers.« less

    13. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Weyens, N.; van der Lelie, D.; Croes, S.

      The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increasedmore » root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.« less

    14. A mass balance approach to investigate arsenic cycling in a petroleum plume

      USGS Publications Warehouse

      Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.; Ng. G.-H. Crystal,

      2017-01-01

      Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction.

    15. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

      PubMed

      Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

      2010-01-01

      The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

    16. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 2. Transport of TCE

      USGS Publications Warehouse

      Sahoo, D.; Smith, J.A.; Imbrigiotta, T.E.; Mclellan, H.M.

      1998-01-01

      Field studies were conducted under an induced gradient in a trichloroethene (TCE)-contaminated aquifer at Picatinny Arsenal, NJ, to study (a) the rate-limited desorption of TCE from aquifer sediments to water and (b) the effect of a surfactant (Triton X-100) on the desorption and transport of TCE. Clean water was injected into the contaminated aquifer for 206 day. Triton X-100 was added for a 36-day period (days 36-71 from the start of clean water injection). The effect of Triton X-100 on the desorption and transport of TCE in the field was examined by observing the concentrations of these two solutes in four monitoring wells 3-9 m from the injection wells. These data show a small but discernible increase in the TCE concentration in two of the wells corresponding approximately to the time when surfactant reaches the wells; in the other two monitoring wells, the increase in TCE concentration is negligible. A solute transport model that assumes local sorption equilibrium and used a laboratory-derived distribution coefficient could not adequately describe TCE desorption and transport observed in the aquifer. Two model formulations that accounted for rate-limited sorption - two-site and multisite models - fit the data well. TCE concentrations after surfactant injection were underpredicted by the models unless mass transfer rate was increased to account for the effect of surfactant on the rate of TCE desorption. The concentration data from the two wells and the model analysis suggest that the rate of TCE desorption is increased (by approximately 30%) as a result of Triton X-100 injection.Field studies were conducted under an induced gradient in a trichloroethene (TCE)-contaminated aquifer at Picatinny Arsenal, NJ, to study (a) the rate-limited desorption of TCE from aquifer sediments to water and (b) the effect of a surfactant (Triton X-100) on the desorption and transport of TCE. Clean water was injected into the contaminated aquifer for 206 day. Triton X-100 was added

    17. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

      NASA Astrophysics Data System (ADS)

      Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

      2014-12-01

      Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

    18. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.

      2015-01-14

      The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is amore » continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.« less

  1. High (36)Cl/Cl ratios in Chernobyl groundwater.

    PubMed

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L Keith; Diez, Olivier; Bassot, Sylvain; Simler, Roland; Bugai, Dmitri; Kashparov, Valery; Lancelot, Joël

    2014-12-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of

  3. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.

    PubMed Central

    Moran, B N; Hickey, W J

    1997-01-01

    This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported. PMID:9327550

  4. Superfund Record of Decision (EPA Region 9): North Hollywood/Burbank Well Field Area 1, San Fernando Valley Site, California (first remedial action), September 1987. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-24

    The North Hollywood - Burbank Well Field (NHBWF) is located within the San Fernando Valley Ground Water basin, which can provide drinking water for approximately 500,000 people residing in the San Fernando Valley and Los Angeles. In 1980 TCE and PCE were discovered in 25% of DWP's wells. In July 1981, DWP and the Southern California Association of Governments began a two-year study funded by EPA. The study revealed the occurrence of ground-water contamination plume patterns that are spreading toward the southeast. The primary contaminant of concern to the ground-water is TCE with PCE and other VOCs present. The selectedmore » remedial action for the site is ground-water pump and treatment using aeration and granular-activated-carbon - air-filtering units, with discharge to the DWP Pumping Station for chlorination and distribution. Spent carbon will be removed and replaced with fresh carbon, with the spent carbon scheduled either for disposal or regeneration. The estimated capital cost for this remedial action is $2,192,895 with present worth OandM of $2,284,105.« less

  5. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    PubMed

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  6. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark).

    PubMed

    Baun, Anders; Reitzel, Lotte A; Ledin, Anna; Christensen, Thomas H; Bjerg, Poul L

    2003-09-01

    Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.

  7. Phytomonitoring of chlorinated ethenes in trees: a four-year study of seasonal chemodynamics in planta.

    PubMed

    Limmer, Matt A; Holmes, Amanda J; Burken, Joel G

    2014-09-16

    Long-term monitoring (LTM) of groundwater remedial projects is costly and time-consuming, particularly when using phytoremediation, a long-term remedial approach. The use of trees as sensors of groundwater contamination (i.e., phytoscreening) has been widely described, although the use of trees to provide long-term monitoring of such plumes (phytomonitoring) has been more limited due to unexplained variability of contaminant concentrations in trees. To assess this variability, we developed an in planta sampling method to obtain high-frequency measurements of chlorinated ethenes in oak (Quercus rubra) and baldcypress (Taxodium distichum) trees growing above a contaminated plume during a 4-year trial. The data set revealed that contaminant concentrations increased rapidly with transpiration in the spring and decreased in the fall, resulting in perchloroethene (PCE) and trichloroethene (TCE) sapwood concentrations an order of magnitude higher in late summer as compared to winter. Heartwood PCE and TCE concentrations were more buffered against seasonal effects. Rainfall events caused negligible dilution of contaminant concentrations in trees after precipitation events. Modeling evapotranspiration potential from meteorological data and comparing the modeled uptake and transport with the 4 years of high frequency data provides a foundation to advance the implementation of phytomonitoring and improved understanding of plant contaminant interactions.

  8. A mass balance approach to investigate arsenic cycling in a petroleum plume.

    PubMed

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M; Crystal Ng, G-H

    2017-12-01

    Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The efficiency evaluation of in situ remediation performed around the source zone of DNAPL contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Lee, S. H.; Lee, K. K.

    2014-12-01

    The location of DNAPL source and distribution of contaminant plume at an industrial complex, Wonju, Korea, was examined based on the combined results of seasonal impact analysis, historical approach, radon tracer approach, and chemical fingerprinting conducted from 2009 to 2013 (Yang et al., 2013). With regard to the amount of contaminants discharged at this study site, there is no exact information on disposal. Therefore, various remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treatment have been performed to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Also, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The remediation efficiency according to the remediation actions was evaluated by tracing a time-series of plume evolution and estimating the temporal mass discharge at three transects (Source, Transec-1, Transect-2) which was assigned along the groundwater flow path. From results of periodically monitored TCE concentration at main source zone, the TCE level (15.74 mg/L) before the remediation dramatically decreased up to 0.56 mg/L at the end of year 2012 due to the effect of remediation. During the intensive remediation period from 2012 to 2013, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Especially, in case of surfactant flushing test which was conducted to eliminate the residual TCE, the efficiency of surfactant flushing test was evaluated using the recovery rate of chloride ion which was used as tracer. The results for recovery rate of chloride ion show that test wells observed the slow recovery rate represented more effective dissolution of TCE than wells showing the rapid recovery rate. By using the source zone monitoring data and analytical solution, initial

  10. 77 FR 6863 - Proposed Collection; Comment Request for VITA/TCE Program Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    .../TCE Program Forms AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for... VITA/TCE Program Forms 14310, 8653, 8654, and 14024. DATES: Written comments should be received on or... . SUPPLEMENTARY INFORMATION: Title: VITA/TCE Program Forms. OMB Number: 1545-2222. Form Number: Forms 14310, 8653...

  11. TRICHLOROETHYLENE (TCE) ISSUE PAPERS

    EPA Science Inventory

    These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

  12. Movement and fate of solutes in a plume of sewage-contaminated ground water, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D. R.

    1984-01-01

    The U.S. Geological Survey (USGS) has begun a nationwide program to study the fate of toxic wastes in groundwater. Several sites where groundwater is known to be contaminated are being studied by interdisciplinary teams of geohydrologists, chemists, and microbiologists. The objective of these studies is to obtain a thorough quantitative understanding of the physical, chemical, and biological processes of contaminant generation, migration, and attenuation in aquifers. One of the sites being studied by the USGS under this program is a plume of sewage contaminated groundwater on Cape Cod, Massachusetts. The plume was formed by land disposal of treated sewage to a glacial outwash aquifer since 1936. This report summarizes results obtained during the first year of research at the Cape Cod s under the USGS Toxic-Waste Ground-Water Contamination Program. The seven papers included in this volume were presented at the Toxic Waste Technical Meeting, Tucson, Arizona, in March 1984. They provide an integrated view of the subsurface distribution of contaminants based on the first year of research and discuss hypotheses concerning the transport processes that affect the movement of contaminants in the plume. (See W89-09053 thru W89-09059) (Lantz-PTT)

  13. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron.

    PubMed

    Han, Jun; Xin, Jia; Zheng, Xilai; Kolditz, Olaf; Shao, Haibing

    2016-07-01

    Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L(-1)) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L(-1)) and CMC (3 g L(-1)) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI.

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uraniummore » are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.« less

  15. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.

    PubMed

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che; Hsieh, Feng-Ming

    2007-09-30

    The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.

  16. Persistence of artificial sweeteners in a 15-year-old septic system plume

    NASA Astrophysics Data System (ADS)

    Robertson, W. D.; Van Stempvoort, D. R.; Solomon, D. K.; Homewood, J.; Brown, S. J.; Spoelstra, J.; Schiff, S. L.

    2013-01-01

    SummaryGroundwater contamination from constituents such as NO3-, often occurs where multiple sources are present making source identification difficult. This study examines a suite of major ions and trace organic constituents within a well defined septic system plume in southern Ontario, Canada (Long Point site) for their potential use as wastewater tracers. The septic system has been operating for 20 years servicing a large, seasonal-use campground and tritium/helium age dating indicates that the 200 m long monitored section of the plume is about 15 years old. Four parameters are elevated along the entire length of the plume as follows; the mean electrical conductivity value (EC) in the distal plume zone is 926 μS/cm which is 74% of the mean value below the tile bed, Na+ (14.7 mg/L) is 43%, an artificial sweetener, acesulfame (12.1 μg/L) is 23% and Cl- (71.5 mg/L) is 137%. EC and Cl- appear to be affected by dispersive dilution with overlying background groundwater that has lower EC but has locally higher Cl- as result of the use of a dust suppressant (CaCl2) in the campground. Na+, in addition to advective dilution, could be depleted by weak adsorption. Acesulfame, in addition to the above processes could be influenced by increasing consumer use in recent years. Nonetheless, both Na+ and acesulfame remain elevated throughout the plume by factors of more than 100 and 1000 respectively compared to background levels, and are strong indicators of wastewater impact at this site. EC and Cl- are less useful because their contrast with background values is much less (EC) or because other sources are present (Cl-). Nutrients (NO3-, NH4+, PO43-, K+) and pathogens (Escherichia coli) do not persist in the distal plume zone and are less useful as wastewater indicators here. The artificial sweetener, acesulfame, has persisted at high concentrations in the Long Point plume for at least 15 years (and this timing agrees with tritium/helium-3 dating) and this compound likely

  17. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  18. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin

    PubMed Central

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-01-01

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin. PMID:28402964

  19. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    PubMed

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  20. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    Example anion concentrations in groundwater used for feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2...phase extraction ST storage tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental...Protection Agency UST underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material

  1. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA

    USGS Publications Warehouse

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.

    2013-01-01

    The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This

  2. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  3. Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.

    PubMed

    Firdous, R; Devlin, J F

    2018-04-05

    To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    2017-06-06

    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  5. Monitoring Natural Biodegradation of TCE in Fractured Sedimentary Rocks Using delta 13C of TCE and its Degradation Products: Estimating Isotopic Fractionation Factor under Field Conditions

    NASA Astrophysics Data System (ADS)

    Revesz, K.; Shapiro, A. M.; Tiedeman, C.; Goode, D. J.; Lacombe, P. J.; Imbrigiotta, T. E.

    2008-12-01

    The isotopic ratio of 13C/12C, expressed in delta13CVPDB per mill for trichloroethene (TCE), can differentiate between microbial degradation and other processes (dilution, dispersion, and sorption) that can also affect the concentration of TCE and its degradation products. The delta13C of TCE isotopically fractionates during microbial degradation; however, it remains practically unchanged during other processes. The isotope fractionation factor (alpha) estimated under laboratory conditions, however, may not be representative of microbial degradation in natural ground waters. Estimating alpha under field conditions provides evidence of the presence or absence of in situ microbial degradation and provides valuable information on the in situ processes that affect the fate and transport of chlorinated hydrocarbons. Our modified analytical method of analyzing for the isotopic ratio proved to be comparable to previously published methods. Isotope values were stable within analytical uncertainty in sample sizes ranging from 22 to 2200 nanomoles. Prepared standard mixtures of TCE and DCEs (trans- and cis- dichloroethene) were analyzed after every five field samples, and were stable during the time period that field samples were processed (a year). Water samples were collected from multiple boreholes completed in the fractured mudstone underlying the former Naval Air Warfare Center, West Trenton, NJ, and analyzed for delta13C of the chlorinated hydrocarbons. The results showed an ongoing natural microbial degradation following the typical dehalogenation pathway: TCE to DCE (trans- and cis-dichloroethene) to VC (vinyl chloride). The carbon isotope enrichment due to fractionation was smaller between TCE to DCE degradation than the enrichment between DCE to VC degradation, which is consistent with previous investigations. Results also showed a correlation between delta13C of TCE and the transmissivity of the boreholes where water samples were collected. We assumed that

  6. Sewers as a source and sink of chlorinated-solvent groundwater contamination, Marine Corps Recruit Depot, Parris Island, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Lowery, M.A.; Landmeyer, J.E.

    2011-01-01

    Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater. The southern plume originates at a nearby, new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. The strong influence of sanitary sewers on source distribution and of storm sewers on plume orientation and discharge at this site indicates that groundwater-contamination investigators should consider the potential influence of sewer systems at their sites. ?? 2011, National Ground Water Association.

  7. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes.

    PubMed

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C C; Aravena, Ramon; Canals, Àngels; Binning, Philip J; Bjerg, Poul L; Otero, Neus; Soler, Albert

    2014-03-15

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ(13)C values from -15.6 to -40.5‰ for TCE and from -18.5 to -32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ(37)Cl values for TCE in the contaminant sources, ranging from +0.53 to +0.66‰. Variations of δ(37)Cl and δ(13)C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  9. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less

  10. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    DOE PAGES

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less

  11. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.

    PubMed

    Kim, Hojeong; Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye; Yang, Ji-Won

    2010-04-15

    Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe(0), while most of irons on the surface are oxidized to Fe(3+). When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k(obs)) of Fe/Pd-alginate was 6.11 h(-1) and the mass normalized rate constant (k(m)) was 1.6 L h(-1) g(-1). The k(m) is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent. 2009 Elsevier B.V. All rights reserved.

  12. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    NASA Astrophysics Data System (ADS)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  13. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  14. Developmental neurotoxic effects of a low dose of TCE on a 3-D neurosphere system.

    PubMed

    Abdraboh, M E; Abdeen, S H; Salama, M; El-Husseiny, M; El-Sherbini, Y M; Eldeen, N M

    2018-02-01

    Trichloroethylene (TCE) is one of the industrial toxic byproducts that now persist in the air, soil, and water. Several studies have already illustrated the toxic effect of high doses of TCE on the biological functions of several organs. This study aims to highlight the toxic impact of a low dose of TCE (1 μmol/L) on the development of rat neural stem cells (NSCs). The subventricular zones (SVZ) of rat pup's brains were collected and minced, and the harvested cells were cultured in the presence of neural growth factors B27/N2 to develop neurospheres. The cells were then exposed to a dose of 1 μmol/L TCE for 1 or 2 weeks. The outcomes indicated a remarkable inhibitory effect of TCE on the differentiation capacity of NSCs, which was confirmed by down-regulation of the astrocyte marker GFAP The inhibitory effect of TCE on the proliferation of NSCs was identified by the reductions in neurosphere diameter, Ki67 expression, and cell cycle arrest at the G1/S phase. Immunolabelling with annexin V indicated the proapoptotic effect of TCE exposure. PCR results revealed a TCE-mediated suppression of the expression of the antioxidant enzyme SOD1. This paper illustrates, for the first time, a detailed examination of the toxic effects of an environmentally low dose of TCE on NCSs at the transcriptional, translational, and functional levels.

  15. Assessment of chloroethene degradation rates based on ratios of daughter/parent compounds in groundwater plumes

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick

    2014-05-01

    Chlorinated solvent spills at industrial and urban sites create groundwater plumes where tetrachloro- and trichloroethene may degrade to their daughter compounds, dichloroethenes, vinyl chloride and ethane. The assessment of degradation and natural attenuation at such sites may be based on the analysis and inverse modelling of concentration data, on the calculation of mass fluxes in transsects, and/or on the analysis of stable isotope ratios in the ethenes. Relatively few work has investigated the possibility of using ratio of concentrations for gaining information on degradation rates. The use of ratios bears the advantage that dilution of a single sample with contaminant-free water does not matter. It will be shown that molar ratios of daughter to parent compounds measured along a plume streamline are a rapid and robust mean of determining whether degradation rates increase or decrease along the degradation chain, and allow furthermore a quantitation of the relative magnitude of degradation rates compared to the rate of the parent compound. Furthermore, ratios of concentration will become constant in zones where degradation is absent, and this allows to sketching the extension of actively degrading zones. The assessment is possible for pure sources and also for mixed sources. A quantification method is proposed in order to estimate first-order degradation rates in zones of constant degradation activity. This quantification method includes corrections that are needed due to longitudinal and transversal dispersivity. The method was tested on a number of real field sites from literature. At the majority of these sites, the first-order degradation rates were decreasing along the degradation chain from tetrachloroethene to vinyl chloride, meaning that the latter was often reaching important concentrations. This is bad news for site owners due to the increased toxicity of vinyl chloride compared to its parent compounds.

  16. Continuous Improvement of a Groundwater Model over a 20-Year Period: Lessons Learned.

    PubMed

    Andersen, Peter F; Ross, James L; Fenske, Jon P

    2018-04-17

    Groundwater models developed for specific sites generally become obsolete within a few years due to changes in: (1) modeling technology; (2) site/project personnel; (3) project funding; and (4) modeling objectives. Consequently, new models are sometimes developed for the same sites using the latest technology and data, but without potential knowledge gained from the prior models. When it occurs, this practice is particularly problematic because, although technology, data, and observed conditions change, development of the new numerical model may not consider the conceptual model's underpinnings. As a contrary situation, we present the unique case of a numerical flow and trichloroethylene (TCE) transport model that was first developed in 1993 and since revised and updated annually by the same personnel. The updates are prompted by an increase in the amount of data, exposure to a wider range of hydrologic conditions over increasingly longer timeframes, technological advances, evolving modeling objectives, and revised modeling methodologies. The history of updates shows smooth, incremental changes in the conceptual model and modeled aquifer parameters that result from both increase and decrease in complexity. Myriad modeling objectives have included demonstrating the ineffectiveness of a groundwater extraction/injection system, evaluating potential TCE degradation, locating new monitoring points, and predicting likelihood of exceedance of groundwater standards. The application emphasizes an original tenet of successful groundwater modeling: iterative adjustment of the conceptual model based on observations of actual vs. model response. © 2018, National Ground Water Association.

  17. MONITORING TO ASSOCIATE A PLUME OF MTBE IN GROUNDWATER WITH A VAPOR RELEASE

    EPA Science Inventory

    There is a class of MTBE plumes in ground water that have little of the BTEX compounds. It has been proposed that these MTBE plumes are caused by release of gasoline vapors from underground storage tanks. However, a mechanism to carry MTBE vapors into ground water has not been ...

  18. Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes.

    PubMed

    Aulenta, Federico; Potalivo, Monica; Majone, Mauro; Papini, Marco Petrangeli; Tandoi, Valter

    2006-06-01

    This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.

  19. Quantification of temperature impacts on the dissolution of chlorinated hydrocarbons into groundwater

    NASA Astrophysics Data System (ADS)

    Koproch, Nicolas; Popp, Steffi; Köber, Ralf; Beyer, Christof; Bauer, Sebastian; Dahmke, Andreas

    2016-04-01

    Shallow thermal energy storage has great potential for heat storage especially in urban and industrial areas. However, frequently existing organic groundwater contaminations in such areas were currently seen as exclusion criteria for thermal use of the shallow subsurface, since increased contaminant discharge is feared as consequence of heating. Contaminant discharge is influenced by a complex interaction of processes and boundary conditions as e.g. solubility, dispersion, viscosity and degradation, where there is still a lack of experimental evidence of the temperature dependent interaction. Even existing studies on basic influencing factors as e.g. temperature dependent solubilities show contradictory results. Such knowledge gaps should be reduced to improve the basis and liability of numerical model simulations and the knowledge base to enable a more differentiated and optimized use of resources. For this purpose batch as well as 1- and 2-dimensional experimental studies concerning the temperature dependent release of TCE (trichloroethylene) from a NAPL (non aqueous phase liquid) source are presented and discussed. In addition, this experimental studies are accompanied by a numerical model verification, where extensions of existing numerical model approaches on basis of this obtained experimental results are developed. Firstly, temperature dependent TCE solubility data were collected using batch experiments with significantly better temperature resolution compared to earlier studies, showing a distinct minimum at 35°C and increased solubility towards 5°C and 70°C. Secondly, heated 1-dimensional stainless steel columns homogenously filled with quartz sand were used to quantify source zone depletion and contaminant discharge at 10-70°C. Cumulative mass discharge curves indicated two blob categories with distinct differences in dissolution kinetics. Increasing the temperature showed here an increase of the amount of fast dissolving blobs indicating higher NAPL

  20. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, Richard L.; Miller, Daniel N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large‐scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3−, N2, and sorbed NH4+; and in situ natural gradient 15NH4+tracer tests with numerical simulations of 15NH4+, 15NO3−, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3− and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH4+. The δ15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH4+‐consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  1. Submarine groundwater discharge and solute transport under a transgressive barrier island

    NASA Astrophysics Data System (ADS)

    Evans, Tyler B.; Wilson, Alicia M.

    2017-04-01

    Many recent investigations of groundwater dynamics in beaches employed groundwater models that assumed isotropic, numerically-convenient hydrogeological conditions. Real beaches exhibit local variability with respect to stratigraphy, sediment grain size and associated topographic profile, so that groundwater flow may diverge significantly from idealized models. We used a combination of hydrogeologic field methods and a variable-density, saturated-unsaturated, transient groundwater flow model to investigate SGD and solute transport under Cabretta Beach, a small transgressive barrier island seaward of Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove important deviations from predictions based on theoretical beaches. Cabretta Beach sustained a stronger upper saline plume than predicted due to the presence of a buried silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides than for spring tides due to variations in beach slope. The strength of the upper saline plume was greatest during spring tides, contrary to recent model predictions. The position and width of the upper saline plume was highly dynamic through the lunar cycle. Our results suggest that field measurements of salinity gradients may be useful for estimating rates of tidally and density driven recirculation through the beach. Finally, our results indicate that several important biogeochemical cycles recently studied at Cabretta Beach were heavily influenced by groundwater flow and associated solute transport.

  2. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  3. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    PubMed

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  4. Subduction disfigured mantle plumes: Plumes that are not plumes?

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Stegman, D. R.; Kincaid, C. R.; Griffiths, R. W.

    2012-12-01

    "Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.

  5. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting

    NASA Astrophysics Data System (ADS)

    Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro

    2016-09-01

    The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.

  6. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. An Overview of In-Stu Treatability Studies at Marshall Space Flight Center, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    McElroy, Bill; Keith, Amy; Glasgow, J. K.; Dasappa, Srini; McCaleb, Rebecca (Technical Monitor)

    2001-01-01

    Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama (north-central Alabama), on approximately 1,840 acres near the center of the U.S. Army's Redstone Arsenal (RSA). MSFC is the National Aeronautics and Space Administration's (NASA's) principal propulsion development center. Its scientists, engineers, and support personnel play a major role in the National Space Transportation System by managing space shuttle mission activities, including the microgravity laboratory. In addition, MSFC will be a significant contributor to several of NASA's future programs, including the Reusable Launch Vehicle (X-33), International Space Station, and Advanced X-ray Astrophysics Facility, as well as research on a variety of space science applications. MSFC has been used to develop, test and manufacture space vehicles and components since 1960, when civilian rocketry and missile activities were transferred from RSA to MSFC. In 1994, MSFC was placed on the National Priority List for the management of hazardous waste sites, under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). One requirement of the CERCLA program is to evaluate the nature and extent of environmental contamination resulting from identified CERCLA sites, assess the public health and environmental risks associated with the identified contamination, and identify potential remedial actions. A CERCLA remedial investigation (RI) for the groundwater system has identified at least five major plumes of chlorinated volatile organic compounds (CVOCs) in the groundwater beneath the facility. These plumes are believed to be the result of former management practices at 14 main facility locations (termed "source areas") where CVOCs were released to the subsurface. Trichloroethene (TCE) is the predominant CVOC and is common to all the plumes. Perchloroethene (PCE) also exists in two of the plumes. In addition to TCE and PCE, carbon tetrachloride and 1

  8. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    PubMed

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. Published by Elsevier B.V.

  9. Movement and fate of detergents in groundwater: a field study

    USGS Publications Warehouse

    Thurman, E.M.; Barber, L.B.; LeBlanc, D.

    1986-01-01

    The major cations, anions, and detergents in a plume of contaminated groundwater at Otis Air Base on Cape Cod (Mass., U.S.A.) have moved approximately 3.5 km down gradient from the disposal beds. We hypothesize that the detergents form two distinct plumes, which consist of alkyl benzene sulfonates (ABS) detergents and linear alkyl sulfonates (LAS) and sodium dodecyl sulfate (NaLS) detergents. The ABS detergents were deposited from approximately 1940 through 1965, when ABS detergents were banned. From 1965 to the present, LAS and NaLS detergents were in the sewage. The ABS detergents appear to be transported in the aquifer at the same rate as the specific conductance (major cations and anions) and boron, which are currently used as conservative tracers of the plume of contaminated groundwater. There appears to be little or no biological degradation of the ABS detergents in the aquifer, based on their concentration in the plume. On the other hand, the LAS and NaLS detergents have degraded rapidly and have been detected only 0.6 km down gradient. The roleof the detergents in the transport of other organic compounds in the plume is nuclear. There is a separation of the ABS detergent plume and the volatile organic compound plume; however, the time of entry of the detergents and the volatile organic compounds is unknown. Therefore, it is not possible to conclude on the interaction of these two classes of compounds. ?? 1986.

  10. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.

    PubMed

    Phenrat, Tanapon; Thongboot, Thippawan; Lowry, Gregory V

    2016-01-19

    This study evaluates the concept of using zerovalent iron (ZVI) powder or nanoscale zerovalent iron (NZVI) particles in combination with a low frequency (150 kHz) AC electromagnetic field (AC EMF) to effectively remove trichloroethylene (TCE) from groundwater and saturated soils. ZVI and NZVI are ferromagnetic, which can induce heat under applied AC EMF. The heat generated by ZVI and NZVI induction can increase the rate of dechlorination, according to Arrhenius' equation, and increase the rate of TCE desorption from TCE-sorbed soil. Both dechlorination and TCE desorption enhance the overall TCE removal rate. We evaluated this novel concept in laboratory batch reactors. We found that both ZVI and NZVI can induce heat under applied AC EMF up to 120 °C in 20 min. Using ZVI and NZVI with AC EMF enhanced dechlorination of dissolved TCE (no soil) up to 4.96-fold. In addition to increasing the temperature by ZVI and NZVI induction heating, AC EMF increased intrinsic ZVI and NZVI reactivity, ostensibly due to accelerated corrosion, as demonstrated by the increased ORP. In a soil-water-TCE system, NZVI together with AC EMF thermally enhanced desorption of TCE from soil and increased the degradation of TCE up to 5.36-fold compared to the absence of AC EMF. For the first time, this study indicates the potential for ZVI and NZVI coupled with AC EMF as a combined remediation technique for increasing the rate and completeness of in situ cleanup of adsorbed phase contaminants.

  11. Formulation design for target delivery of iron nanoparticles to TCE zones.

    PubMed

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  12. Hydrogeology and leachate plume delineation at a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.

    2002-01-01

    The City of Norman operated a solid-waste municipal landfill at two sites on the Canadian River alluvium in Cleveland County, Oklahoma from 1970 to 1985. The sites, referred to as the west and east cells of the landfill, were originally excavations in the unconsolidated alluvial deposits and were not lined. Analysis of ground-water samples indicate that leachate from the west cell is discharging into an adjacent abandoned river channel, referred to as the slough, and is migrating downgradient in ground water toward the Canadian River. The report describes the hydrogeologic features at the landfill, including the topography of the bedrock, water-level changes in the alluvial aquifer, and delineates the leachate plume using specific conductance data. The leading edge of the leachate plume along the 35-80 transect extended over 250 meters downgradient of the west cell. The leading edge of the leachate plume along the 40-SOUTH transect had moved about 60 meters from the west cell in a south-southwesterly direction and had not moved past the slough as of 1997. Specific conductance measurements exceeding 7,000 microsiemens per centimeter at site 40 indicate the most concentrated part of the plume remained in the upper half of the alluvial aquifer adjacent to the west cell. The direction of ground-water flow in the alluvial aquifer surrounding the landfill was generally north-northeast to south-southwest toward the river. However, between the west cell and the slough along the 40-SOUTH transect, head measurements indicate a directional change to the east and southeast toward a channel referred to as the sewage outfall. Near the 35-80 transect, at 0.5 meter below the water table and at the base of the aquifer, the direction of ground-water flow was south-southeast with a gradient of about 30 centimeters per 100 meters. Generally, ground-water levels in the alluvial aquifer were higher during the winter months and lower during summer months, due to a normal decrease in

  13. Maximum entropy estimation of a Benzene contaminated plume using ecotoxicological assays.

    PubMed

    Wahyudi, Agung; Bartzke, Mariana; Küster, Eberhard; Bogaert, Patrick

    2013-01-01

    Ecotoxicological bioassays, e.g. based on Danio rerio teratogenicity (DarT) or the acute luminescence inhibition with Vibrio fischeri, could potentially lead to significant benefits for detecting on site contaminations on qualitative or semi-quantitative bases. The aim was to use the observed effects of two ecotoxicological assays for estimating the extent of a Benzene groundwater contamination plume. We used a Maximum Entropy (MaxEnt) method to rebuild a bivariate probability table that links the observed toxicity from the bioassays with Benzene concentrations. Compared with direct mapping of the contamination plume as obtained from groundwater samples, the MaxEnt concentration map exhibits on average slightly higher concentrations though the global pattern is close to it. This suggest MaxEnt is a valuable method to build a relationship between quantitative data, e.g. contaminant concentrations, and more qualitative or indirect measurements, in a spatial mapping framework, which is especially useful when clear quantitative relation is not at hand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Insights into dechlorination of PCE and TCE from carbon isotope fractionation by vitamin B12

    NASA Astrophysics Data System (ADS)

    Slater, G.; Sherwood Lollar, B.; Lesage, S.; Brown, S.

    2003-04-01

    Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is both a potential remediation technique and an analogue of the microbial reductive dechlorination reaction. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. 10 mg/L vitamin B12 degraded greater than 90% of an initial concentration of PCE of 20 mg/L. TCE, the primary product of PCE degradation, accounted for between 64 - 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded greater than 90% of an initial concentration of TCE of 20 mg/L. Cis-dichloroethene (cDCE), the primary product of TCE degradation, accounted for between 30 - 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described by a Rayleigh model with enrichment factors between -16.5 ppm and -15.8 ppm for PCE, and -17.2 ppm and -16.6 ppm for TCE. Fractionation was similar in all four experiments, with a mean enrichment factor of -16.5 +/- 0.6 ppm. These large enrichment factors indicate that isotopic analysis can be used to assess the occurrence of dechlorination of PCE and TCE by vitamin B12 in remediation situations. Significantly, the Rayleigh model could be used to predict the isotopic compositions of the major products of the reaction as well as the reactant, notwithstanding the lack of complete mass balance observed between product and reactant. This evidence suggests that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e for this reaction and

  15. Know Your Enemy - Implementation of Bioremediation within a Suspected DNAPL Source Zone Following High-Resolution Site Characterization at Contractors Road Heavy Equipment Area, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Chrest, Anne; Daprato, Rebecca; Burcham, Michael; Johnson, Jill

    2018-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), has adopted high-resolution site characterization (HRSC) sampling techniques during baseline sampling prior to implementation of remedies to confirm and refine the conceptual site model (CSM). HRSC sampling was performed at Contractors Road Heavy Equipment Area (CRHE) prior to bioremediation implementation to verify the extent of the trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source area (defined as the area with TCE concentrations above 1% solubility) and its daughter product dissolved plume that had been identified during previous HRSC events. The results of HRSC pre-bioremediation implementation sampling suggested that the TCE source area was larger than originally identified during initial site characterization activities, leading to a design refinement to improve electron donor distribution and increase the likelihood of achieving remedial objectives. Approach/Activities: HRSC was conducted from 2009 through 2014 to delineate the vertical and horizontal extent of chlorinated volatile organic compounds (CVOCs) in the groundwater. Approximately 2,340 samples were collected from 363 locations using direct push technology (DPT) groundwater sampling techniques. Samples were collected from up to 14 depth intervals at each location using a 4-foot sampling screen. This HRSC approach identified a narrow (approx. 5 to 30 feet wide), approximately 3,000 square foot TCE DNAPL source area (maximum detected TCE concentration of 160,000 micrograms per liter [micro-g/L] at DPT sampling location DPT0225). Prior to implementation of a bioremediation interim measure, HRSC baseline sampling was conducted using DPT groundwater sampling techniques. Concentrations of TCE were an order of magnitude lower than previous reported (12,000 micro-g/L maximum at DPT sampling location DPT0225) at locations sampled adjacent to previous sampling locations. To further evaluate the variability

  16. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Truex, M. J.; Last, G. V.; Strickland, C. E.; Tartakovsky, G. D.

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  17. Evaluation of Deep Vadose Zone Contaminant Flux into Groundwater: Approach and Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Truex, Michael J.; Last, George V.

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a casemore » study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.« less

  18. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  19. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    PubMed

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, R. L.; Lawrence, B. L.

    2011-06-09

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

  1. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    PubMed

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  3. Thermal use of groundwater: International legislation and ecological considerations

    NASA Astrophysics Data System (ADS)

    Hähnlein, S.; Griebler, C.; Blum, P.; Bayer, P.

    2009-04-01

    Groundwater fulfills various functions for nature, animals and humans. Certainly, groundwater has highest relevance as freshwater resource. Another increasingly important issue - especially considering rising oil and gas prices - is the use of aquifers as renewable energy reservoirs. In view of these two somehow conflictive uses it seems important to define legal regulations and management strategies where exploitation and protection of aquifers is balanced. Thermal use of groundwater with e.g. ground source heat pump (GSHP) systems results in temperature anomalies (cold or heat plumes) in the subsurface. The extension of these temperture plumes has to be known in order to interpret their influence on adjacent geothermal installations. Beside this technological constraint, there exists an ecological one: man made thermal anomalies may have undesirable effects on the groundwater ecosystem. To promote geothermal energy as an economically attractive, sustainable and environmentally friendly energy source, such constraints have to be integrated in regulations, planning and maintenance (Hähnlein et al. 2008a,b). The objective of this study is to review the current legal status of the thermal use of groundwater and to present first results how the ecosystem is influenced. • Legal viewpoint: The international legal situation on thermal groundwater use is very heterogeneous. Nationally and internationally there is no consistent legal situation. Minimum distances between GSHP and temperature limits for heating and cooling the groundwater vary strongly. Until now there are no scientifically based thresholds. And it is also legally unexplained which temperature changes are detrimental. This is due to the fact that there are no ecological and economical parameters established for sustainable groundwater use. • Ecological viewpoint: First results show that temperature changes that arise with the thermal use of groundwater can noticeably influence the composition of

  4. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics

  5. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    PubMed

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-07-21

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  6. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume

    USGS Publications Warehouse

    Gschwend, Philip M.; Reynolds, Matthew D.

    1987-01-01

    Groundwater samples collected near a secondary-sewage infiltration site on Cape Cod, Massachusetts were examined for colloidal materials (10–1000 nm). In two wells the water contained a population of monodisperse 100-nm particles, detected using laser-light scattering and autocorrelation data processing. SEM and SEM-EDAX analysis of these colloidal materials collected on ultrafilters confirmed the laser light scattering result and revealed that these microparticles consisyed of primarily iron and phosphorus in a 1.86 Fe to 1.0 P stoichiometric ratio. Chemical analyses of the water samples, together with equilibrium solubility calculations, strongly suggest that the ion-activity product should exceed the solubility product of a 100-nm diameter predominantly vivianite-type (Fe3(PO4)2 · 8H2O) colloidal phase. In light of our results, we conclude that these microparticles were formed by sewage-derived phosphate combining with ferrous iron released from the aquifer solids, and that these colloids may be moving in the groundwater flow. Such a subsurface transport process could have major implications regarding the movement of particle-reactive pollutants traditionally viewed as non-mobile in groundwater.

  7. COMPLETE NATURAL ATTENUATION OF PCE AND TCE WITHOUT VINYL CHLORIDE AND ETHENE ACCUMULATION

    EPA Science Inventory

    A shallow aquifer at the Twin Cities Army Ammunition Plant (TCAAP) was contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE). Cisdichloroethylene (cis-DCE) is found in ground water at the site, indicating that reductive dehalogenation of PCE and TCE is occurrin...

  8. MICROFRACTURE SURFACE GEOCHEMISTRY AND ADHERENT MICROBIAL POPULATION METABOLISM IN TCE-CONTAMINATED COMPETENT BEDROCK

    EPA Science Inventory

    A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...

  9. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.

    PubMed

    Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation.

    PubMed

    Takahata, Yoh; Kasai, Yuki; Hoaki, Toshihiro; Watanabe, Kazuya

    2006-12-01

    A groundwater plume contaminated with gasoline constituents [mainly benzene, toluene, and xylenes (BTX)] had been treated by pumping and aeration for approximately 10 years, and the treatment strategy was recently changed to monitored natural attenuation (MNA). To gain information on the feasibility of using MNA to control the spread of BTX, chemical and microbiological parameters in groundwater samples obtained inside and outside the contaminated plume were measured over the course of 73 weeks. The depletion of electron acceptors (i.e., dissolved oxygen, nitrate, and sulfate) and increase of soluble iron were observed in the contaminated zone. Laboratory incubation tests revealed that groundwater obtained immediately outside the contaminated zone (the boundary zone) exhibited much higher potential for BTX degradation than those in the contaminated zone and in uncontaminated background zones. The boundary zone was a former contaminated area where BTX were no longer detected. Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments revealed that DGGE profiles for groundwater samples obtained from the contaminated zone were clustered together and distinct from those from uncontaminated zones. In addition, unique bacterial rRNA types were observed in the boundary zone. These results indicate that the boundary zone in the contaminant plumes served as a natural barrier for preventing the BTX contamination from spreading out.

  11. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    PubMed

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  12. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    EPA Pesticide Factsheets

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  13. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site.

    PubMed

    Hamamin, Dara Faeq

    2018-05-01

    The current work is an attempt to illustrate the importance of using passive soil gas as an innovative investigation technique in the assessment of soil and groundwater pollutions that emanates from volatile hydrocarbon activities in newly emerging countries. Bazian Oil Refinery as one of the largest refinery in Iraqi Kurdistan Region produces 40,000 barrels a day and provides a wide range of petroleum products for daily consumption. The types and scale of different process that happen in this industrial site have led to concerns with regard to its impact on both the soil and groundwater the vicinity of the factory. The researcher conducted a combined sampling design with a dual-phased extraction procedure for soil vapor and groundwater samples in order to assess the susceptibility of the subsurface to pollution with hydrocarbon. The aims were to characterize potential source(s), map the areal extent of the site which is at risk to be affected with the identified9 hydrocarbon compounds and vapor. A collection kit from Beacon Environmental Service was used to collect a total number of 50 passive soil vapors in the first step of work. To extrapolate results, five shallow boring for soils and six for water sampling were carefully observed. The selection of the sampling points was based on the results revealed by the PSG survey that showed significant quantities of analyzed organic hydrocarbon for a follow-up investigation. The matrices were analyzed by ALS Laboratory to target more than 40 VOCs and SVOCs. The plan was to make the mass to concentration tie-in for the selected analyzed compounds (Benzene, Toluene, and Total Petroleum Hydrocarbons) from the PSG in mass (nanograms) with both the soil and water samples in concentration. The results revealed that the PSG technique is unique in identifying the source and extent of soil and groundwater pollutions plume. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goltz, M.N.; Kawakami, B.T.; McCarty, P.L.

    A full-scale study of in-situ bioremediation is being planned for implementation at Edwards Air Force Base. The bioremediation system that is being proposed has been developed over 8 years of research and testing in the laboratory and at a pilot field site located at Moffett Naval Air Station in Mountain View, California. Studies conducted at the Moffett field site have demonstrated that trichloroethylene (TCE), the contaminant found at Edwards, can be effectively biodegraded cometabolically through the introduction into the subsurface of a primary substrate and an oxygen source to support the growth and energy requirements of a native population ofmore » microorganisms. One of the main questions that needs to be answered, prior to full-scale demonstration of this technology on the Edwards TCE plume, is how best to mix a primary substrate, an oxygen source, and TCE, and subsequently get the mixture to the microorganisms. At Moffett Field, mixing of these three components was accomplished above ground, with the mixture then introduced into the subsurface through an injection well. In the full-scale demonstration, the TCE will, of course, already be in the groundwater. A major objective of the demonstration will be to investigate how a primary substrate and an oxygen source can be efficiently mixed and transported to indigenous microorganisms, in order to promote cometabolic degradation of TCE.« less

  15. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  16. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, U.S.A

    USGS Publications Warehouse

    Toran, Laura; Johnson, Melanie; Nyquist, Jonathan E.; Rosenberry, Donald O.

    2010-01-01

    Electrical-resistivity surveys, seepage meter measurements, and drive-point piezometers have been used to characterize chloride-enriched groundwater in lakebed sediments of Mirror Lake, New Hampshire, U.S.A. A combination of bottom-cable and floating-cable electrical-resistivity surveys identified a conductive zone (<100ohm-m)">(<100ohm-m)(<100ohm-m) overlying resistive bedrock (<1000ohm-m)">(<1000ohm-m)(<1000ohm-m)beneath the lake. Shallow pore-water samples from piezometers in lakebed sediments have chloride concentrations of 200–1800μeq/liter">200–1800μeq/liter200–1800μeq/liter, and lake water has a chloride concentration of 104μeq/liter">104μeq/liter104μeq/liter. The extent of the plume was estimated and mapped using resistivity and water-sample data. The plume (20×35m">20×35m20×35m wide and at least 3m">3m3m thick) extends nearly the full length and width of a small inlet, overlying the top of a basin formed by the bedrock. It would not have been possible to mapthe plume's shape without the resistivity surveys because wells provided only limited coverage. Seepage meters were installed approximately 40m">40m40m from the mouth of a small stream discharging at the head of the inlet in an area where the resistivity data indicated lake sediments are thin. These meters recorded in-seepage of chloride-enriched groundwater at rates similar to those observed closer to shore, which was unexpected because seepage usually declines away from shore. Although the concentration of road salt in the northeast inlet stream is declining, the plume map and seepage data indicate the groundwater contribution of road salt to the lake is not declining. The findings demonstrate the benefit of combining geophysical and hydrologic data to characterize discharge of a plume beneath Mirror Lake. The extent of the plume in groundwater beneath the lake and stream indicate there will likely be a long-term source of chloride to the lake from groundwater.

  17. Environmental complex mixture toxicity assessment.

    PubMed

    Gardner, H S; Brennan, L M; Toussaint, M W; Rosencrance, A B; Boncavage-Hennessey, E M; Wolfe, M J

    1998-12-01

    Trichloroethylene (TCE) was found as a contaminant in the well supplying water to an aquatic testing laboratory. The groundwater was routinely screened by a commercial laboratory for volatile and semivolatile compounds, metals, herbicides, pesticides, and polychlorinated biphenyls using U.S. Environmental Protection Agency methods. Although TCE was the only reportable peak on the gas chromatograph, with average concentrations of 0.200 mg/l, other small peaks were also present, indicating the possibility that the contamination was not limited to TCE alone. A chronic 6-month carcinogenicity assay was conducted on-site in a biomonitoring trailer, using the Japanese medaka fish (Oryzias latipes) in an initiation-promotion protocol, with diethylnitrosamine (DEN) as the initiator and the TCE-contaminated groundwater as a promoter. Study results indicated no evidence of carcinogenic potential of the groundwater without initiation. There was, however, a tumor-promotional effect of the groundwater after DEN initiation. A follow-up laboratory study was conducted using reagent grade TCE added to carbon-filtered groundwater to simulate TCE concentrations comparable to those found in the contaminated groundwater. Study results indicated no promotional effects of TCE. These studies emphasize the necessity for on-site bioassays to assess potential environmental hazards. In this instance, chemical analysis of the groundwater identified TCE as the only reportable contaminant, but other compounds present below reportable limits were noted and may have had a synergistic effect on tumor promotion observed with the groundwater exposure. Laboratory toxicity testing of single compounds can produce toxicity data specific to that compound for that species but cannot take into account the possible toxic effects of mixtures of compounds.

  18. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; wheremore » the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection

  19. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not. © 2016, National Ground Water Association.

  20. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  1. Chemostat Studies of TCE-Dehalogenating Anaerobic Consortia under Excess and Limited Electron Donor Addition

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.; Green, J.; Mayer-Blackwell, K.; Spormann, A. M.

    2015-12-01

    Two cultures - the Victoria Strain (VS) and the Evanite Strain (EV), enriched with the organohalide respiring bacteria Dehalococcoides mccartyi - were grown in chemostats for more than 4 years at a mean cell residence time of 50 days. The slow doubling rate represents growth likely experienced in the subsurface. The chemostats were fed formate as an electron donor and trichloroethene (TCE) as the terminal electron acceptor. Under excess formate conditions, stable operation was observed with respect to TCE transformation, steady-state hydrogen (H2) concentrations (40 nM), and the structure of the dehalogenating community. Both cultures completely transformed TCE to ethene, with minor amounts of vinyl chloride (VC) observed, along with acetate formation. When formate was limited, TCE was transformed incompletely to ethene (40-60%) and VC (60- 40%), and H2 concentrations ranged from 1 to 3 nM. The acetate concentration dropped below detection. Batch kinetic studies of TCE transformation with chemostat harvested cells found transformation rates of c-DCE and VC were greatly reduced when the cells were grown with limited formate. Upon increasing formate addition to the chemostats, from limited to excess, essentially complete transformation of TCE to ethene was achieved. The increase in formate was associated with an increase in H2 concentration and the production of acetate. Results of batch kinetic tests showed increases in transformation rates for TCE and c-DCE by factors of 3.5 and 2.5, respectively, while VC rates increased by factors of 33 to 500, over a six month period. Molecular analysis of chemostat samples is being performed to quantify the changes in copy numbers of reductase genes and to determine whether shifts in the strains of Dehalococcoides mccartyi where responsible for the observed rate increases. The results demonstrate the importance of electron donor supply for successful in-situ remediation.

  2. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    PubMed

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  3. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  4. Hydrochemistry indicating groundwater contamination and the potential fate of chlorohydrocarbons in combined polluted groundwater: a case study at a contamination site in North China.

    PubMed

    Huang, Shuang-Bing; Han, Zhan-Tao; Zhao, Long; Kong, Xiang-Ke

    2015-05-01

    Groundwater contamination characteristics and the potential fate of chlorohydrocarbons were investigated at a combined polluted groundwater site in North China. Groundwater chemistry and (2)D and (18)O isotope compositions indicated that high salination of groundwater was related with chemical pollution. The elevated salinity plume was consistent with the domain where typical chlorohydrocarbon contaminants occurred. The concentrations of heavy metals, oxidation-reduction potential, and pH in organic polluted areas significantly differed from those in peripheral (background) areas, indicating modified hydrochemistry possibly resulting from organic pollution. Under the presented redox conditions of groundwater, monochlorobenzene oxidation may have occurred when the trichlorohydrocarbons underwent reductive dechlorination. These findings suggested that inorganic hydrochemistry effectively indicated the occurrence of chemical contamination in groundwater and the potential fate of chlorohydrocarbons.

  5. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    PubMed

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  6. Monitoring the decontamination of a site polluted by DNAPLs

    NASA Astrophysics Data System (ADS)

    Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

    2012-04-01

    The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. δ13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in δ13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). δ13Ccis-DCE experienced an

  7. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    PubMed

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.

    PubMed

    Gandhi, Sumeet; Oh, Byung-Taek; Schnoor, Jerald L; Alvarez, Pedro J J

    2002-04-01

    Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy.

  9. RATE OF TCE DEGRADATION IN PASSIVE REACTIVE BARRIERS CONSTRUCTED WITH PLANT MULCH (BIOWALLS)

    EPA Science Inventory

    This presentation reviews a case study at Altus AFB on the extent of treatment of TCE in a passive reactive barrier constructed with plant mulch. It presents data from a tracer test to estimate the rate of ground water flow at the site, and the residence time of water and TCE in...

  10. A study on radiation technological degradation of organic chloride wastewater--exemplified by TCE and PCE.

    PubMed

    Huang, Sheng-Kai; Hsieh, Ling-Ling; Chen, Chia-Chieh; Lee, Po-Hsiu; Hsieh, Bor-Tsung

    2009-01-01

    This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the gamma-ray to irradiate the TCE and PCE solution, the dose-rate is 10Gy/minute, the irradiation dosage is 0-2.5kGy and (2) self-making the UV irradiation system, the tube specification is 254nm and 6W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for gamma-ray is better than UV in the range of 0.1-250ppm; for example, as for the concentration of 0.1ppm, when TCE is degraded to D(90) and T(90), the gamma-ray only needed 46.7Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R(2)=0.999; and PCE: y=81.33+12.81x, R(2)=0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using gamma-ray will be reached US-EPA and Taiwan Effluent Standard (5ppb).

  11. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trendsmore » for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.« less

  12. Comparison of PCE and TCE disappearance in heated volatile organic analysis vials and flame-sealed ampules.

    PubMed

    Costanza, Jed; Pennell, Kurt D

    2008-02-01

    The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 degrees C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 degrees C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 degrees C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 degrees C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.

  13. The Drosophila Translational Control Element (TCE) Is Required for High-Level Transcription of Many Genes That Are Specifically Expressed in Testes

    PubMed Central

    Anderson, Ashley K.; Ohler, Uwe; Wassarman, David A.

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5′ untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300–400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding

  14. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    PubMed

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  15. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    PubMed

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  16. TCE Removal From Contaminated Soil and Ground Water

    EPA Pesticide Factsheets

    Trichloroethylene (TCE) is a halogenated aliphatic organic compound which, due to its unique properties and solvent effects, has been widely used as an ingredient in industrial cleaning solutions and as a “universal” degreasing agent.

  17. 78 FR 17777 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: This document provides notice of the availability of Application Packages for the 2014 Tax Counseling... for submitting an application package to the IRS for the Tax Counseling for the Elderly (TCE) Program...

  18. Mass discharge in a tracer plume: Evaluation of the Theissen Polygon Method

    PubMed Central

    Mackay, Douglas M.; Einarson, Murray D.; Kaiser, Phil M.; Nozawa-Inoue, Mamie; Goyal, Sham; Chakraborty, Irina; Rasa, Ehsan; Scow, Kate M.

    2013-01-01

    A tracer plume was created within a thin aquifer by injection for 299 days of two adjacent “sub-plumes” to represent one type of plume heterogeneity encountered in practice. The plume was monitored by snapshot sampling of transects of fully screened wells. The mass injection rate and total mass injected were known. Using all wells in each transect (0.77 m well spacing, 1.4 points/m2 sampling density), the Theissen Polygon Method (TPM) yielded apparently accurate mass discharge (Md) estimates at 3 transects for 12 snapshots. When applied to hypothetical sparser transects using subsets of the wells with average spacing and sampling density from 1.55 to 5.39 m and 0.70 to 0.20 points/m2, respectively, the TPM accuracy depended on well spacing and location of the wells in the hypothesized transect with respect to the sub-plumes. Potential error was relatively low when the well spacing was less than the widths of the sub-plumes (> 0.35 points/m2). Potential error increased for well spacing similar to or greater than the sub-plume widths, or when less than 1% of the plume area was sampled. For low density sampling of laterally heterogeneous plumes, small changes in groundwater flow direction can lead to wide fluctuations in Md estimates by the TPM. However, sampling conducted when flow is known or likely to be in a preferred direction can potentially allow more useful comparisons of Md over multiyear time frames, such as required for performance evaluation of natural attenuation or engineered remediation systems. PMID:22324777

  19. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    PubMed

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.

    PubMed

    Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong

    2013-11-19

    The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.

  1. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  2. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1.

    PubMed

    Legault, Emily K; James, C Andrew; Stewart, Keith; Muiznieks, Indulis; Doty, Sharon L; Strand, Stuart E

    2017-06-06

    A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.

  3. Transport of nitrogen in a treated-wastewater plume to coastal discharge areas, Ashumet Valley, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Walter, Donald A.; LeBlanc, Denis R.

    2013-01-01

    Land disposal of treated wastewater from a treatment plant on the Massachusetts Military Reservation in operation from 1936 to 1995 has created a plume of contaminated groundwater that is migrating toward coastal discharge areas in the town of Falmouth, Massachusetts. To develop a better understanding of the potential impact of the treated-wastewater plume on coastal discharge areas, the U.S. Geological Survey, in cooperation with the Air Force Center for Engineering and the Environment, evaluated the fate of nitrogen (N) in the plume. Groundwater samples from two large sampling events in 1994 and 2007 were used to map the size and location of the plume, calculate the masses of nitrate-N and ammonium-N, evaluate changes in mass since cessation of disposal in 1995, and create a gridded dataset suitable for use in nitrogen-transport simulations. In 2007, the treated-wastewater plume was about 1,200 meters (m) wide, 30 m thick, and 7,700 m long and contained approximately 87,000 kilograms (kg) nitrate-N and 31,600 kg total ammonium-N. An analysis of previous studies and data from 1994 and 2007 sampling events suggests that most of biologically reactive nitrogen in the plume in 2007 will be transported to coastal discharge areas as either nitrate or ammonium with relatively little transformation to an environmentally nonreactive end product such as nitrogen gas. Nitrogen-transport simulations were conducted with a previously calibrated regional three-dimensional MODFLOW groundwater flow model. Mass-loaded particle tracking was used to simulate the advective transport of nitrogen to discharge areas (or receptors) along the coast. In the simulations, nonreactive transport (no mass loss in the aquifer) was assumed, providing an upper-end estimate of nitrogen loads to receptors. Simulations indicate that approximately 95 percent of the nitrate-N and 99 percent of the ammonium-N in the wastewater plume will eventually discharge to the Coonamessett River, Backus River, Green

  4. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    PubMed

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  5. 2011 Mound Site Groundwater Plume Rebound Exercise and Follow-Up - 13440

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooten, Gwendolyn; Cato, Rebecca; Lupton, Greg

    2013-07-01

    The Mound Site facility near Miamisburg, Ohio, opened in 1948 to support early atomic weapons programs. It grew into a research, development, and production facility performing work in support of the U.S. Department of Energy (DOE) weapons and energy programs. The plant was in operation until 1995. During the course of operation, an onsite landfill was created. The landfill was located over a finger of a buried valley aquifer, which is a sole drinking water source for much of the Miami Valley. In the 1980's, volatile organic compounds (VOCs) were discovered in groundwater at the Mound site. The site wasmore » placed on the National Priorities List on November 21, 1989. DOE signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Federal Facility Agreement with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency. The agreement became effective in October 1990. The area that included the landfill was designated Operational Unit 1 (OU-1). In 1995, a Record of Decision was signed that called for the installation and operation of a pump and treatment (P and T) system in order to prevent the VOCs in OU-1 groundwater from being captured by the onsite water production wells. In addition to the P and T system, a soil vapor extraction (SVE) system was installed in 1997 to accelerate removal of VOCs from groundwater in the OU-1 area. The SVE system was successful in removing large amounts of VOCs and continued to operate until 2007, when the amount of VOCs removed became minimal. A rebound study was started in February 2003 to determine how the groundwater system and contaminants would respond to shutting down the P and T system. The rebound test was stopped in February 2004 because predetermined VOC threshold concentrations were exceeded down-gradient of the landfill. The P and T and SVE systems were restarted after the termination of the rebound test. In 2006, the remediation of the Mound site was

  6. Multi-pollutant interactions in hyporheic zones

    NASA Astrophysics Data System (ADS)

    Krause, S.; Weatherill, J.; Bonet, B.; Blaen, P.; Khamis, K.; Cassidy, N. J.; Hannah, D. M.; Rivett, M. O.; Lynch, I.; Ullah, S.

    2017-12-01

    Hyporheic zones represent hotspots of biogeochemical reactivity, with the potential to attenuate pollutants and ameliorate their impact on ecosystem functioning. Sources and types of pollutants in streambed environments are manifold, with legacy industry contaminants, agricultural pollution and emerging pollutants such as pharmaceuticals or engineered nanoparticles entering hyporheic zones along different flow paths where they mix and potentially react with each other. Current conceptualizations of drivers and controls of biogeochemical turnover in hyporheic zones highlight primarily the role of transport and reaction times but do not account for potential interactions between different pollutants. This study presents two case studies of multi-pollutant interactions to illustrate the need to consider interferences between different pollutants, their transport and reaction pathways for adequate impact assessment. We discuss in the first instance how the natural attenuation of a Trichloroethylene (TCE) groundwater plume in an agricultural catchment is limited by high riparian and hyporheic nitrate concentrations. As nitrate outcompeted TCE in its reaction with organic carbon as electron donor, TCE attenuation was in this case limited to hyporheic denitrification hotspots. Hence any pollution control measures to reduce the impact of this TCE plume require a reduction of agricultural nitrate loads, highlighting the connectedness of legacy (TCE) and more recent (nitrate) pollution problems. In the second case, we investigate how the labile organic carbon content of streambed sediments as main control of hyporheic respiration is overridden by exposure to different silver nanoparticle concentrations, representing emerging pollutants in many of our rivers. Also in this case, the impacts of different stressors (nanoparticle exposure) and drivers (availability of organic matter, water temperature) are interacting in their impacts on hyporheic zone functioning. We argue that

  7. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  8. Velocity control as a tool for optimal plume containment in the Equus Beds aquifer, Kansas

    USGS Publications Warehouse

    Heidari, M.; Sadeghipour, J.; Drici, O.

    1987-01-01

    A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive.

  9. System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)

    NASA Technical Reports Server (NTRS)

    Newman, Lee A. (Inventor); Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Keith, Amy G. (Inventor)

    2013-01-01

    A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

  10. Spatially resolved U(VI) partitioning and speciation: implications for plume scale behavior of contaminant U in the Hanford vadose zone.

    PubMed

    Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K; Wang, Zheming; Dixit, Suvasis; Steefel, Carl I; Saiz, Eduardo; Kunz, Martin; Tamura, Nobumichi

    2009-04-01

    A saline-alkaline brine containing high concentration of U(VI) was accidentally spilled at the Hanford Site in 1951, introducing 10 tons of U into sediments under storage tank BX-102. U concentrations in the deep vadose zone and groundwater plumes increase with time, yet how the U has been migrating is not fully understood. We simulated the spill event in laboratory soil columns, followed by aging, and obtained spatially resolved U partitioning and speciation along simulated plumes. We found after aging, at apparent steady state, that the pore aqueous phase U concentrations remained surprisingly high (up to 0.022 M), in close agreement with the recently reported high U concentrations (up to 0.027 M) in the vadose zone plume (1). The pH values of aged pore liquids varying from 10 to 7, consistent with the measured pH of the field borehole sediments varying from 9.5 to 7.4 (2), from near the plume source to the plume front. The direct measurements of aged pore liquids together with thermodynamic calculations using a Pitzer approach revealed that UO2(CO3)3(4-) is the dominant aqueous U species within the plume body (pH 8-10), whereas Ca2UO2(CO3)3 and CaUO2(CO3)32- are also significant in the plume frontvicinity (pH 7-8), consistent with that measured from field borehole pore-waters (3). U solid phase speciation varies at different locations along the plume flow path and even within single sediment grains, because of location dependent pore and micropore solution chemistry. Our results suggest that continuous gravity-driven migration of the highly stable U02(CO3)34 in the residual carbonate and sodium rich tank waste solution is likely responsible for the detected growing U concentrations in the vadose zone and groundwater.

  11. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  12. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    PubMed

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  13. Screening for Groundwater Contaminants Discharging to Urban Streams

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.; Voralek, J.

    2009-05-01

    Groundwater contaminated with urban pollutants can adversely affect freshwater aquatic ecosystems where it discharges to streams, lakes or wetlands. Generally such occurrences have been revealed following the discovery of contaminated groundwater plumes at a particular site or from wells in the area. Thus, this contaminant pathway tends to be dealt with on a site-specific and aquifer-focused basis. In contrast, surface water contaminant monitoring typically relies on bulk water concentrations from one or a small set of locations, thus ignoring the spatial variation in contaminant loading, potential losses to sediment or the atmosphere, and the full range of benthic components of the aquatic ecosystem. There are few studies outlining the extent of this contamination from the perspective of the surface water body's deeper benthic community, which might be expected to experience the greatest contaminant concentrations, on more than a local-scale. In this study, we report on an approach to stream-reach-screening for urban contaminants in discharging groundwater, with the focus on detection rather than accurate quantification. The methodology consists of a drive-point technique for sampling groundwater from below the stream bed (e.g. typically 50 cm) along a chosen reach at intervals of about 10 m. Groundwater samples were then analyzed for a wide range of common urban contaminants and general chemistry. This screening method was performed in three urban settings in Canada with known groundwater contamination, covering sections of about 140 to >500 m. The known contaminant plumes at each site were detected and roughly delineated. In addition, potential areas of previously-unknown groundwater contamination were also identified at each site. Contaminants included BTEX and other petroleum hydrocarbons, various chlorinated solvent compounds, nitrate, 1,4-dioxane, MTBE and elevated chloride (likely indicating road salt). These preliminary findings suggest that this approach

  14. Enhanced monitoring of hazardous waste site remediation: Electrical conductivity tomography and citizen monitoring of remediation through the EPA's community advisory group program

    NASA Astrophysics Data System (ADS)

    Hort, Ryan D.

    In situ chemical oxidation using permanganate has become a common method for degrading trichloroethene (TCE) in contaminated aquifers. Its effectiveness, however, is dependent upon contact between the oxidant and contaminant. Monitoring permanganate movement after injection is often hampered by aquifer heterogeneity and insufficient well coverage. Time lapse electrical conductivity tomography increases the spatial extent of monitoring beyond well locations. This technique can create two- or three-dimensional images of the electrical conductivity within the aquifer to monitor aquifer chemistry changes caused by permanganate injection and oxidation reactions. In-phase and quadrature electrical conductivity were measured in homogeneous aqueous and porous media samples to determine the effects of TCE and humate oxidation by permanganate on both measures of conductivity. Further effects of clean sand, 10% kaolinite (v/v), and 10% smectite (v/v) on both types of conductivity were studied as well. Finally, in-phase electrical conductivity was measured over time after injecting permanganate solution into two-dimensional tanks containing artificial groundwater with and without TCE to observe the movement of the permanganate plume and its interaction with TCE and to examine the effectiveness of time-lapse conductivity tomography for monitoring the plume's movement. In-phase electrical conductivity after oxidation reactions involving permanganate, TCE, and humate could be accurately modeled in homogeneous batch samples. Use of forward modeling of in-phase conductivity from permanganate concentrations may be useful for improving recovery of conductivity values during survey inversion, but further work is needed combining the chemistry modeling with solute transport models. Small pH-related quadrature conductivity decreases were observed after TCE oxidation, and large quadrature conductivity increases were observed as a result of sodium ion addition; however, quadrature

  15. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter For Sustainable Remediation

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Wainwright, H. M.; Faybishenko, B.; Denham, M. E.; Eddy-Dilek, C. A.

    2017-12-01

    Sustainable remediation - based on less intensive passive remediation and natural attenuation - has become a desirable remediation alternative at contaminated sites. Although it has a number of benefits, such as reduced waste and water/energy usage, it carries a significant burden of proof to verify plume stability and to ensure insignificant increase of risk to public health. Modeling of contaminant transport is still challenging despite recent advances in numerical methods. Long-term monitoring has, therefore, become a critical component in sustainable remediation. However, the current approach, which relies on sparse groundwater sampling, is problematic, since it could miss sudden significant changes in plume behavior. A new method is needed to combine existing knowledge about contaminant behavior and latest advances in in situ groundwater sensors. This study presents an example of the effective use of the Kalman filter approach to estimate contaminant concentrations, based on in situ measured water quality parameters (e.g. electrical conductivity and pH) along with the results of sparse groundwater sampling. The Kalman filter can effectively couple physical models and data correlations between the contaminant concentrations and in situ measured variables. We aim (1) to develop a framework capable of integrating different data types to provide accurate contaminant concentration estimates, (2) to demonstrate that these results remain reliable, even when the groundwater sampling frequency is reduced, and (3) to evaluate the future efficacy of this strategy using reactive transport simulations. This framework can also serve as an early warning system for detecting unexpected plume migration. We demonstrate our approach using historical and current groundwater data from the Savannah River Site (SRS) F-Area Seepage Basins to estimate uranium and tritium concentrations. The results show that the developed method can provide reliable estimates of contaminant

  16. Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling

    NASA Astrophysics Data System (ADS)

    Reichard, James S.; Brown, Chandra M.

    2009-05-01

    Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.

  17. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    NASA Astrophysics Data System (ADS)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  18. 75 FR 25319 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program...: Correction to a notice. SUMMARY: This document contains a correction to a notice of the Tax Counseling for... application packages for the 2011 Tax Counseling for the Elderly (TCE) Program. FOR FURTHER INFORMATION...

  19. Application of ozone micro-nano-bubbles to groundwater remediation.

    PubMed

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Superfund record of decision (EPA Region 9): Mather Air Force Base, Soil and Groundwater operable units, Sacramento, CA, June 21, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The decision document presents the selected remedial actions for the Soil Operable Unit (OU) Sites and Groundwater OU Plumes, at the formerly active Mather Air Force Base (AFB), Sacramento County, California. The purpose of the Record of Decision (ROD) is to decide the appropriate level of remediation necessary to protect human health and the environment, and determine what requirements are applicable or relevant and appropriate requirements (ARARs) based on the groundwater beneficial use designation and site-specific conditions. The ROD has been divided into seven sections which specifically address the range of selected remedial actions for the Soil OU sites andmore » Groundwater OU plumes.« less

  1. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    PubMed

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.

  2. Public health assessment for George Air Force Base, Victorville, San Bernardino County, California, Region 9: CERCLIS Number CA2570024453. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    George Air Force Base (AFB) is located in Victorville, California, in the Mojave Desert approximately 90 miles northeast of Los Angeles. Areas of concern at George AFB are divided into three operable units (OUs): Groundwater in the northeast portion of the base and adjacent off-site land is contaminated with volatile organic compounds, primarily TCE. A groundwater extraction and treatment system, designed to prevent migration of the contaminant plume towards the Mojave River, was completed in 1997. OU 1 also includes two other sites: SD-25, an industrial/storm drain, and WP-26, the former sewage treatment plant percolation ponds. Contaminated sediments and pipingmore » were removed from the storm drain at SD-25. A variety of leaks in this system resulted in an estimated of perhaps as much as a 750,000 to 800,000-gallon plume of jet propellant no. 4 (JP-4) encompassing an area of over 31 acres, as well as a dissolved-phase plume of benzene, toluene, ethylbenzene, and xylenes extending over an area of 121 acres. Because of OU2 plumes is almost completely covered by asphalt, and studies conducted thus far have not demonstrated significant migration of the plume, George AFB, state and federal regulators continue to evaluate the feasibility of natural attenuation as a possible cleanup strategy. This OU consists of the remaining Installation Restoration Program sites, includes old landfills, other dump and burial sites, munitions sites, fire training areas, and spill areas. In February 1997, George AFB completed a remedial investigation/feasibility study for OU 3.« less

  3. Groundwater transport of strontium 90 in a glacial outwash environment

    USGS Publications Warehouse

    Kipp, Kenneth L.; Stollenwerk, Kenneth G.; Grove, David B.

    1986-01-01

    As part of the investigation of groundwater contamination at a uranium-scrap recovery plant at Wood River Junction, Rhode Island, laboratory experiments led to the development of a model for predicting the transport of strontium 90 in glacial outwash sediments based on an approximate mechanism for ion exchange. The multicomponent system was simplified to two components by regarding all exchangeable cations other than strontium 90 as a single component. The binary ion-exchange parameter was a function of the variable, total ion concentration. A one-dimensional solute transport model was formulated to evaluate the time necessary for natural groundwater flow to remove the strontium 90 contamination plume from the groundwater system to the Pawcatuck River. The finite difference transport equations were solved sequentially for total ion concentrations, then strontium 90 concentrations. Clay-free quartz and feldspar sands at the study site have little potential for strontium 90 sorption, and high calcium, magnesium, and sodium concentrations compete for the few ion exchange sites. As the total ion concentration plume moves out of the system, ion exchange of strontium 90 increases, reducing the strontium 90 concentration in the groundwater. Cleanout times predicted using the binary ion exchange mechanism were about two thirds of those predicted using a constant distribution coefficient. It is suggested that this type of model can simulate solute transport more realistically in many groundwater systems where the total ion concentration is not constant.

  4. Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.

    PubMed

    Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M

    2015-03-01

    This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.

  5. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary

    NASA Astrophysics Data System (ADS)

    Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.

    2005-02-01

    This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.

  6. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture

    PubMed Central

    Wen, Li-Lian; Chen, Jia-Xian; Fang, Jia-Yi; Li, Ang; Zhao, He-Ping

    2017-01-01

    Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis-dichloroethene (DCE); however, the reduction of cis-DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2–8.1% Dehalococcoides. Geobacter and Desulfovibrio, the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium_sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1–12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites. PMID:28824572

  7. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture.

    PubMed

    Wen, Li-Lian; Chen, Jia-Xian; Fang, Jia-Yi; Li, Ang; Zhao, He-Ping

    2017-01-01

    Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis -dichloroethene (DCE); however, the reduction of cis -DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2-8.1% Dehalococcoides . Geobacter and Desulfovibrio , the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium _sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1-12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites.

  8. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease.

    PubMed

    Keil, Deborah E; Peden-Adams, Margie M; Wallace, Stacy; Ruiz, Phillip; Gilkeson, Gary S

    2009-04-01

    There is increasing laboratory and epidemiologic evidence relating exposure to trichloroethylene (TCE) with autoimmune disease including scleroderma and lupus. New Zealand Black/New Zealand White (NZBWF1) and B6C3F1 mice were exposed to TCE (0, 1, 400 or 14,000 ppb) via drinking water for 27 or 30 weeks, respectively. NZBWF1 mice spontaneously develop autoimmune disease while B6C3F1 mice, a standard strain used in immunotoxicology testing, are not genetically prone to develop autoimmune disease. During the TCE exposure period, serum levels of total IgG, and autoantibodies (anti-ssDNA, -dsDNA, and -glomerular antigen [GA]) were monitored. At the termination of the study, renal pathology, natural killer (NK) cell activity, total IgG levels, autoantibody production, T-cell activation, and lymphocytic proliferative responses were evaluated. TCE did not alter NK cell activity, or T- and B-cell proliferation in either strain. Numbers of activated T-cells (CD4+/CD44+) were increased in the B6C3F1 mice but not in the NZBWF1 mice. Renal pathology, as indicated by renal score, was significantly increased in the B6C3F1, but not in the NZBWF1 mice. Serum levels of autoantibodies to dsDNA and ssDNA were increased at more time points in B6C3F1, as compared to the NZBWF1 mice. Anti-GA autoantibodies were increased by TCE treatment in early stages of the study in NZBWF1 mice, but by 23 weeks of age, control levels were comparable to those of TCE-exposed animals. Serum levels anti-GA autoantibodies in B6C3F1 were not affected by TCE exposure. Overall, these data suggest that TCE did not contribute to the progression of autoimmune disease in autoimmune-prone mice during the period of 11-36 weeks of age, but rather lead to increased expression of markers associated with autoimmune disease in a non-genetically prone mouse strain.

  9. Aerobic biodegradation of trichloroethene without auxiliary substrates.

    PubMed

    Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

    2014-08-01

    Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux inmore » the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.« less

  11. Enhancement of TCE removal by a static magnetic field in a fungal biotrickling filter.

    PubMed

    Quan, Yue; Wu, Hao; Guo, Chunyu; Han, Yu; Yin, Chengri

    2018-07-01

    A fungal biotrickling filter (BTF) was employed to treat trichloroethylene (TCE) gas under different magnetic field intensities (MFIs). When the TCE inlet concentrations were approximately 370, 500-900, and 1000 mg/m 3 , the removal performances followed the order: MFI 20.0 mT > MFI 60.0 mT > MFI 80.0 mT > MFI 0 mT. In particular, at a TCE inlet concentration of 1000 mg/m 3 , MFI 20.0 mT was significantly better than MFI 0 mT performance. The corresponding removal efficiencies and maximum elimination capacities were 52.9%, 4854.1 mg/m 3  h and 39.4%, 3594.8 mg/m 3  h, respectively. BTF was shut down completely for 7 days and rapidly recovered in 6-10 days. High-throughput sequencing indicated that MF significantly affected the fungal community and significantly improved the relative abundance of the phylum Ascomycota, achieving the highest abundance of Ascomycota at MFI 20.0. These results indicated that a lower MFI can efficiently improve TCE removal performance in a fungal BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Feasibility study of Tethered Capsule Endomicroscopy (TCE) deployment in the small intestine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Otuya, David O.; Verma, Yogesh; Dong, Jing; Gora, Michalina J.; Tearney, Guillermo J.

    2017-02-01

    Environmental enteric dysfunction (EED) is a poorly understood disease of the small intestine that causes nutrient malabsorption in children, predominantly from low and middle income countries. The clinical importance of EED is neurological and growth stunting that remains as the child grows into adulthood. Tethered capsule endomicroscopy (TCE) has the potential to improve the understanding of EED and could be used to determine the effectiveness of EED interventions. TCE in the adult esophagus and the duodenum has been demonstrated for Barrett`s esophagus and celiac disease diagnosis, respectively. While adult subjects can independently swallow these capsules, it is likely that infants will not, and, as a result, new strategies for introducing these devices in young children aged 0.5-2 years need to be investigated. Our first approach will be to introduce the TCE devices in infants under the aid of endoscopic guidance. To determine the most effective method, we have tested endoscopic approaches for introducing TCE devices into the small intestine of living swine. These methods will be compared and contrasted to discuss the most effective means for endoscopic tethered capsule introduction into the small intestine.

  13. TCE TRANSPORT AND DEGRADATION IN SOIL USING ELECTROOSMOSIS

    EPA Science Inventory

    Laboratory experiments were used to characterize the transport and chemical transformation of TCE in undisturbed soil cores. Electroosmotic fluid flow was vertically downwards from anode to cathode. A voltage of 1.4 V/cm was applied to the soil for 4 weeks. More than 95% of the T...

  14. A Planet Hunters Search of the Kepler TCE Inventory

    NASA Astrophysics Data System (ADS)

    Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji

    2013-07-01

    NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.

  15. IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  16. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  17. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  18. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.

    PubMed

    Kim, Jeongkon; Corapcioglu, M Yavuz

    2003-08-01

    A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.

  20. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters.

    PubMed

    Houde, Magali; Douville, Mélanie; Gagnon, Pierre; Sproull, Jim; Cloutier, François

    2015-06-01

    Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  2. Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies.

    PubMed

    Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio

    2012-04-01

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Geoelectrical mapping and groundwater contamination

    NASA Astrophysics Data System (ADS)

    Blum, Rainer

    Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.

  4. Long-term changes in ground water chemistry at a phytoremediation demonstration site

    USGS Publications Warehouse

    Eberts, S.M.; Jones, S.A.; Braun, C.L.; Harvey, G.J.

    2005-01-01

    A field-scale demonstration project was conducted to evaluate the capability of eastern cottonwood trees (Populus deltoides) to attenuate trichloroethene (TCE) contamination of ground water. By the middle of the sixth growing season, trees planted where depth to water was < 3 m delivered enough dissolved organic carbon to the underlying aquifer to lower dissolved oxygen concentrations, to create iron-reducing conditions along the plume centerline and sulfate-reducing or methanogenic conditions in localized areas, and to initiate in situ reductive dechlorination of TCE. Apparent biodegradation rate constants for TCE along the centerline of the plume beneath the phytoremediation system increased from 0.0002/d to 0.02/d during the first six growing seasons. The corresponding increase in natural attenuation capacity of the aquifer along the plume centerline, from 0.0004/m to 0.024/m, is associated with a potential decrease in plume-stabilization distance from 9680 to 160 m. Demonstration results provide insight into the amount of vegetation and time that may be needed to achieve cleanup objectives at the field scale.

  5. Use Of Statistical Tools To Evaluate The Reductive Dechlorination Of High Levels Of TCE In Microcosm Studies

    EPA Science Inventory

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...

  6. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-06-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  7. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  8. The Microbial Degradation of TCE (Trichloroethylene).

    DTIC Science & Technology

    1987-04-01

    enrichment studies . All the sample flasks , including the controls, contained 14C in the 14C02 trap. The 14C measured in the control flask 14C02...layer compared to the controls. These data again suggested that TCE was being biologically modified. Those flasks flushed with air gave the first hard...only slightly soluble in water. All culture flasks were incubated at 250C for a minimum of a week. Results in the carbon and nitrogen source studies are

  9. IRIS Toxicological Review of Trichloroethylene (TCE) ...

    EPA Pesticide Factsheets

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database. The purpose of this Toxicological Review is to provide scientific support and rationale for the hazard and dose-response assessment in IRIS pertaining to chronic exposure to trichloroethylene. It is not intended to be a comprehensive treatise on the chemical or toxicological nature of trichloroethylene.

  10. Numerical analysis of buoyancy effects during the dissolution and transport of oxygenated gasoline in groundwater

    NASA Astrophysics Data System (ADS)

    Molson, J.; Mocanu, M.; Barker, J.

    2008-07-01

    Dissolution of oxygenated gasoline, as well as buoyancy-driven groundwater flow and transport of the multicomponent dissolved phase plumes, is simulated numerically in three dimensions. The simulations are based on a field experiment described by Mocanu (2007) in which three oxygenated gasoline sources were emplaced as nonaqueous phase liquids (NAPLs) below the water table of the shallow sand aquifer at Canadian Forces Base Borden, Ontario. The sources were composed of an ethanol-free gasoline mixture spiked with 9.8% methyl tert-butyl ether and 0.2% tert-butyl alcohol (GMT-E0), a gasoline with 10% ethanol (E10), and a source with 95% ethanol (E95). The numerical model includes dissolution of gasoline as a NAPL, density-dependent groundwater flow, advective-dispersive transport of the dissolved components, and ethanol cosolvency and degradation. Buoyancy effects in the dissolved plumes were compared under a homogeneous hydraulic conductivity field as well as with five realizations of spatially correlated random fields representing the Borden aquifer. The simulations showed that buoyancy was most significant in the E95 source plumes within the homogeneous system, having induced after 150 days a net upward displacement of the local peak concentrations for all but the least soluble component of approximately 1.5 m. The peak rise in ethanol from the GMT-E0 and E10 plumes was about 0.6 m. The results highlight the importance of shallow monitoring wells when monitoring high oxygenate fraction gasoline spills in groundwater and have implications for assessing mass fluxes and biodegradation rates.

  11. A global historical data set of tropical cyclone exposure (TCE-DAT)

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  12. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

    2011-11-01

    This work describes the use of different complementing methods (mass balance, polymerase chain reaction assays and compound-specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent-contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at various times in the past, it is not enough to analyze chlorinated solvent concentrations along a flow path to convincingly demonstrate biodegradation. Moreover, only a few data were initially available to characterize the geochemical conditions at this site, which were apparently complex at the source zone due to (i) the presence of a steady oxygen supply to the groundwater by irrigation canal losses and river infiltration and (ii) an alkaline pH higher than 10 due to former underground lime disposal. A demonstration of the existence of biodegradation processes was however required by the regulatory authority within a timeframe that did not allow a full geochemical characterization of such a complex site. Thus a combination of different fast methods was used to obtain a proof of the biodegradation occurrence. First, a mass balance analysis was performed which revealed the existence of a strong natural attenuation process (biodegradation, volatilization or dilution), despite the huge uncertainty on these calculations. Second, a good agreement was found between carbon isotopic measurements and PCR assays (based on 16S RNA gene sequences and functional genes), which clearly indicated reductive dechlorination of different hydrocarbons (Tetrachloroethene—PCE-, Trichloroethene—TCE-, 1,2- cisDichloroethene— cis-1,2-DCE-, 1,2- transDichloroethene— trans-1,2-DCE-, 1,1-Dichloroethene—1,1-DCE-, and Vinyl Chloride—VC) to ethene. According to these carbon isotope measurements

  13. [Preparation of Coated CMC-Fe0 Using Rheological Phase Reaction Method and Research on Degradation of TCE in Water].

    PubMed

    Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng

    2015-06-01

    The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.

  14. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment

    NASA Astrophysics Data System (ADS)

    Herzyk, Agnieszka; Fillinger, Lucas; Larentis, Michael; Qiu, Shiran; Maloszewski, Piotr; Hünniger, Marko; Schmidt, Susanne I.; Stumpp, Christine; Marozava, Sviatlana; Knappett, Peter S. K.; Elsner, Martin; Meckenstock, Rainer; Lueders, Tillmann; Griebler, Christian

    2017-12-01

    Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132 days of toluene exposure followed by nearly 600 days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35 days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters.

  15. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium †

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  16. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  17. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  18. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  19. Bioremediation of Uranium-Contaminated Groundwater using Engineered Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Greene, J. A.; Neupauer, R.; Ye, M.; Kasprzyk, J. R.; Mays, D. C.; Curtis, G. P.

    2017-12-01

    During in-situ remediation of contaminated groundwater, a treatment chemical is injected into the contaminated groundwater to react with and degrade the contaminant, with reactions occurring where the treatment chemical contacts the contaminant. Traditional in-situ groundwater remediation relies on background groundwater flow for spreading of treatment chemicals into contaminant plumes. Engineered Injection and Extraction (EIE), in which time-varying induced flow fields are used to actively spread the treatment chemical into the contaminant plume, has been developed to increase contact between the contaminant and treatment chemical, thereby enhancing contaminant degradation. EIE has been investigated for contaminants that degrade through irreversible bimolecular reaction with a treatment chemical, but has not been investigated for a contaminant governed by reversible reactions. Uranium primarily occurs in its aqueous, mobile form, U(VI), in the environment but can be bioreduced to its sparingly soluble, immobile form, U(IV), by iron reducing bacteria stimulated by an acetate amendment. In this study, we investigate the ability of EIE to facilitate and sustain favorable conditions to immobilize uranium during remediation, and to prevent re-mobilization of uranium into the aqueous phase after active remediation has ended. Simulations in this investigation are conducted using a semi-synthetic model based on physical and chemical conditions at the Naturita Uranium Mill Tailings Remedial Action (UMTRA) site in southwestern Colorado and the Old Rifle UMTRA site in western Colorado. The EIE design is optimized for the synthetic model using the Borg multi-objective evolutionary algorithm.

  20. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.

    PubMed

    Mateas, Douglas J; Tick, Geoffrey R; Carroll, Kenneth C

    2017-09-01

    Widely used flushing and in-situ destruction based remediation techniques (i.e. pump-and treat, enhanced-solubilization, and chemical oxidation/reduction) for sites contaminated by nonaqueous phase liquid (NAPL) contaminant sources have been shown to be ineffective at complete mass removal and reducing aqueous-phase contaminant of concern (COC) concentrations to levels suitable for site closure. A remediation method was developed to reduce the aqueous solubility and mass-flux of COCs within NAPL through the in-situ creation of a NAPL mixture source-zone. In contrast to remediation techniques that rely on the rapid removal of contaminant mass, this technique relies on the stabilization of difficult-to-access NAPL sources to reduce COC mass flux to groundwater. A specific amount (volume) of relatively insoluble n-hexadecane (HEXDEC) or vegetable oil (VO) was injected into a trichloroethene (TCE) contaminant source-zone through a bench-scale flow cell port (i.e. well) to form a NAPL mixture of targeted mole fraction (TCE:HEXDEC or TCE:VO). NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE to design optimal NAPL (HEXDEC or VO) injection volumes for the flow-cell experiments. The NAPL-stabilization flow-cell experiments initiated and sustained significant reductions in COC concentration and mass flux due to a combination of both reduced relative permeability (increased NAPL-saturation) and via modification of NAPL composition (decreased TCE mole fraction). Variations in remediation performance (i.e. impacts on TCE concentration and mass flux reduction) between the different HEXDEC injection volumes were relatively minor, and therefore inconsistent with Raoult's Law predictions. This phenomenon likely resulted from non-uniform mixing of the injected HEXDEC with TCE in the source-zone. VO injection caused TCE concentrations and mass

  1. In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site

    NASA Astrophysics Data System (ADS)

    Zuo, Rui; Jin, Shuhe; Chen, Minhua; Guan, Xin; Wang, Jinsheng; Zhai, Yuanzheng; Teng, Yanguo; Guo, Xueru

    2018-04-01

    The objective of this study was to explore the controlling factors on the migration and transformation of nitrogenous wastes in groundwater using long-term observations from a contaminated site on the southwestern edge of the Tengger Desert in northwestern China. Contamination was caused by wastewater discharge rich in ammonia. Two long-term groundwater monitoring wells (Wells 1# and 2#) were constructed, and 24 water samples were collected. Five key indicators were tested: ammonia, nitrate, nitrite, dissolved oxygen, and manganese. A numerical method was used to simulate the migration process and to determine the migration stage of the main pollutant plume in groundwater. The results showed that at Well 1# the nitrogenous waste migration process had essentially been completed, while at Well 2# ammonia levels were still rising and gradually transitioning to a stable stage. The differences for Well 1# and Well 2# were primarily caused by differences in groundwater flow. The change in ammonia concentration was mainly controlled by the migration of the pollution plume under nitrification in groundwater. The nitrification rate was likely affected by changes in dissolved oxygen and potentially manganese.

  2. The Importance of Behavioral Thresholds and Objective Functions in Contaminant Transport Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Kang, M.; Thomson, N. R.

    2007-12-01

    The TCE release from The Lockformer Company in Lisle Illinois resulted in a plume in a confined aquifer that is more than 4 km long and impacted more than 300 residential wells. Many of the wells are on the fringe of the plume and have concentrations that did not exceed 5 ppb. The settlement for the Chapter 11 bankruptcy protection of Lockformer involved the establishment of a trust fund that compensates individuals with cancers with payments being based on cancer type, estimated TCE concentration in the well and the duration of exposure to TCE. The estimation of early arrival times and hence low likelihood events is critical in the determination of the eligibility of an individual for compensation. Thus, an emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of possible arrival times at a well. The estimation of TCE arrival time, using a three-dimensional analytical solution, involved parameter estimation and uncertainty analysis. Parameters in the model included TCE source parameters, groundwater velocities, dispersivities and the TCE decay coefficient for both the confining layer and the bedrock aquifer. Numerous objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and M-estimators), penalty functions, and dead zones, were incorporated in the parameter estimation process to treat insufficiencies in both the model and observational data due to errors, biases, and limitations. The concept of equifinality was adopted and multiple maximum likelihood parameter sets were accepted if pre-defined physical criteria were met. The criteria ensured that a valid solution predicted TCE concentrations for all TCE impacted areas. Monte Carlo samples are found to be inadequate for uncertainty analysis of this case study due to its inability to find parameter sets that meet the predefined physical criteria. Successful results are achieved using a Dynamically-Dimensioned Search sampling

  3. The Physiological Opportunism of Desulfitobacterium hafniense Strain TCE1 towards Organohalide Respiration with Tetrachloroethene

    PubMed Central

    Duret, Aurélie; Holliger, Christof

    2012-01-01

    Desulfitobacterium hafniense strain TCE1 is capable of metabolically reducing tetra- and trichloroethenes by organohalide respiration. A previous study revealed that the pce gene cluster responsible for this process is located on an active composite transposon, Tn-Dha1. In the present work, we investigated the effects on the stability of the transposon during successive subcultivations of strain TCE1 in a medium depleted of tetrachloroethene. At the physiological level, an increased fitness of the population was observed after 9 successive transfers and was correlated with a decrease in the level of production of the PceA enzyme. The latter observation was a result of the gradual loss of the pce genes in the population of strain TCE1 and not of a regulation mechanism, as was postulated previously for a similar phenomenon described for Sulfurospirillum multivorans. A detailed molecular analysis of genetic rearrangements occurring around Tn-Dha1 showed two independent but concomitant events, namely, the transposition of the first insertion sequence, ISDha1-a, and homologous recombination across identical copies of ISDha1 flanking the transposon. A new model is proposed for the genetic heterogeneity around Tn-Dha1 in D. hafniense strain TCE1, along with some considerations for the cleavage mechanism mediated by the transposase TnpA1 encoded by ISDha1. PMID:22729540

  4. Implementation of Enhanced Attenuation at the DOE Mound Site OU-1 Landfill: Accelerating Progress and Reducing Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian

    At the US Department of Energy (DOE), Office of Legacy Management, Mound, Ohio, Site, chlorinated organic contaminants (cVOCs) originating from the former solid-waste landfill have impacted groundwater in Operable Unit 1 (OU-1). The baseline groundwater remedy was groundwater pump and treat (P&T). Since the source materials have been removed from the landfill, the Mound core team, which consists of DOE, US Environmental Protection Agency (US EPA), Ohio EPA, and other stakeholders, is assessing the feasibility of switching from the active P&T remedy to a passive attenuation-based remedy. Toward this end, an enhanced attenuation (EA) strategy based on the creation ofmore » structured geochemical zones was developed. This EA strategy addresses the residual areas of elevated cVOCs in soil and groundwater while minimizing the rebound of groundwater concentrations above regulatory targets (e.g., maximum contaminant levels [MCLs]) and avoiding plume expansion while the P&T system is turned off. The EA strategy has improved confidence and reduced risk on the OU-1 groundwater transition path to monitored natural attenuation (MNA). To better evaluate the EA strategy, DOE is conducting a field demonstration to evaluate the use of edible oils to enhance the natural attenuation processes. The field demonstration is designed to determine whether structured geochemical zones can be established that expedite the attenuation of cVOCs in the OU-1 groundwater. The EA approach at OU-1 was designed based on “structured geochemical zones” and relies on groundwater flow through a succession of anaerobic and aerobic zones. The anaerobic zones stimulate relatively rapid degradation of the original solvent source compounds (e.g., cVOCs such as tetrachloroethene [PCE] and trichloroethene [TCE]). The surrounding aerobic areas encourage relatively rapid degradation of daughter products (such as dichloroethene [DCE] and vinyl chloride [VC]) as well as enhanced cometabolism of TCE

  5. FATE 5: A natural attenuation calibration tool for groundwater fate and transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevin, J.P.; Connor, J.A.; Newell, C.J.

    1997-12-31

    A new groundwater attenuation modeling tool (FATE 5) has been developed to assist users with determining site-specific natural attenuation rates for organic constituents dissolved in groundwater. FATE 5 is based on and represents an enhancement to the Domenico analytical groundwater transport model. These enhancements include use of an optimization routine to match results from the Domenico model to actual measured site concentrations, an extensive database of chemical property data, and calculation of an estimate of the length of time needed for a plume to reach steady state conditions. FATE 5 was developed in Microsoft{reg_sign} Excel and is controlled by meansmore » of a simple, user-friendly graphical interface. Using the Solver routine built into Excel, FATE 5 is able to calibrate the attenuation rate used by the Domenico model to match site-specific data. By calibrating the decay rate to site-specific measurements, FATE 5 can yield accurate predictions of long-term natural attenuation processes within a groundwater within a groundwater plume. In addition, FATE 5 includes a formulation of the transient Domenico solution used to help the user determine if the steady-state assumptions employed by the model are appropriate. The calibrated groundwater flow model can then be used either to (i) predict upper-bound constituent concentrations in groundwater, based on an observed source zone concentration, or (ii) back-calculate a lower-bound SSTL value, based on a user-specified exposure point concentration at the groundwater point of exposure (POE). This paper reviews the major elements of the FATE 5 model - and gives results for real-world applications. Key modeling assumptions and summary guidelines regarding calculation procedures and input parameter selection are also addressed.« less

  6. Genesis analysis of karst water trichloroethylene pollution in the east of a city

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Zhenmin; Wen, Ming

    2017-04-01

    To understand the situation of Karst water Trichloroethylene (TCE) pollution in the east of city, Karst water samples sampled at 43 monitoring sites were analyzed. Result shows that relevance ratio of TCE is 100%, over the standard rate of 97.67% and the maximum value is 73.64μg/L, as 14.73 times as the standard value(5μg/L). Causes of groundwater TCE pollution were analyzed. Result shows that indiscriminate discharge of waste water and poor groundwater vulnerability are the main reasons. And based on the reasons, the pollution ways of TCE were found out.

  7. IDENTIFYING AND PREDICTING DIVING PLUME BEHAVIOR AT GROUNDWATER SITES CONTAMINATED WITH MTBE: PART 2

    EPA Science Inventory

    As contaminant ground water flows downgradient from a release point, its movement is dictated by site geological conditions and hydraulics that may result in significant perpendicular contamination migration. This vertical migration pattern has been termed 'plume diving'. Under ...

  8. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment.

    PubMed

    Herzyk, Agnieszka; Fillinger, Lucas; Larentis, Michael; Qiu, Shiran; Maloszewski, Piotr; Hünniger, Marko; Schmidt, Susanne I; Stumpp, Christine; Marozava, Sviatlana; Knappett, Peter S K; Elsner, Martin; Meckenstock, Rainer; Lueders, Tillmann; Griebler, Christian

    2017-12-01

    Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132days of toluene exposure followed by nearly 600days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microfabricated gas chromatograph for on-site determinations of TCE in indoor air arising from vapor intrusion. 2. Spatial/temporal monitoring.

    PubMed

    Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T

    2012-06-05

    We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.

  10. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  11. Wastewater injection, aquifer biogeochemical reactions, and resultant groundwater N fluxes to coastal waters: Kā'anapali, Maui, Hawai'i.

    PubMed

    Fackrell, Joseph K; Glenn, Craig R; Popp, Brian N; Whittier, Robert B; Dulai, Henrietta

    2016-09-15

    We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  13. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-04-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  14. Biodegradation of PCE and TCE in landfill leachate predicted from concentrations of molecular hydrogen: a case study.

    PubMed

    Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T

    2004-12-01

    The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies

  15. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    NASA Astrophysics Data System (ADS)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream

  16. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs

    DOE PAGES

    Carroll, Susan A.; Keating, Elizabeth; Mansoor, Kayyum; ...

    2014-09-07

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO 2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that couldmore » result from a leakage of brine and/or CO 2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO 2 and brine leakage, discuss an approach to calculate thresholds under which no impact to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely

  17. Crude oil metabolites in groundwater at two spill sites

    USGS Publications Warehouse

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Erickson, Melinda L.; Steenson, Ross; Thorn, Kevin A.

    2016-01-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.

  18. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites.

  19. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.

    PubMed

    Munro, Jacob E; Kimyon, Önder; Rich, Deborah J; Koenig, Joanna; Tang, Sihui; Low, Adrian; Lee, Matthew; Manefield, Mike; Coleman, Nicholas V

    2017-11-01

    1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is found in hydrolytic DCA degraders, was positively correlated to the DCA concentration, and was unexpectedly most abundant in samples with low oxygen conditions. A dhlA-containing bacterium isolated from the site (Xanthobacter EL8) was capable of anaerobic growth on DCA under denitrifying conditions. The presence of diverse DCA-dehalogenating bacteria at this site indicates that natural attenuation or biostimulation could be valid approaches for site cleanup. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Controls on Plume Spacing and Plume Population in 3-D High Rayleigh Number Thermal Convection

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2004-12-01

    Dynamics of mantle plumes are important for understanding intra-plate volcanism and heat transfer in the mantle. Using 3D numerical models and scaling analyses, we investigated the controls of convective vigor or Ra on the dynamics of thermal plumes in isoviscous and basal heating thermal convection. We examined Ra-dependence of plume population, plume spacing, plume vertical velocity, and plume radius. We found that plume population does not increase with Ra monotonically. At relatively small Ra (<106), plume population is insensitive to Ra. For 3x106plume population scales as Ra0.31 and plume spacing ˜ Ra-0.16 ˜ δ 1/2, where δ is the thermal boundary layer thickness. However, for larger Ra ( ˜ 108) plume population and plume spacing become insensitive to Ra again. This indicates that the box depth poses a limit on plume spacing and plume population. We demonstrated from both scaling analyses and numerical experiments that the scaling exponents for plume population, n, heat flux, β , and average velocity on the bottom boundary, v, satisfy n = 4β - 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes Vup ˜ Ra2(1-n+β /2)/3 and that plume radius Rup ˜ Ra2(β -1-n/2)/3, differing from the scalings for the bottom boundary velocity and boundary layer thickness.

  1. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    In July 1993, the soil and groundwater of the factory of Taiwan , Miaoli was found to be contaminated by dichloroethane, chlorobenzene and other hazardous solvents. The contaminants were termed to be dense non-aqueous phase liquids (DNAPLs). The contaminated site was neglected for the following years until May 1998, the Environment Protection Agency of Miaoli ordered the company immediately take an action for treatment of the contaminated site. Excavating and exposing the contaminated soil was done at the previous waste DNAPL dumped area. In addition, more than 53 wells were drilled around the pool with a maximum depth of 12 m where a clayey layer was found. Continuous pumping the groundwater and monitoring the concentration of residual DNAPL contained in the well water samples have done in different stages of remediation. However, it is suspected that the DNAPL has existed for a long time, therefore the contaminants might dilute but remnants of a DNAPL plume that are toxic to humans still remain in the soil and migrate to deeper aquifers. A former contaminated site was investigated using the 2D, 3D and 4D resisitivity image technique, with aims of determining buried contaminant geometry. This paper emphasizes the use of resistivity image profiling (RIP) method to map the limit of this DNAPL waste disposal site where the records of operations are not variations. A significant change in resistivity values was detected between known polluted and non-polluted subsurface; a high resistivity value implies that the subsurface was contaminated by DNAPL plume. The results of the survey serve to provide insight into the sensitivity of RIP method for detecting DNAPL plumes within the shallow subsurface, and help to provide valuable information related to monitoring the possible migration path of DNAPL plume in the past. According to the formerly studies in this site, affiliation by excavates with pumps water remediation had very long time, Therefore this research was used

  2. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    PubMed

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  3. Key Factors for Determining Risk of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Susan; Keating, Elizabeth; Mansoor, Kayyum

    2014-01-06

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO 2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow underwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models,l referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that couldmore » result from a leakage of brine and/or CO 2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO 2 and brine leakage, discuss an approach to calculate thresholds under which "no impact" to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur.« less

  4. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  5. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  6. An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications.

    PubMed

    Duncan, Candice M; Brusseau, Mark L

    2018-03-01

    The majority of prior phytoscreening applications have employed the method as a tool to qualitatively determine the presence of contamination in the subsurface. Although qualitative data is quite useful, this study explores the potential for using phytoscreening quantitatively. The existence of site-specific and non-site-specific (master) correlations between VOC concentrations in tree tissue and groundwater is investigated using data collected from several phytoscreening studies. The aggregated data comprise 100 measurements collected from 12 sites that span a wide range of site conditions. Significant site-specific correlations are observed between tetrachloroethene (PCE) and trichloroethene (TCE) concentrations measured for tree tissue and those measured in groundwater for three sites. A moderately significant correlation (r 2 =0.56) exists for the entire aggregate data set. Parsing the data by groundwater depth produced a highly significant correlation (r 2 =0.88) for sites with shallow (<4m) groundwater. Such a significant correlation for data collected by different investigators from multiple sites with a wide range of tree species and subsurface conditions indicates that groundwater concentration is the predominant factor mediating tree-tissue concentrations for these sites. This may be a result of trees likely directly tapping groundwater for these shallow groundwater conditions. This master correlation may provide reasonable order-of-magnitude estimates of VOC concentrations in groundwater for such sites, thereby allowing the use of phytoscreening in a more quantitative mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Semi-Passive Oxidation-Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes

    DTIC Science & Technology

    2014-04-01

    Permanganate gel (PG) for groundwater remediation: Compatibility, gelation, and release characteristics...26 4.4. Development and characterization of slow-release permanganate gel (SRP-G) for groundwater remediation...34 4.6. Geopolymers as slow-release materials for potassium permanganate

  8. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.

    PubMed

    García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús

    2014-07-01

    The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas.

    PubMed

    Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco

    2018-05-01

    Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright

  10. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik

    2012-08-01

    Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  12. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    DTIC Science & Technology

    2003-09-01

    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  13. Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: the effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene.

    PubMed

    Ou, Hsin-Hung; Lo, Shang-Lien

    2007-07-19

    Batch photocatalytic degradation of 80+/-2.5 ppm V trichloroethylene (TCE) was conducted to investigate the effect of the oxygen and relative humidity (RH) on the formation of the dichloroacetyl chloride (DCAC) and phosgene. Based on the simultaneous ordinary differential equations (ODEs), the reaction rate constants of TCE ((2.31+/-0.28) approximately (9.41+/-0.63)x10(-2) min(-1)) are generally larger than that of DCAC ((0.94+/-1.25) approximately (9.35+/-1.71)x10(-3) min(-1)) by approximate one order. The phenomenon indicates the degradation potential of TCE is superior to that of DCAC. DCAC appreciably delivers the same degradation behavior with TCE that means there exists an optimum RH and oxygen concentration for photocatalysis of TCE and DCAC. At the time the peak yield of DCAC appears, the conversion ratio based on the carbon atom from TCE to DCAC is within the range of 30-83% suggesting that the DCAC generation is significantly attributed to TCE degradation. Regarding the phosgene formation, the increasing oxygen amount leads to the inhibitory effect on the phosgene yield which fall within the range of 5-15%. The formation mechanism of phosgene was also inferred that the Cl atoms attacking the C-C bond of DCAC results to the generation of phosgene rather than directly from the TCE destruction.

  14. Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Cremer, C.; Graf, T.

    2012-04-01

    In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not

  15. Testing of stack-unit/aquifer sensitivity analysis using contaminant plume distribution in the subsurface of Savannah River Site, South Carolina, USA

    USGS Publications Warehouse

    Rine, J.M.; Shafer, J.M.; Covington, E.; Berg, R.C.

    2006-01-01

    Published information on the correlation and field-testing of the technique of stack-unit/aquifer sensitivity mapping with documented subsurface contaminant plumes is rare. The inherent characteristic of stack-unit mapping, which makes it a superior technique to other analyses that amalgamate data, is the ability to deconstruct the sensitivity analysis on a unit-by-unit basis. An aquifer sensitivity map, delineating the relative sensitivity of the Crouch Branch aquifer of the Administrative/Manufacturing Area (A/M) at the Savannah River Site (SRS) in South Carolina, USA, incorporates six hydrostratigraphic units, surface soil units, and relevant hydrologic data. When this sensitivity map is compared with the distribution of the contaminant tetrachloroethylene (PCE), PCE is present within the Crouch Branch aquifer within an area classified as highly sensitive, even though the PCE was primarily released on the ground surface within areas classified with low aquifer sensitivity. This phenomenon is explained through analysis of the aquifer sensitivity map, the groundwater potentiometric surface maps, and the plume distributions within the area on a unit-by- unit basis. The results of this correlation show how the paths of the PCE plume are influenced by both the geology and the groundwater flow. ?? Springer-Verlag 2006.

  16. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    USGS Publications Warehouse

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  17. Microbiology, Redox and Contaminat Fate in the Grindsted Landfill Leachate Plume - A Summary of 25 Years of work

    NASA Astrophysics Data System (ADS)

    Christensen, T. H.

    2001-05-01

    The contamination by leachate of the upper aquifer at the Grindsted Landfill (Denmark) stretches about 300 m downgradient from the landfill. The plume has been described with respect to water chemistry, sediment chemistry, pollutant distribution, microbial counts, PLFA and redox rates determined by unamended bioassays. This presentation summaries the findings and discusses unanswered questions. The landfill was active from 1930 to the mid 1970 and has no engineered leachate collection system. Leachate from municipal as well as from industrial waste has entered the aquifer for more than thirty years. The redox conditions change from strongly anaerobic (methanogenic, sulfate reducing, iron reducing) close to the landfill over manganese reduction and denitrification to aerobic conditions in the outskirts of the plume The redox conditions were determined from groundwater sample composition, hydrogen concentrations and sediment chemistry. The plume showed strong attenuation of aromatic compounds within the first 100 m downgradient of the landfill. Degradation experiments (batch, in-situ testers, long term field injection experiments) could not fully document degradation of all the compounds. MPN-measurements of methanogens, sulfate-reducers, iron-reducers, manganese-reducers and denitrifiers showed abundance of all groups with a slight trend with the redox conditions. PLFA measurements did not provide much insight into the microbial populations of the plume, but confirmed some previous observations. Bioassays gave estimates of the rates of the various redox processes, but showed for some samples more simultaneous redox processes. More than 25 years of work has been put into the Grindsted Landfill leachate plume. References Bjerg, P.L., Rugge, K., Cortsen, J., Nielsen, P.H. & Christensen, T.H. (1999): Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted Landfill leachate plume: In situ microcosm and laboratory batch

  18. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  19. Plume Delineation in the BC Cribs and Trenches Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, Dale F.; Sweeney, Mark D.

    2004-11-30

    HydroGEOPHYSICS, Inc. and Pacific Northwest National Laboratory (PNNL) were contracted by Fluor Hanford Group, Inc. to conduct a geophysical investigation in the area of the BC Cribs and Trenches (subject site) at the Hanford Site in Richland, Washington. The BC Cribs and Trenches are located south of the 200 East Area. This document provides the details of the investigation to identify existing infrastructure from legacy disposal activities and to delineate the edges of a groundwater plume that contains radiological and heavy metal constituents beneath the 216-B-26 and 216-B-52 Trenches, and the 216-B-14 through 216-B-19 Cribs.

  20. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  1. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, B.; Looney, B.; Noonkester, J.

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions tomore » alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  3. Humic Acids Enhanced U(VI) Attenuation in Acidic Waste Plumes: An In-situ Remediation Approach

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Tokunaga, T. K.

    2010-12-01

    In the process of extracting plutonium for nuclear weapons production during the Cold War, large volumes of acidic waste solutions containing low-level radionuclides were discharged for decades into unlined seepage basins in several US Department of Energy (DOE) weapon facilities such as the Savannah River Site (SRS), Oak Ridge (OR), and 300 Area of the Hanford Site. Although the basins have been capped and some sites have gone through many years of active remediation, groundwaters currently remain acidic with pH values as low as 3.0 near the basins, and uranium concentrations remain much higher than its maximum contaminant level (MCL). A sustainable U biogeochemical remediation method has not yet been developed, especially under acidic conditions (pH 3-5). Bioreduction-based U remediation requires permanent maintenance of reducing conditions through indefinite supply of electron donor, and when applied in acidic plumes a high-cost pretreatment procedure is required. Methods based on precipitation of phosphate minerals depend on maintenance of high P concentrations. Precipitating of uranyl vanadates can lower U to below its MCL, but this approach is only effective at near-neutral pH. There is an urgent need for developing a sustainable method to control U mobility in acidic conditions. In this paper, we propose a method of using humic acids (HAs) to attenuate contaminant U mobility in acidic waste plumes. Our laboratory experiment results show that HAs are able to strongly and quickly adsorb onto aquifer sediments from the DOE’s SRS and OR. With a moderate addition of HA, U adsorption increased to near 100% at pH below 5.0. Because U partitioning onto the HA modified mineral surfaces is so strong, U concentration in groundwaters can be sustainably reduced to below its MCL. We conducted flow through experiments for U desorption by acidic groundwater leaching at pH 3.5 and 4.5 from HA-treated SRS contaminated sediments. The results show that desorption of both U

  4. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L

    2007-10-30

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  5. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE

    NASA Astrophysics Data System (ADS)

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.

    2007-10-01

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  6. [Endonasal Dacryocystorhinostomy (DCR) with Transcanalicular Endoillumination (TCE) of the Saccus Lacrimalis].

    PubMed

    Hefner, J; Klask, J; Gerding, H

    2016-04-01

    Endonasal dacryocystorhinostomy (DCR) has been established as a standard procedure of lacrimal surgery, since it causes much less tissue damage than ab externo procedures. Diffiulties in visualization of the target area has been a limitation to the transnasal approach. An improvement of the classical endonasal DCR was achieved by the introduction of a transcanalicular endoillumination (TCE) of the lacrimal sac using a 23-Gauge vitreoretinal light probe, which can easily be intubated into the cannaliculi and advanced into the the lacrimal sac. Illumination of the lacrimal sac guides the endonasal approach and facilitates the creation of a lacrimal bypass. In our standard procedure a bicanalicular silicone intubation through the osteotomy is finally placed. Due to the introduction of TCE of the lacrimal sac, the surgical procedure of endonasal DCR became less traumatic and needed a significantly reduced operating time. Georg Thieme Verlag KG Stuttgart · New York.

  7. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.

    PubMed

    Evans, M V; Chiu, W A; Okino, M S; Caldwell, J C

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  8. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  9. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    The karst aquifer region of northern Puerto Rico is the area with the highest groundwater extraction in the island. Urban and industrial development has led to extensive contamination of the groundwater in the region. Of particular concern, is the presence of emerging and legacy organic contaminants, such as phthalates and chlorinated organic compounds (CVOCs), because there high risk for exposure and adverse health impact. Variable sources and the heterogeneous and dynamic conditions of karst groundwater systems, limits the ability to properly assess and manage the water quality of these precious water resources. This work develops a monitoring and water analysis scheme to assess spatial-temporal exposure of hazardous contaminants trough karst water in northern Puerto Rico. Groundwater and tap water are sampled in the region and analyzed for phthalates, CVOCs, and common ions. Detections and concentrations of phthalates and CVOCs are determined by using modified EPA methods, which rely on liquid-liquid extractions and gas chromatography techniques. The modified methods have reduced the volume of samples and solvent waste, decreased the time of analysis, increased analysis outcomes, and lower potential for hazardous exposure. Results show intermittent presence of di-ethyl, di-butyl and di (2-ethyl hexyl) phthalates in 36% of the groundwater and 53% of tap water samples, with detected concentrations ranging between 0.1-88.7 μg/L. These results indicate that karst groundwater can serve as a route of exposure for phthalates, but there are additional disperse sources in the water system. CVOCs are detected in groundwater at much higher frequencies (50%) than phthalates, and include trichloromethane (TCM), carbon tetrachloride (CT), trichloroethylene (TCE), and tetrachloroethylene (TCE). CVOCs, except for TCM, are found at lower frequencies on tap water (5.8%) than groundwater (27%). TCM is detected more frequently and at higher concentrations in tap water (56.8%) than

  10. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

    PubMed

    Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh; Rusyn, Ivan

    2018-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

  12. EVALUATING THE POTENTIAL FOR CHLORINATED SOLVENT DEGRADATION FROM HYDROGEN CONCENTRATIONS

    EPA Science Inventory

    Long-term monitoring of a large trichioroethylene (TCE) and 1,1,1-trichloroethane (TCA) ground water plume in Minnesota indicated that these contaminants attenuated with distance from the source. Mathematical modelling indicated that sufficient time had passed for the plume to fu...

  13. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.

    PubMed

    Hort, Ryan D; Revil, André; Munakata-Marr, Junko

    2014-09-01

    Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  15. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a

  16. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.

    PubMed

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M

    2017-09-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume

    USGS Publications Warehouse

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.

    2017-01-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011–2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich “iron curtain,” associated with the anoxic-suboxic transition zone, migrated 30 m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.

  18. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  19. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    resulting simulated lake stage and water budgets to stages and water budgets from the calibrated model. Simulated lake water budgets and water level changes illustrate the importance of understanding the position of a lake within the hydrologic system (headwater or downstream), the type of lake (surface-water drainage or seepage lake), and the role of groundwater in dampening the effects of large-scale changes in weather patterns on lake levels. Areas contributing recharge to drinking-water supply wells on the Reservation were delineated using forward particle tracking from the water table to the well. Monte Carlo uncertainty analyses were used to produce maps showing the probability of groundwater capture for areas around each well nest. At the Main Pumphouse site near the Village of Lac du Flambeau, most of the area contributing recharge to the wells occurs downgradient from a large wetland between the wells and the wastewater infiltration lagoons. Nonetheless, a small potential for the wells to capture infiltrated wastewater is apparent when considering uncertainty in the model parameter values. At the West Pumphouse wells south of Flambeau Lake, most of the area contributing recharge is between the wells and Tippecanoe Lake. The extent of infiltrated wastewater from two infiltration lagoons was tracked using the groundwater flow model and Monte Carlo uncertainty analyses. Wastewater infiltrated from the lagoons flows predominantly south toward Moss Lake as it integrates with the regional groundwater flow system. The wastewater-plume-extent simulations support the area-contributing-recharge simulations, indicating that there is a possibility, albeit at low probability, that some wastewater could be captured by water-supply wells. Comparison of simulated water-table contours indicate that the lagoons may mound the water table approximately 4 ft, with diminishing levels of mounding outward from the lagoons. Four scenarios, representing potential alternatives for wastewater

  20. Assessment of groundwater contamination by landfill leachate: a case in México.

    PubMed

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  1. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    EPA Science Inventory

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  2. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  3. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  4. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

    PubMed

    Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J

    2016-11-01

    Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for

  5. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    PubMed Central

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  6. Fate and Transport Modeling of Selected Chlorinated Organic Compounds at Hangar 1000, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J. Hal

    2003-01-01

    The Jacksonville Naval Air Station occupies 3,800 acres adjacent to the St. Johns River in Jacksonville, Florida. Two underground storage tanks at Hangar 1000 contained solvents from the late 1960s until they were removed in 1994. Ground-water samples at one of the tank sites had levels of trichloroethene (TCE) and total dichloroethene (DCE) of 8,710 micrograms per liter (mg/L) and 4,280 mg/L, respectively. Vinyl chloride (VC) at the site is the result of the biodegradation of DCE. Ground water beneath Hangar 1000 flows toward a storm sewer. TCE and DCE plumes travel with the ground water and presumably have reached the storm sewer, which discharges to the St. Johns River. Simulation of solute transport indicates that the traveltime from the storage tank site to the storm sewer is 16, 14, and 12 years for TCE, DCE, and VC respectively. TCE has the longest traveltime because it has the highest retardation factor at 2.5, DCE takes less time with a retardation factor of 2.0, and VC has the quickest traveltime because it has the lowest retardation factor of 1.7. Based on modeling results, the release of contaminants in the aquifer occurred more than 16 years ago. Model-derived dispersivity values at Hangar 1000 were: longitudinal 1.5 feet (ft), transverse 0.27 ft, and vertical 0.27 ft. The model-derived first order decay rates for biodegradation of TCE, DCE, and VC were 0.0002 per day (d-1), 0.0002 d-1, and 0.06 d-1, respectively. These rates are equivalent to half-lives of 13.7 years for TCE and DCE and 17 days for VC. Source area reductions in contaminant concentrations of 50 and 100 percent were modeled to simulate remediation. As expected, reducing the source concentration by 50 percent resulted in eventual TCE, DCE, and VC concentrations that were half of the original concentrations. About 16 years were needed for new steady-state TCE concentrations to develop, about 14 years for DCE, and about 12 years for VC. Reducing the source area concentrations by 100

  7. Summary of External Peer Review and Public Comments and Disposition for Trichloroethylene (TCE)

    EPA Pesticide Factsheets

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for trichloroethylene (TCE).

  8. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 μg TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (α-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will

  9. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene

  10. Crude Oil Metabolites in Groundwater at Two Spill Sites.

    PubMed

    Bekins, Barbara A; Cozzarelli, Isabelle M; Erickson, Melinda L; Steenson, Ross A; Thorn, Kevin A

    2016-09-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Inhibition of Adrenergic and Non-Adrenergic Smooth Muscle Contraction in the Human Prostate by the Phosphodiesterase 10-Selective Inhibitor TC-E 5005.

    PubMed

    Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian

    2016-11-01

    The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  13. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less

  14. Geohydrology, water quality, and simulation of ground-water flow in the vicinity of a former waste-oil refinery near Westville, Indiana, 1997-2000

    USGS Publications Warehouse

    Duwelius, Richard F.; Yeskis, Douglas J.; Wilson, John T.; Robinson, Bret A.

    2002-01-01

    A three-dimensional, four layer groundwater- flow model was constructed and calibrated to match ground-water levels and streamflow measured during December 1997. The model was used to simulate possible mechanisms of contaminant release, the effect of increased pumpage from water-supply wells, and pumping at the leading edge of the plume as a possible means of remediation. Based on simulation of threewaste-oil lagoons, a vertical hydraulic conductivity of 0.2 feet per day was required to move contaminants into the bottom layer of the model at a constant leakage rate of about 98 gallons per minute. Simulations of a disposal well in layer 3 of the model indicated an injection rate of 50 gallons per minute was necessary to spread contaminants vertically in the aquifer. Simulated pumping rates of about 300 and 1,000 gallons per minute were required for watersupply wells at the Town of Westville and the Westville Correctional Facility to draw water from the plume of 1,4-dioxane. Simulated pumping from hypothetical wells at the leading edge of the plume indicated that three wells, each pumping 25 gallons per minute from model layer 3, would capture the plume of 1,4-dioxane.

  15. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    areal extent of the thermal plume that develops around the area of injection minimizing the time and the space needed for the disappearance of the thermal plume and the restoration of undisturbed temperature conditions. The reduction in plan and temporal extension of the thermal plume would have several benefits, minimizing the use of large areas around the buildings involved by the thermal perturbation, with direct implementation benefits. In order to investigate alternatives to traditional drilled water well for the re-injection and dispersion of water in aquifer downstream of the heat pump, we modeled with FEFLOW the possible reverse use of commercial draining gabions in various types of ground configuration, geometry and interconnection with systems of pre-fabricated vertical drains on a possible reliable test-site. The results highlighted that they can represent a good and efficient alternative for the groundwater dispersion in the aquifers.

  16. Nitrogen biogeochemistry of submarine groundwater discharge

    USGS Publications Warehouse

    Kroeger, K.D.; Charette, M.A.

    2008-01-01

    To investigate the role of the seepage zone in transport, chemical speciation, and attenuation of nitrogen loads carried by submarine groundwater discharge, we collected nearshore groundwater samples (n = 328) and examined the distribution and isotopic signature (δ15N) of nitrate and ammonium. In addition, we estimated nutrient fluxes from terrestrial and marine groundwater sources. We discuss our results in the context of three aquifer zones: a fresh groundwater zone, a shallow salinity transition zone (STZ), and a deep STZ. Groundwater plumes containing nitrate and ammonium occurred in the freshwater zone, whereas the deep STZ carried almost exclusively ammonium. The distributions of redox-cycled elements were consistent with theoretical thermodynamic stability of chemical species, with sharp interfaces between water masses of distinct oxidation : reduction potential, suggesting that microbial transformations of nitrogen were rapid relative to dispersive mixing. In limited locations in which overlap occurs between distribution of nitrate with that of ammonium and dissolved Fe2+, changes in concentration and in δ15N suggest loss of all species. Concurrent removal of NO3− and NH4+, both in freshwater and the deep STZ, might occur through a range of mechanisms, including heterotrophic or autotrophic denitrification, coupled nitrfication : denitrification, anammox, or Mn oxidation of NH4+. Loss of nitrogen was not apparent in the shallow STZ, perhaps because of short water residence time. Despite organic Cpoor conditions, the nearshore aquifer and subterranean estuary are biogeochemically active zones, where attenuation of N loads can occur. Extent of attenuation is controlled by the degree of mixing of biogeochemically dissimilar water masses, highlighting the critical role of hydrogeology in N biogeochemistry. Mixing is related in part to thinning of the freshwater lens before discharge and to dispersion at the fresh : saline groundwater interface, features

  17. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  18. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  19. Steady-State and Transient Groundwater Flow and Advective Transport, Eastern Snake River Plain Aquifer, Idaho National Laboratory and Vicinity, Idaho

    NASA Astrophysics Data System (ADS)

    Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.

    2009-12-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952

  20. Enhanced reductive de-chlorination of a solvent contaminated aquifer through addition and apparent fermentation of cyclodextrin

    NASA Astrophysics Data System (ADS)

    Blanford, William James; Pecoraro, Michael Philip; Heinrichs, Rebecca; Boving, Thomas Bernhard

    2018-01-01

    In a field study, aqueous cyclodextrin (CD) was investigated for its ability to extract chlorinated volatile organic compounds (cVOC), such as trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), and dichloroethene (DCE) through in-situ flushing of a sandy aquifer. After cessation of aquifer flushing, a plume of CD was left. Changes in CD, cVOC, and inorganic terminal electron acceptors (TEAs) (DO, nitrate, sulfate, iron) were monitored in four rounds of wellwater sampling (20, 210, 342, and 425 days after cessation of active pumping). Post-CD flushing VOC levels rebounded (850% for TCE, 190% for TCA, and 53% for DCE) between the first two sampling rounds, apparently due to rate-limited desorption from aquifer media and dissolution from remaining NAPL. However, substantial reduction in the mass of TCE (6.3 to 0.11 mol: 98%) and TCA (2.8 to 0.73 mol: 74%) in groundwater was observed between 210 and 425 days. DCE should primarily be produced from the degradation of TCE and is expected to subsequently degrade to chloroethene. Since DCE levels decreased only slightly (0.23 to 0.17 mol: 26%), its degradation rate should be similar to that produced from the decaying TCE. Cyclodextrin was monitored starting from day 210. The mass of residual CD (as measured by Total Organic Carbon) decreased from 150 mol (day 210) to 66 (day 425) (56% decrease). The naturally anaerobic zone within the aquifer where residual CD mass decreased coincided with a loss of other major potential TEAs: nitrate (97% loss), sulfate (31%) and iron (31%). In other studies, TCE and 1,1,1-TCA have been found to be more energetically favorable TEAs than sulfate and iron and their degradation via reductive dechlorination has been found to be enhanced by the fermentation of carbohydrates. Such processes can explain these observations, but more investigation is needed to evaluate whether residual levels of CD can facilitate the anaerobic degradation of chlorinated VOCs.

  1. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  2. IN-SITU THERMAL TREATMENT SYSTEM PERFORMANCE AND MASS REMOVAL METRICS AT FORT LEWIS

    EPA Science Inventory

    The EGDY is the source of a potentially expanding three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This is...

  3. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  4. IDENTIFICATION OF CHLOROMETHANE FROMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    EPA Science Inventory

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  5. IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    EPA Science Inventory

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  6. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    USGS Publications Warehouse

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Two surface surveys of terrain electromagnetic conductivity were used to map the horizontal extent of the saltwater plume in areas without monitoring wells. Background values of terrain conductivity were measured in an area where water-quality and borehole geophysical data did not indicate saline or brackish water. Based on a guideline from previous case studies, the boundaries of the saltwater plume were mapped where terrain conductivity was 1.5 times background. The extent of the saltwater plume, based on terrain conductivity, generally was consistent with the available water-quality and borehole electromagnetic-conductivity data and with directions of ground-water flow determined from water-level altitudes.

  8. Hot Moments in Cold Spots - Investigating Reactive Transport Patterns at Aquifer-River Interfaces by Heat Tracers and Distributed Sensor Networks

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa

    2010-05-01

    by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.

  9. Hot Moments in Cold Spots - Using Heat Tracers and Distributed Sensor Networks to Investigate Reactive Transport Patterns at Aquifer-River Interfaces

    NASA Astrophysics Data System (ADS)

    Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.

    2009-12-01

    inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.

  10. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  11. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  12. Swirling plumes and spinning tops

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2017-11-01

    Motivated by potential effects of the Earth's rotation on the dynamics of the oil plume resulting from the Deepwater Horizon disaster in 2010, we conducted laboratory experiments on saltwater and bubble axisymmetric point plumes in a homogeneous rotating environment. The effect of rotation is conventionally characterized by a Rossby number, based on the source buoyancy flux, the rotation rate of the system and the total water depth and which ranged from 0.02 to 1.3 in our experiments. In the range of parameters studied, we report a striking new physical instability in the plume dynamics near the source. After approximately one rotation period, the plume axis tilts away laterally from the centreline and the plume starts to precess in the anticyclonic direction. We find that the mean precession frequency of the plume scales linearly with the rotation rate of the environment. Surprisingly, the precession frequency is found to be independent of the diameter of the plume nozzle, the source buoyancy flux, the water depth and the geometry of the domain. In this talk, we present our experimental results and develop simple theoretical toy models to explain the observed plume behaviour.

  13. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    PubMed

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  14. Ridge jumps associated with plume-ridge interaction: Mantle plume-lithosphere interaction and hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2007-12-01

    Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the

  15. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  16. Relationship between vapor intrusion and human exposure to trichloroethylene.

    PubMed

    Archer, Natalie P; Bradford, Carrie M; Villanacci, John F; Crain, Neil E; Corsi, Richard L; Chambers, David M; Burk, Tonia; Blount, Benjamin C

    2015-01-01

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.

  17. Relationship between vapor intrusion and human exposure to trichloroethylene

    PubMed Central

    ARCHER, NATALIE P.; BRADFORD, CARRIE M.; VILLANACCI, JOHN F.; CRAIN, NEIL E.; CORSI, RICHARD L.; CHAMBERS, DAVID M.; BURK, TONIA; BLOUNT, BENJAMIN C.

    2015-01-01

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥0.012 μg/L) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (p=0.0002 and p=0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 μg/m3 were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (p<.0001; 95% CI 10.4 – 236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting. PMID:26259926

  18. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  19. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped for water by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 3 to 6 feet per day. Hydraulic conductivities in the aquifer range from 85 to 150 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical anlayses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station to East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward East Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 micrograms per liter; toluene, 55,500 micrograms per liter; xylene, 3,900 micrograms per liter; tetrachloroethylene, 3,410 micrograms per liter; and bis (2-ethyl hexyl) phthalate, 2,100 micrograms per liter. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing, as much as 1,100 micrograms per kilogram of tetrachloroethylene and 1,500 micrograms per kilogram of bis (2-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates, were found.

  20. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates