These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Biofiltration for removal of PCE and TCE vapors from contaminated air  

SciTech Connect

Bench scale biofilters (vapor phase bioreactors) treating a mixture of gases have removed perchloroethylene and trichloroethylene from the air. In a biofilter using carbon as the support medium, an initial period of adsorptive removal was followed by biological removal of 61% of the PCE and 48% of the TCE. In a compost biofilter, removals after the initial period were 40% for PCE and 49% for TCE. The reactors were dominantly aerobic. Because aerobic degradation of PCE has not been observed, it is believed that degradation occurred by reductive dechlorination in anaerobic zones within the particles of the support medium. 12 refs., 5 figs., 2 tabs.

Devinny, J.S.; Webster, T.S. [Univ. of Southern California, Los Angeles, CA (United States); Torres, E. [County Sanitation Districts of Orange County, Fountain Valley, CA (United States)] [and others

1995-12-31

2

COMPLETE NATURAL ATTENUATION OF A PCE AND TCE PLUME AFTER SOURCE REMOVAL  

EPA Science Inventory

Disposal of the chlorinated solvents PCE and TCE at the Twin Cities Army Ammunition Plant (TCAAP) resulted in the contamination of groundwater in a shallow, unconsolidated sand aquifer. The resulting plume had moved over 1000 feet from the disposal source area and had impacted p...

3

Effect of biosurfactants on the aqueous solubility of PCE and TCE  

Microsoft Academic Search

The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency

John D. Albino; Indumathi M. Nambi

2009-01-01

4

Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.  

PubMed

A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. PMID:24316808

Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

2014-01-15

5

FY00 Phytoremediation of Trichloroethylene and Perchloroethylene in the Southern Sector of SRS  

SciTech Connect

This treatability study addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene (TCE) and perchloroethylene (PCE) -contaminated groundwater. The primary objective is to determine how the trees uptake TCE and PCE, accumulate it, and/or transform it.

Brigmon, R.L.

2000-12-15

6

PHOTOCHEMICAL REACTIVITY OF PERCHLOROETHYLENE  

EPA Science Inventory

Perchloroethylene (PCE), a solvent used in dry cleaning, has been suspected of contributing significantly to photochemical ozone/oxidant (O3/Ox) problems in urban atmospheres. Past evidence, however, was neither complete nor consistent. To interpret more conclusively the past evi...

7

Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site  

SciTech Connect

Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears to be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.

Brigmon, R.L.

2001-01-10

8

Transition Metal Catalyst Assisted Reductive Dechlorination of Perchloroethylene by Anaerobic Aquifer Enrichments  

SciTech Connect

Bioremediation of groundwater contaminated with chlorinated solvents, such as perchloroethylene (PCE) or carbon tetrachloride, can be accomplished by adding nutrients to stimulate a microbial community capable of reductive dechlorination. However, biotransformation of these solvents, especially PCE, typically occurs very slowly or not at all. Experiments were conducted to evaluate whether the addition of transition metal tetrapyrrole catalysts would increase the reductive transformation of PCE to trichloroethylene (TCE) by sulfate-reducing enrichment cultures. Batch assays were used to test vitamin B12 and two synthetic sulfonatophenyl porphine catalysts for the stimulation of reductive dechlorination of PCE by sulfate-reducing bacteria (SRB) enriched from aquifer sediments from two locations at Dover Air Force Base. Cells from the enrichments were concentrated and added to batch assay vials. Vials containing SRB cells amended with vitamin B12 exhibited enhanced transformation of PCE to TCE compared with reactors amended with either synthetic catalysts or reactors containing cells alone. Methane production was observed in reactors that exhibited maximum levels of dechlorination. Storage of aquifer sediments between enrichments led to decreased levels of PCE dechlorination in subsequent assays.

Lee, Brady Douglas; Schaller, Kastli Dianne; Apel, William Arnold; Watwood, Maribeth E.

2000-04-01

9

PBPK Modeling of the Percutaneous Absorption of Perchloroethylene from a Soil Matrix in Rats and Humans  

Microsoft Academic Search

Perchloroethylene (PCE) is a widely used volatile organic chemi- cal. Exposures to PCE are primarily through inhalation and dermal contact. The dermal absorption of PCE from a soil matrix was compared in rats and humans using real-time MS\\/MS exhaled breath technology and physiologically based pharmacokinetic (PBPK) mod- eling. Studies with rats were performed to compare the effects of loading volume,

Torka S. Poet; Karl K. Weitz; Richard A. Gies; Jeffrey A. Edwards; Karla D. Thrall; Richard A. Corley; Hanafi Tanojo; Xiaoying Hui; Howard I. Maibach; Ronald C. Wester

2002-01-01

10

RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)  

EPA Science Inventory

The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

11

Visible-light-sensitized dechlorination of perchloroethylene.  

PubMed

An aqueous reaction mixture containing perchloroethylene (PCE), a photosensitizer, and an electron donor was irradiated by visible lamps to facilitate a sunlight-sensitized dechlorination reaction. Various types of lamps, electron donors, and photosensitizers were examined, to compare the rates of dechlorination. Of the six photosensitizers evaluated, methylene blue was the most effective. Electron donors varied in effectiveness, as follows: trimethylamine > triethylamine > tributylamine. The intermediates and reaction products were identified by a purge-and-trap gas chromatography mass spectrometer system. The photosensitized dechlorination method degraded PCE via an electron-transfer-relay mechanism. Degradation products identified were trichloroethylene, dichloroethylenes, and chloroethylene. It seems a sequential dechlorination pathway was followed. The PCE dechlorination in a natural sunlight irradiation test was shown to be more effective than any of the simulated visible light sources. The result supports the feasibility of future development of solar-powered dechlorination remediation systems with the use of sunlight, nontoxic dyes, and electron donors. PMID:19280902

Lin, Chitsan; Jou, Chih-Ju G; Wang, Chih-Lung

2009-01-01

12

PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS  

EPA Science Inventory

Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

13

Interaction of Perchloroethylene with Cerium Oxide in Three-Way Catalysts  

PubMed Central

The role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO2, reducing the cerium to create CeCl3. PMID:21218178

Rupp, Erik C.; Betterton, Eric A.; Arnold, Robert G.

2010-01-01

14

Critical review of the epidemiological literature on occupational exposure to perchloroethylene and cancer  

Microsoft Academic Search

ObjectivesOf an estimated 500,000 workers in the USA potentially exposed to perchloroethylene (PCE), the largest share is employed in the dry-cleaning industry. PCE, a non-flammable solvent, has commercial applications as a chemical intermediate, metal degreaser and, since the 1950s, primary solvent in the dry-cleaning industry. The International Agency for Research on Cancer (IARC) currently finds sufficient evidence to designate PCE

Kenneth A. Mundt; Thomas Birk; Margaret T. Burch

2003-01-01

15

Perceptions of PCE use by dry cleaners and dry cleaning customers  

Microsoft Academic Search

Recent studies by consumer and environmental groups have raised questions about Perchloroethylene (PCE) used by over 85% of the commercial dry cleaners in the United States, but classified as a possible or probable carcinogen. Many environmentalists favour replacing PCE dry cleaning with alternative, chlorine-free processes currently under development. However, even if these alternatives eventually provide adequate replacements, some time will

Daniel C. Kovacs; Baruch Fischhoff; Mitchell J. Small

2001-01-01

16

Cytogenetic analysis of an exposed-referent study: perchloroethylene-exposed dry cleaners compared to unexposed laundry workers  

Microsoft Academic Search

Background  Significant numbers of people are exposed to tetrachloroethylene (perchloroethylene, PCE) every year, including workers in\\u000a the dry cleaning industry. Adverse health effects have been associated with PCE exposure. However, investigations of possible\\u000a cumulative cytogenetic damage resulting from PCE exposure are lacking.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Eighteen dry cleaning workers and 18 laundry workers (unexposed controls) provided a peripheral blood sample for cytogenetic\\u000a analysis by

James D Tucker; Karen J Sorensen; Avima M Ruder; Lauralynn Taylor McKernan; Christy L Forrester; Mary Ann Butler

2011-01-01

17

Cytogenetic analysis of an exposed-referent study: perchloroethylene-exposed dry cleaners compared to unexposed laundry workers  

PubMed Central

Background Significant numbers of people are exposed to tetrachloroethylene (perchloroethylene, PCE) every year, including workers in the dry cleaning industry. Adverse health effects have been associated with PCE exposure. However, investigations of possible cumulative cytogenetic damage resulting from PCE exposure are lacking. Methods Eighteen dry cleaning workers and 18 laundry workers (unexposed controls) provided a peripheral blood sample for cytogenetic analysis by whole chromosome painting. Pre-shift exhaled air on these same participants was collected and analyzed for PCE levels. The laundry workers were matched to the dry cleaners on race, age, and smoking status. The relationships between levels of cytological damage and exposures (including PCE levels in the shop and in workers' blood, packyears, cumulative alcohol consumption, and age) were compared with correlation coefficients and t-tests. Multiple linear regressions considered blood PCE, packyears, alcohol, and age. Results There were no significant differences between the PCE-exposed dry cleaners and the laundry workers for chromosome translocation frequencies, but PCE levels were significantly correlated with percentage of cells with acentric fragments (R2 = 0.488, p < 0.026). Conclusions There does not appear to be a strong effect in these dry cleaning workers of PCE exposure on persistent chromosome damage as measured by translocations. However, the correlation between frequencies of acentric fragments and PCE exposure level suggests that recent exposures to PCE may induce transient genetic damage. More heavily exposed participants and a larger sample size will be needed to determine whether PCE exposure induces significant levels of persistent chromosome damage. PMID:21392400

2011-01-01

18

TRICHLOROETHYLENE (TCE) ISSUE PAPERS  

EPA Science Inventory

These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

19

The viability of professional wet cleaning as a pollution prevention alternative to perchloroethylene dry cleaning.  

PubMed

The vast majority of dry cleaners worldwide use the toxic chemical perchloroethylene (PCE), which is associated with a number of adverse health and environmental impacts. Professional wet cleaning was developed as a nontoxic alternative to PCE dry cleaning but has not been widely adopted as substitute technology. In the greater Los Angeles, CA, region, a demonstration project was set up to showcase this technology and evaluate its commercial viability by converting seven cleaners from PCE dry cleaning to professional wet cleaning. The demonstration site cleaners who switched to professional wet cleaning were able to maintain their level of service and customer base while lowering operating costs. The cleaners were able to transition to professional wet cleaning without a great degree of difficulty and expressed a high level of satisfaction with professional wet cleaning. Crucial to this success was the existence of the demonstration project, which helped to develop a supporting infrastructure for professional wet cleaning that had otherwise been lacking in the garment care industry. PMID:17355078

Sinsheimer, Peter; Grout, Cyrus; Namkoong, Angela; Gottlieb, Robert

2007-02-01

20

Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.  

PubMed

Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. PMID:24853618

Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

2014-01-01

21

A study of the effect of perchloroethylene exposure on semen quality in dry cleaning workers  

SciTech Connect

The purpose of this investigation was to determine the effects of perchloroethylene (PCE) exposure on human semen quality. We compared the semen quality of 34 dry cleaners with that of 48 laundry workers. We examined the relationships of 17 semen parameters to expired air levels of PCE and to an index of exposure based on job tasks in the last three months. The average sperm concentration was over 80 million for both dry cleaners and laundry workers, but approximately one-quarter of each group was oligospermic. The overall percentage of abnormal forms was similar for the two groups; however, sperm of dry cleaners were significantly more likely to be round (t = -3.29, p = 0.002) and less likely to be narrow (t = 2.35, p = 0.02) than the sperm of laundry workers. These effects were dose-related to expired air levels and to the exposure index after controlling for potential confounders (e.g., heat exposure). The average percent motile sperm for both groups was slightly over 60%; however, sperm of dry cleaners tended to swim with greater amplitude of lateral head displacement (ALH) than those of laundry workers (t = -1.73, p = 0.09), and level of PCE in expired air was a significant predictor of ALH in the multiple regression model (t = 2.00, p = 0.05). In addition, exposure index was a significant negative predictor of the sperm linearity parameter (t = -2.57, p = 0.01). These results suggest that occupational exposures to PCE can have subtle effects on sperm quality. Additional analyses are required to determine whether these effects are associated with changes in fertility.

Eskenazi, B.; Wyrobek, A.J.; Fenster, L.; Katz, D.F.; Sadler, M.; Lee, J.; Hudes, M.; Rempel, D.M. (Program of Maternal and Child Health, School of Public Health, University of California, Berkeley (United States))

1991-01-01

22

Property Changes in Aqueous Solutions due to Surfactant Treatment of PCE: Implications to Geophysical Measurements  

NASA Astrophysics Data System (ADS)

Select physicochemical properties of aqueous solutions composed of surfactants, dye, and perchloroethylene (PCE) were evaluated through a response surface quadratic design model of experiment. Nine surfactants, which are conventionally used in the remediation of PCE, were evaluated with varying concentrations of PCE and indicator dyes in aqueous solutions. Two hundred forty experiments were performed using PCE as a numerical factor (coded A) from 0 to 200 parts per million (ppm), dye type (coded B) as a 3-level categorical factor, and surfactant type (coded C) as a 10-level categorical factor. Five responses were measured: temperature (°C), pH, conductivity (?S/cm), dissolved oxygen (DO, mg/L), and density (g/mL). Diagnostics proved a normally distributed predictable response for all measured responses except pH. The Box-Cox plot for transforms recommended a power transform for the conductivity response with lambda (?) = 0.50, and for the DO response, ? =2.2. The overall mean of the temperature response proved to be a better predictor than the linear model. The conductivity response is best fitted with a linear model using significant coded terms B and C. Both DO and density also showed a linear model with coded terms A, B, and C for DO; and terms A and C for density. Some of the surfactant treatments of PCE significantly alter the conductivity, DO, and density of the aqueous solution. However, the magnitude of the density response is so small that it does not exceed the instrument tolerance. Results for the conductivity and DO responses provide predictive models for the surfactant treatment of PCE and may be useful in determining the potential for geophysically monitoring surfactant enhanced aquifer remediation (SEAR) of PCE. As the aqueous physicochemical properties change due to surfactant remediation efforts, so will the properties of the subsurface pore water which are influential factors in geophysical measurements. Geoelectrical methods are potentially the best suited to measure SEAR alterations in the subsurface because the conductivity of the pore fluid has the largest relative change. This research has provided predictive models for alterations in the physicochemical properties of the pore fluid to SEAR of PCE. Future investigations should address the contribution of the solid matrix in the subsurface and the solid-fluid interaction during SEAR of PCE contamination. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.

Werkema, D. D.

2007-12-01

23

TCE treatment pasta-bilities.  

PubMed Central

Monsanto's "Lasagna" process uses layers of treatment zones spaced between buried electrodes to remove trichloroethylene (TCE) from contaminated soil and groundwater. TCE is used primarily as a metal degreaser as well as in products such as dyes, printing ink, and paint. TCE can eventually make its way into the environment and is prevalent in the water and soil of industrialized nations. Although TCE breaks down in a few days when released into the atmosphere, it degrades much more slowly in soil, taking months or years. Moreover, it is often broken down by microbes into toxic substances such as vinylidene chloride (a suspected human carcinogen) and vinyl chloride (a known human carcinogen). The Lasagna process is based on the principle of electro-osmosis, in which an electric current draws water from low--permeability soils such as clays, silts, and fine sands. To remove TCE from contaminated soils, Monsanto scientists added layers of filtering media, which attack the contaminant as it is pulled from electrode to electrode. The technology has been tested at the Paducah Gaseous Diffusion Plant in western Kentucky, where it removed over 98% of TCE from contaminated soil. PMID:10464086

Holton, W C

1999-01-01

24

Regulations, environmental characteristics, and cleanup of perchloroethylene  

SciTech Connect

Perchloroethylene (perc) is primarily used in dry cleaning and textile processing. Media contaminated with perc in the environment may be regulated as hazardous waste or with respect to the human health drinking water standard. Perc is very mobile in the subsurface environment due to its high vapor pressure and low water solubility. Perc is classified as a Dense Nonaqueous Phase Liquid (DNAPL) in groundwater because of its low solubility and density greater than water. Perc is a persistent environmental contaminant because of its resistance to chemical and biological degradation. Perc degradation products are also classified as hazardous waste. Current soil and groundwater cleanup technologies/alternatives for perc contamination include vapor extraction, groundwater air sparging, removal and treatment of soil and groundwater, and biodegradation. Cleanup technologies under study include the use of aerobic/anaerobic biofilm, combined bioremediation with air sparging, solar detoxification, contaminant stripping using steam, and thermal enhanced vapor extraction.

Pearson, M.F. [Maxim Technologies, Inc., Billings, MT (United States)

1996-06-01

25

A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts  

USGS Publications Warehouse

A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

1993-01-01

26

Hepatic ultrasonic changes in workers exposed to perchloroethylene  

Microsoft Academic Search

OBJECTIVE--To determine if subclinical hepatotoxicity is associated with exposure to perchloroethylene at concentrations commonly experienced in the workplace, and whether surveillance with serum hepatic transaminase activity underestimates such effects. METHODS--Hepatic parenchymal echogenicity on ultrasonography and serum hepatic transaminase activity were compared in 29 community based dry cleaning operators exposed to perchloroethylene, and a control group of 29 non-exposed laundry workers.

C A Brodkin; W Daniell; H Checkoway; D Echeverria; J Johnson; K Wang; R Sohaey; D Green; C Redlich; D Gretch

1995-01-01

27

PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE  

EPA Science Inventory

Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

28

Dornoch Tce RiversideDr  

E-print Network

Dornoch Tce GaileyRd Sylvan Rd Coronation Dr RiversideDr MontagueRd Peel St Melbourne St Glenelg StSt StanleySt MerivaleSt CordeliaSt Russell St Peel St EdmondstoneSt BoundarySt Riverside Dr M ontague Rd Backpackers Resort Banana Bender Brisbane Homestead Palace Prince Consort Somewhere to Stay City Backpackers

Wang, Yan

29

Perchloroethylene-contaminated drinking water and the risk of breast cancer: additional results from Cape Cod, Massachusetts, USA.  

PubMed Central

In 1998 we published the results of a study suggesting an association between breast cancer and perchloroethylene (PCE; also called tetrachloroethylene) exposure from public drinking water. The present case-control study was undertaken to evaluate this association further. The cases were composed of female residents of eight towns in the Cape Cod region of Massachusetts who had been diagnosed with breast cancer from 1987 through 1993 (n = 672). Controls were composed of demographically similar women from the same towns (n = 616). Women were exposed to PCE when it leached from the vinyl lining of water distribution pipes from the late 1960s through the early 1980s. A relative delivered dose of PCE that entered a home was estimated using an algorithm that took into account residential history, water flow, and pipe characteristics. Small to moderate elevations in risk were seen among women whose exposure levels were above the 75th and 90th percentiles when 0-15 years of latency were considered (adjusted odds ratios, 1.5-1.9 for > 75th percentile, 1.3-2.8 for > 90th percentile). When data from the present and prior studies were combined, small to moderate increases in risk were also seen among women whose exposure levels were above the 75th and 90th percentiles when 0-15 years of latency were considered (adjusted odds ratios, 1.6-1.9 for > 75th percentile, 1.3-1.9 for > 90th percentile). The results of the present study confirm those of the previous one and suggest that women with the highest PCE exposure levels have a small to moderate increased risk of breast cancer. PMID:12573900

Aschengrau, Ann; Rogers, Sarah; Ozonoff, David

2003-01-01

30

Graphene packed needle trap device as a novel field sampler for determination of perchloroethylene in the air of dry cleaning establishments.  

PubMed

In this paper we describe the application of a needle trap microextraction device packed with graphene nanoplatelets for the sampling and analysis of perchloroethylene in dry cleaning. The study was carried out in two phases. First the parameters for the sampling and analysis of perchloroethylene by NTD were evaluated and optimized in the laboratory. Then the sampler was used to determine the levels of perchloroethylene in a dry-cleaning shop. In the laboratory phase of the study the performance of the NTD packed with the proposed sorbent was examined in a variety of sampling conditions to evaluate the technique. The technique was also compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. Both the NTDs and SPME performed better at lower sampling temperatures and relative humidity levels. The post-sampling storage times for a 95% recovery of the analyte were 5, 5 and 3 days for NTD-graphene, NTD-PDMS and SPME-CAR/PDMS respectively. The optimum desorption time was 3min for NTDs packed with either graphene or PDMS and 1min for SPME-CAR/PDMS. The limits of detection for the GC/MS detection system were 0.023 and 0.25ngmL(-1) for NTDs packed with graphene and PDMS and 0.014ngmL(-1) for SPME coated with CAR/PDMS. In the second stage of the study the evaluated technique was applied to the sampling and analysis of perchloroethylene in dry cleaning. In this environment the performance of the NTD-graphene as a field sampler for PCE was similar to that of the SPME-CA/PDMS, and better than the NIOSH 1003 method which had greater measurement variations. The results show that a NTD packed with carbonic graphene nanoplatelets and used as an active exhaustive sampling technique is effective for determination of VOC and HVOC occupational/environmental pollutants in air. PMID:25281085

Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Rafiei Emam, Maryam; Shahna, Farshid Ghorbani; Soltanian, Ali Reza

2015-01-01

31

Decontamination of TCE and U-rich waters by granular iron: Role of sorbed Fe(II)  

Microsoft Academic Search

Uranium (UOâ{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and

Laurent Charlet; E. Liger; P. Gerasimo

1998-01-01

32

INHIBITORY EFFECTS OF PERCHLOROETHYLENE ON HUMAN NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.  

EPA Science Inventory

Perchloroethylene (PERC) is a volatile organic solvent with a variety of industrial uses. PERC exposure has been shown to cause adverse neurological effects including deficits in vision and memory in exposed individuals. Despite knowledge of these effects, the mechanisms by whi...

33

Degradation of Perchloroethylene and Dichlorophenol by Pulsed-Electric  

E-print Network

. Perchloroethylene (0.6 mM) was similarly treated in a first-stage PED reactor (80% chloride removal after four: 714-824-8389; fax: 714-824-2541; e-mail: tkwood@uci.edu 2 Department of Physics and Astronomy with the PED-treated DCP samples and yielded a maximum of two-fold additional Cl- re- leased compared

Wood, Thomas K.

34

EVALUATION OF PERCHLOROETHYLENE EMISSIONS FROM DRY CLEANED FABRICS  

EPA Science Inventory

The report gives results of short-term evaluation of perchloroethylene (perc) from dry cleaned fabrics to determine: (1) how the introduction of fresh dry cleaning into a house affects the indoor concentration of perc, and (2) the effectiveness of 'airing-out' for reducing perc e...

35

Permeation of protective clothing materials by methylene chloride and perchloroethylene.  

PubMed

The permeation of methylene chloride and perchloroethylene through seven protective clothing materials was studied to determine the permeation parameters, and to investigate the effect of solubility (polymer weight gain) and material thickness on the permeation parameters. The materials tested were two different nitrile rubbers, neoprene, Combination (a blend of natural rubber, neoprene and nitrile), two different polyvinyl chlorides, and polyvinyl alcohol. Methylene chloride permeated through all materials, except PVA, with breakthrough times in the range of 2 to 8 min, and permeation rates in the range of 1250-5800 micrograms/cm2 X min. PVA and unsupported nitrile offered good protection against perchloroethylene with breakthrough time occurring after 2 hr. Perchloroethylene permeated through the other materials with breakthrough times in the range of 8 to 36 min and permeation rates in the range of 200 to 1600 micrograms/cm2 X min. It was shown that for both chemicals, there is a correlation between the solubility (weight gain) and the ratio of permeation rate to breakthrough time (PR/BT). For all material/chemical pairs, an increase in solubility, increased (PR/BT). The change in material thickness had an effect on breakthrough time and permeation rate, but no effect on normalized breakthrough time. An increase in thickness reduced permeation rate and increased breakthrough time. PMID:3618477

Vahdat, N

1987-07-01

36

Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.  

PubMed

Trichloroethylene (TCE) is a toxic, recalcitrant groundwater pollutant. TCE-degrading microorganisms were isolated from various environments. The aerobic bacteria isolated from toluene- and tryptophan-containing media were Pseudomonas sp. strain ASA86 and Burkholderia sp. strain TAM17, respectively; these are necessary for inducing TCE biodegradation in a selective medium. The half-degradation time of TCE to a concentration of 1mg/L was 18 h for strain ASA86 and 7 days for strain TAM17. While identifying toluene/TCE degradation genes, we found that in strain ASA86, the gene was the same as the todC1 gene product encoding toluene dioxygenase identified in Pseudomonas putida F1, and that in strain TAM17, the gene was similar to the tecA1 gene product encoding chlorobenzene dioxygenase identified in Burkholderia sp. PS12. A novel TCE biosensor was developed using strain ASA86 as the inducer of toluene under aerobic conditions. The TCE biosensor exhibited a linear relationship below 3 ppm TCE. Detection limit of the biosensor was 0.05 ppm TCE. The response time of the biosensor was less than 10 min. The biosensor response displayed a constant level during a 2 day period. The TCE biosensor displayed sufficient sensitivity for monitoring TCE in environmental systems. PMID:21872018

Chee, Gab-Joo

2011-09-30

37

Regeneration of Olfactory Mucosa in Mice after Inhalation Exposure to Perchloroethylene  

Microsoft Academic Search

An experimental group of 20 male pure-bred mice was exposed to perchloroethylene gas at 300 ppm for 6 h daily for 5 days. Histopathological study of the nasal mucosa, particularly the olfactory mucosa, was performed sequentially 2 weeks to 3 months after exposure, to clarify the process of regeneration. The tissue damage due to perchloroethylene gas was more persistent in

Harumi Suzaki; Akihiko Aoki; Yasuya Nomura

1997-01-01

38

Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil  

NASA Astrophysics Data System (ADS)

Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

2011-12-01

39

Simulating Metabolic Reductive Decholorination with Multiple Cultures during Bioenhanced PCE-NAPL Dissolution  

NASA Astrophysics Data System (ADS)

A recently conducted laboratory experiment investigating metabolic reductive dechlorination in dense non-aqueous phase liquid (DNAPL) source zones demonstrated enhanced DNAPL dissolution by increasing the driving force for mass transfer due to reductions in the aqueous phase. Tetrachloroethene (PCE) was degraded sequentially to cis-1,2-dichloroethene (cis-DCE) through trichloroethylene (TCE) and to ethene via vinyl chloride (VC) by Geobacter and Dehalococcoides, respectively. Significant PCE dechlorination led to bioenhanced DNAPL dissolution, with a 5-fold increase in dissolution observed relative to an abiotic system. A multiphase, compositional simulator, the Michigan Subsurface Environmental Simulator (MISER), was modified to model 9 chemical constituents and 3 microbial populations (a fermentor and two dechlorinators) within the column. Monod kinetics, including electron donor thresholds, electron acceptor competition, and competitive inhibition, were used to model contaminant dechlorination and biomass growth. The model was calibrated to the experimental data using effluent concentrations. Model results were compared to analyses of side port samples collected along the column length to determine the ability of the model to reproduce the biomass growth and reductive dechlorination occurring within the column. Results suggest that the model as formulated is capable of capturing the general trends observed in the column. Work is on-going to investigate the influence of initial biomass distribution, DNAPL source zone distribution, and applied boundary conditions on bioenhanced dissolution predictions. This model is expected to provide valuable insights for future experimental design and identification of conditions that may govern bioenhanced dissolution in the field.

Chen, M.; Abriola, L.; Christ, J.; Amos, B. K.; Suchomel, E. J.; Pennell, K. D.; Loeffler, F.

2009-12-01

40

Occupational exposure to perchloroethylene in the dry cleaning industry.  

PubMed

Field surveys were conducted of 67 dry cleaning establishments to assess working conditions and potential for exposure to perchloroethylene, a solvent of choice in this industry. Evaluation of ventilation controls showed that 28% of cleaning machines (transfer type) did not have functioning local exhaust systems, and an additional 32% had inadequately maintained systems providing less than the recommended face velocity at the door opening. Personal sampling was performed in 20 firms to relate operator exposure levels to the process used and degree of local exhaust ventilation. Utilization of the dry-to-dry (closed system) process resulted in a lower mean TWA exposure, 28.3 ppm, as compared to 86.6 ppm for transfer operations. Five-minute peak samples taken during clothing transfer demonstrated significant exposure levels ranging from 11.3 to 533.8 ppm. A lower mean peak exposure (25.3 ppm) was found for firms with local exhaust ventilation at the recommended rate than for facilities with poorly or unventilated cleaning machines (159.7 ppm). The study points out the manner in which available control measures can be used optimally to reduce employee exposure. Increased involvement of trade associations and local health authorities is also recommended to promote the safe use of perchloroethylene in the dry cleaning industry. PMID:4003279

Materna, B L

1985-05-01

41

Public health assessment for Malvern Tce Site, Malvern, Chester County, Pennsylvania, Region 3. Cerclis No. PAD014353445. Final report  

SciTech Connect

The Chemclene (Malvern TCE) site is a National Priorities List (NPL) site in Chester County, Pennsylvania, 5.5 miles south of Phoenixville. Over the years, careless waste handling and waste burial have contaminated soil and groundwater with trichloroethene (TCE), 1,1,1-trichloroethane (TCA), and tetrachloroethene (PCE). Based upon the information reviewed, the Pennsylvania Department of Health and the Agency for Toxic Substances and Disease Registry have concluded that this site is a public health hazard because past exposures through the use of contaminated well water were at levels of public health concern. Human exposure to volatile organic compounds (VOCs) may still be occurring through the use of private well water, and the potential for exposure from the nearby public well exists should the contaminant plume reach that well.

Not Available

1994-01-06

42

A Continuous Flow Column Study of Anaerobic PCE Transformation With the Evanite Culture and Hanford Aquifer Solids  

NASA Astrophysics Data System (ADS)

Anaerobic reductive dehalogenation of tetrachloroethene (PCE) and trichoroethene (TCE) is a promising technology for the in situ treatment of high concentration source zones in contaminated aquifers. Continuous flow column studies were performed where a mixed dehalogenating culture (Evanite culture) that contains Dehalococcides-like microorganisms was bioaugmented into aquifer solids from the Hanford DOE site. Studies conducted prior to bioaugmentation showed PCE transport was retarded due to sorption onto the aquifer solids. Upon bioaugmentation and with continuous lactate addition, PCE (10 mg/L) was transformed to cis-dichloroethene ( cis-DCE), and enhanced transformation of sorbed PCE was observed. Prolonged production of cis-DCE was associated with iron reducing conditions, while eventual vinyl chloride (VC) reduction to ethene was associated with sulfate reducing conditions. Microbial processes included lactate fermentation to acetate and propionate, iron reduction, sulfate reduction, and reductive dehalogenation, with reductive dehalogenation utilizing 2 to 3% of the electron donor addition. PCE was completely transformed to ethene within a hydraulic residence time of one day. Upon competition of the column tests spatial samples of aquifer solids were analyzed using molecular methods and solids were used in batch microcosm activity tests. Dehalococcoides sp. 16S rRNA gene copy numbers dropped from ~ 74% of total Eubacterial 16S rRNA genes in the original inoculum, to about 0.5 to 4% through out the column, consistent with the estimates of electron donor utilization for dehalogenation reactions. Microcosm tests showed most of PCE transformation activity at the entrance of the column, consistent with the Dehalococcoides sp. 16S rRNA gene copy numbers being highest in that area. Roughly 20% of the Dehalococcoides sp. population in the column possessed a vcrA gene for the respiration of VC to ethene. The vcrA-positive subpopulation decreases to about 5% towards the column outflow, while VC microcosm activity tests show fairly constant rates of VC transformation across the column. The column studies demonstrated that complete transformation of PCE to ethene can be obtained over short spatial and temporal scales.

Semprini, L.; Behrens, S.; Azizian, M.; Sabalowsky, A.; Dolan, M.; Ruiz-Hass, P.; Ingle, J.; Spormann, A.

2005-12-01

43

Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.  

PubMed

A biofilter column inoculated with Pseudomonas putida F1 was operated to study cometabolic biodegradation of trichloroethylene (TCE) gas using toluene as a primary substrate. Variations in the efficiency and capacity of TCE elimination with different inlet concentrations of toluene and TCE were investigated in order to understand the competitive inhibition between toluene and TCE. Two toluene feeding methods, stage feeding along the column and cyclic feeding, were examined as strategies to enhance TCE cometabolic biodegradation by avoiding the toluene inhibition of TCE biodegradation and the toxic effect of TCE on cells and toluene dioxygenase enzymes. It was concluded that both methods are promising and that the determination of a suitable feeding frequency, recovery period, and inlet toluene concentration was required to optimize cyclic feeding in the cometabolic biodegradation of TCE. PMID:16473776

Jung, In-Gyung; Park, Ok-Hyun

2005-12-01

44

Monitoring TCE Degradation by In-situ Bioremediation in TCE-Contaminated site  

NASA Astrophysics Data System (ADS)

Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we investigated two different tests (i.e., biostimulation and bioaugmentation) of biological remediation through the Well-to-Well test (injection well to extraction well) in TCE-contaminated site. Also solutions (Electron donor & acceptor, tracer) were injected into the aquifer using a liquid coupled with nitrogen gas sparging. In biostimulation, we use 3 phases to monitoring biological remediation. Phase 1: we inject formate solution to get electron donor hydrogen (hydrogen can be generated from fermentation of formate). We also inject bromide as tracer. Phase 2: we made injection solution by formate, bromide and sulfate. The reason why we inject sulfate is that as a kind of electron accepter, sulfate reduction process is helpful to create anaerobic condition. Phase 3: we inject mixed solution made by formate, sulfate, fumarate, and bromide. The degradation of fumarate has the same mechanism and condition with TCE degradation, so we added fumarate to make sure that if the anaerobic TCE degradation by indigenous microorganisms started up (Because low TCE concentration by gas sparging). In the bioaugmentation test, we inject the Evanite culture (containing dehalococcoides spp) and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the field by measuring TCE and VC reductases.

Han, K.; Hong, U.; Ahn, G.; Jiang, H.; Yoo, H.; Park, S.; Kim, N.; Ahn, H.; Kwon, S.; Kim, Y.

2012-12-01

45

Effect of perchloroethylene and its metabolites on intercellular communication in clone 9 rat liver cells  

Microsoft Academic Search

Gap junction intercellular communication (IC) is thought to be important in chemical carcinogenesis as abnormalities in IC have been found in cancer cells. Perchloroethylene (PERC) is metabolized in rodent liver to dichloroacetic acid (DCA) and trichloroacetic acid (TCA), which are rodent liver carcinogens. Chloral hydrate (CH) and trichloroethanol (TCEth) are kidney metabolites. We used Lucifer yellow scrape-load dye transfer as

S. G. Benane; C. F. Blackman; D. E. House

1996-01-01

46

PERCHLOROETHYLENE (PERC) INHIBITS FUNCTION OF VOLTAGE-GATED CALCIUM CHANNELS IN PHEOCHROMOCYTOMA CELLS.  

EPA Science Inventory

The industrial solvent perchloroethylene (PERC) is listed as a hazardous air pollutant in the 1990 Ammendments to Clean Air Act and is a known neurotoxicant. However, the mechanisms by which PERC alters nervous system function are poorly understood. In recent years, it has been d...

47

Fenton Oxidation of TCE Vapors in a Foam Reactor  

E-print Network

oxidation INTRODUCTION Trichloroethylene (TCE) has been one of the most widely detected contaminants in soil of TCE bio- degradation intermediates [7, 8]. On the other hand, advanced oxidation processes provide, the high capital and maintenance costs, sensitivity to gas moisture, and difficulty in scale-up may offset

48

PCE solubilization and mobilization by commercial humic acid  

NASA Astrophysics Data System (ADS)

In this paper, comparison is made of terms describing solubilization of hydrophobic organic compounds (HOC) by dissolved humic substances (DHS) and commercial non-ionic surfactants. This paper examines the ability of a commercial humic acid (Aldrich humic acid) to solubilize and mobilize tetrachlorothene (PCE) residual in porous media. The constant for solubilization of PCE by Aldrich humic acid is shown to be a factor of two to thirty times less than that published for dodecyl alcohol ethoxylate surfactants, showing that Aldrich humic acid is less capable than some non-ionic surfactants at solubilizing residual PCE. The depression of PCE-water interfacial tension in the presence of DHS is shown to be significantly less than published values for a non-ionic surfactant, and surfactant mixtures, indicating that the DHS used in this study is less prone to cause mobilization of non-aqueous phase liquids relative to surfactants. Several possible advantages of DHS use in the remediation of subsurface media contaminated with HOC are described, including the ability of DHS to solubilize HOC irrespective of the DHS concentration, and potential lesser tendency of DHS to depress the interfacial tension between non-aqueous phases and water relative to surfactants (an advantage when mobilization is undesired).

Johnson, William P.; John, W. Wynn

1999-01-01

49

Anaerobic biodegradation of TCE in laboratory columns of fractured saprolite.  

PubMed

An experiment was conducted to determine if biodegradation of trichloroethylene (TCE) can occur in previously uncontaminated ground water in saturated fractured saprolite (highly weathered material derived from sedimentary rocks). Two undisturbed columns (0.23 m diameter by 0.25 m long) of fractured saprolite were collected from approximately 2 m depth at an uncontaminated site on the Oak Ridge Reservation, Oak Ridge, Tennessee. Natural, uncontaminated ground water from the site, which was degassed and spiked with dissolved phase TCE, was continuously pumped through one column containing the natural microbial communities (the biotic column). In a second column, the microorganisms were inhibited and the dissolved phase TCE was added under aerobic conditions (dissolved oxygen conditions > 2 ppm). In effluent from the biotic column, reducing conditions rapidly developed and evidence of anaerobic biodegradation of TCE, by the production of cDCE, first appeared approximately 31 days after addition of TCE. Reductive dechlorination of TCE occurred after iron-reducing conditions were established and about the same time that sulfate reduction began. There was no evidence of methanogenesis. Analyses using polymerase chain reaction with specific primers sets detected the bacteria Geothrix, Geobacter, and Desulfococcus-Desulfonema-Desulfosarcina in the effluent of the biotic column, but no methanogens. The presence of these bacteria is consistent with iron- and sulfate-reducing conditions. In the inhibited column, there were no indicators of TCE degradation. Natural organic matter that occurs in the saprolite and ground water at the site is the most likely primary electron donor for supporting reductive dechlorination of TCE. The relatively rapid appearance of indicators of TCE dechlorination suggests that these processes may occur even in settings where low oxygen conditions occur seasonally due to changes in the water table. PMID:15318776

Lenczewski, Melissa E; McKay, Larry D; Layton, Alice

2004-01-01

50

CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK  

EPA Science Inventory

The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

51

Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)  

SciTech Connect

Uranium (UO{sub 2}{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron. These values fit closely with those measured in the Fe(II)-{alpha}Fe{sub 2}O{sub 3}-H{sub 2}O system (in the absence of U or PCE), not those of the Fe(o)/Fe(II) or H{sub 2}(g)/H{sub 2}O couples. Because iron (II) is very unstable in environments that are not strictly anaerobic, Fe(o) serves as a source of Fe(II). The reduction kinetic rate, analyzed in detail for the reduction of U(VI), is found to be a function of the concentration of OH{sup {minus}}, Fe{sup 2+} and reactive surface sites, and is given in terms of sorbed species concentrations by {l_brace}d[U(VI)]{sub ads}{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][U(VI)]{sub ads}{r_brace}. This rate law applies to organic pollutants as well, as long as they can be reduced by surface Fe(II): {l_brace}d[Pollutant]{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][Pollutant]{r_brace}. This mechanism suggests new possibilities for the improvement of low-cost decontamination techniques for U- and chlorinated aliphatic-rich waters.

Charlet, L.; Liger, E. [Univ. of Grenoble-I (France); Gerasimo, P. [Service de Protection Radiologique des Armees, Clamart (France)

1998-01-01

52

Cosolvent effect on the catalytic reductive dechlorination of PCE.  

PubMed

Reductive dechlorination of chlorinated organic contaminants is an effective approach to treat this widespread group of environmentally hazardous substances. Metalloporphyrins can be used to catalyze reduction reactions by shuttling electrons from a reducing agent (electron donor) to chlorinated organic contaminants, thus rendering them to non-chlorinated acetylene, ethylene or ethane as major products. Iron, nickel and vanadium oxide tetraphenyl porphyrins (TPPs) were used as models of non-soluble metalloporphyrins that are common in subsurface environments, and hence may inflect on the ability to use natural ones. The effect of cosolvents on metalloporphyrins is demonstrated to switch the reduction of tetrachlorethylene (PCE) from no reaction to complete PCE transformation within 24 h and the production of final non-chlorinated compounds. Variations in product distributions for the different metalloporphyrins indicate that changes in the core metal can influence reaction rates and effective pathways. Furthermore, different cosolvents can generate varied product distributions, again suggesting that different pathways and/or rates are operative in the reduction reactions. Comparison of different cosolvent effects on PCE reduction using vitamin B12--a soluble natural metalloporphyrinogen--as the catalyst shows less pronounced differences between reactions in various cosolvent solutions versus only aqueous solution. PMID:15519395

Dror, Ishai; Schlautman, Mark A

2004-12-01

53

TCE degradation by methanotrophic bacteria in a water-saturated sand column  

SciTech Connect

Trichloroethylene (TCE) degradation in a polluted aquifer was simulated using water-saturated sand columns with alternative injection of aqueous TCE/salt solution and CH{sub 4}/air mixture. Experiments were performed with two columns. The first under abiotic conditions to determine the TCE stripped fraction and the second seeded with a methanotrophic strain to quantify TCE biodegradation. Preliminary tests were performed in flasks to optimize CH{sub 4}/air injection. Stripping of TCE increased with increasing influent TCE concentration and residence time inside the column. TCE losses in gaseous effluent varied between 34% and 67% of the TCE injected. Under nonlimiting oxygen and mineral nutrient conditions, 50% of the TCE was biodegraded immediately after seeding the column, this value finally stabilizing at 20 to 30% of residual TCE after stripping.

Fayolle, F.; Le Roux, F.; Treboul, C.; Ballerini, D. [Inst. Francais du Petrole, Rueil Malmaison (France). Div. Biotechnologie et Environment

1995-12-31

54

Aqueous oxidation of trichloroethene (TCE): a kinetic and thermodynamic analysis  

SciTech Connect

An empirical kinetic rate law was determined for the aqueous oxidation of trichloroethene (TCE). By measuring both the rate of disappearance of TCE and the rate of appearance of carbon dioxide and chloride ion, mass balances were monitored to confirm that `mineralization` was the ultimate reaction. Dilute buffer solutions were used to fix pH and stoichiometrically sufficient amounts of dissolved oxygen were used to make the reactions zero-order in oxygen. Using standard chemical kinetic methods, two orders of magnitude were spanned in initial TCE concentration and used in the resulting double-log plot vs. initial rate (regressed using both linear and polynomial fits) to determine the rate constant and `true` reaction order (i.e., with respect to;concentration, not time). By determining rate constants over the temperature interval 343-373K, an Arrhenius activation energy was determined for the reaction. A study was made of the potential effect of buffer ligand concentration and type (phosphate, borate, acetate, carbonate, sulfate), ionic strength, specific electrolytes, and pH on the rate of TCE. The aqueous oxidation reaction rate was found to be pH dependent over the pH range pH 2 to pH 1O and strongly inhibited by high dissolved bromide concentration. The equilibrium aqueous solubilities of TCE was determined by making reversed measurements from 294-390K. Together with the kinetic rate law, the thermodynamic data are required to develop in situ thermal remedial techniques for TCE and to model the reactive transport behavior of TCE in the subsurface.

Knauss, K. G., LLNL

1998-02-28

55

Drip Irrigation Aided Phytoremediation for Removal of TCE from Groundwater  

SciTech Connect

Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting from discharges of this organic solvent during past disposal practices. This contaminated groundwater occurs primarily at depths of 9 meters to 15 meters below ground surface, well below the depths that are typically penetrated by plant roots. The process investigated in this study involved pumping water from the contaminated aquifer and discharging the water into overlying test plots two inches below the surface using drip irrigation. The field treatability study was conducted from 8/31/00 to 4/18/02 using six 0.08 hectare test plots, two each containing pines, cottonwoods, and no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to determine the principal biotic and abiotic pathways for its removal. Results demonstrated that the process provides a viable method to remove TCE-contaminated groundwater. The data clearly showed that the presence of trees reduced volatilization of TCE from the drip irrigation system to the atmosphere. Influent groundwater TCE concentrations averaging 89 mg/L were reduced to non-detectable levels (less than 5 mg/L) within the upper two feet of soil (rhizosphere).

Wilde, E.W.

2003-04-24

56

Inter-Domain Redundancy Path Computation Methods Based on PCE  

NASA Astrophysics Data System (ADS)

This paper evaluates three inter-domain redundancy path computation methods based on PCE (Path Computation Element). Some inter-domain paths carry traffic that must be assured of high quality and high reliability transfer such as telephony over IP and premium virtual private networks (VPNs). It is, therefore, important to set inter-domain redundancy paths, i. e. primary and secondary paths. The first scheme utilizes an existing protocol and the basic PCE implementation. It does not need any extension or modification. In the second scheme, PCEs make a virtual shortest path tree (VSPT) considering the candidates of primary paths that have corresponding secondary paths. The goal is to reduce blocking probability; corresponding secondary paths may be found more often after a primary path is decided; no protocol extension is necessary. In the third scheme, PCEs make a VSPT considering all candidates of primary and secondary paths. Blocking probability is further decreased since all possible candidates are located, and the sum of primary and secondary path cost is reduced by choosing the pair with minimum cost among all path pairs. Numerical evaluations show that the second and third schemes offer only a few percent reduction in blocking probability and path pair total cost, while the overheads imposed by protocol revision and increase of the amount of calculation and information to be exchanged are large. This suggests that the first scheme, the most basic and simple one, is the best choice.

Hayashi, Rie; Oki, Eiji; Shiomoto, Kohei

57

Large two-dimensional laboratory experiment with biodegradation of a PCE source zone  

NASA Astrophysics Data System (ADS)

To investigate the effects of bioremediation on DNAPL source zones, we carried out an experiment in a two-dimensional tank filled with sand. A microbial assemblage originating from a contaminated field site was used for inoculation without enrichment. Injection of 250 ml PCE into the tank yielded a residual zone of PCE with a pool at the bottom. After this injection, the tank was continuously flushed with anaerobic water containing sufficient electron donor and various nutrients. Chlorinated ethenes analysis, microbial groups counting, and the visual observation of the colored PCE show that PCE was degraded in the source zone. Bio-enhanced dissolution occurred as cDCE concentrations were measured four times the solubility limit of PCE and because the PCE solubility limit in the source zone increased. Degradation of cDCE to VC and ethene occurred when PCE concentrations were low (<0.1 mM). After one year of experiment, approximately 135 ml of chlorinated ethenes were removed from the tank. PCE left in the tank was 90 ml and was only present in the pool. keywords: 2D tank experiment, PCE-DNAPL, reductive dechlorination, source zone, bio-enhanced dissolution, mobilization.

Langevoort, M.; Hassanizadeh, S.; Kleingeld, P.; Heimovaara, T.; Leijnse, T.

2008-12-01

58

Socioeconomic disparities in indoor air, breath, and blood perchloroethylene level among adult and child residents of buildings with or without a dry cleaner.  

PubMed

In many cities, dry cleaners using perchloroethylene are frequently located in multifamily residential buildings and often cause elevated indoor air levels of perchloroethylene throughout the building. To assess individual perchloroethylene exposures associated with co-located dry cleaners, we measured perchloroethylene in residential indoor air, and in blood and breath of adults and children residing in buildings with a dry cleaner as part of the New York City (NYC) Perc Project. We also measured perchloroethylene in indoor air, and in blood and breath of residents of buildings without a dry cleaner for comparison. Here, we evaluate whether an environmental disparity in perchloroethylene exposures is present. Study participants are stratified by residential building type (dry cleaner or reference) and socioeconomic characteristics (race/ethnicity and income); measures of perchloroethylene exposure are examined; and, the influence of stratified variables and other factors on perchloroethylene exposure is assessed using multivariate regression. All measures of perchloroethylene exposure for residents of buildings with a dry cleaner indicated a socioeconomic disparity. Mean indoor air perchloroethylene levels were about five times higher in minority (82.5 ug/m(3)) than in non-minority (16.5 ug/m(3)) households, and about six times higher in low-income (105.5 ug/m(3)) than in high income (17.8 ug/m(3)) households. Mean blood perchloroethylene levels in minority children (0.27 ng/mL) and adults (0.46 ng/mL) were about two and three times higher than in non-minority children (0.12 ng/mL) and adults (0.15 ng/mL), respectively. Mean blood perchloroethylene levels in low income children (0.34 ng/mL) and adults (0.62 ng/mL) were about three and four times higher than in high income children (0.11 ng/mL) and adults (0.14 ng/mL), respectively. A less marked socioeconomic disparity was observed in perchloroethylene breath levels with minority and low income residents having slightly higher levels than non-minority and high income residents. Multivariate regression affirmed that indoor air perchloroethylene level in dry cleaner buildings was the single most important factor determining perchloroethylene in blood and breath. Neither age, gender, nor socioeconomic status significantly influenced perchloroethylene levels in breath or blood. We previously reported that increased indoor air, breath, and blood perchloroethylene levels among NYC Perc Project child participants were associated with an increased risk for slightly altered vision. Thus, the disproportionately elevated perchloroethylene exposures of minority and low-income child residents of buildings with a dry cleaner shown here constitutes an environmental exposure disparity with potential public health consequences. Among residents of buildings without a dry cleaner, we observed some small increases in perchloroethylene breath and blood levels among non-minority or high income residents compared to minority or low income residents. These differences were not attributable to differences in indoor air levels of perchloroethylene which did not differ across socioeconomic categories, but appear to be associated with more frequent exposures dry cleaned garments. PMID:23453848

Storm, Jan E; Mazor, Kimberly A; Shost, Stephen J; Serle, Janet; Aldous, Kenneth M; Blount, Benjamin C

2013-04-01

59

IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)  

EPA Science Inventory

EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database. Please refer to ...

60

Anaerobic Biodegradation of TCE in Laboratory Columns of Fractured Saprolite  

Microsoft Academic Search

An experiment was conducted to determine if biodegradation of trichloroethylene (TCE) can occur in previously uncontaminated ground water in saturated fractured saprolite (highly weathered material derived from sedimentary rocks). Two undisturbed columns (0.23 m diameter by 0.25 m long) of fractured saprolite were collected from ?2 m depth at an uncontaminated site on the Oak Ridge Reservation, Oak Ridge, Tennessee.

Melissa E. Lenczewski; Larry D. McKay; Alice Layton

2004-01-01

61

Impact of FeS Mineralogy on TCE Degradation  

EPA Science Inventory

Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

62

FRACTIONATION OF STABLE CARBON ISOTOPES DURING ABIOTIC TRANSFORMATION OF TCE  

EPA Science Inventory

At a Superfund Site in Minnesota, ground water is contaminated with trichloroethylene (TCE) with the contaminant plume stretching over five miles long. The ground water is iron and manganese reducing, and the complete absence of dichloroethylene, vinyl chloride, and ethene in th...

63

Degradation of perchloroethylene and nitrate by high-activity modified green rusts  

E-print Network

characterized in this study. First, the most promising HMGRs were developed through screening tests. GRs modified with Pt, Cu, Ag, or Pb were found to be effective in improving degradation rates of PCE. GR-F(Pt) and GR-F(Cu) were chosen because they showed high...

Choi, Jeong Yun

2006-10-30

64

78 FR 17777 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013

...Revenue Service Tax Counseling for the Elderly (TCE) Program Availability of Application...Packages for the 2014 Tax Counseling for the Elderly (TCE) Program. DATES: Application...the IRS for the Tax Counseling for the Elderly (TCE) Program is May 31, 2013....

2013-03-22

65

75 FR 22437 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013

...Revenue Service Tax Counseling for the Elderly (TCE) Program Availability of Application...Packages for the 2011 Tax Counseling for the Elderly (TCE) Program. DATES: Application...IRS for the 2011 Tax Counseling for the Elderly (TCE) Program is July 9, 2010....

2010-04-28

66

77 FR 20695 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013

...Revenue Service Tax Counseling for the Elderly (TCE) Program Availability of Application...Packages for the 2013 Tax Counseling for the Elderly (TCE) Program. DATES: Application...the IRS for the Tax Counseling for the Elderly (TCE) Program is May 31, 2012....

2012-04-05

67

75 FR 25319 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages; Correction  

Federal Register 2010, 2011, 2012, 2013

...Revenue Service Tax Counseling for the Elderly (TCE) Program Availability of Application...a notice of the Tax Counseling for the Elderly (TCE) Program Availability of Application...packages for the 2011 Tax Counseling for the Elderly (TCE) Program. FOR FURTHER...

2010-05-07

68

76 FR 30243 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013

...Revenue Service Tax Counseling for the Elderly (TCE) Program Availability of Application...Packages for the 2012 Tax Counseling for the Elderly (TCE) Program. DATES: Application...IRS for the 2012 Tax Counseling for the Elderly (TCE) Program is June 30, 2011....

2011-05-24

69

Widespread PCE Contamination: Characterization and Source Investigation to Protect Municipal Wells  

NASA Astrophysics Data System (ADS)

Fifteen years of groundwater quality monitoring of municipal wells in Reno, Nevada have shown increasing levels of PCE (tetrachloroethylene) beyond the U.S. EPA MCL of 5 ug/L. Eleven of the 28 municipal wells have detectable levels of PCE, with five of those wells requiring wellhead treatment. The Central Truckee Meadows Remediation District (CTMRD) was created to provide wellhead treatment of PCE, and evaluate, characterize, and remediate (if possible) the PCE-contaminated groundwater. The CTMRD's first tasks of wellhead treatment, plume characterization, remediation plan development, and source zone identification has been completed. The CTMRD recently completed investigations into the presence of PCE in sanitary sewer systems and their potential as pathways for contaminant migration throughout the Reno/Sparks metropolitan area. The first phase of the sewer investigation considered the possibility that PCE resides in the sanitary sewer system and that it may be actively discharged to the sewer system as well. Results of this investigation revealed that nine sub-regions contained maximum PCE concentrations of that exceeded 100 ug/L, 20 times the U.S. EPA MCL of 5 ug/L. Eight of these nine subregions were located downgradient from active dry-cleaning facilities. One of the sampling locations had a maximum PCE concentration greater than 36,000 ug/L over a 24-hour period. The second phase of the sewer investigation explored for the sanitary sewer system to allow PCE to act as a conduit for contaminant migration. A phased approach was employed to investigate the sewer line leakage and resultant soil and groundwater impact. The investigation found that groundwater beneath most of the targeted sewer line reaches was contaminated. In particular, PCE was detected in 88% of all passive soil gas samples, 71% of all active soil gas samples, 23% of all soil samples, and 73% of all groundwater samples.

Kropf, C. A.; Benedict, J.; Berg, J. H.

2003-12-01

70

TCE contaminated drinking water wells: A case history  

SciTech Connect

Trichloroethylene (TCE) was detected in concentrations exceeding the Maximum Concentration Limits (MCL) in three of Shaw Air Force Base`s (Shaw AFB) seven base water supply wells (Nos. 1, 3 and 4). Concentrations had increased over time, as determined by quarterly sampling events conducted by Shaw AFB. However, only Well No. 3 exhibited, on a yearly average, concentrations exceeding the MCL, and Well No. 3; was taken out of service, placing a stress on the fire fighting capabilities of the Base, requiring immediate action. On June 19, 1992, Shaw AFB requested the US Army Corps of Engineers (USACE) initiate an immediate response contract in compliance with 40 CFR, 300.415(d) to provide a water supply reducing exposure to contaminated household water and/or install a treatment system. The objective of this project was to implement treatment measures lowering the TCE concentration of Well No. 3 to comply with the MCL. After completing Well No. 3, identical measures were implemented for Well Nos. 1 and 4, based on detectable concentrations of TCE.

Geis, D.K.

1994-12-31

71

Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE  

SciTech Connect

Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites was evaporating through the leaves to the atmosphere. The characterization of the isolates obtained in this study shows that the bacterial community associated with Oak and Ash on a TCE-contaminated site, was strongly enriched with TCE-tolerant strains. However, this was not sufficient to degrade all TCE before it reaches the leaves. A possible strategy to overcome this evapotranspiration to the atmosphere is to enrich the plant-associated TCE-degrading bacteria by in situ inoculation with endophytic strains capable of degrading TCE.

Weyens, N.; van der Lelie, D.; Taghavi, S.; Barac, T.; Boulet, J.; Artois, T.; Carleer, R.; Vangronsveld, J.

2009-11-01

72

COMPARISON OF HYDROGEN CONCENTRATIONS IN PCE-DEHALOGENATING AND SULFATE-REDUCING ESTUARINE SEDIMENTS  

EPA Science Inventory

The primary transformation pathway for PCE in anoxic environments is through sequential reductive dehalogenation, and information concerning dehalogenation processes that occur in environments containing alternative electron acceptors (sulfate) is limited. Hydrogen is postulated ...

73

Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions  

NASA Astrophysics Data System (ADS)

Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization routines. Complete disappearance of PCE from DNAPL and aqueous phase was observed in a span of 14 days in systems triggered with biosurfactant production through enhanced dissolution and biodegradation. Synergistic effect of dissolution process towards biodegradation was observed as bioavailability of PCE was increased by 3.1 times in systems with biosurfactant production. Modelling studies illustrate that biodegradation on the other hand synergistically enhanced dissolution by elevating the dissolution rates by 1.4 times. This study also suggests a mass transfer phenomenon is greatly influenced not only by surface active molecules but by microbes as well.

Dominic, J.; Nambi, I. M.

2013-12-01

74

Trichloroethene (TCE) Contamination In An Unconfined Sand Aquifer Underlying A Residential Area Of Perth, Western Australia  

Microsoft Academic Search

Substantial TCE and ammonium contamination was detected in groundwater beneath a residential area in Perth, Western Australia. Investigation has successfully determined broad aspects of the extent of the TCE plume and its impact. The advective front of the plume in groundwater is approximately 600 m downgradient from an industrial area. The contamination is about 300-400 m wide and 6-8 m

E. Benker; G. B. Davis; S. Appleyard; D. A. Barry; T. R. Power

1996-01-01

75

Comparison of alternative electron donors to sustain PCE anaerobic reductive dechlorination  

SciTech Connect

Anaerobic reductive dechlorination of tetrachloroethane (PCE) to ethene (ETH) appears to use hydrogen as the direct electron donor. Hydrogen addition may be problematic for large-scale treatment systems. Adding an electron donor which is fermented to hydrogen may be more practical. Competition for substrate or reduction equivalents by methanogens should be minimized. Studies were performed with methanol, ethanol, lactic acid, and butyric acid to determine their suitability for maintaining reductive dechlorination by an anaerobic mixed culture. Electron donors were examined in semicontinuously operated serum bottles with a nominal PCE concentration of 110 {micro}mol/L and a 2:1 ratio of electron donor to PCE on an equivalent basis. The patterns of electron donor degradation, hydrogen formation, dechlorination, and methanogenesis were determined for each substrate. Dechlorination was sustained better with butyric acid, lactic acid, or ethanol than with methanol.

Fennell, D.E.; Zinder, S.H.; Gossett, J.M. [Cornell Univ., Ithaca, NY (United States); Stover, M.A. [DHHS/PHS/Indian Health Service, Oneida, NY (United States). New York District Office

1995-12-31

76

Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: Microcosm and field studies  

Microsoft Academic Search

The determination of compound-specific stable isotope ratios is a promising new tool to assess biodegradation of organic compounds in groundwater. In this study, the occurrence of carbon isotope fractionation during dechlorination of tetrachloroethene (PCE) to ethene was evaluated in a PCE-contaminated aquifer and in a microcosm that was based on aquifer material from the site. In the microcosm, all dechlorination

D. Hunkeler; R. Aravena; B. J. Butler

1999-01-01

77

The Impact of Composition on the Physical Properties and Evaporative Mass Transfer of a PCE-Diesel Immiscible Liquid  

PubMed Central

The impact of immiscible-liquid composition on mass transfer between immiscible liquid and vapor was evaluated for a complex mixture of chlorinated solvents and petroleum hydrocarbons. A mixture of PCE (tetrachloroethene) and diesel was discovered at a site in Tucson, Arizona. Partitioning of PCE into a previously spilled diesel free product has been observed, with resultant concentrations of PCE above 15% by weight. The density, viscosity, surface tension, and interfacial tension were measured for PCE-diesel mixtures with PCE fractions from 7 to 32%, and the results indicated that immiscible-liquid composition did impact the physical properties of the PCE-diesel mixture. Comparison of gas and aqueous phase partitioning results to predictions based on Raoult's Law indicated that the immiscible liquid behaved essentially as an ideal mixture. Flow-cell experiments were conducted to characterize PCE removal from the PCE-diesel mixture via vapor extraction. The effluent concentrations for the experiment conducted with free-phase immiscible liquid were comparable to equilibrium values. Conversely, they were significantly lower for the experiment wherein a residual saturation of immiscible liquid was distributed within sand. These results suggest that evaporation for the latter experiment was constrained by rate-limited mass transfer, which was attributed to dilution effects associated with a nonuniform immiscible-liquid distribution. PMID:18926630

Carroll, Kenneth C.; Taylor, Renee; Gray, Evan; Brusseau, Mark L.

2010-01-01

78

FIELD MEASUREMENT OF VAPOR INTRUSION RATES AT A PCE SITE (ABSTRACT ONLY)  

EPA Science Inventory

A field study was performed to evaluate vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. Results from an initial site ch...

79

Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

2012-01-01

80

Cognitive ATI Research: A Simulated Laboratory Environment in (PCE-)Prolog.  

ERIC Educational Resources Information Center

A study of 228 undergraduate psychology students examined the effectiveness of a prototype of "heatlab," a laboratory simulation written in PCE-PROLOG, intended for remedying misconceptions of the concepts "heat" and "temperature." The effect of varying the amount of structure on students' understanding and the possibility of an interaction…

Kamsteeg, Paul A.; Bierman, Dick J.

81

Heterologous expression, purification and cofactor reconstitution of the reductive dehalogenase PceA from Dehalobacter restrictus.  

PubMed

Organohalide respiration is used by a limited set of anaerobic bacteria to derive energy from the reduction of halogenated organic compounds. The enzymes that catalyze the reductive dehalogenation reaction, the reductive dehalogenases, represent a novel and distinct class of cobalamin and Fe-S cluster dependent enzymes. Until now, biochemical studies on reductive dehalogenases have been hampered by the lack of a reliable protein source. Here we present an efficient and robust heterologous production system for the reductive dehalogenase PceA from Dehalobacter restrictus. Large quantities of Strep-tagged PceA fused to a cold-shock induced trigger factor could be obtained from Escherichia coli. The recombinant enzyme was conveniently purified in milligram quantities under anaerobic conditions by StrepTactin affinity chromatography, and the trigger factor could be removed through limited proteolysis. Characterization of the purified PceA by UV-Vis and electron paramagnetic resonance (EPR) spectroscopy reveal that the recombinant protein binds methylcobalamin in the base-on form after proteolytic cleavage of the trigger factor, and that 4Fe-4S clusters can be chemically reconstituted under anoxic conditions. This study demonstrates a novel PceA production platform that allows further study of this new enzyme class. PMID:22940504

Sjuts, Hanno; Fisher, Karl; Dunstan, Mark S; Rigby, Stephen E; Leys, David

2012-10-01

82

Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns  

NASA Astrophysics Data System (ADS)

The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

Harkness, Mark; Fisher, Angela

2013-08-01

83

Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.  

PubMed

Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ?16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. PMID:24491441

Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

2014-03-15

84

Solubilities of Toluene, Benzene and TCE in High-Biomass Systems  

SciTech Connect

We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

Barton, John W. [Battelle Eastern Science & Technology Center; Vodraska, Christopher D [ORNL; Flanary, Sandie A. [Oak Ridge National Laboratory (ORNL); Davison, Brian H [ORNL

2008-01-01

85

59 FR- Protection of Stratospheric Ozone; Final Rule ENVIRONMENTAL PROTECTION AGENCY  

Federal Register 2010, 2011, 2012, 2013

...TCE''), methylene chloride (``meth''), and perchloroethylene (``perc...MCF has prompted a renewed interest in meth, TCE, and perc, despite these toxicity...perchloroethylene (perc) and methylene chloride (meth) are all acceptable substitutes for...

1994-03-18

86

UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL  

EPA Science Inventory

The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

87

A Historical and Technical Review and Analysis of TCE Contamination in the  

E-print Network

. In 1987, four years after the site had been acquired by Emerson, Emerson found TCE in oil that had been. Based on the rough calculations of total expenses to Emerson and the intrinsic benefit of having

88

Comparison of TCeMA and TDMA for Inter-Satellite Communications using OPNET Simulation  

NASA Technical Reports Server (NTRS)

A robust data link protocol, enabling unique physical and MAC layer technologies and sub-network level protocols, is needed in order to take advantage of the full potential of using both TDMA and CDMA in a satellite communication network. A novel MAC layer protocol, TDMA with CDMA-encoding multiple access (TCeMA) integrated with null-steered digital beam-forming spatial multiplexing, is investigated to support flexible spacecraft communications. Abstract models of the TCeMA and TDMA processes are developed in OPNFiT and a comparison of the performances of TCeMA and TDMA in a satellite network simulation are made. TCeMA provides the better connectivity and capacity with respect to TDMA for satellite communication traffic.

Hain, Regina Rosales; Ramanathan, Ram; Bergamo, Marcos; Wallett, Thomas M.

2003-01-01

89

Sorption model of trichloroethylene (TCE) and benezene in municipal landfill materials  

E-print Network

This research is intended to establish a mathematical model describing the mass transfer of trace gas in landfill. Experimental data used for calibration were reported by Stiegler et al. [ 1989]. Transfer mechanisms of TCE and benzene (trace gases...

Chuang, Yuh-Lin

2012-06-07

90

Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil  

Microsoft Academic Search

In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations\\u000a of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tert-butyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg\\/l) or TCE (50 mg\\/l) in the presence\\u000a of one heavy metal (Cd

V. C. Fernandes; J. T. Albergaria; T. Oliva-Teles; C. Delerue-Matos; P. De Marco

2009-01-01

91

Pure-phase transport and dissolution of TCE in sedimentary rock saprolite.  

PubMed

The objective of this study was to experimentally determine the influence of pore structure on the transport and dissolution of trichloroethylene (TCE) in clay-rich saprolite. In order to simulate a "spill," pure-phase TCE containing a water-insoluble fluorescent dye was injected into two heterogeneous 24-cm-diameter by 37-cm-long undisturbed columns of water-saturated saprolite. TCE entry occurred at capillary pressures of 2.7 and 4.0 kPa. Ten or 28 d after injection, the column was sliced horizontally into three sections and visually examined. The distribution of fluorescent dye indicated that pure-phase TCE migrated mainly through fractures in the shale saprolite and through fine root holes or other macropores in the limestone saprolite residuum. Analysis of saprolite subsamples indicated that TCE was present throughout much of the saprolite column but usually at concentrations less than the solubility of TCE. This spreading was caused by diffusion, which also contributed to the rapid dissolution of TCE in the fractures and macropores. Modeling was carried out using previously published dissolution and diffusion equations. The calculations confirm that rapid disappearance of immiscible TCE can occur in this type of material because of the small size of fracture or macropore openings and the high porosity of the fine-grained material. This study indicates that industrial solvents can readily enter fractures and macropores in otherwise very fine-grained subsoils and then rapidly dissolve and diffuse into the fine-pore structure, from which they may be very difficult to remove. PMID:16681521

Lenczewski, M; McKay, L; Pitner, A; Driese, S; Vulava, V

2006-01-01

92

Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor  

NASA Astrophysics Data System (ADS)

Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

1995-03-01

93

Modeling the uptake and transpiration of TCE using phreatophytic trees. Master`s Thesis  

SciTech Connect

Phytoremediation is a recent addition to the numerous methods used today to remediate ground water contaminants. It is proving more effective and efficient compared to existing remediation techniques. The use of phreatophytes, or water seeking trees, has great potential for phytoremediation. These trees are fast growing, long lived, grow their roots down to the ground water table, transpire large amounts of water, and are proven to actively remove contaminants from the soil horizon. The purpose of this research is to develop quantitative concepts for understanding the dynamics of TCE uptake and transpiration by phreatophytic trees over a short rotation woody crop time frame. This will he done by constructing a system dynamics model of this process and running it over a wide range of conditions. This research will offer managers a tool to simulate long-term uptake and transpiration of TCE at potential sites. The results of this study indicate that TCE is actively removed from the soil horizon by phreatophytic trees and a significant proportion of this TCE is then transpired. Changes in soil horizon parameters, xylem flow rates, and variables in the uptake equation greatly influence TCE uptake rates as well as transpiration. Also, parameters used in equations representing flows in and out of the leaf greatly influence transpiration. Better understanding of these processes is essential for managers to accurately predict the amount of TCE removed and transpired during potential phytoremediation projects.

Wise, D.P.

1997-12-01

94

Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination  

SciTech Connect

The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.

Weyens, N.; van der Lelie, D.; Croes, S.; Dupae, J.; Newman, L.; Carleer, R.; Vangronsveld, J.

2010-07-01

95

Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach.  

PubMed

Reductive dechlorination of tetrachloroethene (PCE) and its daughter products in aquifers is often hampered by Fe(III) reducing conditions. Rigorous treatment to adjust the redox potential and stimulate dechlorination may be costly and potentially have negative effects on other aquifer functions. A step-wise experimental strategy was applied to investigate the effectiveness of various adjustment scenarios. Batch experiments with ascorbic acid (AA) and sodium lactate (SL) showed that 75?mol electron equivalents per gram dry mass of aquifer material was required to reach a sufficiently low redox potential for the onset of PCE dechlorination. Similar effects of either AA or SL on the measured redox potential suggest electron donors are not specific. However, the relative rates of Fe(III) and sulphate reduction appeared to be specific to the electron donor applied. While redox potential stabilised around -450mV after titration and sulphate was reduced to zero in both treatments, in the AA treatment a faster production of Fe(2+) was observed with a final concentration of 0.46mM compared to only 0.07mM in the SL treatment. In subsequent batch experiments with aquifer material that was pre-treated with AA or SL, PCE reductive dechlorination occurred within 30days. Further stimulation tests with extra electron donor or inoculum revealed that adding electron donor can accelerate the initiation of PCE biodegradation. However, bioaugmentation with dechlorinating bacteria is required to achieve complete reductive dechlorination to ethene. The findings from step-wise approaches are relevant for improving the cost-effectiveness of the design and operation of in-situ bioremediation at initially unfavourable environmental conditions. PMID:24995946

Ni, Zhuobiao; Smit, Martijn; Grotenhuis, Tim; van Gaans, Pauline; Rijnaarts, Huub

2014-08-01

96

A risk-based cleanup criterion for PCE in soil. [Tetrachloroethylene  

SciTech Connect

The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs.

Daniels, J.I.; McKone, T.E.; Hall, L.C.

1990-09-26

97

A study of the effect of perchloroethylene exposure on the reproductive outcomes of wives of dry-cleaning workers  

SciTech Connect

The purpose of this investigation was to compare the reproductive outcomes of wives of men exposed to perchloroethylene in the dry-cleaning industry compared to those of wives of laundry workers. Seventeen female partners of dry cleaners and 32 partners of laundry workers were interviewed. The number of pregnancies and the standardized fertility ratios were similar between the two groups. Wives of dry cleaners did not have higher rates of spontaneous abortions. However, wives of dry cleaners were more than twice as likely to have a history of attempting to become pregnant for more than 12 months or to have sought care for an infertility problem. Cox proportional hazards models indicated that dry-cleaners' wives had half of the per-cycle pregnancy rate of wives of laundry workers, when controlling for other potential confounders (estimated rate ratio of 0.54, 95% C.I. = 0.23, 1.27).

Eskenazi, B.; Fenster, L.; Hudes, M.; Wyrobek, A.J.; Katz, D.F.; Gerson, J.; Rempel, D.M. (Program of Maternal and Child Health, School of Public Health, University of California, Berkeley (United States))

1991-01-01

98

Characterization of uranium surfaces machined with aqueous propylene glycol-borax or perchloroethylene-mineral oil coolants  

SciTech Connect

The use of perchloroethylene (perc) as an ingredient in coolants for machining enriched uranium at the Oak Ridge Y-12 Plant has been discontinued because of environmental concerns. A new coolant was substituted in December 1985, which consists of an aqueous solution of propylene glycol with borax (sodium tetraborate) added as a nuclear poison and with a nitrite added as a corrosion inhibitor. Uranium surfaces machined using the two coolants were compared with respects to residual contamination, corrosion or corrosion potential, and with the aqueous propylene glycol-borax coolant was found to be better than that of enriched uranium machined with the perc-mineral oil coolant. The boron residues on the final-finished parts machined with the borax-containing coolant were not sufficient to cause problems in further processing. All evidence indicated that the enriched uranium surfaces machined with the borax-containing coolant will be as satisfactory as those machined with the perc coolant.

Cristy, S.S.; Bennett, R.K. Jr.; Dillon, J.J.; Richards, H.L.; Seals, R.D.; Byrd, V.R.

1986-12-31

99

Treatment of TCE DNAPL Source Zones with Sequential In Situ Chemical Oxidation and Anaerobic Bioremediation  

NASA Astrophysics Data System (ADS)

In situ chemical oxidation can achieve significant mass removal from dense nonaqueous phase zones, but achievement of stringent cleanup goals may not be cost-effective due to the impact of mass transfer limitations in the later stages of treatment. Partial mass removal through in situ chemical oxidation, followed by establishment of The treatment of source zones of trichloroethylene (TCE) dense nonaqueous phase liquid (DNAPL) source zones was studied in a set of six one-dimensional soil columns. TCE source zones were established through addition of liquid TCE to each column under initially water-saturated conditions. Subsequently, four columns were flushed with potassium permanganate solution, while the remaining two columns served as controls. Following permanganate flushing, effluent TCE concentrations were approximately approximately 1 mg/L. Precipitation of manganese dioxide was evident in the TCE source zones in each of the permanganate flushed columns. After permanganate flushing, the active columns were fed ethanol and acetate in distilled water. No dechlorination of TCE or consumption of acetate or ethanol was observed even after bioaugmentation of two of these columns with a dechlorinating microbial culture. Addition of unsterilized groundwater led to rapid onset of acetate and ethanol consumption, manganese reduction, and methanogenesis. This was followed by the establishment of reduction of TCE to cis-dichloroethylene (cis-DCE) in the bioaugmented columns only. Dechlorination of cis-DCE to vinyl chloride and ethene was only observed after an additional bioaugmentation under reducing conditions. This indicates that the dechlorinating culture lost the ability to dechlorinate cis-DCE when inoculated into the permanganate flushed zone before reducing conditions were established. Only trace amounts of cis-DCE were observed in the nonbioaugmented, permanganate-flushed columns after 9 months of feeding with acetate and ethanol in groundwater. Significant release of manganese (Mn(II)) was observed in the four permanganate-flushed columns.

Sleep, B. E.; Hrapovic, L.; Hood, E. D.; Major, D. J.

2006-12-01

100

Microbial enhancement of TCE and 1,2-DCA solute flux in UF-membrane bioreactors  

SciTech Connect

An ultrafiltration membrane process was used to remove and biograde chlorinated aliphatic hydrocarbons trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) from dilute aqueous streams. The effect of microbial biodegradative activity on TCE and 1,2-DCA solute flux in a polypropylene membrane was examined using microbial strains Pseudomonas cepacia PRI{sub 31} for the biodegradation of TCE and Xanthobacter autotrophicus GJ10 for the biodegradation of 1,2-DCA. Initial experiments were conducted in diaphragm cells in the absence of microorganisms to determine the diffusion coefficient of 1,2-DCA and TCE in the polypropylene ultrafiltration (UF) membranes. The diffusivities were 4.7 {times} 10{sup {minus}8} cm{sup 2}/s for 1,2-DCA and 1.41 {times} 10{sup {minus}7} cm{sup 2}/s for TCE. Subsequent experiments were conducted with microorganisms on the permeate side to examine the effect of microbial degradation of 1,2-DCA and TCE on the solute flux across the UF membrane. Experiments were conducted sequentially in batch and flow diaphragm cells and then in a hollow-fiber UF module to systematically examine the effect of microbial activity on the solute flux in each configuration and the ability of mathematical models to predict the microbial enhancement of solute flux. Microbial biodegradation of TCE and 1,2-DCA significantly enhanced the solute flux, and experimental results were correlated with steady- and nonsteady-state solute component balance models for the flow and batch diaphragm cells, respectively. Model and experimental results agree well. Implications for using membrane bioreactors to treat CAH contaminated groundwater and industrial effluents are discussed.

Inguva, S.; Boensch, M.; Shreve, G.S. [Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science] [Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science

1998-09-01

101

TCE Transport to Woburn Wells G and H  

NSDL National Science Digital Library

To prepare to view the TCE animation, students could view the 'A Civil Action' movie and the instructor could read to them excerpts from the trial testimony and images from Woburn, wells G and H, geologic materials, geologic cross sections, the trial participants, and the federal courtroom in Boston (available as a attachment to this activity and at a website listed below). The discussion in Bair (2001) about scientists in the courtroom, the specific (excerpted) testimony presented by the three expert witnesses in the 'A Civil Action' trial, a chart summarizing the differences in their testimony, and the views of a federal judge on the goal of science versus the goal of a civil trial may also be worthwhile reading by the class prior to the assignment. The instructor could also show students the large plates included in the USGS report by Myette and others (1987) that display potentiometric data and contours before and after the famous aquifer test performed in December 1985 and January 1986, just before the trial, and discuss the ramifications of having only two sets of water-level measurements to characterize all the changes in the flow system between 1964 and 1979, when wells G and H periodically operated. This makes students consider the substantial differences in making predictions based on a steady-state conceptualization of the flow system or a transient conceptualization. The instructor could also show the animation of induced infiltration from the Aberjona River to wells G and H that also was created by Martin van Oort (M.S., 2005) and based on the research of Maura Metheny (M.S., 1998; Ph.D., 2004) at Ohio State University. Viewing both animations enables students to see that the water produced by wells G and H is a highly transient mixture derived from many different source areas within the valley. The article by Bair and Metheny (2002) concerning the remediation activities at the Wells G & H Superfund Site could be used to show how groundwater contamination is cleaned up, why different remediation schemes needed to be used in different hydrogeologic settings, and why cleanup to U.S. EPA standards can take decades.

Bair, Scott

102

TCE degradation by toluene/benzene monooxygenase of Pseudomonas aeruginosa JI104 and Escherichia coli recombinant  

SciTech Connect

Pseudomonas aeruginosa JI104 incorporates more than three degradation pathways for aromatic compounds such as benzene, toluene, and xylene. A dioxygenase and two monooxygenases were cloned in Escherichia coli XL1-Blue. The dioxygenase yielding cis-toluene dihydrodiol and one of the monooxygenases producing o-cresol from toluene did not exhibit conspicuous activity in trichloroethylene (TCE) oxygenation, although DNA sequencing proved that the former enzyme was an isozyme of toluene dioxygenase of the known TCE decomposer P.putida F1. The other toluene/benzene monooxygenase that could generate o-, m-, and p-cresol simultaneously from toluene showed TCE oxygenation activity resulting in TCE decomposition in E. coli. The activity was inhibited competitively by toluene, ethylbenzene, and o- and m-xylene: their inhibition constants were greater than those of propylbenzene and p-xylene. When the E. coli recombinant harboring the monooxygenase was induced by isopropyl {beta}-D-thiogalactopyranoside (IPTG) and incubated in the absence of toluene, TCE degradation activity decreased during incubation, compared to that with toluene. Toluene probably controlled the lifetime of the enzyme.

Koizumi, Junichi [National Univ. of Yokohama (Japan). Div. of Bioengineering; Kitayama, Atsushi [Univ. of Tokyo (Japan). Dept. of Biochemistry and Biotechnology

1995-12-31

103

Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.  

PubMed

The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. PMID:21648046

Olejniczak, Iwona; Lapi?ski, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

2011-08-01

104

The Observation of the Change of TCE Caused by Different Acupuncture Stimulation  

PubMed Central

Purpose. To observe the change of transcutaneous CO2 emission on meridian points or nonacupoints when the different needle sensations were gotten and study the associativity between Deqi acupuncture and periphery constitution energy metabolism effect. Method. 20 healthy volunteers were punctured on Neiguan (P6) in different ways including sham, shallow, Deqi acupuncture, and Deqi plus pressed P5, and measured TCE of different points before, during, and after acupuncture. Result. Needle sensations of sham acupuncture and shallow acupuncture were less than those of Deqi acupuncture. TCE of meridian points increased significantly and showed the specificity of meridian/channels. Conclusion. Verum acupuncture could cause the stronger needling sensations including distention, aching, numbness, and tingling than sham and shallow acupuncture. The strength of needling sensation caused by Deqi acupuncture is moderate and brought the best curative effects in TCE measurement. Deqi acupuncture could improve the energy metabolism of the points on the corresponding meridian/channel. PMID:24069059

Huang, Tao; Cheng, Xinnong

2013-01-01

105

In situ, subsurface monitoring of vapor-phase TCE using fiber optics  

SciTech Connect

A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site.

Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Colston, B. Jr.; Brown, S.; Milanovich, F. [Lawrence Livermore National Lab., CA (United States); Lee, L.T. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.

1993-03-05

106

Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.  

PubMed

The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE. PMID:24168321

Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong

2013-11-19

107

LESSONS LEARNED FROM IN-SITU RESISTIVE HEATING OF TCE AT FORT LEWIS, WASHINGTON  

EPA Science Inventory

The EGDY is the source of a potentially expanding, three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This i...

108

Photocatalytic degradation of TCE in water using TiO 2 catalyst  

Microsoft Academic Search

Wastewater is generally released untreated into the rivers and streams in developing countries. Industrial wastewater usually contains highly toxic pollutants, cyanides, chlorinated compounds such as trichloroethylene (TCE). Ultraviolet (UV) radiation from sunlight also decomposes organic compounds by oxidation process. However, the process is less effective due to large amount of toxic effluent entering the main stream water. The solar radiation

Muhammad Farooq; Iftikhar A. Raja; Arshad Pervez

2009-01-01

109

Formulation design for target delivery of iron nanoparticles to TCE zones.  

PubMed

Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. PMID:24096200

Wang, Ziheng; Acosta, Edgar

2013-12-01

110

Water Research 36 (2002) 19731982 Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by  

E-print Network

Water Research 36 (2002) 1973­1982 Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because

Alvarez, Pedro J.

111

Treatment of co-mingled benzene, toluene and TCE in groundwater.  

PubMed

This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 ?g/L and 500 ?g/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. PMID:24857895

Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

2014-06-30

112

Diversity of Pristine Methanotrophic Communities in a Basalt Aquifer: Implications for Natural Attenuation of TCE  

NASA Astrophysics Data System (ADS)

Natural attenuation of a large trichloroethylene (TCE) plume within the oxic Snake River Plain Aquifer (SRPA) appears to be occurring by aerobic co-metabolism. Methanotrophs are some of the key TCE degraders known to inhabit the aquifer. To better understand the role methanotrophs may have in TCE degradation and the relationship of methanotrophs to dissolved methane concentrations, groundwater collected from wells in the SRPA was analyzed for geochemical properties and methanotroph diversity. Microorganisms removed from groundwater by filtration were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target Type I and Type II methanotroph 16S rDNA or genes that code for soluble (mmoX) and particulate (pmoA) methane monooxygenase subunits were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. Groundwater had dissolved methane concentrations that ranged from 1 to >1000 nM. Analysis of sequencing results suggest that the group Methylocystaceae is a predominant Type II methanotroph in each sample. Methanotrophs can be detected and enriched from groundwater containing even low methane concentrations. Analysis of gene sequences provides assessments of methanotroph abundance and diversity with respect to the aquifer methane concentrations, imparting greater insight into the genetic potential of the microbial community capable of degrading TCE. This research will continue to focus on the evaluation of natural attenuation by methanotrophs.

Reed, D. W.; Newby, D. T.; Delwiche, M. E.; Igoe, A.; McKinley, J. P.; Roberto, F. F.; Colwell, F. S.

2001-12-01

113

A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS  

EPA Science Inventory

Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

114

Remediation of TCE contaminated soils by in situ EK-Fenton process.  

PubMed

The treatment performance and cost analysis of in situ electrokinetic (EK)-Fenton process for oxidation of trichloroethylene (TCE) in soils were evaluated in this work. In all experiments, an electric gradient of 1V/cm, de-ionized water as the cathode reservoir fluid and a treatment time of 10 days were employed. Treatment efficiencies of TCE were evaluated in terms of the electrode material, soil type, catalyst type, and catalyst dosage and granular size if applicable. Test results show that graphite electrodes are superior to stainless steel electrodes. It was found that the soil with a higher content of organic matter would result in a lower treatment efficiency (e.g. a sandy loam is less efficient than a loamy sand). Experimental results show that the type of catalyst and its dosage would markedly affect the reaction mechanisms (i.e. "destruction" and "removal") and the treatment efficiency. Aside from FeSO4, scrap iron powder (SIP) in the form of a permeable reactive wall was also found to be an effective catalyst for Fenton reaction to oxidize TCE. In general, the smaller the granular size of SIP, the lower the overall treatment efficiency and the greater the destruction efficiency. When a greater quantity of SIP was used, a decrease of the overall treatment efficiency and an increase of percent destruction of TCE were found. Experimental results have shown that the quantity of electro-osmotic (EO) flow decreased as the quantity of SIP increased. It has been verified that the treatment performances are closely related to the corresponding EO permeability. Results of the cost analysis have indicated that the EK-Fenton process employed in this work is very cost-effective with respect to TCE destruction. PMID:11489531

Yang, G C; Liu, C Y

2001-08-17

115

FY01 Phytoremediation of Chlorinated Ethenes in Southern Sector Seepline Sediments of SRS  

SciTech Connect

This treatability study is now in the second year of deployment for the Southern Sector Phytoremediation Project. Phytoremediation is the use of vegetation and associated media to treat contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that promises effective and safe cleanup of certain hazardous wastes. This ongoing work addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene- (TCE-) and perchloroethylene- (PCE-) contaminated groundwater. The primary objective is to determine how the trees and sediments uptake groundwater TCE and PCE, biodegrade it, and/or transform it. The experimental focus of this project is the biological removal of VOCs from seepline groundwater and sediments.

Brigmon, R.L.

2004-01-30

116

Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).  

PubMed

In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered. PMID:24901632

Chang, Y C; Huang, S C; Chen, K F

2014-01-01

117

Modeling of TCE and Toluene Toxicity to Pseudomonas putida F1  

NASA Astrophysics Data System (ADS)

Prediction of viable bacterial distribution with respect to contaminants is important for efficient bioremediation of contaminated ground-water aquifers, particularly those contaminated with residual NAPLs. While bacterial motility and chemotaxis may help situate bacteria close to high concentrations of contaminant thereby enhancing bioremediation, prolonged exposure to high concentrations of contaminates is toxic to contaminant-degrading bacteria. The purpose of this work is to model the toxicity of trichloroethylene and toluene to Pseudomonas putida F1. The Live/Dead® bacterial viability assay was used to determine the toxic effect of chemical contaminants on the viability of P. putida F1 in a sealed zero head-space experimental environment. Samples of bacterial suspensions were exposed to common ground-water pollutants, TCE and toluene, for different durations. Changes in live and dead cell populations were monitored over the course of experiments using fluorescence microscopy. Data obtained from these toxicity experiments were fit to simple linear and exponential bacterial decay models using non-linear regression to describe loss of bacterial viability. TCE toxicity to P. putida F1 was best described with an exponential decay model (Figure 1a), with a decay constant kTCE = 0.025 h-4.95 (r2 = 0.956). Toluene toxicity showed a marginally better fit to the linear decay model (Figure 1b) (r2 = 0.971), with a decay constant ktoluene = 0.204 h-1. Best-fit model parameters obtained for both TCE and toluene were used to predict bacterial viability in toxicity experiments with higher contaminant concentrations and matched well with experimental data. Results from this study can be used to predict bacterial accumulation and viability near NAPL sources, and thus may be helpful in improving bioremediation performance assessment of contaminated sites. Figure 1: Survival ratios (S = N/No) of P. putida F1 in TCE- (a) and toluene- (b) stressed samples (observed (‘x’), linear model (‘—’) and exponential model (‘---’)) and non-TCE stressed samples (‘o’) at different time intervals throughout toxicity experiments. Error bars represent standard errors for five replicate experiments.

Singh, R.; Olson, M. S.

2009-12-01

118

INFLUENCE OF HYDRAULIC RETENTION TIME ON EXTENT OF PCE DECHLORINATION AND PRELIMINARY CHARACTERIZATION OF THE ENRICHMENT CULTURE. (R826694C703)  

EPA Science Inventory

The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) an...

119

Impact of turbidity on TCE and degradation products in ground water  

SciTech Connect

Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. However, few studies have been conducted to determine the impact of particulates on trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride concentrations. Laboratory batch studies and field investigations were conducted to evaluate the effects of suspended solids on VOC concentrations in ground water samples analyzed by purge-and-trap gas chromatography. Three different solids were used to assess the effects of suspended particulates. The solids were aquifer material from a field site in North Carolina and two reference clay minerals (kaolinite and Na-montmorillonite). During the laboratory portion of this study, the solids were used to determine effects on TCE concentrations under controlled laboratory conditions. The same solids were used in a field study to compare the laboratory results with field results.

Paul, C.J.; Puls, R.W.

1997-06-01

120

A Biotic\\/Abiotic Three-Phase In Situ Barrier System to Treat TCE in Groundwater  

Microsoft Academic Search

A groundwater remediation pilot test (PT) consisting of three (3) in series, in situ reactive barriers was designed to evaluate treatment of dissolved phase tri- chloroethene (TCE) at concentrations up to 650 µg\\/L and cis-1,2-dichloroethene (cis- DCE) concentrations up to 350 µg\\/L at the Canadian Department of National Defense (DND) site in Valcartier, Quebec, Canada. The layout of the pilot

Robert W. Tossell; Blair Greenly; Brian Whiffin

121

Aquifer Protist Response and the Potential for TCE Bioremediation with Burkholderia cepacia G4 PR1  

Microsoft Academic Search

Bacterivorous protists have been recovered from pristine and contaminated aquifer environments, but the ecological role of\\u000a these organisms in bioremediation strategies has not been well defined. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) due to a secondary transposition of a Tn5 transposable element in a trichloroethylene (TCE) degradative plasmid (TOM). Groundwater and sediment from a potential site

R. A. Snyder; J. D. Millward; W. S. Steffensen

2000-01-01

122

Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater  

PubMed Central

A novel reactive electrochemical flow system consisting of iron anode and porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides proton and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (< 7.5 mg/L) and high current (> 45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants from flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures. PMID:23067023

Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N.

2012-01-01

123

TCE and flow monitoring methods using an existing water supply well  

SciTech Connect

Several down-hole logging and sampling methods were used in a 335 m (1,100 ft) deep water supply well to monitor the distribution of trichloroethylene (TCE) and groundwater flow in a deep, multilayered aquifer system. The vertical distribution of TCE was assessed by collecting discrete-depth groundwater samples from the open well casing under non-pumping conditions and from 5 m (18 ft) intervals using a straddle-packer assembly under pumping conditions. The distribution of groundwater flow under pumping and non-pumping scenarios was assessed using spinner logs, temperature and fluid resistivity logs, and a FloVision survey. The combined data indicated that: (1) water containing TCE is confined to the uppermost water bearing zone in the screened interval; and (2) the well provides a conduit for downward migration of this water under non-pumping conditions. Subsequent long-term monitoring with pressure transducers has shown that vertical flow reversals occur in the well on a seasonal basis. The approach the authors developed can be used to monitor chemical and groundwater flow distribution in other areas where water supply wells already exist.

Foote, G.R.; Bice, N.T.; Rowles, L.D.; Gallinatti, J.D. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1998-06-01

124

Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site  

SciTech Connect

The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

2004-10-06

125

Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system  

NASA Astrophysics Data System (ADS)

The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 ?g/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain groundwater flow. Mass transport shows that most of the TCE mass flux from the TCE plumes ends up in the Nelson River, but at low concentrations, thus restricting TCE concentrations in the municipal wells at levels much lower than the maximum concentration limit.

Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

2009-05-01

126

Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs  

SciTech Connect

This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well.

Jackson, R.E. [INTERA, Inc., Austin, TX (United States); Fountain, J.C. [State Univ. of New York, Buffalo, NY (United States)

1994-12-31

127

Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies.  

PubMed

A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. PMID:22366331

Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio

2012-04-01

128

Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies  

NASA Astrophysics Data System (ADS)

A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results.

Harkness, Mark; Fisher, Angela; Lee, Michael D.; Mack, E. Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio

2012-04-01

129

Public health assessment for Newton County Wells (a/k/a Silver Creek TCE), Joplin, Jasper County, Missouri, Region 7: CERCLIS number MOD985798339. Final report  

SciTech Connect

The Newton County TCE site contains an uncontrolled groundwater plume of trichloroethylene (TCE) contamination. The source of contamination is believed to be FAG Bearings. From 1973 to 1982, FAG Bearings produced ball bearings using TCE as a commercial degreaser. It is alleged that improper disposal and leaks of an alleged closed system of TCE led to the contamination of soil at the industrial site, the groundwater aquifer, and subsequently, 82 private water wells. Exposure pathways at the site consist of inhalation of, ingestion of, and dermal contact with TCE-contaminated groundwater and surface water. Because completed and potential exposure pathways exist, the Newton County TCE site has been classified as a Public Health Hazard.

NONE

1999-07-19

130

A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.  

PubMed

An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwater-discharge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 microg/l of total volatile organics) in the streambed are of ecological concern and represent potential adverse exposure locations for benthic and hyporheic zone aquatic life, but the effect of these exposures on the overall health of the river has yet to be determined. Even if the upgradient source of PCE is remediated and additional PCE is prevented from reaching the streambed, the high-concentration deposits in the streambed will likely take decades to hundreds of years to flush completely clean under natural conditions because these areas have low vertical groundwater flow velocities and high retardation factors. Despite high concentrations of contaminants in the streambed, PCE was detected in the surface water only rarely due to rapid dilution in the river and no cDCE or VC was detected. Neither the sampling of surface water nor the sampling of the groundwater from the aquifer immediately adjacent to the river gave an accurate indication of the high concentrations of PCE biodegradation products present in the streambed. Sampling of the interstitial water of the shallow streambed deposits is necessary to accurately characterize the nature of plumes discharging to rivers. PMID:15336797

Conant, Brewster; Cherry, John A; Gillham, Robert W

2004-09-01

131

In Situ Chemical Reduction of Aquifer Sediments: Enhancement of Reactive Iron Phases and TCE Dechlorination  

SciTech Connect

In situ chemical reduction of aquifer sediments is currently being used for chromate and TCE remediation by forming a permeable reactive barrier. The chemical and physical processes that occur during abiotic reduction of natural sediments by sodium dithionite were investigated. In different aquifer sediments, 15 to 25% of Fe{sup III} -oxides were dissolved/reduced, which produces primarily adsorbed Fe{sup II}, and some siderite. The sediment reduction rate ({approx} 5h) was the chemically controlled (58 kJ/mole) reduction of a minor phase (<20%). It was necessary to maintain neutral to high pH to maintain reduction efficiency and prevent iron mobilization, as reduction generated H{sup +}. Sequential extractions on reduced sediment showed that adsorbed ferrous iron and iron oxides on the clay size fraction controlled TCE reactivity, and not structural ferrous iron in clay. The mass and rate of field-scale reduction of aquifer sediments were generally predicted with laboratory data using a single reduction reaction.

Szecsody, Jim E.; Fruchter, Jonathan S.; Williams, Mark D.; Vermeul, Vince R.; Sklarew, Debbie S.

2004-07-29

132

Phylogenetic Microarray Analysis of a Microbial Community Performing Reductive Dechlorination at a TCE-contaminated Site  

PubMed Central

A high-density phylogenetic microarray (PhyloChip) was applied to track bacterial and archaeal populations through different phases of remediation at Ft. Lewis, WA, a trichloroethene (TCE)-contaminated groundwater site. Biostimulation with whey, and bioaugmentation with a Dehalococcoides-containing enrichment culture were strategies implemented to enhance dechlorination. As a measure of species richness, over 1300 operational taxonomic units (OTUs) were detected in DNA from groundwater samples extracted during different stages of treatment and in the bioaugmentation culture. In order to determine active members within the community, 16S rRNA from samples were analyzed by microarray and ~600 OTUs identified. A cDNA clone library of the expressed 16S rRNA corroborated the observed diversity and activity of some of the phyla. Principle component analysis of the treatment plot samples revealed that the microbial populations were constantly changing during the course of the study. Dynamic analysis of the archaeal population showed significant increases in methanogens at the later stages of treatment that correlated with increases in methane concentrations of over two orders of magnitude. Overall, the PhyloChip analyses in this study have provided insights into the microbial ecology and population dynamics at the TCE-contaminated field site useful for understanding the in situ reductive dechlorination processes. PMID:22091783

Lee, Patrick K. H.; Warnecke, F.; Brodie, Eoin L.; Macbeth, Tamzen W.; Conrad, Mark E.; Andersen, Gary L.; Alvarez-Cohen, Lisa

2012-01-01

133

Use of gene probes to assess the impact and effectiveness of aerobic In situ bioremediation of TCE.  

SciTech Connect

Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested consisted of a series of air, air:methane, and air:methane:nutrient pulses using a horizontal injection well. Sediment core samples (n=367) taken from 0 (surface)-43m depth were probed for genes coding for soluble methane monooxygenase (sMMO) and toluene dioxygenase (TOD), which are known to cometabolize TCE. The same samples were also probed for genes coding for methanol dehydrogenase (MDH) to access changes in methylotrophic bacterial populations. Hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent 4% methane:air (v/v) injection resulted in an 85% decline probably due to nutrient limitations, since subsequent addition of nutrients (gaseous nitrogen and phosphorus) caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process becoming non-detectable by the final treatment. These patterns indicate methanotrophs displaced heterotrophs containing TOD genes. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with studies showing the concomitant decline in TCE concentrations, increases in methanotroph viable counts, increased mineralization rates of TCE, and increases in chloride inventories provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. This work suggests that sMMO genes are responsible for most, if not all, of the biodegradation of TCE observed. This study demonstrated that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies.

Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

2009-03-01

134

Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.  

PubMed

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 ?g L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. PMID:22784864

Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

2012-10-01

135

Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE  

SciTech Connect

Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study demonstrates that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies.

Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

2009-03-15

136

Metal mobility during in situ chemical oxidation of TCE by KMnO 4  

NASA Astrophysics Data System (ADS)

The potential for trace-metal contamination of aquifers as a side effect of In Situ Chemical Oxidation (ISCO) of chlorinated solvent contamination by KMnO 4 is investigated with column experiments. The experiments investigate metal mobility during in situ chemical oxidation of TCE by KMnO 4 under conditions where pH, flow rate, KMnO 4, TCE, and trace-metal concentrations were controlled. During ISCO, the injection of MnO 4 creates oxidizing conditions, and acidity released by the reactions causes a tendency toward low pH in aquifers. In order to evaluate the role of pH buffering on metal mobility, duplicate columns were constructed, one packed with pure silica sand, and one with a mixture of silica sand and calcite. Aqueous solutions of TCE and KMnO 4 (with 1 mg/L Cu, Pb, Zn, Mo, Ni, and Cr(VI)) were allowed to mix at the inlet to the columns. After the completion of the experiments, samples of Mn oxide were removed from the columns and analyzed by analytical scanning and transmission electron microscopy. In order to relate the results of the laboratory experiments to field settings, the analyses of Mn-oxide samples from the lab experiments were compared to samples of Mn oxide collected from a field-scale chemical-oxidation experiment that were also analyzed by analytical electron microscopy as well as time-of-flight secondary-ion mass spectroscopy. The pH ranged from 2.40 in the silica sand column to 6.25 in the calcite-containing column. The data indicate that aqueous Mo, Pb, Cu and Ni concentrations are attenuated almost completely within the columns. In contrast, Zn concentrations are not significantly attenuated and Cr(VI) is transported conservatively. The results indicate that within the range 2.40 to 6.25, metal mobility is not affected by pH. Comparison of analyses of Mn-oxide from the lab and field demonstrate that a variety of metals are sequestered from solution by Mn oxide.

Al, Tom A.; Banks, Vernon; Loomer, Diana; Parker, Beth L.; Ulrich Mayer, K.

2006-11-01

137

Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria  

SciTech Connect

Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

1996-07-01

138

Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.  

PubMed

Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. PMID:22721877

Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik

2012-08-01

139

REVIEW OF INTRINSIC BIOREMEDIATION OF TCE IN GROUNDWATER AT PICATINNY ARSENAL, NEW JERSEY AND ST. JOSEPH, MICHIGAN  

EPA Science Inventory

Reductive dechlorination occurs frequently in large trichloro-ethylene (TCE) plumes. CE is transformed largely to cis-dichloroethylene (cis-DCE), then to vinyl chloride, and finally to compounds that do not contain organic chlorine. his abstract evaluates the rate and extent of n...

140

Abiotic Removal of TCE and cis-DCE by Magnetite under Aerobic Conditions in Ground Water (Maryland)  

EPA Science Inventory

The former Twin Cities Army Ammunition Plant (TCAAP) is located just north of St. Paul, Minnesota. Disposal of chlorinated solvents at the Building102 site on the TCAAP contaminated groundwater in the shallow, unconsolidated sand aquifer with TCE and cis-DCE. Concentrations of ...

141

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report  

SciTech Connect

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

NONE

1997-10-24

142

Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly  

SciTech Connect

Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA administered directly, which is inconsistent with the hypothesis that TCA alone accounts for TCE-induced hepatomegaly. In addition, TCE-induced hepatomegaly showed a much more consistent relationship with PBPK model predictions of total oxidative metabolism than with predictions of TCE area-under-the-curve in blood, consistent with toxicity being induced by oxidative metabolites rather than the parent compound. Therefore, these results strongly suggest that oxidative metabolites in addition to TCA are necessary contributors to TCE-induced liver weight changes in mice.

Evans, M.V. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)], E-mail: evans.marina@epa.gov; Chiu, W.A. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Okino, M.S. [National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, NV 89193 (United States); Caldwell, J.C. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

2009-05-01

143

Monitoring Performance of a Dual Wall Permeable Reactive Barrier for Treating Perchlorate and TCE  

NASA Astrophysics Data System (ADS)

AMEC Geomatrix, through collaboration with Aerojet General Corporation and the University of California, Davis (UCD), has performed work leading to the installation of a dual wall permeable reactive barrier (PRB) system capable of treating perchlorate and chlorinated aliphatic hydrocarbon compounds (CAHs), including trichloroethylene (TCE), at Aerojet's Area 40 site in Sacramento, California. This unique system consisted of an upgradient zero-valent iron (ZVI) permeable reactive barrier (PRB) that is intended to not only degrade CAHs, but also, provide hydrogen generated from the ZVI corrosion process, to a downgradient bio-effective PRB (carbohydrate solution circulated through a gravel-packed trench) for destroying perchlorate. The subsurface was characterized during a site investigation, and numerous logistical and site-specific challenges of installation were addressed. The site-specific challenges included installation of a passive remediation system in a remote location with no access to electricity. The selected remediation system was keyed into the undulating bedrock 20 to 25 feet below the ground surface without the use of shoring. Under a collaborative effort, UCD provided initial bench testing. AMEC Geomatrix designed and installed the dual wall system consisting of two approximately parallel 50-foot long by 2-foot thick by 25-foot deep PRB segments which are separated by about 8 feet perpendicular to the approximate direction of groundwater flow. AMEC Geomatrix performed the installation of performance monitoring network, which consisted of 21 wells, and monitored these points for a 6-month period. Monitoring and sampling techniques were designed to measure water levels and water quality parameters in the subsurface during sampling events, to better assess the hydrologic and chemical processes. The monitoring results indicate that the upgradient ZVI PRB effectively treats groundwater with TCE concentrations approaching 60 mg/L, and in addition, may reduce concentrations of perchlorate from approximately 25 mg/L to less than 1 mg/L. A database was maintained to manage analytical results, water quality parameters, and water levels from each sampling event, and geographic information system (GIS) was used to generate plan diagrams of the treatment and performance. The small footprint of the monitoring network allowed for visualizations of the sample results in vertical segments, cross-gradient, within the PRBs, and upgradient or downgradient of the treatment zone. This method of monitoring treatment performance allowed for rapid assessment of the effectiveness of the dual walled PRB as new data became available. The initial time and cost to set up the data management structure (database to GIS) would allow for the ability to monitor the remediation performance more efficiently and to make more effective decisions, including assessment of the carbohydrate depletion within the bio-effective PRB.

Dowman, C. E.; Hashimoto, Y.; Warner, S.; Bennett, P.; Gandhi, D.; Szerdy, F.; Neville, S.; Fennessy, C.; Scow, K. M.

2008-12-01

144

Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE.  

PubMed

Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n=367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study demonstrates that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies. PMID:19034430

Hazen, Terry C; Chakraborty, Romy; Fleming, James M; Gregory, Ingrid R; Bowman, John P; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M; Brockman, Fred J; Sayler, Gary S

2009-03-01

145

An AC field-effect study of TCE-oxidised SiO2Si interface states  

Microsoft Academic Search

Surfaces of 10 Omega cm, n-type (111) silicon wafers were oxidised in trychloroethylene (TCE) ambient. MOS test devices were prepared to characterise the Si-SiO2 interface by AC field-effect and C-V methods. The AC field-effect mobility mu FE as a function of frequency showed a small temperature dependence of relaxation times (8-4 mu s) in the temperature range 240-370K. The dominant

D. Krishna Rao; J. Majhi

1985-01-01

146

Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system  

NASA Astrophysics Data System (ADS)

This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 ?g L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

2014-10-01

147

Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis  

NASA Astrophysics Data System (ADS)

Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.

Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

2013-08-01

148

Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis.  

PubMed

Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution. PMID:23774611

Chen, Mingjie; Abriola, Linda M; Amos, Benjamin K; Suchomel, Eric J; Pennell, Kurt D; Löffler, Frank E; Christ, John A

2013-08-01

149

Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1997 annual progress report  

SciTech Connect

'Metabolism of Chlorinated Hydrocarbons Laboratory and field tests with poplar in tissue culture, bioreactors, and field sites have shown that, unlike bacteria, these plants are able to carry out complete degradation of fully chlorinated alkanes and alkenes to carbon dioxide and chloride. Carbon dioxide was produced as a product of the degradation of trichloroethylene (TCE), carbon tetrachloride (CT), and perchloroethylene (PCE) when axenic tissue cultures of poplar cells were exposed to radiolabelled compounds. The apparent degradation of PCE and CT, fully chlorinated hydrocarbons, in these aerobic plants is remarkable when contrasted to the lack of comparable aerobic degradation by bacteria. Oxidized metabolites, such as trichloroethanol, and di- and trichloroacetic acid, were detected in cell cultures exposed to TCE, suggesting the involvement of cytochrome P450s or other monooxygenase activities. Mass balance experiments with small poplar plants in laboratory reactors showed that significant TCE and CT was volatilized from the leaves, while a similar fraction of radiolabeled carbon from these chlorinated solvents was retained in the plant tissue.'

Gordon, M.P.; Newman, L.A.; Strand, S.E.

1997-01-01

150

Comparison Of A Laboratory Consortium That Dechlorinates TCE To Ethene To The Field Community From Which It Was Derived  

SciTech Connect

Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is generated primarily via the acetoclastic pathway, using acetate generated by lactate fermentation and acetogenesis in both systems.

T. Wood; K. S. Sorenson; D. E. Cummings

2004-12-01

151

Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.  

PubMed

This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000?gL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. PMID:25168960

Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

2014-10-15

152

A Three-electrode Column for Pd-Catalytic Oxidation of TCE in Groundwater with Automatic pH-regulation and Resistance to Reduced Sulfur Compound Foiling  

PubMed Central

A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al2O3 pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O2, H2O2 and •OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO4•?, a strong oxidizing radical, and more •OH. PMID:23121896

Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N.

2013-01-01

153

A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.  

PubMed

A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. PMID:23121896

Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N

2013-01-01

154

Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation  

Microsoft Academic Search

This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes

Beth L. Parker; Steven W. Chapman; Martin A. Guilbeault

2008-01-01

155

Occurrence of mental illness following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study  

PubMed Central

Background While many studies of adults with solvent exposure have shown increased risks of anxiety and depressive disorders, there is little information on the impact of prenatal and early childhood exposure on the subsequent risk of mental illness. This retrospective cohort study examined whether early life exposure to tetrachloroethylene (PCE)-contaminated drinking water influenced the occurrence of depression, bipolar disorder, post-traumatic stress disorder, and schizophrenia among adults from Cape Cod, Massachusetts. Methods A total of 1,512 subjects born between 1969 and 1983 were studied, including 831 subjects with both prenatal and early childhood PCE exposure and 547 unexposed subjects. Participants completed questionnaires to gather information on mental illnesses, demographic and medical characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure originating from the vinyl-liner of water distribution pipes was assessed using water distribution system modeling software that incorporated a leaching and transport algorithm. Results No meaningful increases in risk ratios (RR) for depression were observed among subjects with prenatal and early childhood exposure (RR: 1.1, 95% CI: 0.9-1.4). However, subjects with prenatal and early childhood exposure had a 1.8-fold increased risk of bipolar disorder (N = 36 exposed cases, 95% CI: 0.9-1.4), a 1.5-fold increased risk post-traumatic stress disorder (N = 47 exposed cases, 95% CI: 0.9-2.5), and a 2.1-fold increased risk of schizophrenia (N = 3 exposed cases, 95% CI: 0.2-20.0). Further increases in the risk ratio were observed for bipolar disorder (N = 18 exposed cases, RR; 2.7, 95% CI: 1.3-5.6) and post-traumatic stress disorder (N = 18 exposed cases, RR: 1.7, 95% CI: 0.9-3.2) among subjects with the highest exposure levels. Conclusions The results of this study provide evidence against an impact of early life exposure to PCE on the risk of depression. In contrast, the results provide support for an impact of early life exposure on the risk of bipolar disorder and post-traumatic stress disorder. The number of schizophrenia cases was too small to draw reliable conclusions. These findings should be confirmed in investigations of other similarly exposed populations. PMID:22264316

2012-01-01

156

Scaling of silent electrical discharge reactors for hazardous organics destruction  

SciTech Connect

Silent electrical discharges are used to produce highly reactive free radicals that destroy hazardous compounds entrained in gaseous effluents at ambient gas temperatures and pressures. We have carried out destruction experiments at Los Alamos on a range of volatile organic compounds (VOCs), including trichloroethylene (TCE), carbon tetrachloride, perchloroethylene (PCE), and chlorofluorocarbons (CFCs). We have measured a ``nine-factor``, the amount of energy required to reduce the VOC concentration by a factor of ten. For practical reactor power densities, the ``nine-factor`` can be used to predict the destruction an removal efficiency (DRE) in terms of gas flow rate and the number of reactor modules. This report proposes a modular, stackable architecture for scaling up the reactor throughput.

Coogan, J.J.; Rosocha, L.A.; Brower, M.J.; Kang, M.; Schmidt, C.A.

1993-07-01

157

Concentration of 1,4-Dioxane in Wells Sampled During 2002-2009 in the Vicinity of the Tucson International Airport Area Superfund Site, Arizona  

USGS Publications Warehouse

Extensive groundwater contamination resulting from industrial activities led to the listing of the Tucson International Airport Area as a Superfund Site in 1983. Early investigations revealed elevated levels of volatile organic compounds (VOCs) including the chlorinated solvents trichloroethylene (TCE) and perchloroethylene (PCE) in wells in the area. Several responsible parties were identified and cleanup activities were begun in the late 1980s using technology designed for removal of VOCs. In 2002, the compound 1,4-dioxane was discovered in wells in the Tucson Airport Remediation Project (TARP) area. Since then, 1,4-dioxane has been detected throughout the TARP area, in some cases exceeding the U.S. Environmental Protection Agency (USEPA) drinking water advisory level of 3 ?g/L.

Tillman, Fred D.

2010-01-01

158

Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.  

PubMed

In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. PMID:22459605

Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

2012-05-01

159

Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA  

NASA Astrophysics Data System (ADS)

In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

2012-05-01

160

Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA  

USGS Publications Warehouse

In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

2012-01-01

161

Interactions of water contaminants. I. Plasma enzyme activity and response surface methodology following gavage administration of CCl4 and CHCl3 or TCE singly and in combination in the rat  

SciTech Connect

The joint hepatotoxicity of CCl4 and CHCl3 or TCE in male CD rats following simultaneous oral administration has been investigated. Rats with chronic indwelling arterial cannulas were administered a single oral dose of CCl4 and CHCl3 or CCl4 and TCE in 5% Emulphor at doses of 0 to 700 mg/kg. Hepatotoxicity was evaluated by measuring the activity of AST, ALT, and SDH in plasma at 0, 3, 6, 12, 24, 36, 48, and 72 hr postgavage. Response data were analyzed for interaction using response surface methodology. CCl4 alone displayed dose-dependent toxicity. TCE demonstrated little evidence of hepatotoxicity. In combination, both CCl4/CHCl3 and CCl4/TCE displayed a synergistic (supraadditive) response for peak plasma enzyme activity.

Borzelleca, J.F.; O'Hara, T.M.; Gennings, C.; Granger, R.H.; Sheppard, M.A.; Condie, L.W. Jr. (Medical College of Virginia, Richmond (USA))

1990-04-01

162

Demonstration of low latency Intra/Inter Data-Centre heterogeneous optical sub-wavelength network using extended GMPLS-PCE control-plane.  

PubMed

This paper reports on the first user/application-driven multi-technology optical sub-wavelength network for intra/inter Data-Centre (DC) communications. Two DCs each with distinct sub-wavelength switching technologies, frame based synchronous TSON and packet based asynchronous OPST are interconnected by a WSON inter-DC communication. The intra/inter DC testbed demonstrates ultra-low latency (packet-delay <270 µs and packet-delay-variation (PDV)<10 µs) flexible data-rate traffic transfer by point-to-point, point-to-multipoint, and multipoint-to-(multi)point connectivity, highly suitable for cloud based applications and high performance computing (HPC). The extended GMPLS-PCE-SLAE based control-plane enables innovative application-driven end-to-end sub-wavelength path setup and resource reservation across the multi technology data-plane, which has been assessed for as many as 25 concurrent requests. PMID:23482117

Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Simeonidou, Dimitra; Bernini, Giacomo; Carrozzo, Gino; Ciulli, Nicola; Levins, John; Basham, Mark; Dunne, John; Georgiades, Michael; Belovidov, Alexander; Andreou, Lenos; Sanchez, David; Aracil, Javier; Lopez, Victor; Fernández-Palacios, Juan P

2013-03-11

163

Analytical Modeling of A By-product Transport in Chain Reactions  

Microsoft Academic Search

Many chemical reactions of contaminants in the subsurface involve complex reaction pathways and networks. As one of those reaction networks, chain-reactions can be found in radionuclide decay, denitrification, biodegradation of chlorinated solvents, etc. For example, this reaction pattern can be illustrated by the biodegrdation of tetrachloroethylene (PCE) and trichloroethylene (TCE). PCE reacts to produce TCE and TCE reacts to form

Y. Sun; K. Lee; T. A. Buscheck

2003-01-01

164

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report  

SciTech Connect

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

NONE

1995-01-01

165

Efficient Degradation of TCE in Groundwater Using Pd and Electro-generated H2 and O2: A Shift in Pathway from Hydrodechlorination to Oxidation in the Presence of Ferrous Ions  

PubMed Central

Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H2 and O2 is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H2O2 up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radical are detected due to decomposition of H2O2, slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 ?M improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 ?M/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na2SO4, NaCl, NaNO3, NaHCO3, K2SO4, CaSO4 and MgSO4 does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppresses degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.

2012-01-01

166

Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.  

PubMed

Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy. PMID:12092572

Gandhi, Sumeet; Oh, Byung-Taek; Schnoor, Jerald L; Alvarez, Pedro J J

2002-04-01

167

Airlift recirculation well test results -- Southern sector  

SciTech Connect

Chlorinated solvents used in the A and M-Areas at the Savannah River Site (SRS) from 1952--1982 have contaminated the groundwater under the site. A plume of groundwater contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) in the Lost Lake aquifer is moving generally southward with the natural flow of groundwater. To comply with the requirements of the current SCDHEC Part B Permit, a series of wells is being installed to contain and treat the plume. Airlift Recirculation Wells (ARW) are a new and innovative technology with potential for more cost effective implementation than conventional pump and treat systems. Two Airlift Recirculation Wells have been installed and tested to quantify performance parameters needed to locate a line of these wells along the leading edge of the contaminant plume. The wells proved to be very sensitive to proper development, but after this requirement was met, performance was very good. The Zone of Capture has been estimated to be within a radius of 130--160 ft. around the wells. Thus a line of wells spaced at 250 ft. intervals could intercept the contaminant plume. At SSR-012, TCE was stripped from the groundwater at approximately 1.2 lb./day. The longer term effect of the recirculation wells upon the plume and the degree of recirculation within the aquifer itself will require additional data over a longer time period for an accurate review. Data collection is ongoing.

White, R.M.; Hiergesell, R.A.

1997-08-01

168

Reclamation of Elemental Sulfur from Flue Gas Biodesulfurization Waste Sludge  

Microsoft Academic Search

Perchloroethylene (PCE) extraction was used to reclaim elemental sulfur from flue gas biodesulfurization sludge. The sludge was generated from a biodesulfurization system that concurrently treated the flue gas scrubbing solution and wastewater of citric acid production. The sludge contained approximately 40–60% elemental sulfur; other components included flue gas dust, biomass, inorganic salts, and flocculants. The sulfur was extracted with PCE

Chengwen Wang; Yujue Wang; Yanqi Zhang; Qi Zhao; Ran Wang; Wang Chen; Elisabeth Gilmore; Peter Adams; Lester Lave; Huabo Duan; Weifeng Jia; Jinhui Li; Violeta Mugica; Sara Hernandez; Miguel Torres; Rocio García; Antton Melendez; Estibaliz García; Pedro Carnicer; Egoitz Pena; Miren Larrion; Juan Legarreta; Cristina Gutierrez-Canas; Parikhit Sinha; William Schew; Aniket Sawant; Kyle Kolwaite; Sarah Strode; Stephanie Weber; Jill Engel-Cox; Raymond Hoff; Ana Prados; Hai Zhang; Valerie Garcia; Kristen Foley; Edith Gego; David Holland; S. Rao; Sundar Christopher; Pawan Gupta; Christian Murray; Frederick Lipfert; Jung-Nan Hsu; Hsunling Bai; Shou-Nan Li; Chuen-Jinn Tsai

2010-01-01

169

Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection  

Microsoft Academic Search

Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently

M. Hnaien; S. Bourigua; F. Bessueille; J. Bausells; A. Errachid; F. Lagarde; N. Jaffrezic-Renault

170

Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers  

Microsoft Academic Search

Strains of Dehalococcoides are the only microbes known that can completely dechlorinate PCE, TCE, cis-DCE, and vinyl chloride to ethylene. Either naturally occurring strains or bioaugmentation cultures of Dehalococcoides are widely used for in situ bioremediation of contaminated groundwater. Naturally occurring strains have an important role in natural attenuation of PCE, TCE, cis-DCE, and vinyl chloride in groundwater. This study

Xiaoxia Lu; John T. Wilson; Donald H. Kampbell

2006-01-01

171

[Applicability of an electronic nose for detection of volatile chlorinated hydrocarbons in soil].  

PubMed

An electronic nose principally composed of a photo ionization detector (PID) was developed for rapid detection of volatile chlorinated hydrocarbons (VCHs) in contaminated soil. Removal of interference gas such as benzene homologues with a pre-filtration tube was analyzed with gas chromatography (GC). A standard gas generator was applied to generate different concentrations of perchloroethylene (PCE) and trichloroethylene (TCE) gas, with which the determine precision and reproducibility of the electronic nose were evaluated by comparison with GC. Finally, simulated contamination soil with three typical paddy soils in Yangtze river delta region were used for ventilation purification experiments, the change of VCHs concentrations in the ventilation gas was monitored, based on which the applicability of the electronic nose was evaluated for on-line detection of the on-going of the ventilation purification process. Results showed that a halogenated hydrocarbon RAE-SEP tube was effective to remove interference gas, with 80%-97% of benzene homologues such as benzene and ethyl benzene being removed while more than 90% of VCHs passed through. With PCE or TCE gas, a linear dependence was derived between the data determined with the electronic nose and GC, the linear slope being 1.012 and R2 > 0.99. The electronic nose showed data consistent with GC (R2 > 0.99, n = 47) when applied for monitoring the remediation progress in a soil ventilation process. The electronic nose is therefore possibly applicable for rapid determination of soil pollution by VCHs, improving the efficiency of pollution diagnosis and remediation. PMID:22468532

Bu, Fan-Yang; Wen, Xiao-Gang; Wan, Mei; Liu, Rui; Cai, Qiang; Chen, Lü-Jun; Zhang, Yong-Ming

2011-12-01

172

CROWTM PROCESS APPLICATION FOR SITES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUIDS AND CHLORINATED HYDROCARBONS  

SciTech Connect

Western Research Institute (WRI) has successfully applied the CROWTM (Contained Recovery of Oily Wastes) process at two former manufactured gas plants (MGPs), and a large wood treatment site. The three CROW process applications have all occurred at sites contaminated with coal tars or fuel oil and pentachlorophenol (PCP) mixtures, which are generally denser than water and are classified as dense non-aqueous phase liquids (DNAPLs). While these types of sites are abundant, there are also many sites contaminated with gasoline, diesel fuel, or fuel oil, which are lighter than water and lie on top of an aquifer. A third site type occurs where chlorinated hydrocarbons have contaminated the aquifer. Unlike the DNAPLs found at MGP and wood treatment sites, chlorinated hydrocarbons are approximately one and a half times more dense than water and have fairly low viscosities. These contaminants tend to accumulate very rapidly at the bottom of an aquifer. Trichloroethylene (TCE) and perchloroethylene, or tetrachloroethylene (PCE), are the major industrial chlorinated solvents that have been found contaminating soils and aquifers. The objective of this program was to demonstrate the effectiveness of applying the CROW process to sites contaminated with light non-aqueous phase liquids (LNAPLs) and chlorinated hydrocarbons. Individual objectives were to determine a range of operating conditions necessary to optimize LNAPL and chlorinated hydrocarbon recovery, to conduct numerical simulations to match the laboratory experiments and determine field-scale recoveries, and determine if chemical addition will increase the process efficiency for LNAPLs. The testing consisted of twelve TCE tests; eight tests with PCE, diesel, and wood treatment waste; and four tests with a fuel oil-diesel blend. Testing was conducted with both vertical and horizontal orientations and with ambient to 211 F (99 C) water or steam. Residual saturations for the horizontal tests ranged from 23.6% PV to 0.3% PV. Also conducted was screening of 13 chemicals to determine their relative effectiveness and the selection of three chemicals for further testing.

L.A. Johnson, Jr.

2003-06-30

173

Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.  

PubMed

This study pilot-tested carboxymethyl cellulose (CMC) stabilized zero-valent iron (ZVI) nanoparticles (with a trace amount of Pd catalyst) for in situ destruction of chlorinated ethenes such as perchloroethylene (PCE) and trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) that had been in groundwater for decades. The test site was located in a well-characterized secondary source zone of PCBs and chlorinated ethenes. Four test wells were installed along the groundwater flow direction (spaced 5 ft apart), including one injection well (IW), one up-gradient monitoring well (MW-3) and two down-gradient monitoring wells (MW-1 and MW-2). Stabilized nanoparticle suspension was prepared on-site and injected into the 50-ft deep, unconfined aquifer. Approximately 150 gallons of 0.2 g/L Fe-Pd (CMC = 0.1 wt%, Pd/Fe = 0.1 wt%) was gravity-fed through IW-1 over a 4-h period (Injection #1). One month later, another 150 gallons of 1.0 g/L Fe-Pd (CMC = 0.6 wt%, Pd/Fe = 0.1 wt%) was injected into IW-1 at an injection pressure <5 psi (Injection #2). When benchmarked against the tracer, approximately 37.4% and 70.0% of the injected Fe was detected in MW-1 during injection #1 and #2, respectively, confirming the soil mobility of the nanoparticles through the aquifer, and higher mobility of the particles was observed when the injection was performed under higher pressure. Rapid degradation of PCE and TCE was observed in both MW-1 and MW-2 following each injection, with the maximum degradation being observed during the first week of the injections. The chlorinated ethenes concentrations gradually returned to their pre-injection levels after approximately 2 weeks, indicating exhaustion of the ZVI's reducing power. However, the injection of CMC-stabilized nanoparticle and the abiotic reductive dechlorination process appeared to have boosted a long-term in situ biological dechlorination thereafter, which was evidenced by the fact that PCE and TCE concentrations showed further reduction after two weeks. After 596 days from the first injection, the total chlorinated ethenes concentration decreased by about 40% and 61% in MW-1 and MW-2, respectively. No significant long-term reduction of PCB 1242 was observed in MW-1, but a reduction of 87% was evident in MW-2. During the 596 days of testing, the total concentrations of cis-DCE (dichloroethylene) and VC (vinyl chloride) decreased by 20% and 38% in MW-1 and MW-2, respectively. However, the combined fraction of cis-DCE and VC in the total chlorinated ethenes (PCE, TCE, cis-DCE and VC) increased from 73% to 98% and from 62% to 98%, respectively, which supports the notion that biological dechlorination of PCE and TCE was active. It is proposed that CMC-stabilized ZVI-Pd nanoparticles facilitated the early stage rapid abiotic degradation. Over the long run, the existing biological degradation process was boosted with CMC as the carbon source and hydrogen from the abiotic/biotic processes as the electron donor, resulting in the sustained enhanced destruction of the chlorinated organic chlorinated ethenes in the subsurface. PMID:20106501

He, Feng; Zhao, Dongye; Paul, Chris

2010-04-01

174

4. Phylogenetic relationship of D. restrictus reductive dehalogenases  

E-print Network

compounds as electron acceptors. PceC is predicted to be constituted of two main domains: a N terminal FMN by the reductive dehalogenation of PCE as terminal electron acceptor. This metabolism is encoded by the pce (tetrachloroethene) or TCE (trichloroethene) as its electron acceptors & hydrogen as the sole electron donor for its

175

Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment  

Microsoft Academic Search

Natural attenuation of TCE under aerobic conditions at the INEEL Test Area North site was demonstrated largely on the basis of preferential loss of TCE relative to conservative solutes (PCE and H-3) along groundwater flow paths. First order degradation half-lives were calculated from the rate of preferential TCE loss. We are utilizing the same approach at other DOE sites that

Kent S. Jr

2003-01-01

176

Vibrational Spectroscopic and X-Ray Diffraction Studies of Cerium Zirconium Oxides with Ce\\/Zr Composition Ratio=1 Prepared by Reduction and Successive Oxidation of t?-(Ce 0.5Zr 0.5)O 2 Phase  

Microsoft Academic Search

Cerium zirconium oxides with the composition CeZrO4 were prepared by oxidizing in O2 at 873 K precursors with the composition CeZrO3.5+? (?<0.3). The precursors were prepared by reducing the t?-(Ce0.5Zr0.5)O2 phase at 873?Tred.?1573 K. The CeZrO4 compounds together with the precursors were characterized by powder X-ray diffraction and IR and Raman spectroscopies. In the case of 1323?Tred.?1573 K, the precursors

Takahisa Omata; Haruo Kishimoto; Shinya Otsuka-Yao-Matsuo; Norikazu Ohtori; Norimasa Umesaki

1999-01-01

177

[Solute transport modeling application in groundwater organic contaminant source identification].  

PubMed

Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary. PMID:22624366

Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

2012-03-01

178

The state of permanganate with relation to in situ chemical oxidation  

SciTech Connect

In Situ Chemical Oxidation (ISCO) with permanganate had its beginnings over 10 years ago. Since that time, many sites have been successfully treated for organic compounds including chlorinated ethenes (perchloroethylene, trichloroethylene, etc.) phenols, explosives such as RDX, and many other organics. The successful application of ISCO with permanganate requires the integration of many site-specific factors into the remedial design. ISCO with permanganate is an effective technology, not only for its oxidative properties and persistence, but also for its application flexibility to remediate soil and groundwater. The merits of any type of treatment technology can be assessed in terms of effectiveness, ease of use, reaction rate, and cost. The use of permanganate for in situ chemical oxidation results in the complete mineralization of TCE and PCE and can result in treatment levels below detection limits. Permanganate is a single component oxidizer, which is easily handled, mixed and distributed to the subsurface. Permanganate is also inexpensive to design and implement as compared to other technologies. This presentation will provide a general overview of the application and safety aspects of ISCO with permanganate. This paper will discuss the advantages and limitations of this technology, typical cost ranges, site evaluation and application technologies. (authors)

Veronda, Brenda; Dingens, Matthew [Carus Corporation, 315 5th Street, Peru, IL 61354 (United States)

2007-07-01

179

Field verification of dioxin-furan emissions from the low temperature thermal treatment of chlorinated soils  

SciTech Connect

Many industrial sites are affected with chlorinated compounds such as the common solvents perchloroethylene (PCE) and trichloroethylene (TCE). Several competent treatment methods are available to remediate soils affected with these compounds including low temperature thermal treatment (LTTT). The treatment of chlorinated solvents in soils with LTTT is of interest to many environmental managers. This paper presents a field-verified emission factor for dioxin and furan emissions for the LTTT of soils affected with chlorinated solvents. LTTT is a particularly advantageous treatment technology in such circumstances given the high volatility of most chlorinated solvents. A thermal process such as LTTT, however, may produce tetrachlorinated dibenzo-p-dioxins (TCDD) and tetrachlorinated dibenzofurans (TCDF) as a result of the combustion of the chlorinated organic compounds. The generation of these by-products is a major concern when the benefits of remedial alternatives are reviewed. Several parameters of low temperature thermal treatment are examined in this paper. A general discussion of TCDD-TCDF formation and the influence of the chlorine content of the waste and corresponding TCDD and TCDF emissions are presented. Estimated TCDD and TCDF emissions from an LTTT employed at a Superfund site, calculated from emission factors for similar processes found in the literature, are compared to the actual emissions obtained during the performance test of the LTTT. The result of this comparison is a field-verified emission factor for TCDD-TCDF emissions from the low temperature thermal treatment of chlorinated solvents.

Traister, M. [O`Brien and Gere Engineers, Inc., Syracuse, NY (United States)

1997-12-31

180

Initial field test of High-Energy Corona process for treating a contaminated soil-offgas stream  

SciTech Connect

The High-Energy Corona (HEC) technology for treating process offgases has been under development at Pacific Northwest Laboratory (PNL) since 1991. The HEC process uses high-voltage electrical discharges in air to ionize the air, forming a low-temperature plasma that would be expected to destroy a wide variety of organic compounds in air. The plasma contains strong oxidants, possibly including hydroxyl radicals, hydroperoxy radicals, superoxide radicals, various excited as well as ionized forms of oxygen, high-energy electrons, and ultraviolet (UV) light. Because the high-voltage plasma is produced near ambient temperatures and pressures, yet exhibits extremely rapid destruction kinetics with relatively low power requirements, the HEC technique appears promising as a low-cost treatment technique (Virden et al. 1992). As part of the Volatile Organic Compound (VOC) Nonarid Integrated Demonstration (ID) at the DOE Savannah River Site, research activities were initiated in December 1991 to develop a prototype HEC process for a small-scale field demonstration to treat a soil-offgas stream contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) at varying concentrations. Over an 18-month period, the HEC technology was developed on a fast track, through bench and pilot scales into a trailer-mounted system that was tested at the Nonarid ID. Other national laboratories, universities, and private companies have also participated at the Nonarid ID to demonstrate a number of conventional, emerging and innovative approaches for treating the same soil-offgas stream.

Shah, R R; Garcia, R E; Jeffs, J T; Virden, J W; Heath, W O

1995-04-01

181

Mortality among aircraft manufacturing workers  

PubMed Central

OBJECTIVES: To evaluate the risk of cancer and other diseases among workers engaged in aircraft manufacturing and potentially exposed to compounds containing chromate, trichloroethylene (TCE), perchloroethylene (PCE), and mixed solvents. METHODS: A retrospective cohort mortality study was conducted of workers employed for at least 1 year at a large aircraft manufacturing facility in California on or after 1 January 1960. The mortality experience of these workers was determined by examination of national, state, and company records to the end of 1996. Standardised mortality ratios (SMRs) were evaluated comparing the observed numbers of deaths among workers with those expected in the general population adjusting for age, sex, race, and calendar year. The SMRs for 40 cause of death categories were computed for the total cohort and for subgroups defined by sex, race, position in the factory, work duration, year of first employment, latency, and broad occupational groups. Factory job titles were classified as to likely use of chemicals, and internal Poisson regression analyses were used to compute mortality risk ratios for categories of years of exposure to chromate, TCE, PCE, and mixed solvents, with unexposed factory workers serving as referents. RESULTS: The study cohort comprised 77,965 workers who accrued nearly 1.9 million person-years of follow up (mean 24.2 years). Mortality follow up, estimated as 99% complete, showed that 20,236 workers had died by 31 December 1996, with cause of death obtained for 98%. Workers experienced low overall mortality (all causes of death SMR 0.83) and low cancer mortality (SMR 0.90). No significant increases in risk were found for any of the 40 specific cause of death categories, whereas for several causes the numbers of deaths were significantly below expectation. Analyses by occupational group and specific job titles showed no remarkable mortality patterns. Factory workers estimated to have been routinely exposed to chromate were not at increased risk of total cancer (SMR 0.93) or of lung cancer (SMR 1.02). Workers routinely exposed to TCE, PCE, or a mixture of solvents also were not at increased risk of total cancer (SMRs 0.86, 1.07, and 0.89, respectively), and the numbers of deaths for specific cancer sites were close to expected values. Slight to moderately increased rates of non-Hodgkin's lymphoma were found among workers exposed to TCE or PCE, but none was significant. A significant increase in testicular cancer was found among those with exposure to mixed solvents, but the excess was based on only six deaths and could not be linked to any particular solvent or job activity. Internal cohort analyses showed no significant trends of increased risk for any cancer with increasing years of exposure to chromate or solvents. CONCLUSIONS: The results from this large scale cohort study of workers followed up for over 3 decades provide no clear evidence that occupational exposures at the aircraft manufacturing factory resulted in increases in the risk of death from cancer or other diseases. Our findings support previous studies of aircraft workers in which cancer risks were generally at or below expected levels.   PMID:10615290

Boice, J. D.; Marano, D. E.; Fryzek, J. P.; Sadler, C. J.; McLaughlin, J. K.

1999-01-01

182

RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT  

SciTech Connect

Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

2005-05-26

183

Green remediation: enhanced reductive dechlorination using recycled rinse water as bioremediation substrate  

SciTech Connect

Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of a substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)

Dawson, Gaynor; McKeon, Tom [CALIBRE Systems, Inc., Bellevue, WA (United States)

2007-07-01

184

Contributions of Fe Minerals to Abiotic Dechlorination  

EPA Science Inventory

Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

185

IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS  

EPA Science Inventory

Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

186

IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS  

EPA Science Inventory

Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

187

DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.  

EPA Science Inventory

The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

188

Applications of Monitored Natural Attenuation in the USA (Presentation)  

EPA Science Inventory

Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

189

Applications of Monitored Natural Attenuation in the USA (Abstract)  

EPA Science Inventory

Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

190

Bioremediation Journal, 8(12):4764, 2004 Copyright c 2004 Taylor and Francis Inc.  

E-print Network

.g., tetrachloroethene [PCE] and trichloro- ethene [TCE]) are commonly observed soil and groundwater contam- inants products can rapidly mi- grate into the deeper regions of the saturated groundwater zone, contam- inating

Clement, Prabhakar

191

Transport in Porous Media 37: 327346, 1999. c 1999 Kluwer Academic Publishers. Printed in the Netherlands.  

E-print Network

reactive species. In recent years, increased interest in the fate and transport of reactive contam- inants. For example, chlorinated solvent contam- inants such as PCE (tetrachloroethylene) and TCE (trichloroethylene

Clement, Prabhakar

192

MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS  

EPA Science Inventory

Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

193

Promising Emerging Mechanisms  

EPA Science Inventory

Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

194

BIOTRANSFORMATION OF TRICHLOROETHYLENE IN SOIL  

EPA Science Inventory

The organic contaminants that are most commonly detected in groundwater are low-molecular-weight, chlorinated aliphatic hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The authors exposed unsatu...

195

Biodegradation of chlorinated aliphatic hydrocarbon mixtures in a single-pass packed-bed reactor  

Microsoft Academic Search

Aliphatic chlorinated compounds, such as trichloroethylene (TCE) and tetrachloroethylene (PCE), are major contaminants of\\u000a ground water. A single-pass packed-bed bioreactor was utilized to study the biodegradation of organic waste mixtures consisting\\u000a of PCE, TCE, and other short-chain chlorinated organics. The bioreactor consisted of two 1960-mL glass columns joined in a\\u000a series. One column was packed with sand containing a microbial

L. W. Lackey; T. J. Phelps; P. R. Bienkowski; D. C. White

1993-01-01

196

Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors  

Microsoft Academic Search

Desulfitobacterium hafniense Y51 is a dechlorinating bacterium that encodes an unusually large set of O-demethylase paralogs and specialized respiratory systems including specialized electron donors and acceptors. To use this\\u000a organism in bioremediation of tetrachloroethene (PCE) or trichloroethene (TCE) pollution, expression patterns of its 5,060\\u000a genes were determined under different conditions using 60-mer probes in DNA microarrays. PCE, TCE, fumarate, nitrate,

Xue Peng; Shogo Yamamoto; Alain A. Vertès; Gabor Keresztes; Ken-ichi Inatomi; Masayuki Inui; Hideaki Yukawa

197

CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING  

EPA Science Inventory

A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

198

EFFECTS OF FOUR TRIHALOMETHANES ON DNA STRAND BREAKS, RENAL HYALINE DROPLET FORMATION AND SERUM TESTOSTERONE IN MALE F-344 RATS  

EPA Science Inventory

All four possible trihalomethanes (THMs) containing bromine and chlorine, as well as perchloroethylene (PCE), were evaluated for their ability to produce DNA strand breaks, a2u-globulin rich renal deposits, and testosterone changes in male F-344 rats. Rats received daily equimola...

199

I{ Relationship between source clean up and mass flux of chlorinated solvents in low permeability settings with fractures}  

Microsoft Academic Search

Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from

P. L. Bjerg; J. C. Chambon; C. M. Christiansen; M. M. Broholm; P. J. Binning

2009-01-01

200

Long Term Leaching of Chlorinated Solvents from Source Zones in Low Permeability Settings with Fractures  

Microsoft Academic Search

Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from

P. L. Bjerg; J. Chambon; M. Troldborg; P. J. Binning; M. M. Broholm; G. Lemming; I. Damgaard

2008-01-01

201

Monitoring the decontamination of a site polluted by DNAPLs  

NASA Astrophysics Data System (ADS)

The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. ?13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in ?13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). ?13Ccis-DCE experienced an enrichment upstream to downstream of the barrier (from -15.5‰ to -11.5‰) indicating that a possible abiotic degradation due to the PRB is being produced. However, an enrichment in ?13Ccis-DCE from the focus area to the barrier (from -19.9‰ to -15.5‰) was also detected, suggesting that biotic degradation of cis-DCE is occurring in the field. As a conclusion, preliminary concentration and isotopic results seem to indicate that the PRB does not intercept the whole contaminated plume. The installation of a monitoring system of multilevel piezometers of new construction around the PRB has been proposed in order to study in detail the underground sections most affected by pollution and help to define patterns of migration of DNAPLs in the subsurface, giving the possibility to improve the design of the ZVI-PRB.

Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

2012-04-01

202

Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer  

SciTech Connect

Trichloroethylene (TCE)-transforming aquifer methanotrophs were evaluated for the influence of TCE oxidation toxicity and the effect of reductant availability on TCE transformation rates during methane starvation. TCE oxidation at relatively low (6 mg liter{sup {minus}1}) TCE concentrations significantly reduced subsequent methane utilization in mixed and pure cultures tested and reduced the number of viable cells in the pure culture Methylomonas sp. strain MM2 by an order of magnitude. Perchloroethylene, tested at the same concentration, had no effect on the cultures. Neither the TCE itself nor the aqueous intermediates were responsible for the toxic effect, and it is suggested that TCE oxidation toxicity may have resulted from reactive intermediates that attacked cellular macromolecules. During starvation, all methanotrophs tested exhibited a decline in TCE transformation rates, and this decline followed exponential decay. Formate, provided as an exogenous electron donor, increased TCE transformation rates in Methylomonas sp. strain MM2, but not in mixed culture MM1 or unidentified isolate, CSC-1. Mixed culture MM2 did not transform TCE after 15 h of starvation, but mixed cultures MM1 and MM3 did. The methanotrophs in mixed cultures MM1 and MM3, and the unidentified isolate CSC-1 that was isolated from mixed culture MM1 contained lipid inclusions, whereas the methanotrophs of mixed culture MM2 and Methylomonas sp. strain MM2 did not. It is proposed that lipid storage granules serve as an endogenous source of electrons for TCE oxidation during methane starvation.

Henry, S.M.; Grbic-Galic, D. (Stanford Univ., CA (USA))

1991-01-01

203

Charge to the Tetrachloroethylene (Perchloroethylene) Neurotoxicity Expert Panel  

EPA Science Inventory

Today NCEA is posting the charge which will be discussed at the expert panel meeting on neurotoxicity issues associated with exposure to tetrachlroroethylene. This charge is to be the main agenda topic for the meeting. The time and place of the meeting will be announced in a fu...

204

Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.  

PubMed Central

Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by reductive dehalogenation to TCE, dichloroethylene, and vinyl chloride (VC) under anaerobic conditions. In addition, [14C]PCE was at least partially mineralized to CO2. Mineralization of 24% of the PCE occurred in a continuous-flow fixed-film methanogenic column with a liquid detention time of 4 days. TCE was the major intermediate formed, but traces of dichloroethylene isomers and VC were also found. In other column studies under a different set of methanogenic conditions, nearly quantitative conversion of PCE to VC was found. These studies clearly demonstrate that TCE and VC are major intermediates in PCE biotransformation under anaerobic conditions and suggest that potential exists for the complete mineralization of PCE to CO2 in soil and aquifer systems and in biological treatment processes. PMID:3923927

Vogel, T M; McCarty, P L

1985-01-01

205

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1997-04-01

206

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1997-03-18

207

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.

Fernando, Quintus (Tucson, AZ); Muftikian, Rosy (Tucson, AZ); Korte, Nic (Grand Junction, CO)

1997-01-01

208

Developing strategies for PAH and TCE bioremediation  

SciTech Connect

Bioremediation is the controlled use of microbes, commonly bacteria and fungi, to reclaim soil and water contaminated with substances that are deleterious to human health and the environment. The organisms used often naturally inhabit the polluted matrix; however, they may inhabit a different environment and be used as seed organisms because of their ability to degrade a specific class of substances. It is because of the wide diversity of microbial metabolic potential that bioremediation is possible. Polyaromatic hydrocarbons (PAHs) are organic compounds that are ubiquitous in the environment. They are present in fossil fuels and are formed during the incomplete combustion of organic material. PAHs exhibit low volatility and low aqueous solubility. As the molecular weight of these compounds increases, there is an exponential decrease in solubility and volatility. PAHs tend to adsorb onto soils and sediments because of their hydrophobic character, which is an intrinsic function of molecular size. The microbial degradation of individual PAHs by pure cultures and mixed populations occurs under a wide range of soil types and environmental conditions. Generally, the factors having the greatest influence on PAH biodegradation rates are soil moisture content, pH, inorganic nutrients present, PAH loading rates, initial PAH concentrations, and the presence of an acclimated microbial population. Feasibility studies are essential for developing a bioremediation strategy and are performed in a phased testing program that is designed to accomplish a number of objectives. These objectives include establishing an indigenous microbial population that will degrade specific contaminants, defining the rate-limiting factors for enhanced PAH degradation and the optimal treatment in terms of rates and cleanup levels attainable, and developing design parameters for field operations.

Mahaffey, W.R.; Nelson, M.; Kinsella, J. (Ecova Corp., Redmond, WA (United States)); Compeau, G. (Applied Geosciences, Inc., Bellevue, WA (United States))

1991-10-01

209

DNAPLs at DOE sites: Background and assessment of characterization technologies  

SciTech Connect

The Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP) within the Office of Technology Development (OTD) has responsibility for identification, evaluation, and delivery of technologies needed for the work of the Department of Energy`s Office of Environmental Restoration and Waste Management. This report addresses part of that responsibility by providing summary information on DNAPL site characterization. A dense nonaqueous phase liquid (DNAPL) is a source of contamination that can persist in the subsurface for decades before dissipating completely into the vapor phase and groundwater. The DNAPL chemicals of particular concern to the DOE are chlorinated volatile organic compounds (Cl VOCS) such as carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and perchloroethylene (PCE). These Cl VOCs were used in multiple ton quantities at DOE sites and were often released to the subsurface. The predicted fate of released Cl VOC liquid is downward movement through the soil under the force of gravity. As it moves, some of the Cl VOC liquid becomes trapped in the soil pores as residual saturation. The liquid also moves rapidly downward if small fractures are present. This migration continues until an impermeable or semi-permeable layer is encountered. Then lateral movement or spreading occurs. The downward and lateral migration in the subsurface leads to DNAPL pools, lenses, and residual saturation that can cause long-term contamination of groundwater at levels well above drinking water standards. Although Cl VOCs have been detected as dissolved components in the groundwater and as vapor in the soil gas at several DOE sites, direct evidence of their presence as DNAPL is sparse and no measurements of the amounts of DNAPL present within a given volume of subsurface have been made. Consequently, unresolved DNAPL issues exist at DOE sites.

Junk, G.A.; Haas, W.J. Jr.

1993-12-01

210

Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors.  

PubMed

Desulfitobacterium hafniense Y51 is a dechlorinating bacterium that encodes an unusually large set of O-demethylase paralogs and specialized respiratory systems including specialized electron donors and acceptors. To use this organism in bioremediation of tetrachloroethene (PCE) or trichloroethene (TCE) pollution, expression patterns of its 5,060 genes were determined under different conditions using 60-mer probes in DNA microarrays. PCE, TCE, fumarate, nitrate, and dimethyl sulfoxide (DMSO) respiration all sustain the growth of strain Y51. Global transcriptome analyses were thus performed using various electron donor and acceptor couples (respectively, pyruvate and either fumarate, TCE, nitrate, or DMSO, and vanillate/fumarate). When TCE is used as terminal electron acceptor, resulting in its detoxification, a series of electron carriers comprising a cytochrome bd-type quinol oxidase (DSY4055-4056), a ferredoxin (DSY1451), and four Fe-S proteins (DSY1626, DSY1629, DSY0733, DSY3309) are upregulated, suggesting that the products of these genes are involved in PCE oxidoreduction. Interestingly, the PCE dehalogenase cluster (pceABCT) is constitutively expressed in the media tested, with pceT being upregulated and pceC downregulated in pyruvate/TCE-containing medium. In addition, another dehalogenation enzyme (DSY1155 coding for a putative chlorophenol reductive dehalogenase), is induced 225-fold in that medium, despite not being involved in PCE respiration. Remarkably since the reducing equivalents formed during pyruvate conversion to acetyl-CoA are channeled to electron acceptors including halogenated compounds, pyruvate induces expression of a pyruvate:ferredoxin oxidoreductase. This study paves the way to understanding the physiology of D. hafniense, optimizing this microbe as a bioremediation agent, and designing bioarray sensors to monitor the presence of dechlorinating organisms in the environment. PMID:21861158

Peng, Xue; Yamamoto, Shogo; Vertès, Alain A; Keresztes, Gabor; Inatomi, Ken-ichi; Inui, Masayuki; Yukawa, Hideaki

2012-02-01

211

Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues  

PubMed Central

Background: The U.S. Environmental Protection Agency (EPA) completed a toxicological review of tetrachloroethylene (perchloroethylene, PCE) in February 2012 in support of the Integrated Risk Information System (IRIS). Objectives: We reviewed key findings and scientific issues regarding the human health effects of PCE described in the U.S. EPA’s Toxicological Review of Tetrachloroethylene (Perchloroethylene). Methods: The updated assessment of PCE synthesized and characterized a substantial database of epidemiological, experimental animal, and mechanistic studies. Key scientific issues were addressed through modeling of PCE toxicokinetics, synthesis of evidence from neurological studies, and analyses of toxicokinetic, mechanistic, and other factors (tumor latency, severity, and background rate) in interpreting experimental animal cancer findings. Considerations in evaluating epidemiological studies included the quality (e.g., specificity) of the exposure assessment methods and other essential design features, and the potential for alternative explanations for observed associations (e.g., bias or confounding). Discussion: Toxicokinetic modeling aided in characterizing the complex metabolism and multiple metabolites that contribute to PCE toxicity. The exposure assessment approach—a key evaluation factor for epidemiological studies of bladder cancer, non-Hodgkin lymphoma, and multiple myeloma—provided suggestive evidence of carcinogenicity. Bioassay data provided conclusive evidence of carcinogenicity in experimental animals. Neurotoxicity was identified as a sensitive noncancer health effect, occurring at low exposures: a conclusion supported by multiple studies. Evidence was integrated from human, experimental animal, and mechanistic data sets in assessing adverse health effects of PCE. Conclusions: PCE is likely to be carcinogenic to humans. Neurotoxicity is a sensitive adverse health effect of PCE. Citation: Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, Barone S Jr, Makris SL, Glenn B, Subramaniam RP, Gwinn MR, Dzubow RC, Chiu WA. 2014. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect 122:325–334;?http://dx.doi.org/10.1289/ehp.1307359 PMID:24531164

Hogan, Karen A.; Scott, Cheryl Siegel; Cooper, Glinda S.; Bale, Ambuja S.; Kopylev, Leonid; Barone, Stanley; Makris, Susan L.; Glenn, Barbara; Subramaniam, Ravi P.; Gwinn, Maureen R.; Dzubow, Rebecca C.; Chiu, Weihsueh A.

2014-01-01

212

Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis  

PubMed Central

The genome sequence of psychrophilic Shewanella sediminis revealed the presence of five putative reductive dehalogenases (Rdhs). We found that cell extracts of pyruvate/fumarate-grown S. sediminis cells catalysed reduced methyl viologen-dependent reductive dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) at a specific activity of approximately 1 nmol TCE min?1 (mg protein)?1. Dechlorination of PCE followed Michaelis–Menten kinetics with an apparent Km of 120 ?M PCE. No PCE dechlorination was observed with heat-denatured extract or when cyanocobalamin was omitted from the growth medium; however, the presence of PCE in the growth medium increased PCE transformation rates. Analysis of mutants carrying in-frame deletions of all five Rdhs encoding genes showed that only deletion of Ssed_3769 resulted in the loss of PCE dechlorination activity suggesting that Ssed_3769 is a functional Rdh. This is the first study to show reductive dechlorination activity of PCE in a sediment-dwelling Shewanella species that may be important for linking the flux of organohalogens to organic carbon via reductive dehalogenation in marine sediments. PMID:23479755

Lohner, Svenja T.; Spormann, Alfred M.

2013-01-01

213

Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes'' 195  

Microsoft Academic Search

Dehalococcoides ethenogenes'' 195 can reductively dechlorinate tetrachloroethene (PCE) completely to ethene (ETH). When PCE-grown strain 195 was transferred (2% [vol\\/vol] inoculum) into growth medium amended with trichloroethene (TCE), cis-dichloroethene (DCE), 1,1-DCE, or 1,2-dichloroethane (DCA) as an electron acceptor, these chlorinated compounds were consumed at increasing rates over time, which indicated that growth occurred. Moreover, the number of cells increased when

X. Maymo-Gatell; TIMOTHY ANGUISH; STEPHEN H. ZINDER

1999-01-01

214

Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting.  

PubMed

Chlorinated ethenes in drinking water could be reductively dechlorinated to non-toxic ethene by using a hydrogen based membrane biofilm reactor (H2-MBfR) under denitrifying conditions as it provides an appropriate environment for dechlorinating bacteria in biofilm communities. This study evaluates the reductive dechlorination of perchloroethene (PCE) to non-toxic ethene (ETH) and comparative community analysis of the biofilm grown on the gas permeable membrane fibers. For these purposes, three H2-MBfRs receiving three different chlorinated ethenes (PCE, TCE and DCE) were operated under different hydraulic retention times (HRTs) and H2 pressures. Among these reactors, the H2-MBfR fed with PCE (H2-MBfR 1) accomplished a complete dechlorination, whereas cis-DCE accumulated in the TCE receiving H2-MBfR 2 and no dechlorination was detected in the DCE receiving H2-MBfR 3. The results showed that 95% of PCE dechlorinated to ETH together with over 99.8% dechlorination efficiency. Nitrate was the preferred electron acceptor as the most of electrons generated from H2 oxidation used for denitrification and dechlorination started under nitrate deficient conditions at increased H2 pressures. PCR-DGGE analysis showed that Dehalococcoides were present in autotrophic biofilm community dechlorinating PCE to ethene, and RDase genes analysis revealed that pceA, tceA, bvcA and vcrA, responsible for complete dechlorination step, were available in Dehalococcoides strains. PMID:24731873

Karata?, Serdar; Hasar, Halil; Ta?kan, Ergin; Özkaya, Bestamin; ?ahinkaya, Erkan

2014-07-01

215

Personal Continuing Education (PCE) for the Graduate Veterinarian  

E-print Network

: The veterinarian can participate as part of the student group rotation. They can attend rounds, observe case workups or surgery procedures. Cost: $25 per hour or $200 per day. CE issued is 3-4 hours per day (may

Ghajar, Afshin J.

216

Sorption of nonionic surfactant oligomers to sediment and PCE DNAPL: Effects on PCE distribution between water and sediment  

Microsoft Academic Search

Introduction of surfactant mixtures to the subsurface for the purpose of surfactant-enhanced aquifer remediation requires consideration of the effects of surfactant sorption to sediment and nonaqueous phase liquids. These effects include alteration of the solubilizing properties of the surfactant mixture and alteration of the sorption properties of the stationary phase. Sorption of octylphenol ethoxylate (EO) surfactant oligomers to a low

W. Wynn John; Gaobin Bao; William P. Johnson; Thomas B. Stauffer

2000-01-01

217

Evaluating the Relationship Between Source Zone Metrics and Down-Gradient Plume Response as a Function of Mixed DNAPL Mass Removal  

NASA Astrophysics Data System (ADS)

The influence of source zone architecture on down-gradient plume and flux-averaged effluent concentrations as a function of source depletion was evaluated through a series of 2-D aquifer cell experiments contaminated with a mixed dense non-aqueous phase liquid (DNAPL) consisting of a 1:1 molar ratio of trichloroethene (TCE) and tetrachloroethene (PCE). The aquifer cells (1.0 m length x 48 cm height x 1.4 cm internal thickness) were packed with different size fractions of quartz sands, and low permeability lens configurations were varied to achieve alternative varied source zone saturation distributions. DNAPL saturation distributions were quantified using a light transmission system and characterized by the ganglia-to-pool ratio (GTP, 0 to infinity) and pool fraction (0 to 1), where saturations less than 0.13 represent discrete ganglia and saturations equal to or greater than 0.13 are considered to represent "pools". Flux-averaged effluent dissolved-phase TCE and PCE concentrations were monitored continuously, while down-gradient plume samples were collected periodically from 25 side-ports. Results from these studies indicated that TCE was preferentially depleted during aqueous phase dissolution from the mixed DNAPL source zone, while PCE was preferentially depleted during surfactant flooding with a 4% (w/w) solution of polyoxyethylene (20) sorbitan monooleate (Tween 80, a nonionic, food-grade surfactant). Batch experiments were conducted to investigate this competitive solubilization of PCE and TCE from the DNAPL mixture in the presence of surfactant. Results indicate that PCE is preferentially solubilized relative to TCE in micellar solutions of Tween 80 and Aerosol MA-80I, demonstrating that a Raoult’s Law convention is not applicable to these systems. In contrast to the PCE and TCE data, results obtained using a 1:1 molar mixture of decane and dodecane in the same micellar solutions indicate that the amount of decane or dodecane solubilized in the aqueous phase was proportional to the mole fraction in the NAPL, consistent with a Raoult’s Law. It is hypothesized that the deviations from Raoult’s Law observed for PCE and TCE were caused by preferential solubilization of PCE within the hydrophobic core of the micelles. Work is on-going to quantify the preferential solubilization observed in the batch experiments, which will facilitate the incorporation of this relationship into multiphase compositional simulators. These simulators will then be used to improve the understanding of the inter-relationships between the initial source zone architecture, mass removal, reductions in mass flux and plume evolution in multi-component contaminated subsurface systems.

Cápiro, N. L.; Granbery, E. K.; Christ, J.; Pennell, K. D.

2009-12-01

218

Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes  

USGS Publications Warehouse

Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

1990-01-01

219

Degradation of Perchloroethene by zero-valent iron evaluated by carbon isotope fractionation  

NASA Astrophysics Data System (ADS)

Perchloroethene (PCE) is a widely spread groundwater contaminant in formally used industrial sites. Zero valent iron (ZVI) is used for in situ chemical reduction (ISCR) of PCE contaminants in the groundwater. A key factor in the application of in situ remediation technologies is a proper monitoring of contaminant reduction. The measurement of the stable isotope ratio is a promising method that is already used for quantifying microbial degradation of chlorinated contaminants. The carbon isotope ratio of PCE, measured by - isotope ratio mass spectrometry coupled to a gas chromatograph via a combustion interface (GC-C-IRMS), increases during degradation of PCE and can be directly related to the degree of degradation. It can be used to directly quantify chemical degradation and thus serves as a useful monitoring tool for groundwater remediation. An experiment to determine the carbon isotopic fractionation factor was performed as a lab experiment using Nanofer Star (NANOIRON). Two different PCE concentrations (c1: 220mgL-1, c2: 110mgL-1) mixed with 0.5 g of ZVI were sealed under deoxygenated conditions in 250 ml glas bottles locked with mininert caps. The bottles were incubated on a shaker for 865 h. Samples were taken weekly to measure the change in the carbon isotopic ratio of PCE as well as its concentration. Results showed a strong increase in the carbon isotope ratio (?-value) of PCE (start: -27 o end: -4 ), which indicates a significant dechlorination process of PCE. Beside PCE also one degradation product (Trichloroethylene - TCE) was measured. TCE was further dechlorinated as indicated by the ?-value change of TCE from -26 o to -4 oȦn unexpected intermediate value of -45 o for TCE was observed in the experiment. This fluctuation could be induced by the time depending concentration due to degradation and conversation processes. Furthermore, it seems that the progress of the ?-value is affected by the starting concentration of PCE (?-value of c1 < c2) as there is a higher ratio of PCE to ZVI.

Leitner, Simon; Watzinger, Andrea; Reichenauer, Thomas G.

2014-05-01

220

PHYSIOLOGICALLY-BASED TOXICOKINETIC MODELING OF THREE WATERBORNE CHLOROETHANES IN CHANNEL CATFISH, ICTALURUS PUNCTATUS  

EPA Science Inventory

A physiologically-based toxicokinetic model for fish was used to describe the uptake and disposition of three chlorinated ethanes in channel catfish (Ictalurus punctatus). atfish were simultaneously exposed to 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachlo...

221

7 Cometabolic Bioremediation T. C. Hazen  

E-print Network

7 Cometabolic Bioremediation T. C. Hazen Lawrence Berkeley National Laboratory, Berkeley, CA, USA.1007/978-3-540-77587-4_185, # Springer-Verlag Berlin Heidelberg, 2010 #12;Abstract: Cometabolic bioremediation is probably the most under bioremediation has been used on some of the most recalcitrant contami- nants, e.g., PCE, TCE, MTBE, TNT, dioxane

Hazen, Terry

222

Influence of Water Content and Plants on the Dissipation of Chlorinated Volatile Organic Compounds in Soil  

Microsoft Academic Search

To devise effective procedures for the remediation of soil contaminated by VOCs, an improved understanding of their fate and transport mechanisms in soil is essential. To show the effect of plants on the dissipation of 1,1,1-trichloroethane (TCA), trichloroethylene (TCE) and tetrachloroethylene (PCE), two types of experiments, vial and column, were conducted. The results suggested that keeping the soil moisture content

Changhwan Cho; Kijune Sung; M. Yavuz Coapcioglu; Malcolm Drew

2005-01-01

223

Spectroscopic signatures of VOC physisorption on microporous solids. Application for trichloroethylene and tetrachloroethylene adsorption on MFI zeolites.  

PubMed

This paper presents an experimental infrared spectroscopic study of the physisorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) on a self-supported high silica ZSM5 zeolite. The evolution of the shape, area, and location of vibration bands of both the adsorbent and the adsorbate is analyzed with respect to the number of sorbed molecules. The state of the adsorbed phase is characterized upon adsorption by comparing the location of the investigated vibration bands with the location of the corresponding vibration bands of the chloroalkenes in gaseous, liquid, and solid phases. The singular behavior of PCE with respect to TCE is seen from the modification of vibration bands of both the adsorbed phase and the adsorbent upon loading. The adsorption process proceeds by stages for PCE, whereas it appears continuous for TCE. Particular micropore loadings are evidenced at 4 and 6.5 molec.uc(-1) for PCE and at 6 molec.uc(-1) for TCE, in agreement with previous macroscopic and microscopic data. In addition, the presence of admolecules induces at least one emerging vibration band located at around 1715 cm(-1), mainly due to a contribution of the microporous surface of the adsorbent. PMID:16852661

Bertrand, O; Weber, G; Maure, S; Bernardet, V; Bellat, J P; Paulin, C

2005-07-14

224

ANNUAL REPORT. DEVELOPMENT OF RADON AS A NATURAL TRACER FOR MONITORING THE REMEDIATION OF NAPL CONTAMINATION IN THE SUBSURFACE  

EPA Science Inventory

Dense non-aqueous phase liquids (DNAPLs) such as trichloroethene (TCE) and perchloroethene (PCE) present long-term challenges in terms of quantification in the subsurface at many DOE facilities. Over the past year we have continued investigating a potentially lower-cost method fo...

225

Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea  

Microsoft Academic Search

In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous

S.-Y. Hamm; S. M. Ryu; J.-Y. Cheong; Y.-J. Woo

2003-01-01

226

Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of MultiComponent Dissolution Kinetics on Cleanup Time  

Microsoft Academic Search

Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to

W McNab; S Ezzedine; R Detwiler

2007-01-01

227

Phytoremediation of hazardous wastes. Technical report, 23--26 July 1995  

Microsoft Academic Search

A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is

S. C. McCutcheon; N. L. Wolfe; L. H. Carreria; T. Ou

1995-01-01

228

Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater  

Microsoft Academic Search

Biologically enhanced dissolution offers a method to speed removal of chlorinated solvent dense non-aqueous-phase liquid (DNAPL) sources such as tetrachloroethene (PCE) and trichoroethene (TCE) from aquifers. Bioremediation is accomplished by adding an electron donor to the source zone where fermentation to intermediates leading to acetic acid and hydrogen results. The hydrogen and possibly acetic acid are used by dehalogenating bacteria

Perry L. McCarty; Min-Ying Chu; Peter K. Kitanidis

2007-01-01

229

Natural Attenuation of Chlorinated Solvents and Fuel Components (BTEX and MTBE) in Ground Water  

EPA Science Inventory

Monitored Natural Attenuation is widely used in the USA to deal with ground water contamination from fuel components such as the BTEX compounds or MTBE or TBA and from chlorinated solvents such as PCE, TCE, and TCA. This presentation reviews the theory and practice of MNA in the...

230

Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.  

PubMed

In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE>PCE>CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol(-1), showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction. PMID:22115467

Parshetti, Ganesh K; Doong, Ruey-an

2012-01-01

231

Sub-ppb, Autonomous, Real-time Detection of VOCs with iCRDS  

NASA Astrophysics Data System (ADS)

The continuous, real-time detection of sub-parts-per-billion (ppb) concentrations of volatile organic compounds (VOCs) such as trichloroethylene (TCE) and tetrachloroethylene (PCE) remains difficult, time consuming and expensive. In particular, short term exposure spikes and diurnal variations are difficult or impossible to detect with traditional TO-15 measurements. We present laboratory and field performance data from an instrument based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) and is capable of detecting a broad range of VOCs, in situ, continuously and autonomously. We have demonstrated the measurement of TCE in zero air with a precision of 0.17 ppb (1? in 4 minutes). PCE was measured with a precision of 0.15 ppb (1? in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 ?g/m3) and for PCE is 0.29 ppb (2 ?g/m3). Additionally, the instrument is capable of precisely measuring and quantifying BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. We have demonstrated the accurate, interference free measurement of Mountain View, California air doped with TCE concentrations ranging from 4.22 ppb (22.8 ?g/m3) to 17.74 ppb (96 ?g/m3) with a precision of 1.42 ppb (1? in 4 minutes). Mountain View, California air doped with 10.83 ppb of PCE (74.0 ?g/m3) was measured with a precision of 0.54 ppb (1? in 4 minutes). Finally, the instrument was deployed to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air. TCE concentrations in the breathing zone averaged 0.186 × 0.669 ppb while tunnel air averaged 17.38 × 4.96 ppb, in excellent agreement with previous TO-15 8 hr averages. PCE concentrations in the breathing zone averaged 0.063 × 0.270 ppb while tunnel air averaged 0.755 × 0.359 ppb, again, in excellent agreement with previous TO-15 8 hr averages. The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

Leen, J.; Gupta, M.; Baer, D. S.

2013-12-01

232

Structural basis for organohalide respiration.  

PubMed

Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region. PMID:25278505

Bommer, Martin; Kunze, Cindy; Fesseler, Jochen; Schubert, Torsten; Diekert, Gabriele; Dobbek, Holger

2014-10-24

233

Biofouling effects on in situ TCE bioremediation by phenol utilizers  

SciTech Connect

In situ bioremediation involves stimulating the growth of bacteria within the contaminated region of an aquifer to break down the contaminants. This large bacteria population often can have the unwanted effect of clogging the porous media. The clogging reduces the porosity and the hydraulic conductivity of the soil. These hydrodynamic changes can affect the flow of groundwater used to deliver nutrients to the bacteria in the contaminated region of the aquifer. The authors developed a mathematical model to study the impact of biofouling on a recirculation well flow system used to mix nutrients with contaminated groundwater. The insights gained from this examination can aid in designing a system to minimize biofouling problems.

MacDonald, T.R.; Kitanidis, P.K. [Stanford Univ., CA (United States). Civil Engineering Dept.

1995-12-31

234

Supporting ECDL'05 using TCeReview Andreas Pesenhofer1  

E-print Network

and medium sized events up to a challenging medical conference with about 3,000 submissions. In this paper we classifier [2]. At the first step of submission authors were asked to register their paper and supply meta-data of Digital Libraries, Concepts of Documents and Metadata 1 1 1 2 3 . 1 1 0.11 System Architectures, Open

Rauber,Andreas

235

Subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats  

SciTech Connect

This study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD50 in male and female Charles River rats was found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses of 14,400, and 1400 mg tetrachloroethylene/kg body wt/day for 90 consecutive days. There were no compound-related deaths. Body weights were significantly lower in male and female rats at the higher doses. There were no consistent dose-related effects on any of the hematological, clinical chemistry, or urinalysis parameters. 5'-Nucleotidase activity was increased in a dose-dependent manner, suggesting possible hepatotoxicity; however, other serum indicators of hepatic function were unaffected by the treatment. There were no gross pathological effects observed. Liver and kidney body weight ratios, but not brain weight ratios, were elevated at the higher doses. There was no other evidence of compound-related toxicity. These data suggest that exposure of humans to reported levels of tetrachloroethylene in drinking water (approximately 1 microgram/liter) does not constitute a serious health hazard.

Hayes, J.R.; Condie, L.W. Jr.; Borzelleca, J.F.

1986-07-01

236

Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems  

SciTech Connect

The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

Burris, D.R.; Smith, M.H. [Armstrong Lab., Tyndall Air Force Base, FL (United States)] [Armstrong Lab., Tyndall Air Force Base, FL (United States); Delcomyn, C.A. [Applied Research Associates, Inc., Tyndall Air Force Base, FL (United States)] [Applied Research Associates, Inc., Tyndall Air Force Base, FL (United States); Roberts, A.L. [Johns Hopkins Univ., Baltimore, MD (United States)] [Johns Hopkins Univ., Baltimore, MD (United States)

1996-10-01

237

Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method  

NASA Astrophysics Data System (ADS)

Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time steps. Simulated results showed that the model could successfully reproduce the migration pathways and distribution configuration observed from the laboratory experiment and LT analysis, excepted for a smaller pool height on the lenses, and a lower saturation values in PCE accumulation area due to local heterogeneities. Due to the influence of water flow, the PCE distribution was asymmetrical, and the PCE distribution area, pool height as well as PCE saturation in the accumulation region at right side was much greater. Acknowledge: This work is financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.

Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

2013-12-01

238

A review of potential neurotoxic mechanisms among three chlorinated organic solvents  

SciTech Connect

The potential for central nervous system depressant effects from three widely used chlorinated solvents, trichloroethylene (TCE), perchloroethylene (PERC), and dichloromethane (DCM), has been shown in human and animal studies. Commonalities of neurobehavioral and neurophysiological changes for the chlorinated solvents in in vivo studies suggest that there is a common mechanism(s) of action in producing resultant neurotoxicological consequences. The purpose of this review is to examine the mechanistic studies conducted with these chlorinated solvents and to propose potential mechanisms of action for the different neurological effects observed. Mechanistic studies indicate that this solvent class has several molecular targets in the brain. Additionally, there are several pieces of evidence from animal studies indicating this solvent class alters neurochemical functions in the brain. Although earlier evidence indicated that these three chlorinated solvents perturb the lipid bilayer, more recent data suggest an interaction between several specific neuronal receptors produces the resultant neurobehavioral effects. Collectively, TCE, PERC, and DCM have been reported to interact directly with several different classes of neuronal receptors by generally inhibiting excitatory receptors/channels and potentiating the function of inhibitory receptors/channels. Given this mechanistic information and available studies for TCE, DCM, and PERC, we provide hypotheses on primary targets (e.g. ion channel targets) that appear to be most influential in producing the resultant neurological effects. - Research Highlights: > Comparison of neurological effects among TCE, PERC, and DCM. > Correlation of mechanistic findings to neurological effects. > Data support that TCE, PERC, and DCM interact with several ion channels to produce neurological changes.

Bale, Ambuja S., E-mail: bale.ambuja@epa.gov; Barone, Stan; Scott, Cheryl Siegel; Cooper, Glinda S.

2011-08-15

239

Characterization of the Corrinoid Iron-Sulfur Protein Tetrachloroethene Reductive Dehalogenase of Dehalobacter restrictus  

PubMed Central

The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 ± 1 kDa, whereas the native molecular mass was 71 ± 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-?-d-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 ± 0.1 mol of cobalamin, 0.6 ± 0.02 mol of cobalt, 7.1 ± 0.6 mol of iron, and 5.8 ± 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 ± 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The Km values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 ± 3.2, 23.7 ± 5.2, and 47 ± 10 ?M, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy. PMID:12902251

Maillard, Julien; Schumacher, Wolfram; Vazquez, Francisco; Regeard, Christophe; Hagen, Wilfred R.; Holliger, Christof

2003-01-01

240

r/g 2499u Form 24 for 06/03/2013 Test of PCE, PCE Antenna Feeder (), and ATV Control Panel Commands  

E-print Network

-sleep 06:20-06:30 FE-2 Morning Inspection. RSS1, RSS2 Reboot Inspection of - connector on - separator pump:45-11:45 CDR Gather equipment for water separation with membrane filter-separator () 08:50-10:25 FE-3,FE-6 ISS System Battery Charge (begin) 09:15-10:00 FE-5 Z1 - Gather stowed items 09:20-11:30 FE-2 Gather Water

Waliser, Duane E.

241

FY02 Final Report on Phytoremediation of Chlorinated Ethenes in Southern Sector Sediments of the Savannah River Site  

SciTech Connect

This final report details the operations and results of a 3-year Seepline Phytoremediation Project performed adjacent to Tims Branch, which is located in the Southern Sector of the Savannah River Site (SRS) A/M Area. Phytoremediation is a process where interactions between vegetation, associated microorganisms, and the host substrate combine to effectively degrade contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that shows promise for the effective and safe cleanup of certain hazardous wastes. It has the potential to remediate numerous volatile organic compounds (VOCs). Extensive characterization work has demonstrated that two VOCs, tetrachloroethylene (PCE) and trichloroethylene (TCE) are the major components of the VOC-contaminated groundwater that is migrating through the Southern Sector and Tims Branch seepline area (WSRC, 1999). The PCE and TCE are chlorinated ethenes (CE), and have been detected in seepline soils and ground water adjacent to the ecologically-sensitive Tims Branch seepline area.

Brigmon, R..L.

2004-01-30

242

Constraining Rates of Biodegradation of Chlorinated Ethenes at Steep Concentration Gradients Using Stable Carbon Isotopes  

NASA Astrophysics Data System (ADS)

Enhanced biodegradation of emplaced dense non-aqueous phase liquid (DNAPL) sources of tetrachloroethene (PCE) was monitored in a 2-dimensional model aquifer and in a Dover Air Force Base pilot field study. The stable carbon isotope values of PCE and its biodegradation products were monitored along steep concentration gradients near the PCE source zones to quantify first order biodegradation rate constants during a study that assessed the potential for biological enhancement of PCE DNAPL dissolution . Stable carbon isotope measurements are an ideal tool to assess the relative rate of biodegradation versus dissolution since while biodegradation of chlorinated ethenes involves a substantial carbon isotope fractionation, dissolution of chlorinated ethenes is a largely non-fractionating process. Within the dissolved plumes that developed down gradient from the emplaced sources, the isotopic fractionation of PCE and its degradation products in both the model aquifer and field study were consistent with those previously observed in batch laboratory studies. A maximum isotope fractionation of 2.3 permil was observed in the dissolved PCE downgradient, while close to the source zone the carbon isotopic signature of the dissolved PCE remained largely unchanged, due to the continuing dissolution of unfractionated PCE DNAPL. Significant carbon isotopic fractionation was observed adjacent to and/or downstream from the source in the degradation products trichloroethene (TCE), 1,2-dichloroethene (cDCE), and vinyl chloride (VC). Therefore, close to the source zone, confirmation of PCE degradation is based primarily on the appearance of the lesser chlorinated ethene degradation products and isotopic signatures of those products consistent with biodegradation. This trend was observed on a small scale in the model aquifer and similar trends were observed in the field at a larger scale. In both cases biodegradation was correlated with enhanced rates of DNAPL dissolution compared to non-dechlorinating controls.

Morrill, P. L.; Seepersad, D. J.; Lacrampe-Couloume, G.; Edwards, E. A.; Sleep, B. E.; McMaster, M. L.; Major, D. W.; Sherwood Lollar, B.

2005-12-01

243

Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): preliminary investigation on effects of cement doses.  

PubMed

The reactivities of various types of iron mixtures to degrade chlorinated hydrocarbons (PCE, TCE and 1,1,1-TCA) in the form of non-aqueous phase liquids were investigated. The iron mixtures included a mixture of Fe(II) and Portland cement (Fe(II)-C), a mixture of Fe(II), Fe(III) and Ca(OH)(2) (Fe(II/III)-L), and a mixture of Fe(II), Fe(III), Ca(OH)(2), and Portland cement (Fe(II/III)-C). When the same amount of Fe(II) was used, Fe(II)-C was more reactive with chlorinated ethylenes (i.e. PCE and TCE) than Fe(II/III)-L. The reductive pathway for high concentrations of total PCE (i.e. above solubility) with Fe(II)-C was determined to be a combination of two-electron transfer, ?-elimination and hydrogenolysis. Increasing the cement dose from 5% to 10% in Fe(II)-C did not affect PCE dechlorination rates, but it did favor the ?-elimination pathway. In addition, when Fe(II/III)-C with 5%C was used, PCE dechlorination was similar to that by Fe(II)-C, but this mixture did not effectively degrade TCE. A modified second-order kinetic model was developed and shown to appropriately describe degradation of TCE at high concentrations. Fe(II/III)-L effectively degraded high concentrations of 1,1,1-TCA at rates that were similar to those obtained with Fe(II)-C using 10% C. Moreover, both increasing cement doses and the presence of Fe(III) increased dechlorination rates of 1,1,1-TCA, which was mainly through the hydrogenolysis pathway. The reactivity of Fe(II/III)-L was strongly dependent on the target compound (i.e. less reactivity with TCE, more with 1,1,1-TCA). Therefore, Fe(II/III)-L could be a potential mixture for degrading 1,1,1-TCA, but it should be modified to degrade TCE more effectively. PMID:22634553

Do, Si-Hyun; Batchelor, Bill

2012-07-15

244

Gas phase photocatalytic degradation on TiOâ pellets of volatile chlorinated organic compounds from a soil vapor extraction well  

Microsoft Academic Search

The mineralization of trichloroethylene (TCE) and tetrachloroethylene (PCE) in gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiOâ pellets in field trials at the Savannah River Site in Aiken, SC. The TiOâ pellets were prepared using a sol-gel method. The experiments were performed at 55 to 60°C using space

S. Yamazaki-Nishida; H. W. Read; J. K. Nagano; M. A. Anderson; S. Cervera-March; T. R. Jarosch; C. A. Eddy-Dilek

1993-01-01

245

Gas phase photocatalytic degradation on TIO2 pellets of volatile chlorinated organic compounds from a soil vapor extraction well  

Microsoft Academic Search

The degradation of trichloroethylene (TCE, Cl2C=CHCl) and tetrachloroethylene (PCE, Cl2C=CCI2) in a gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO2 pellets in a field trial at the Savannah River Site in Aiken, SC. The TiO2 pellets were prepared using a sol?gel method. The experiments were performed at 55

Harry W. Read; Joyce K. Nagano; Tim Jarosch; Carol Eddy; Marc A. Anderson

1994-01-01

246

Microbial based chlorinated ethene destruction  

DOEpatents

A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

Bagwell, Christopher E. (Aiken, SC); Freedman, David L. (Clemson, SC); Brigmon, Robin L. (North Augusta, SC); Bratt, William B. (Atlanta, GA); Wood, Elizabeth A. (Marietta, GA)

2009-11-10

247

Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: Application to urban plume in Verl, Germany  

USGS Publications Warehouse

Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times. ?? 2011 American Chemical Society.

Limmer, M.A.; Balouet, J.-C.; Karg, F.; Vroblesky, D.A.; Burken, J.G.

2011-01-01

248

Geohydrology and distribution of volatile organic compounds in ground water in the Casey Village area, Bucks County, Pennsylvania  

USGS Publications Warehouse

Casey Village and the adjoining part of the U.S. Naval Air Warfare Center (NAWC) are underlain by the Late Triassic-age Stockton Formation, which consists of a dipping series of siltstones and sandstones. The direction of vertical ground-water gradients in the Stockton Formation varies among well locations and sometimes with time. Vertical gradients can be substantial; the difference in water levels at one well pair (two wells screened at different depths) was 7.1 ft (feet) over a 32-ft vertical section of the aquifer. Potentiometric-surface maps show a groundwater divide that bisects the Casey Village area. For wells screened between 18 and 64 ft below land surface (bls), the general ground-water gradient is to the east and northeast on the east side of the divide and to the south and southwest on the west side of the divide. For wells screened between 48 and 106 ft bls, the general ground-water gradient is to the northeast on the east side of the divide and to the southwest and northwest on the west side of the divide. An aquifer test at one well in Casey Village caused drawdown in wells on the opposite side of the ground-water divide on the NAWC and shifted the ground-water divide in the deeper potentiometric surface to the west. Drawdowns formed an elliptical pattern, which indicates anisotropy; however, anisotropy is not aligned with strike or dip. Hydraulic stress caused by pumping crosses stratigraphic boundaries. Between 1993 and 1996, the trichloroethylene (TCE) concentration in water samples collected from wells in Casey Village decreased. The highest concentration of TCE measured in water from one well decreased from 1,200 mg/L (micrograms per liter) in 1993 when domestic wells were pumped in Casey Village to 140 mg/L in 1996, 3 years after the installation of public water and the cessation of domestic pumping. This suggests that pumping of domestic wells may have contributed to TCE migration. Between 1993 and 1996, the tetrachloroethylene (PCE) concentration in water samples collected from wells in Casey Village decreased only slightly. The highest concentration of PCE measured in water from one well decreased from 720 mg/L in 1993 to 630 mg/L in 1996. The distribution of TCE and PCE in ground water indicates the presence of separate PCE and TCE plumes, each with a different source area. The TCE plume appears to be moving in two directions away from the ground-water divide area. The pumping of a domestic well may have caused TCE migration into the ground-water divide area. From the divide area, the TCE plume appears to be moving both to the east and the west under the natural hydraulic gradient. Aquifer-isolation tests conducted in the well with the highest TCE concentrations showed that concentrations of TCE in water samples from the isolated intervals were similar but slightly lower in the deeper isolated zones than in the shallower isolated zones. Upward flow was measured in this well during geophysical logging. If the source of TCE to the well was from shallow fractures, upward flow of less contaminated water could be flushing TCE from the immediate vicinity of this well. This may help explain why the concentration of TCE in water from this well decreased an order of magnitude between 1993 and 1996.

Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.

1998-01-01

249

Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?  

NASA Astrophysics Data System (ADS)

Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (?13C and ?37Cl) tend to show a linear correlation with a slope (m ? ?C/?Cl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.

Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

2014-05-01

250

Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.  

PubMed

Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and ? and ?-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5??A of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ?61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. PMID:24119162

Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

2014-01-01

251

Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.  

SciTech Connect

Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

2003-01-01

252

Uptake and fate of organohalogens from contaminated groundwater in woody plants  

SciTech Connect

The emerging technology of phytoremediation uses green plants for low-cost, low-tech remediation processes in which selected plants and natural or engineered microorganisms work together to metabolize, convert, absorb, accumulate, sequester, or otherwise render harmless multiple environmental contaminants. For many organic contaminants, such as tricholoroethylene (TCE) and tetrachloroethylene (PCE), there is evidence that plants can degrade a portion of the organohalogen that is taken up to form less volatile compounds, such as trichloroacetic acid (TCAA), which are sequestered in the plant tissue while the remainder is passed out of the leaf tissue with the transpiration stream. Analysis of leaves from trees in uncontaminated areas gives TCAA concentrations that are typically under 100 ng/g TCAA, while in contaminated areas concentrations run as high as 1,000 ng/g. Hybrid poplar plants fed by TCE- and PCE-spiked nutrient solutions in a greenhouse showed elevated TCAA levels in the leaves within a week, as well as evidence for evapotranspiration of the TCE and PCE.

Sytsma, L.; Mulder, J.; Schneider, J. [Argonne National Lab., IL (United States)] [and others

1997-12-31

253

Analytical Modeling of A By-product Transport in Chain Reactions  

NASA Astrophysics Data System (ADS)

Many chemical reactions of contaminants in the subsurface involve complex reaction pathways and networks. As one of those reaction networks, chain-reactions can be found in radionuclide decay, denitrification, biodegradation of chlorinated solvents, etc. For example, this reaction pattern can be illustrated by the biodegrdation of tetrachloroethylene (PCE) and trichloroethylene (TCE). PCE reacts to produce TCE and TCE reacts to form dichloroethylene (DCE). DCE will further reacts to form vinyl chloride (VC) and finally VC reacts to produce thylene (ETH). During the chain reactions, by-products, such as chloride in PCE reaction chain, can be produced in groundwater. For this reason, by-prodcut concentrations in the contaminant plumes are elevated relatively to ambient concentrations. Because of the neutral chemical behavior of some by-products, they can be treated as indicators to identify the sources of contaminants and to estimate reaction rates. Often, a single by-prodcut is produced from multiple steps in a reaction chain. Then, the partial differential equation for by-product mass balance is coupled by multiple reactants. This makes it difficult, if not impossible, to derive analytical solutions using integral transforms. Instead, we conduct singular value decomposition (SVD) analytically and develop a closed-form solution of a by-product transport in multiple chain reactions. In achieving the analytical solution, all reactions are assumed to be first-order and the system is assumed to be homogeneous and isotropic.

Sun, Y.; Lee, K.; Buscheck, T. A.

2003-12-01

254

Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration  

USGS Publications Warehouse

Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B.V. All rights reserved.

Johnson, R.H.; Poeter, E.P.

2007-01-01

255

VAPOR PHASE TREATMENT OF PCE IN A SOIL COLUMN BY LAB-SCALE ANAEROBIC BIOVENTING  

EPA Science Inventory

Microbial destruction of highly chlorinated organic compounds must be initiated by anaerobic followed by aerobic dechlorination. In-situ dechlorination of vadose zone soil contaminated with these compounds requires, among other factors, the establishment of highly reductive anaer...

256

Dechlorination of PCE by mixtures of green rust and zero-valent iron  

E-print Network

such as pH (8, 9, and 10), ZVI pretreatment, and preparation method of the mixtures (GR[S]?? synthesized in the presence of ZVI; GR[S]?? and ZVI mixed after preparation). For all the experimental conditions evaluated, the activities of these reductants...

Marchal, Fabienne

2012-06-07

257

Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media  

Microsoft Academic Search

Few proven technologies exist that may be used to treat dense non-aqueous phase liquid (DNAPL) contaminants. In-situ chemical flushing is a proposed technology which consists of flushing DNAPL source zones with a reactive solution to degrade the contaminant mass below ground.A laboratory and controlled field experimental program was conducted to assess the potential of potassium permanganate (KMnO4) as a reagent

M. Schnarr; C. Truax; G. Farquhar; E. Hood; T. Gonullu; B. Stickney

1998-01-01

258

Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene  

DOEpatents

A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

Googin, J.M.; Napier, J.M.; Travaglini, M.A.

1982-03-31

259

Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics  

NASA Astrophysics Data System (ADS)

Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE < TCE < CF. Notably, the partitioning of all Tween surfactants into the NAPLs consisting of the least hydrophilic PCE was minimal. The partitioning behavior among different surfactants was somewhat complicated. The partitioning extent into CF-NAPLs increased in the order of Tween 20 < Tween 40 < Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

KANG, S.; Jeong, H. Y.

2013-12-01

260

Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species  

PubMed Central

A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 ?mol liter?1day?1, and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (KS) for VC was 5.8 ?M, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30°C, and negligible dechlorination occurred at 4 and 35°C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H2 as electron donor. VC-dechlorinating cultures consumed H2 to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors. PMID:12571022

He, Jianzhong; Ritalahti, Kirsti M.; Aiello, Michael R.; Loffler, Frank E.

2003-01-01

261

Probabilistic Health Risk Assessment of Chemical Mixtures: Importance of Travel Times and Connectivity  

NASA Astrophysics Data System (ADS)

Subsurface contamination cases giving rise to groundwater pollutions are extensively found in all industrialized countries. Under this pressure, risk assessment methods play an important role in population protection by (1) quantifying the potential impact on human health of an aquifer contamination and (2) helping and driving decisions of groundwater-resource managers. Many reactive components such as chlorinated solvents or nitrates potentially experience attenuation processes under common geochemical conditions. This represents an attractive and extensively used remediation solution but leads often to the production of by-products before to reach a harmless chemical form. This renders mixtures of contaminants a common issue for groundwater resources managers. In this case, the threat posed by these contaminants to human health at a given sensitive location greatly depends on the competition between reactive and advective-dispersive characteristic times. However, hydraulic properties of the aquifer are known to be spatially variable, which can lead to the formation of preferential flow channels and fast contamination pathways. Therefore, the uncertainty on the spatial distribution of the aquifer properties controlling the plume travel time may then play a particular role in the human health risk assessment of chemical mixtures. We investigate here the risk related to a multispecies system in response to different degrees of heterogeneity of the hydraulic conductivity (K or Y =ln(K)). This work focuses on a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport through three-dimensional mildly (?Y 2=1.0) and highly (?Y 2=4.0) heterogeneous aquifers. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme, and statistics of the total risk for human health (RT) related to the mixtures of the four carcinogenic plumes are evaluated. Results show two distinct spatiotemporal behavior of the RT estimation. Simulations in highly heterogeneous aquifers display a lower mean of RT close to the injection and higher further away. We explain this by the distinct ranges of travel times and connectivity metrics related to the two sets of aquifers. A high ?Y 2 trends to decrease the travel time (and increase the connectivity). Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in our case, early travel times lead a limited production of highly toxic daughter species and a lower total risk. Our results reflect then the interplay between the characteristic reactive time for each component and the characteristic travel time of the plume since the production of VC depends on these factors.

Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

2014-05-01

262

Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay  

PubMed Central

Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1® dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m?2 was applied across treated soil samples while circulating electrolytes containing 10 mg L?1 lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm2 d?1 V?1. PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L?1 d?1 without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 2×10?7 cm s?1). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

Wu, Xingzhi; Gent, David B.; Davis, Jeffrey L.; Alshawabkeh, Akram N.

2012-01-01

263

Assessment of subsurface chlorinated solvent contamination using tree cores at the front street site and a former dry cleaning facility at the Riverfront Superfund site, New Haven, Missouri, 1999-2003  

USGS Publications Warehouse

Tree-core sampling has been a reliable and inexpensive tool to quickly assess the presence of shallow (less than about 30 feet deep) tetrachloroethene (PCE) and trichloroethene (TCE) contamination in soils and ground water at the Riverfront Superfund Site. This report presents the results of tree-core sampling that was successfully used to determine the presence and extent of chlorinated solvent contamination at two sites, the Front Street site (operable unit OU1) and the former dry cleaning facility, that are part of the overall Riverfront Superfund Site. Traditional soil and ground-water sampling at these two sites later confirmed the results from the tree-core sampling. Results obtained from the tree-core sampling were used to design and focus subsequent soil and ground-water investigations, resulting in substantial savings in time and site assessment costs. The Front Street site is a small (less than 1-acre) site located on the Missouri River alluvium in downtown New Haven, Missouri, about 500 feet from the south bank of the Missouri River. Tree-core sampling detected the presence of subsurface PCE contamination at the Front Street site and beneath residential property downgradient from the site. Core samples from trees at the site contained PCE concentrations as large as 3,850 mg-h/kg (micrograms in headspace per kilogram of wet core) and TCE concentrations as large as 249 mg-h/kg. Soils at the Front Street site contained PCE concentrations as large as 6,200,000 mg/kg (micrograms per kilogram) and ground-water samples contained PCE concentrations as large as 11,000 mg/L (micrograms per liter). The former dry cleaning facility is located at the base of the upland that forms the south bank of the Missouri River alluvial valley. Tree-core sampling did not indicate the presence of PCE or TCE contamination at the former dry cleaning facility, a finding that was later confirmed by the analyses of soil samples collected from the site. The lateral extent of PCE contamination in trees was in close agreement with the extent of subsurface PCE contamination determined using traditional soil and ground-water sampling methods. Trees growing in soils containing PCE concentrations of 60 to 5,700 mg/kg or larger or overlying ground water containing PCE concentrations from 5 to 11,000 mg/L generally contained detectable concentrations of PCE. The depth to contaminated ground water was about 20 to 25 feet below the land surface. Significant quantitative relations [probability (p) values of less than 0.05 and correlation coefficient (r2) values of 0.88 to 0.90] were found between PCE concentrations in trees and subsurface soils between 4 and 16 feet deep. The relation between PCE concentrations in trees and underlying ground water was less apparent (r2 value of 0.17) and the poor relation is thought to be the result of equilibrium with PCE concentrations in soil and vapor in the unsaturated zone. Based on PCE concentrations detected in trees at the Front Street site and trees growing along contaminated tributaries in other operable units, and from field hydroponic experiments using hybrid poplar cuttings, analysis of tree-core samples appears to be able to detect subsurface PCE contamination in soils at levels of several hundred micrograms per liter or less and PCE concentrations in the range of 8 to 30 mg/L in ground water in direct contact with the roots. Loss of PCE from tree trunks by diffusion resulted in an exponential decrease in PCE concentrations with increasing height above the land surface in most trees. The rate of loss also appeared to be a function of the size and growth characteristics of the tree as some trees exhibited a linear loss with increasing height. Diffusional loss of PCE in small (0.5-inch diameter) trees was observed to occur at a rate more than 10 times larger than in trees 6.5 inches in diameter. Concentrations of PCE also exhibited directional variability around the tree trunks and concentration differe

Schumacher, John G.; Struckhoff, Garrett C.; Burken, Joel G.

2004-01-01

264

Health assessment for Lacks Industries, Inc. , Grand Rapids, Kent County, Michigan, Region 5. CERCLIS No. MID006014666. Preliminary report  

SciTech Connect

The Lacks Industries, Inc. site, in Grand Rapids, Michigan, has been delisted from the National Priorities List and is being regulated under the Resource Conservation and Recovery Act. Lacks Industries, Inc. discontinued electroplating operations and die casting for the automobile industry in July 1984 at the plant site. The plant is now used for painting and assembling of plastic parts for automobiles. Previously, plating wastes were discharged to two seepage ponds. It is reported that the prior owner (pre-1960) dumped trichloroethylene (TCE) and tetrachloroethylene (PCE) and metal solutions into a pit in the ground above which was built part of the Lacks Industries building. TCE and PCE were identified in all four downgradient monitoring wells with maximum concentrations of 17 parts per billion (ppb) and 89 ppb, respectively. Toluene (8 ppb), m-xylene (2 ppb) and cis-1,2-dichloroethylene (240 ppb) were each identified in one downgradient well. The two upgradient wells, which are supposed to represent background concentrations, had PCE concentrations of 67 ppb and 74 ppb. Several homes in the area had elevated concentrations of volatile organic compounds (VOCs), nickel, and total chromium. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time.

Not Available

1989-04-10

265

76 FR 18064 - State of California; Request for Approval of Section 112(l) Authority for Hazardous Air...  

Federal Register 2010, 2011, 2012, 2013

...Perchloroethylene Air Emission Standards From Dry Cleaning Facilities AGENCY: Environmental Protection...Emissions of Perchloroethylene from Dry Cleaning and Water-Repelling Operations, Requirements...Perchloroethylene Air Emission Standards for Dry Cleaning Facilities. EPA is taking this...

2011-04-01

266

40 CFR 63.321 - Definitions.  

Code of Federal Regulations, 2010 CFR

...perchloroethylene; (2) Visual observation, such as pools or droplets of liquid; or (3) The detection of gas flow by passing the fingers over the surface of equipment. Perchloroethylene consumption means the total volume of perchloroethylene purchased...

2010-07-01

267

Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment  

SciTech Connect

Natural attenuation of TCE under aerobic conditions at the INEEL Test Area North site was demonstrated largely on the basis of preferential loss of TCE relative to conservative solutes (PCE and H-3) along groundwater flow paths. First order degradation half-lives were calculated from the rate of preferential TCE loss. We are utilizing the same approach at other DOE sites that have aerobic TCE plumes to determine if aerobic natural attenuation of TCE is rapid enough at these sites to be environmentally significant, i.e. if natural attenuation can reduce concentrations to acceptable levels before groundwater reaches potential receptors. The first step in this process was to identify TCE plumes at DOE sites that have the appropriate site conditions and data needed to perform this analysis. The site conditions include the presence of TCE in groundwater at appreciable concentrations in an aerobic aquifer, a co-mingled contaminant that can be used as a conservative tracer (e.g. PCE, H-3, Tc-99), a flow path that represents at least a decade of travel time, and several monitoring wells located along this flow path. Candidate sites were identified through interviews with knowledgeable individuals in the DOE system and by screening the U.S. Dept. of Energy Groundwater Database using the keywords ''TCE'' and ''groundwater''. The initial screening yielded 25 plumes for consideration. These sites had anywhere from one to 37 individual plumes containing TCE. Of the 25 sites, 13 sites were further evaluated because they met the screening criteria or were promising. After contacting DOE personnel from the respective sites, they were divided into three groups: (1) sites that meet all the project criteria, (2) sites that could potentially be used for the project, and (3) DOE sites that did not meet the criteria. The five sites with plumes that met the criteria were: Brookhaven National Laboratory, Lawrence Livermore National Laboratory, Paducah Gaseous Diffusion Plant, Rocky Flats Environmental Technology Site, and the Savannah River Site. Detailed characterization data from the promising plumes is being entered into our database as it is received. The next step is to calculate natural attenuation half-life values for all of these plumes. We will next identify the plumes in which natural attenuation via aerobic degradation of TCE is fast enough that it may be relevant as a component of a remedy. We will then select at least one of these sites and either modify an existing groundwater transport model or, if necessary, create a new model, for this plume. This model will initially include first order decay of TCE, and degradation will be parameterized using the half-live values determined from the field data. The models will be used to simulate the evolution of the TCE plume and to predict concentrations as a function of time at property lines or other artificial boundaries, and where potential receptors are located. Ultimately rate data from th e laboratory studies being performed at INEEL will be incorporated into this model, as well as the model of the TAN site to provide a realistic prediction of degradation rates and plume longevity. Although identifying suitable TCE plumes and obtaining characterization data has taken longer than expected, this process has successfully identified the plumes needed for the detailed modeling activity without adversely impacting the project budget.

Sorenson, Kent S. Jr.

2003-06-01

268

Consistency of the interfacial tracer technique: experimental evaluation  

NASA Astrophysics Data System (ADS)

Miscible displacement experiments were conducted using sodium dodecylbenzenesulfonate (SDBS) and cetylpyridinium chloride (CPC) as interfacial tracers to measure non-aqueous phase liquid (NAPL)-water interfacial areas ( anw) in columns packed with silanized glass beads which were coated with either n-decane or perchloroethylene (PCE). The consistency of the interfacial tracer technique was evaluated by showing that: (1) anw values measured with two tracers for two NAPLs were similar; (2) the interfacial adsorption isotherm estimated from the surfactant retardation factors was comparable to that predicted from interfacial tension data and the Gibbs adsorption equation; and (3) the measured anw values were comparable with those estimated from a simple geometrical analysis of the solid surface area of the glass beads of known size and shape.

Kim, Heonki; Rao, P. Suresh C.; Annable, Michael D.

1999-11-01

269

IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER  

EPA Science Inventory

Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

270

COMBINATION OF A SOURCE REMOVAL REMEDY AND BIOREMEDIATION FOR THE TREATMENT OF A TCE CONTAMINATED AQUIFER  

EPA Science Inventory

Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...

271

RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY  

EPA Science Inventory

Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

272

PPAR and Effects of TCE We would like to offer a different opinion  

E-print Network

selective because they failed to mention that liver regeneration in PPAR-null mice is reportedly unchanged al. 1997); b) that they are refractory to increased markers of replicative DNA synthesis expression of genes encoding proteins that catabolize lipids, but they fail to show increases in markers

Omiecinski, Curtis

273

PLANT MULCH TO TREAT TCE IN GROUND WATER IN A PRB  

EPA Science Inventory

In the past ten years, passive reactive barriers (PRBs) have found widespread application to treat chlorinated solvent contamination in ground water. The traditional PRB commonly uses granular zero-valent iron and/or iron alloys as filling materials for treatment of chlorinated ...

274

PLANT MULCH TO TREAT TCE IN GROUND WATER IN A PRB (ABSTRACT ONLY)  

EPA Science Inventory

In the past ten years, passive reactive barriers (PRBs) have found widespread application to treat chlorinated solvent contamination in ground water. The traditional PRB commonly uses granular zero-valent iron and/or iron alloys as filling materials for treatment of chlorinated ...

275

AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1  

EPA Science Inventory

The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

276

Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies  

EPA Science Inventory

The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...

277

BIOENHANCED IN-WELL VAPOR STRIPPING TO TREAT TRICHLOROETHYLENE(TCE)  

EPA Science Inventory

Removal of chlorinated solvent contaminants at their subsurface source is one of the most challenging problems for remediation of these prevalent contaminants. Here, the solvents are generally present as dense non-aqueous phase liquids (DNAPLs). The potential for applicatio...

278

Phreatophyte influence on reductive dechlorination in a shallow aquifer contaminated with trichloroethene (TCE)  

USGS Publications Warehouse

Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow groundwater contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short-rotation woody crop, over an approximately 0.2-ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation of organic matter is the primary microbially mediated reaction occurring in the groundwater beneath the planted trees whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dechlorination in groundwater either is not occurring or is not a primary process away from the mature tree. Carbon-13 isotope values for trichloroethene are nearly identical at locations away from the mature tree, further confirming that dechlorination is not occurring at the site.

Lee, R.W.; Jones, S.A.; Kuniansky, E.L.; Harvey, G.; Lollar, B.S.; Slater, G.F.

2000-01-01

279

Effect of Bare and Coated Nanoscale Zerovalent Iron on tceA  

E-print Network

in Dehalococcoides spp. Z O N G - M I N G X I U , , K E L V I N B . G R E G O R Y , § G R E G O R Y V . L O W R Y , § A N D P E D R O J . J . A L V A R E Z * , Key Laboratory of Pollution Processes and Environmental to promote reductive dechlorination of chlorinated-solvent plumes (1) and DNAPL source zones (3, 4). Although

Alvarez, Pedro J.

280

A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier  

EPA Science Inventory

A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

281

Characterization Report to Support the Phytoremediation Efforts for Southern Sector, Savannah River Site, Aiken, South Carolina  

SciTech Connect

In February, 1999, we conducted a small-scale characterization effort to support future remediation decisions for the Southern Sector of the upper Three Runs watershed. The study concentrated on groundwater adjacent to the seepline at Tim's Branch above and below Steed's Pond. the primary compounds of interest were the volatile organic contaminants (VOCs), trichlorethylene (TCE) and tetrachloroethylene (PCE). Due to the site topography and hydrogeology, samples collected north of Steed's Pond were from the M-Area (water table) aquifer; while those locations south of Steed's Pond provided samples from the Lost Lake aquifer. Results of the study suggest that the leading edge of the A/M Area plume in the Lost Lake aquifer may be approaching the seepline at Tim's Branch below Steed's Pond, south of Road 2. Neither TCE nor PCE were detected int he samples targeting the seepline of the water table aquifer. The concentrations found for both TCE and PCE associated with the Lost Lake aquifer outcrop region were slightly above the detection limit of the analytical instrument used. The findings of this study are consistent with the conceptual model for the organic contaminant plume in the A/M Area of the Savannah River Site (SRS) -- the plume in the Southern Sector is known to be depth discrete and primarily in the Lost lake Aquifer. The sites with detected VOCs are in the most upstream accessible reaches of Tim's Branch where water from the Lost Lake Aquifer crops out. Additional characterization efforts should be directed near this region to confirm the results and to support future planning for the dilute-distal portions of the A/M Area plume. These data, combined with existing groundwater plume data and future characterization results will provide key information to estimate potential contaminant flux to the seepline and to assess the effectiveness of potential clean-up activities such as phytoremediation.

Jerome, K.M.

1999-06-08

282

Subsurface occurrence and potential source areas of chlorinated ethenes identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the U.S. Air Force Aeronautical Systems Center, Environmental Management Directorate, conducted a study during 2003-05 to characterize the subsurface occurrence and identify potential source areas of the volatile organic compounds classified as chlorinated ethenes at U.S. Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Texas. The solubilized chlorinated ethenes detected in the alluvial aquifer originated as either released solvents (tetrachloroethene [PCE], trichloroethene [TCE], and trans-1,2-dichloroethene [trans-DCE]) or degradation products of the released solvents (TCE, cis-1,2-dichloroethene [cis-DCE], and trans-DCE). The combined influences of topographic- and bedrock-surface configurations result in a water table that generally slopes away from a ground-water divide approximately coincident with bedrock highs and the 1-mile-long aircraft assembly building at AFP4. Highest TCE concentrations (10,000 to 920,000 micrograms per liter) occur near Building 181, west of Building 12, and at landfill 3. Highest PCE concentrations (500 to 920 micrograms per liter) occur near Buildings 4 and 5. Highest cis-DCE concentrations (5,000 to 710,000 micrograms per liter) occur at landfill 3. Highest trans-DCE concentrations (1,000 to 1,700 micrograms per liter) occur just south of Building 181 and at landfill 3. Ratios of parent-compound to daughter-product concentrations that increase in relatively short distances (tens to 100s of feet) along downgradient ground-water flow paths can indicate a contributing source in the vicinity of the increase. Largest increases in ratio of PCE to TCE concentrations are three orders of magnitude from 0.01 to 2.7 and 7.1 between nearby wells in the northeastern part of NAS-JRB. In the northern part of NAS-JRB, the largest increases in TCE to total DCE concentration ratios relative to ratios at upgradient wells are from 17 to 240 or from 17 to 260. In the southern part of NAS-JRB, the largest ratio increases with respect to those at upgradient wells are from 22 and 24 to 130, and from 0 and 7.2 to 71. Numerous maximum historical ratios of trans-DCE to cis-DCE are greater than 1, which can indicate that trans-DCE likely was released as a solvent and does not occur only as a result of degradation of TCE. High concentrations of TCE, PCE, cis-DCE, and trans-DCE, abrupt increases in ratios of PCE to TCE and TCE to total DCE, and ratios of trans-DCE to cis-DCE greater than 1 were used to identify 16 potential source areas of chlorinated ethenes at NAS-JRB. The evidence for some of the potential source areas is stronger than for others, but each area reflects one or more of the conditions indicative of chlorinated ethenes entering the aquifer. Potential source areas supported by the strongest evidence are Building 181, between buildings 4 and 5, just west of Building 12, and landfills 1 and 3. The highest historical TCE concentration in the study area, 920,000 micrograms per liter, is near Building 181. The potential source area between Buildings 4 and 5 primarily is identified by notably high PCE concentrations (to 920 micrograms per liter). Primary evidence for the potential source are just west of Building 12 is the notably high TCE concentrations (for example, 160,000 micrograms per liter) that appear to originate in the area. Primary evidence for the potential source area at landfills 1 and (primarily) 3 is the magnitudes of TCE concentrations (for example, two in the 100,000-to-920,000-microgram-per-liter range), cis-DCE concentrations (several in the 5,000-to-710,000-microgram-per-liter range), and trans-DCE concentrations (several in the 500-to-1,700-microgram-per-liter range). The ratio of trans-DCE to cis-DCE at one well in landfill 3 (6.7) is appreciably above the threshold that can indicate likely solvent release as opposed to TCE degradation alone.

Garcia, C. Amanda

2005-01-01

283

Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes - Final Report  

SciTech Connect

This study provides a detailed process-level understanding of the oxidative destruction of the organic contaminant emphasizing on reaction pathways and kinetics. A remarkable rise in the MnO{sup {minus}} consumption rate with TCA and PCE mixtures proves that the phase transfer catalysts have the ability to increase oxidation rate of DNAPLs either in pure phase or mixtures and that there is significant potential for testing the catalyzed scheme under field conditions. Secondly, as an attempt to enhance the oxidation of DNAPL, we are trying to exploit cosolvency effects, utilizing various alcohol-water mixtures to increase DNAPL solubilization. Preliminary results of cosolvency experiments indicate the enhancement in the transfer of nonaqueous phase TCE to TBA-water solution and the rate of TCE degradation in aqueous phase.

Schwartz, F.W.

2000-10-01

284

Superfund Record of Decision (EPA Region 5): FMC Corporation, Fridley, Minnesota (second remedial action), September 1987. Final report  

SciTech Connect

The FMC site, in the City of Fridley, Minnesota is approximately 1,000 feet east of the Mississippi River, just north of the City of Minneapolis, and upstream of the City of Minneapolis drinking-water intake. Investigation revealed historical waste-disposal practices and found contamination of the ground water and Mississippi River. Currently underlying ground water and alluvial aquifers with discharge to the Mississippi River are contaminated with trichloroethene (TCE), Porchloroethylene (PCE), benzene, toluene, xylene, and other volatile organic compounds (VOCs). TCE has been estimated to account for 98% of the contaminant loading. The selected remedial action for the site includes: ground-water pump and treatment with discharge to a sewer system; ground-water monitoring; and implementation of institutional controls with land-use restrictions to mitigate against near-term usage of contaminated ground water between the site and the Mississippi River.

Not Available

1987-09-30

285

Superfund record of decision (EPA Region 2): Preferred Plating, Suffolk County, Farmingdale, NY. (Second remedial action), September 1992  

SciTech Connect

The 0.88-acre Preferred Plating site is a former metal plating facility in Farmingdale, Town of Babylon, Suffolk County, New York. From 1951 to 1976, Preferred Plating Corporation (PPC) operated a metal plating facility that degreased, cleaned, and finished metal parts. Untreated wastewater was discharged to four onsite concrete waste storage pits. The ROD addresses subsurface soil contamination contributing to the ground water problem attributable to the site. The primary contaminants of concern affecting the soil are VOCs, including benzene, PCE, TCE, toluene, and xylenes; metals, including arsenic, chromium, and lead; and inorganics, including cyanide.

Not Available

1992-09-28

286

Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air  

USGS Publications Warehouse

Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

Lopes, T.J.; Bender, D.A.

1998-01-01

287

Intelligent Unmanned Monitoring of Remediated Sites  

SciTech Connect

During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from a mixture of materials obtained from this typical remediation target site.

Emile Fiesler, Ph.D.

2001-06-01

288

Are reactive transport models reliable tools for reconstructing historical contamination scenarios?  

NASA Astrophysics Data System (ADS)

This presentation will be based on a recent project effort that I completed while serving as a member of National Academy of Sciences and Engineering panel. The primary goal of this congressionally-mandated project effort was to review scientific evidence on the association between adverse health effect s and exposure to a contaminated water supply system at the U.S. Marine Corps Base Camp Lejeune (CLJ) in North Carolina. The detailed NRC study report was released in June 2009, and is available at this NRC weblink: http://www.nap.edu/catalog.php?record_id=12618. Multiple water supply systems at this Marine Base were contaminated with harmful chemicals, such as PCE, TCE and other waste products, since the early 50s. In 1982, a routine water quality survey completed at the site indicated the presence of several volatile organic compounds including PCE and TCE. Further investigations revealed that there are several waste disposal facilities located on-site that have discharged TCE and other waste products into groundwater systems. In addition, there was also an off-site dry cleaning facility located close to the Tarawa Terrace in-take well locations that disposed PCE into the subsurface environment. The dry cleaner has been using PCE since 1953 and disposed various forms of PCE-contaminated wastes in a septic tank and in several shallow pits. Therefore, the residents who lived in Tarawa Terrace on-site family housing units had the potential to be exposed to these harmful environmental contaminants through the drinking water source. In late 1980s, the concerns raised by CLJ public lead to an epidemiological study to evaluate the potential associations of utero and infant exposures to the VOCs and childhood cancers and birth defects. The study included births occurring during the period of 1968-1985 to women who were pregnant while they resided at the base. Since there was no monitoring data available for the study period (1968-1982), researchers used reactive transport models to reconstruct the historical concentration levels. In this presentation, I will first briefly review the details of the contamination problem and the modeling results. Later I will use the field study to answer the following questions: 1) Are reactive transport modeling tools sufficiently reliable for reconstructing historical VOC contamination at field sites? 2) What are the benefits of using reactive transport models for resolving policy problems related to a groundwater risk/exposure assessment problem? Finally, we will use this example to answer a rhetorical question—-how much complexity is too much complexity?

Clement, P.

2009-12-01

289

EFFECTS OF BIOMASS ACCUMULATION ON BIOLOGICALLY ENHANCED DISSOLUTION OF A PCE POOL: A NUMERICAL SIMULATION. (R828772)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

290

Can inspectors really improve the quality of teaching in the PCE sector? Classroom observations under the microscope  

Microsoft Academic Search

For some years now, teachers in the post compulsory sector have been lambasted in educational circles for what some perceive as the poor quality of teaching and learning in classrooms. Such criticisms have tended to emanate from those responsible for inspecting the sector’s provision. In fact, when Ofsted (Office for Standards in Education) and the ALI (Adult Learning Inspectorate) took

Matt O’Leary

2006-01-01

291

76 FR 13182 - Settlement Agreement for Recovery of Past Response Costs; 345 North 700 East, Richfield PCE Site...  

Federal Register 2010, 2011, 2012, 2013

...portion of the Settlement Agreement, if comments received disclose facts or considerations which indicate that the settlement is inappropriate...Protection Agency, Region 8. [FR Doc. 2011-5532 Filed 3-9-11; 8:45 am] BILLING CODE...

2011-03-10

292

A Science Sez'vPce Featwe-----------Released upon receipt but intended f o r use  

E-print Network

. Schattenberg; French, adpet (Latin, ad directum) envers; Italian, indritto, inverso; adritto, opaco; Catalan s the Poor whose f i e l d s are i n the shad.e. Instances showiw the higher l i m i t s of culture. limits culture, both through l o s s of s o i l by erosion and through exposure t o land- slides

293

Sorption and transport studies of cetyl trimethylammonium bromide (CTAB) and Triton X-100 in clayey soil.  

PubMed

Surfactants are soil washing agents and facilitators for subsurface remediation of hydrocarbon spills. It is important to understand the sorption and transport behavior of surfactants for enhanced soil remediation. The adsorption and desorption isotherms of cetyl trimethylammonium bromide (CTAB) and Triton X-100 with sand and kaolinite have been quantified. Kaolinite clay had the highest sorption capacity compared to blasting sand. Transport parameters such as diffusion coefficient (D) and retardation factor (R) of the above mentioned surfactant solutions were determined in clayey soils (82.5% sand and 17.5% kaolinite mixture) with near zero and 0.1 g/L ionic strength. NaCl was used as the electrolyte solution. Convection-Diffusion equation was used to model the breakthrough curves of the surfactants. Bromide ion was chosen as the tracer material in order to characterize the column. CTAB and Triton X-100 were used to flush the perchloroethylene (PCE) contaminated soil. The effectiveness of CTAB and Triton X-100 in flushing the PCE from the contaminated soil was quantified. PMID:23923432

Harendra, Sivaram; Vipulanandan, Cumaraswamy

2013-03-01

294

Chlorination byproducts induce gender specific autistic-like behaviors in CD-1 mice.  

PubMed

In 2000, the Agency for Toxic Substances and Disease Registry (ATSDR) released a report concerning elevated autism prevalence and the presence water chlorination byproducts in the municipal drinking water supply in Brick Township, New Jersey. The ATSDR concluded that it was unlikely that these chemicals, specifically chloroform, bromoform (Trihalomethanes; THMs) and tetrachloroethylene (Perchloroethylene; PCE) had contributed to the prevalence of autism in this community based upon correlations between timing of exposure and/or concentration of exposure. The ATSDR conclusion may have been premature, as there is no conclusive data evidencing a correlation between a particular developmental time point that would render an individual most susceptible to toxicological insult with the development of autism. Therefore, it was our aim to determine if these chemicals could contribute to autistic like behaviors. We found that males treated with THMs and PCE have a significant reduction in the number of ultrasonic vocalizations (USVs) emitted in response to maternal separation, which are not attributed to deficits in vocal ability to or to lesser maternal care. These same males also show significantly elevated anxiety, an increase in perseverance behavior and a significant reduction in sociability. The sum of our data suggests that male, but not female mice, develop autistic like behaviors after gestational and postnatal exposure to the aforementioned chemical triad via drinking water. We believe development of such aberrant behaviors likely involves GABAergic system development. PMID:21740927

Guariglia, Sara Rose; Jenkins, Edmund C; Chadman, Kathryn K; Wen, Guang Y

2011-10-01

295

Characterization of anaerobic chloroethene-dehalogenating activity in several subsurface sediments  

SciTech Connect

Anaerobic microcosms of subsurface soils from four locations were used to investigate the separate effects of several electron donors on tetrachloroethylene (PCE) dechlorination activity. The substrates tested were methanol, formate, lactate, acetate, and sucrose. Various levels of sulfate-reducing, acetogenic, fermentative, and methanogenic activity were observed in all sediments. PCE dechlorination was detected in all microcosms, but the amount of dehalogenation varied by several orders of magnitude. Trichloroethylene was the primary dehalogenation product; however, small amounts of cis-1,2-dichloroethylene, 1,1-dichloroethylene, and vinyl chloride were also detected in several microcosms. Lactate-amended microcosms showed large amounts of dehalogenation. in three of the four sediments. One of the two sediments which showed positive activity with lactate also had large amounts of delialogenation with methanol. Sucrose, formate, and acetate also stimulated large amounts of delialogenation in one sediment that showed activity with lactate. These results suggest that lactate may be an appropriate substrate for screening sediments for PCE or TCE delialogenation activity, but that the microbial response is not sufficient for complete in situ bioremediation. A detailed study of the Victoria activity revealed that delialogenation rates were more similar to the Cornell culture than to rates measured for methanogens, or a methanol-enriched sediment culture. This may suggest that these sediments contain a highly efficient delialogenation activity similar to the Cornell culture. This assertion is supported further by the fact that an average of 3% of added reducing equivalents could be diverted to dehalogenation in tests which were conducted using PCE-saturated hexadecane as a constant source of PCE during incubation. Further evidence is needed to confirm this premise. The application of these results to in situ bioremediation of highly contaminated areas are discussed.

Skeen, R.S.; Gao, J.; Hooker, B.S.; Quesenberry, R.D.

1996-11-01

296

Complete detoxification of short chain chlorinated aliphatic compounds: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1998 annual progress report  

SciTech Connect

'Widespread use and careless handling, storage and disposal practices, have lead to the dissemination of chlorinated short chain aliphatics into groundwater systems. These compounds are toxic and the presence of chlorinated ethenes and chlorinated propanes in the environment is of public concern. Halorespiration is a newly recognized anaerobic process by which certain bacteria use chlorinated compounds as terminal electron acceptors in their energy metabolism. In contrast to co-metabolic dechlorination, which is fortuitous, slow, and without benefit to the organisms, halorespiration, characterized by high dechlorination rates, is a specific metabolic process beneficial to the organism. The goals are to isolate and characterize organisms which use chlorinated ethenes (including tetrachloroethene [PCE], trichloroethene [TCE], cis-dichloroethene [cis-DCE], and vinyl chloride [VC], or 1,2-dichloropropane [1,2-D]) as electron acceptors in their energy metabolism. Better understanding of the physiology and phylogeny of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems, will greatly enhance the authors knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites. This report summarizes the results of 1.5 years of a 2-year project. Anaerobic microcosms were established using a variety of geographically distinct sediments. In several microcosms complete dechlorination of PCE to ethene (ETH), and 1,2-D to propene was observed. Upon subsequent transfers to anaerobic medium, four sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and two cultures that dechlorinated 1,2-D to propene. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene or the dechlorination of PCE to cis-DCE. However, the complete dechlorination of PCE to VC and ETH was severely inhibited. They could also show that BES inhibited the dechlorination of chloroethenes in cultures without methanogens. Therefore, BES should not be used to attribute dechlorination activities to methanogens.'

Tiedje, J.M.

1998-06-01

297

Decontamination of chemical warfare agents using perchloroethylene–Marlowet IHF–H 2 O-based microemulsions: wetting and extraction properties on realistic surfaces  

Microsoft Academic Search

At the present time, considerable efforts are being made to develop new media for the decontamination of a variety of toxic\\u000a compounds. In the present contribution, new microemulsions with promising properties are presented. Moreover, the decontamination\\u000a of surfaces, with an emphasis on varnished metal surfaces of exterior and interior equipment, is investigated using these\\u000a microemulsions. Studies of the phase behavior

Stefan Wellert; Henrik Imhof; Michael Dolle; Hans-Jürgen Altmann; André Richardt; Thomas Hellweg

2008-01-01

298

East Traffic Circle Landfill closure report  

SciTech Connect

This report presents the results of the investigation and cleanup of the East Traffic Circle Landfill (ETCL), an inactive landfill located in the east-central portion of the main site of Lawrence Livermore National Laboratory. The old landfill site was uncovered by construction workers during utility-line trenching on July 19, 1984. The uncovered debris was surveyed with radiation detection instruments, showed no radioactivity, and was found to consist primarily of metal shavings and broken bottles. An initial soil sample was taken and analyzed for metals and volatile organic compounds. Only copper, lead, and zinc were detected in some samples at levels exceeding the state hazardous waste designations. Shallow soils generally showed little (less than 0.1 ppM) volatile halogenated and non-halogenated volatile organic chemical contamination; however, a sample collected beneath 20 partially crushed metal drums showed 11 ppM of trichloroethylene (TCE) and 50 ppM of tetrachloroethylene (PCE). Soils from 21 to 51 feet beneath the drums showed TCE and PCE concentrations approaching 1 ppM each. The East Traffic Circle Landfill area was generally excavated to a depth of 5 to 7 feet below grade and to 10 or more feet in the vicinity of 160-plus capacitors. The 13,971 cubic yards of excavated soil and debris were hauled from the LLNL site by registered haulers and disposed of at state-permitted hazardous waste disposal sites. Construction activities resumed in the area after the landfill was backfilled.

McConachie, W.A.; Como, J.P.; Carpenter, D.W.; Ragaini, R.C.

1986-01-31

299

Kinetics of tetrachloroethylene-reductive dechlorination catalyzed by vitamin B{sub 12}  

SciTech Connect

Reductive dechlorination kinetics of tetrachloroethylene (PCE) to ethylene catalyzed by vitamin B{sub 12} using Ti[III] citrate as the bulk reductant was examined in a vapor-water batch system. A kinetic model incorporating substrate-B{sub 12} electron-transfer complex formation and subsequent product release was developed. The model also accounted for the primary reductive dechlorination pathways (hydrogenolysis and reductive {beta} elimination) and vapor/water-phase partitioning. Reaction rate constants were sequentially determined by fitting the model to experimental kinetic data while moving upward through consecutive reaction pathways. The release of product from the complex was found to be second order with respect to substrate concentration for both PCE and acetylene; all other substrates appeared to release by first order. Reductive {beta} elimination was found to be a significant reaction pathway for trichloroethylene (TCE), and chloroacetylene was observed as a reactive intermediate. Acetylene production appears to be primarily due to the reduction of chloroacetylene derived from TCE. The reduction of cis-dichloroethylene (cis-DCE), the primary DCE isomer formed, was extremely slow, leading to a significant buildup of cis-DCE. The kinetics of acetylene and vinyl chloride reduction appeared to be limited by the formation of relatively stable substrate-B{sub 12} complexes. The relatively simple model examined appears to adequately represent the main features of the experimental data.

Burris, D.R. [AFRL/MLQR, Tyndall AFB, FL (United States); Delcomyn, C.A. [Applied Research Associates, Inc., Tyndall AFB, FL (United States); Deng, B. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mineral and Environmental Engineering; Buck, L.E. [Polytechnic Univ., Brooklyn, NY (United States). Dept. of Civil and Environmental Engineering; Hatfield, K. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering

1998-09-01

300

Health assessment for the Transicoil, Inc. (Zone 12) North Penn Area Site, Worchester, Pennsylvania, Region 3. CERCLIS No. PAD057152365. Preliminary report  

SciTech Connect

The Transicoil Inc. (Zone 12) North Penn Area Site consists of a manufacturing site for DC and synchro electric motors for commercial and defense uses. An on-site underground storage tank was used for waste oil and hazardous substances. On-site cesspools were used for sanitary waste disposal. Identified contaminants of concern to data include trichloroethylene (TCE), 1,1,1-trichloroethane, tetrachloroethylene (PCE), cis-1,2-dichloroethylene, 1,1-dichloroethane, and 1,1-dichloroethylene in well water and TCE, PCE, and 1,1,1-trichloroethane in soil. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ingestion of contaminated groundwater, surface water, or other materials or of plants or animals which have accumulated contaminants from the site; contaminated soil ingestion by children; inhalation of compounds volatilized from contaminated groundwater during household uses, of contaminants volatilized from the site, or of contaminants carried in reentrained dust; and dermal contact with contaminated groundwater, surface water, soil, or other materials.

Not Available

1988-09-29

301

Characterization of DNAPL from the U.S. DOE Savannah River Site  

NASA Astrophysics Data System (ADS)

The composition of chlorinated hydrocarbon DNAPLs (dense non-aqueous phase liquids) from field sites can be substantially different than the material originally purchased for use as a solvent. Waste management practices at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) included co-disposal of a wide range of organic and inorganic wastes. In 1991, a clear, orange-colored DNAPL was found in two wells near the SRS M-area settling basin. Waste effluent from the fuel and target fabrication facilities that were discharged to this settling basin included acids, caustics, metals and chlorinated solvents. The characterization of the SRS DNAPL suggests that numerous constituents partitioned into the DNAPL during its use as a solvent, co-disposal and ultimate migration through the subsurface. Trace constituents in the DNAPL include metals, from processing operations or co-disposal practices and subsurface minerals, high molecular weight hydrocarbons and alkyl esters, and acids. This complex mixture results in DNAPL-water interfacial properties that are substantially different than would be expected from a simple mixture of PCE and TCE. Under conditions when there is a high DNAPL to water volume ratio, a semi-rigid film accumulates on water droplets suspended in the DNAPL. It is concluded that the array of precipitated metal species comprising this film contributes to the interfacial tension that is over an order of magnitude lower than expected for a "clean" PCE/TCE mixture.

Dou, Wenqian; Omran, Kamel; Grimberg, Stefan J.; Denham, Miles; Powers, Susan E.

2008-04-01

302

Polymer-grafted silica: A screening system for polymeric adsorption resin development  

SciTech Connect

A screening-level methodology was developed for the evaluation of solute affinity for polymers that are candidate sorption resins. In this approach novel grafted polymer-silica resins were synthesized to produce poly(vinylpyrrolidone)-silica (PVP-Si) and poly(vinyl acetate)-silica (PVAc-Si) resins. The polymer-silica resins along with a number of commercially available polymer resins were used to evaluate the aqueous-phase adsorption of phenol, tetrachloroethene (PCE), trichloroethene (TCE), and chloroform. The polymer-grafted silicas were able to selectively remove pollutants from water with a covalently bonded polymer layer that has a high affinity for the target pollutant. The PVAc-silica resin had a sorption capacity for TCE and CHCl[sub 3] as high as commercial poly(styrene) resin XAD-4; the PVP-Si resin had a sorption capacity for phenol higher than a commercial poly-(vinylpyridine) resin (Reillex 425). PCE adsorption onto the PVAc-silica was comparable to the commercial poly(methacrylate) and poly(vinylpyridine) resins but less than the poly(styrene) resin. The results show that the Hildebrand solubility parameter along with the dipole moment of the polymer functional groups can be used for an initial screening-level assessment of polymer-solute affinity.

Browne, T.E.; Cohen, Y. (Univ. of California, Los Angeles (United States))

1993-04-01

303

Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico.  

SciTech Connect

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

Collins, Sue S.; Jackson, Timmie Okchumpulla (Weston Solutions, Inc., Albuquerque, NM); Bailey, Glenn A.

2003-01-01

304

Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico  

SciTech Connect

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

Collins, S. S.; Bailey, G. A.; Jackson, T. O.

2003-02-25

305

A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor  

NASA Astrophysics Data System (ADS)

Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to about 0.003 mM, representing 20% of the CT transformed. Other transformation products have not been identified. Neither methane nor carbon monoxide have been detected as transformation products. The transformation of PCE to ethene actually improved after the addition of CT. Thus, neither CT nor CF are inhibiting the reductive dehalogenation of PCE. The improvement in PCE transformation extent coincided with an increase in the aqueous hydrogen concentration from 5 nM, prior to CT addition, to 150 nM after CT addition. This increase in hydrogen was associated with the inhibition in acetate production and the increase in formate concentrations from below detection to 1.0 mM after CT addition. The results indicate that there are likely benefits in adding formate to produce hydrogen when contaminants are present that can inhibit fermentation. The results from the column study are consistent with our observations in batch reactors using the EV culture.

Semprini, L.; Azizian, M. F.; Kim, Y.

2011-12-01

306

Evaluation of the inhibitory effects of chloroform on ortho-chlorophenol- and chloroethene-dechlorinating Desulfitobacterium strains.  

PubMed

Organohalide-respiring Desulfitobacterium strains are believed to play an important role in the bioremediation and natural attenuation of chlorinated aliphatic and aromatic hydrocarbons. However, several studies have reported that chloroform significantly inhibits microbial reductive dechlorination of chloroethene. In this study, we examined the effect of chloroform on several Desulfitobacterium strains, including ortho-chlorophenol-dechlorinating Desulfitobacterium dehalogenans JW/IU-1 and Desulfitobacterium hafniense DCB-2, and also the chloroethene-dechlorinating strain D. hafniense TCE1. In medium containing 3-chloro-4-hydroxyphenylacetate as an electron acceptor, chloroform inhibited the growth of strains JW/IU-1 and DCB-2. Although chloroform did not directly inhibit dechlorination of 3-chloro-4-hydroxyphenylacetate by resting cells, cells cultivated with chloroform showed decreased dechlorination activity. Moreover, transcription of the gene encoding the reductive dehalogenase CprA decreased significantly in cells cultivated with chloroform. These results indicate that chloroform inhibits the growth and dechlorination activity of strains JW/IU-1 and DCB-2 via inhibition of cprA transcription. In contrast, cultivation of strain TCE1 in the presence of chloroform gave rise to a PceA reductive dehalogenase gene-deletion variant of strain TCE1; a similar phenomenon was observed in our previous study of chloroethene-dechlorinating D. hafniense strain Y51. Our results suggest that chloroform extensively inhibits the dechlorination activity of Desulfitobacterium strains, and that the inhibitory mechanism appears to differ between ortho-chlorophenol dechlorinators and chloroethene dechlorinators. PMID:23705686

Futagami, Taiki; Fukaki, Yuko; Fujihara, Hidehiko; Takegawa, Kaoru; Goto, Masatoshi; Furukawa, Kensuke

2013-01-01

307

Complete detoxification of short chain chlorinated aliphatics: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1997 annual progress report  

SciTech Connect

'The objectives of the research within this grant are: (1) Isolation and characterization of chlororespiring organisms responsible for the complete dehalogenation of chlorinated ethenes and propanes. (2) Development of conditions that yield high cell densities and induce dechlorinating activity. (3) Development of assay systems to detect the dechlorinating activity in cell-free extracts. (4) Purification and characterization of the dehalogenating enzymes. Anaerobic microcosms were obtained from a variety of geographically different sediment samples. In several microcosms complete dechlorination of tetrachloroethene (PCE) to ethene (ETH), and 1,2-dichloropropane ( 1,2-D) and/or 1,2,3-trichloropropane to propene was observed. Upon subsequent transfers to anaerobic medium, sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and 1,2-D to propene, respectively. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene and the dechlorination of PCE to cis-dichloroethene (cis-DCE). However,-the complete dechlorination of PCE to vinyl chloride (VC) and ETH was severely inhibited. The authors could show that BES inhibited the dechlorination of chloroethenes in cultures not containing methanogens. Previous to this study, BES was believed to be aspecific inhibitor of methanogens and the inhibitory effect of BES on declorination was explained by the involvement of methanogens in the dechlorination process. The non-methanogenic cultures obtained after the BES treatment were subsequently transferred to medium riot containing BES and complete dechlorination of PCE to ETH was observed as was in the original microcosms. Subcultures were further enriched with PCE, cis-DCE, VC, or 1,2-D as the only available electron acceptor and acetate, or acetate plus hydrogen as the only available electron donor(s). To date these cultures have undergone up to 45 transfers. Interestingly, two cultures that originally dechlorinated PCE to ETH, but were then enriched with cis-DCE or VC, lost their ability to-dechlorinate PCE or TCE. This finding indicates that different populations are involved in the complete dechlorination of PCE to ETH in these cultures. In contrast, one culture that was enriched with cis-DCE and VC, respectively, maintained its ability to dechlorinate PCE. Using molecular tools ({sup 16}S rDNA targeted PCR,TA cloning of {sup 1}6S rDNA genes, ARDRA analysis and sequencing) they showed that this culture consisted of three distinct organisms. Two of them could be isolated in pure Culture but neither of them showed any dechlorinating activity, indicating that one organism was responsible for the complete dechlorination of PCE to ETH in the mixed culture. The authors are currently focusing on the isolation and phylogenetic characterization of this organism.'

Loeffler, F.E.; Tiedje, J.M.

1997-01-01

308

Industrial-hygiene survey of Aerovox Industries, Inc. , New Bedford, Massachusetts, March 21-23, 1977. [PCB and TCE  

Microsoft Academic Search

An industrial-hygiene survey was conducted at Aerovox Industries, Incorporated, New Bedford, Massachusetts, in March 1977 to collect data on worker exposures to polychlorinated biphenyls, soldering fumes, and trichloroethylene. The survey was conducted on behalf of 350 employees (300 involved in the production processes), including 104 having potential exposure to polychlorinated biphenyls. A physician was retained on a part-time basis, and

B. Phillips; L. Smith; M. Jones

1977-01-01

309

DETERMINATION OF CAPILLARY PRESSURE-SATURATION CURVES INVOLVING TCE, WATER, AND AIR FOR A SAND AND A SANDY CLAY LOAM  

EPA Science Inventory

The contamination of aquifers and other groundwater by Non-Aqueous Phase Liquids (NAPLS) such as chlorinated solvents, has become a major concern in many areas of the U.S. Characterization and modeling of these contaminants requires accurate and realistic data for the fluids and ...

310

Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater  

EPA Science Inventory

Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

311

76 FR 30604 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants...  

Federal Register 2010, 2011, 2012, 2013

...Federal Register Volume 76, Number 102...Approval of the Clean Air Act, Section 112...Perchloroethylene Air Emission Standards for Dry Cleaning Facilities...Standards for Hazardous Air Pollutants for Perchloroethylene Dry Cleaning...

2011-05-26

312

75 FR 61662 - State of California; Request for Approval of Section 112(l) Authority for Hazardous Air...  

Federal Register 2010, 2011, 2012, 2013

[Federal Register Volume 75, Number 193 (Wednesday...Authority for Hazardous Air Pollutants; Perchloroethylene Air Emission Standards From Dry Cleaning Facilities AGENCY...National Perchloroethylene Air Emission Standards for Dry Cleaning...

2010-10-06

313

Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation  

USGS Publications Warehouse

Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

2002-01-01

314

Superfund Record of Decision (EPA Region 5): National Presto Industries, Eau Claire, WI. (First remedial action), August 1990  

SciTech Connect

The 325-acre National Presto Industries site is a former munitions and metal-working facility in Eau Claire, Chippewa County, Wisconsin, adjacent to the town of Hallie. From 1942 until 1945, the site was government-owned, contractor-operated, and produced gunpowder and small arms. From 1945 to 1980, the site was owned by National Presto, which generated waste streams consisting of metals, oils, grease, and spent solvents. Also, beginning in 1951, artillery shell fuses, aircraft parts, and metal projectiles were produced by NPI under a military contract. The Record of Decision (ROD) provides for a permanent alternate water supply to address the principal threat posed by the ground water contamination at the site. The primary contaminants of concern affecting the ground water include VOCs such as PCE and TCE.

Not Available

1990-08-01

315

Analysis and evaluation of VOC removal technologies demonstrated at Savannah River  

SciTech Connect

Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A. [Lawrence Livermore National Lab., CA (United States); Pruess, K. [Lawrence Berkeley Lab., CA (United States); Falta, R.W. [Clemson Univ., SC (United States)

1993-09-01

316

Superfund Record of Decision (EPA region 3): Keystone Sanitation Landfill site, Adams County, Union Township, PA. (First remedial action), September 1990  

SciTech Connect

The 40-acre Keystone Sanitation Landfill site, an inactive, privately owned landfill, is in Union Township, Adams County, Pennsylvania. Surrounding land use is primarily agricultural with scattered residences. From 1966 to 1990, the unlined landfill accepted household and municipal wastes as well as industrial and construction debris, including phosphorus-contaminated sand, potato sludge, resin sludge, incineration ash, and dried latex paint. In 1982, State investigations revealed onsite ground water contamination and a contaminated onsite residential well. In 1984, EPA found low-level contamination in nearby residential wells. The Record of Decision (ROD) addresses Operable Unit 1, the containment of onsite source area and remediation of onsite contaminated ground water. A subsequent ROD will address offsite ground water contamination in monitoring and residential wells. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, PCE, TCE, vinyl chloride; other organics including acids, and phenols; and metals including chromium and lead.

Not Available

1990-09-30

317

Induced Infiltration Animation: Woburn Wells G & H and the Aberjona River  

NSDL National Science Digital Library

It is still unknown whether the cluster of childhood leukemia cases in east Woburn was caused by TCE and PCE contamination from five known sources of contamination within the capture zones of municipal wells G and H, or whether the leukemias were caused by induced infiltration of Aberjona River water, which may have contained dissolved concentrations of arsenic, chromium, and lead. Several papers have been written about the arsenic, chromium, and lead contamination in Woburn. These papers could be read, combined with a broad discussion about mobility of heavy metals under different oxidation states, hypotheses drawn by the class, and experiments designed by the students to ascertain whether contaminated river water could have reached wells G and H. Designing an experiment to test an hypothesis is a higher-order thinking skill needed by all scientists and engineers.

Bair, Scott

318

In situ bioremediation using the UVB{trademark} technology: Description and case study  

SciTech Connect

Under a Multi-Vendor Biotreatability Demonstration Program, SBP Technologies, Inc. (SBP) conducted a field demonstration of a microbiologically enhanced in situ groundwater and soil treatment technology at the Sweden-3 Chapman Superfund Site, Brockport, New York. The Sweden-3 Chapman site is an inactive landfill used to dispose of construction/demolition debris and hazardous wastes between the years of 1970 and 1978. Site investigations conducted in 1985 by NYSDEC indicated that drums were buried throughout the landfill. These drums and on-site soils were sampled in 1987, indicating elevated levels of trichloroethylene (TCE), methylene chloride, tetrachloroethylene (PCE), and acetone among other volatile organics (VOCs) and semi-volatile organics (SVOCs). In 1992, a remedial investigation identifies source areas and determined the extent of vertical and horizontal migration of contaminants at the site. Information and data generated during these investigations set the foundation for conducting the multi-vendor biotreatability demonstration.

Mueller, J.G.; Desrosiers, R.J.; Lakhwala, F.S.; Borchert, S. [SBP Technologies, Inc., Gulf Breeze, FL (United States)

1996-12-31

319

Health assessment for Mystery Bridge Road/US Highway 20 Site, Brookhurst Subdivision, Evansville, Natrona County, Wyoming, Region 8. CERCLIS No. WYD981546005. Preliminary report  

SciTech Connect

The Mystery Bridge Road, U.S. Highway 20 site, also known as the Brookhurst Subdivision (BSD), is located adjacent to industrial sites in Wyoming. The sites include a natural gas processing facility, an oil and gas well servicing company, and a railroad siding. Organic chemicals from the industrial sites have contaminated the underlying aquifer and resulted in contamination of downgradient drinking water wells in the BSD. The list of organic contaminants detected on-site include toluene, xylene, benzene, tetrachloroethylene (PCE), 1,1-dichloroethane, trichloroethylene (TCE), and 1,1,1-trichloroethane. An estimated 414 persons in the subdivision rely on groundwater wells for potable water. An alternative supply of potable water has been provided for these residents.

Not Available

1990-04-04

320

Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.  

PubMed

Abiotic and biotic reductive dechlorination with chlorinated ethene dense non-aqueous-phase liquid (DNAPL) source zones can lead to significant fluxes of complete and incomplete transformation products. Accurate assessment of in situ rates of transformation and the potential for product sequestration requires knowledge of the distribution of these products among the solid, aqueous, and organic liquid phases present within the source zone. Here we consider the fluid-fluid partitioning of two of the most common incomplete transformation products, cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). The distributions of cis-DCE and VC between the aqueous phase and tetrachloroethene (PCE) and trichloroethene (TCE) DNAPLs, respectively, were quantified at 22 °C for the environmentally relevant, dilute range. The results suggest that partition coefficients (concentration basis) for VC and cis-DCE are 70 ± 1 L(aq)/L(TCE?DNAPL) and 105 ± 1 L(aq)/L(PCE?DNAPL,) respectively. VC partitioning data (in the dilute region) were reasonably approximated using the Raoult's law analogy for liquid-liquid equilibrium. In contrast, data for the partitioning of cis-DCE were well described only when well-parametrized models for the excess Gibbs free energy were employed. In addition, available vapor-liquid and liquid-liquid data were employed with our measurements to assess the temperature dependence of the cis-DCE and VC partition coefficients. Overall, the results suggest that there is a strong thermodynamic driving force for the reversible sequestration of cis-DC and VC within DNAPL source zones. Implications of this partitioning include retardation during transport and underestimation of the transformation rates observed through analysis of aqueous-phase samples. PMID:21053958

Ramsburg, C Andrew; Thornton, Christine E; Christ, John A

2010-12-01

321

An Overview of In-Stu Treatability Studies at Marshall Space Flight Center, Huntsville, Alabama  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama (north-central Alabama), on approximately 1,840 acres near the center of the U.S. Army's Redstone Arsenal (RSA). MSFC is the National Aeronautics and Space Administration's (NASA's) principal propulsion development center. Its scientists, engineers, and support personnel play a major role in the National Space Transportation System by managing space shuttle mission activities, including the microgravity laboratory. In addition, MSFC will be a significant contributor to several of NASA's future programs, including the Reusable Launch Vehicle (X-33), International Space Station, and Advanced X-ray Astrophysics Facility, as well as research on a variety of space science applications. MSFC has been used to develop, test and manufacture space vehicles and components since 1960, when civilian rocketry and missile activities were transferred from RSA to MSFC. In 1994, MSFC was placed on the National Priority List for the management of hazardous waste sites, under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). One requirement of the CERCLA program is to evaluate the nature and extent of environmental contamination resulting from identified CERCLA sites, assess the public health and environmental risks associated with the identified contamination, and identify potential remedial actions. A CERCLA remedial investigation (RI) for the groundwater system has identified at least five major plumes of chlorinated volatile organic compounds (CVOCs) in the groundwater beneath the facility. These plumes are believed to be the result of former management practices at 14 main facility locations (termed "source areas") where CVOCs were released to the subsurface. Trichloroethene (TCE) is the predominant CVOC and is common to all the plumes. Perchloroethene (PCE) also exists in two of the plumes. In addition to TCE and PCE, carbon tetrachloride and 1,1,2,2-tetrachloroethane are contained in one of the plumes. The CVOCs are believed to exist as dense non-aqueous phase liquids (DNAPLs) beneath many of the source areas.

McElroy, Bill; Keith, Amy; Glasgow, J. K.; Dasappa, Srini; McCaleb, Rebecca (Technical Monitor)

2001-01-01

322

Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase.  

PubMed

Titanium dioxide (TiO2), which is the widely used photo-catalyst, has been synthesized by simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid. The synthesized product has been applied to photo-degradation in aqueous phase of chlorinated solvents, namely tetrachloroethene (PCE), trichloroethene (TCE) and 1,1,1-trichloroethane (TCA). The photo-degradation results revealed that the degradation of these harmful chemicals was better in UV/synthesized TiO2 system compared to UV/commercial P25 system and UV only system. The photo-catalytic efficiency of the synthesized TiO2 was 1.4, 1.8 and 3.0 folds higher compared to the commercial P25 for TCA, TCE and PCE degradation, respectively. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (·OH), the degradation rate was better over UV/synthesized TiO2, suggesting the high concentration of ·OH generated in UV/synthesized TiO2 system. In addition, ·OH concentration was confirmed by the strong peak displayed in EPR analysis over UV/synthesized TiO2 system. The characterization result using XRD and TEM showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of 4 nm, side length of 50 nm and width of 33 nm and a surface 90.3 m(2)/g. XPS analysis revealed that ?Ti-F bond was formed on the surface of the synthesized TiO2. The above results on both photocatalytic activity and the surface analysis demonstrated the good applicability of the synthesized TiO2 nano-sheets for the remediation of chlorinated solvent contaminated groundwater. PMID:25079650

Ndong, Landry Biyoghe Bi; Ibondou, Murielle Primaelle; Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Mbadinga, Serge Maurice

2014-05-01

323

Comparison of diffusion- and pumped-sampling methods to monitor volatile organic compounds in ground water, Massachusetts Military Reservation, Cape Cod, Massachusetts, July 1999-December 2002  

USGS Publications Warehouse

To evaluate diffusion sampling as an alternative method to monitor volatile organic compound (VOC) concentrations in ground water, concentrations in samples collected by traditional pumped-sampling methods were compared to concentrations in samples collected by diffusion-sampling methods for 89 monitoring wells at or near the Massachusetts Military Reservation, Cape Cod. Samples were analyzed for 36 VOCs. There was no substantial difference between the utility of diffusion and pumped samples to detect the presence or absence of a VOC. In wells where VOCs were detected, diffusion-sample concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) were significantly lower than pumped-sample concentrations. Because PCE and TCE concentrations detected in the wells dominated the calculation of many of the total VOC concentrations, when VOC concentrations were summed and compared by sampling method, visual inspection also showed a downward concentration bias in the diffusion-sample concentration. The degree to which pumped- and diffusion-sample concentrations agreed was not a result of variability inherent within the sampling methods or the diffusion process itself. A comparison of the degree of agreement in the results from the two methods to 13 quantifiable characteristics external to the sampling methods offered only well-screen length as being related to the degree of agreement between the methods; however, there is also evidence to indicate that the flushing rate of water through the well screen affected the agreement between the sampling methods. Despite poor agreement between the concentrations obtained by the two methods at some wells, the degree to which the concentrations agree at a given well is repeatable. A one-time, well-bywell comparison between diffusion- and pumped-sampling methods could determine which wells are good candidates for the use of diffusion samplers. For wells with good method agreement, the diffusion-sampling method is a time-saving and cost-effective alternative to pumped-sampling methods in a long-term monitoring program, such as at the Massachusetts Military Reservation.

Archfield, Stacey A.; LeBlanc, Denis R.

2005-01-01

324

Characterization of DNAPL Source Zone Architecture and Associated Plume Response in 2-D Aquifer Cell Experiments  

NASA Astrophysics Data System (ADS)

A series of two-dimensional (2-D) aquifer cell experiments was conducted to evaluate the effects of DNAPL source zone architecture on down-gradient plume and flux-averaged effluent concentrations. The aquifer cells (1.0 m length x 48 cm height x 1.4 cm internal thickness) were packed with different size fractions of quartz sands and low permeability lens configurations to achieve a range of source zone saturation distributions. A mixed DNAPL, consisting of 1:1 trichloroethene (TCE) and tetrachloroethene (PCE), was released into the source zone region of the aquifer cell at a flow rate of 2.0 ml/min and allowed to redistribute for a period of 48 hours. The DNAPL saturation distribution was quantified using a light transmission system and characterized by the ganglia-to-pool ratio (GTP, 0 to infinity) and ganglia fraction (GF, 0-100%), where saturations less than 0.13 represent discrete ganglia and saturations equal to or greater than 0.13 are considered to represent "pools". Effluent dissolved-phase TCE and PCE concentrations were monitored continuously, while down-gradient plume concentrations were collected periodically from 25 side-port samples. To accelerate mass removal, the aquifer cells were flushed with 1.5 pore volumes of 4% Tween 80, a nonionic, food-grade surfactant that has been shown to facilitate microbial reductive dechlorination. Experimental data are used to evaluate interrelationships between the initial source zone architecture, mass removal, reductions in mass flux, and plume evolution.

Granbery, E. K.; Cápiro, N.; Christ, J.; Pennell, K.

2008-12-01

325

Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers  

NASA Astrophysics Data System (ADS)

Strains of Dehalococcoides are the only microbes known that can completely dechlorinate PCE, TCE, cis-DCE, and vinyl chloride to ethylene. Either naturally occurring strains or bioaugmentation cultures of Dehalococcoides are widely used for in situ bioremediation of contaminated groundwater. Naturally occurring strains have an important role in natural attenuation of PCE, TCE, cis-DCE, and vinyl chloride in groundwater. This study evaluated the relationship between selected biogeochemical parameters and the presence of Dehalococcoides DNA in field-scale plumes. A total of 81 monitoring wells were sampled from 15 groundwater plumes at 10 locations across the United States (one sample per monitoring well). The presence of Dehalococcoides DNA was determined with an assay based on the polymerase chain reaction (PCR) using DNA primers targeting the 16S rRNA gene of Dehalococcoides. The groundwater samples were also analyzed for concentrations of O2, NO3-1 plus NO2-1 - N, CH4, H2, Fe (II), SO4-2, TOC, Cl-1, and benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and for alkalinity, ORP, electrical conductivity, pH, and temperature. Dehalococcoides DNA was unequivocally detected in 26 wells, most of which exhibited methanogenic conditions. A two-sample Kolmogorov-Smirnov test was used to compare the distribution of each parameter in water where Dehalococcoides DNA was present to the distribution where Dehalococcoides DNA was absent. The only parameters for which the distributions were different at 95% confidence were NO3-1 plus NO2-1 - N, CH4, and ORP. Using these three statistically significant geochemical parameters as descriptors, a predictive model for the presence of Dehalococcoides DNA was developed using logistic regression with a binary response. Under conditions where data of direct biochemical assay are not available a calculated probability could be used to properly calibrate computer models of natural attenuation.

Lu, Xiaoxia; Wilson, John T.; Kampbell, Donald H.

2006-08-01

326

Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis.  

PubMed

The demonstration of monitored natural attenuation (MNA) of chlorinated hydrocarbons in groundwater is typically conducted through the evaluation of concentration trends and parent-daughter product relationships along prevailing groundwater flow paths. Unfortunately, at sites contaminated by mixtures of chlorinated ethenes, ethanes, and methanes, the evaluation of MNA by using solely concentration data and parent-daughter relationships can result in erroneous conclusions regarding the degradation mechanisms that are truly active at the site, since many of the daughter products can be derived from multiple parent compounds. Stable carbon isotope analysis was used, in conjunction with concentration data, to clarify and confirm the active degradation pathways at a former waste solvent disposal site where at least 14 different chlorinated hydrocarbons have been detected in the groundwater. The isotope data indicate that TCE, initially believed to be present as a disposed product and/or a PCE dechlorination intermediate, is attributable to dehydrochlorination of 1,1,2,2-PCA. The isotope data further support that vinyl chloride and ethene in the site groundwater result from dichloroelimination of 1,1,2-trichlorethane and 1,2-dichloroethane, respectively, rather than from reductive dechlorination of the chlorinated ethenes PCE, TCE, or 1,2-DCE. The isotope data confirm that the chlorinated ethanes and chlorinated methanes are undergoing significant intrinsic degradation, whereas degradation of the chlorinated ethenes may be limited. In addition to the classical trend of enriched isotope values of the parent compounds with increasing distance associated to biodegradation, shifts of isotope ratios of degradation byproduct in the opposite direction due to mixing of isotopically light byproducts of biodegradation with compounds from the source are shown to be of high diagnostic value. These data underline the value of stable isotope analysis in confirming transformation processes at sites with complex mixtures of chlorinated compounds. PMID:16173553

Hunkeler, Daniel; Aravena, Ramon; Berry-Spark, Karen; Cox, Evan

2005-08-15

327

Ranking the carcinogenic hazards of occupational exposures: Exposure-Potency Index (EPI) values for nine volatile industrial chemicals  

SciTech Connect

Employers, employees, and occupational health professionals need a simple index to rank carcinogens according to their potential danger at exposure levels which are commonly encountered in workplaces. We describe such an index, the Exposure-Potency Index (EPI). This simple proportion, dose level (mg/kg body weight/day) to which workers are permitted to be exposed/cancer-causing dose (mg/kg body weight/day) in test animals, permits comparisons among carcinogens. We have calculated this index for inhalation exposures to 1,3-butadiene, 1,2-dibromo-3-chloropropane (DBCP), 1,2-dibromoethane (EDB), ethylene oxide, formaldehyde, methylene chloride, propylene oxide, tetrachloroethylene (perchloroethylene), and trichloroethylene (TCE). The permitted worker exposure levels have frequently been close to the levels which induce tumors in laboratory animals. More recently, Permissible Exposure Limits (PEL's) for for some chemicals have been markedly reduced, and this is reflected in lowered EPI values. Combining EPI values with information on the numbers of exposed workers provides a simple means of identifying and ranking dangers to populations of workers.

Hooper, K.; Gold, L.S.

1986-01-01

328

Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results.  

PubMed

In situ, sequential, anaerobic to aerobic treatment of groundwater removed perchloroethene (PCE, 1.1 microM) and benzene (0.8 microM) from a contaminated aquifer. Neither aerobic nor anaerobic treatment alone successfully degraded both the chlorinated and non-chlorinated organic contaminants in the aquifer. After the sequential treatment, PCE, trichloroethene (TCE), vinyl chloride (VC), chloroethane (CA), and benzene were not detectable in groundwater. Desorption of residual aquifer contaminants was tested by halting the groundwater recirculation and analyzing the groundwater after 3 and 7 weeks. No desorption of the chlorinated contaminants or daughter products was observed in the treated portion of the aquifer. Sequential anaerobic to aerobic treatment was successful in remediating the groundwater at this test site and may have broad applications at other contaminated sites. Over the 4-year course of the project, the predominant microbial environment of the test site varied from aerobic to sulfate-reducing, to methanogenic, and back to aerobic conditions. Metabolically active microbial populations developed under all conditions, demonstrating the diversity and robustness of natural microbial flora in the aquifer. PMID:12180807

Beeman, Ralph E; Bleckmann, Charles A

2002-08-01

329

Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride  

SciTech Connect

Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

McCarty, P.L.; Spormann, A.M.

2000-12-01

330

Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction  

NASA Astrophysics Data System (ADS)

Mineral-catalyzed Fenton-like oxidation of chlorinated ethylenes is an attractive technique for in situ soil and groundwater remediation. Stable carbon isotope enrichment factors associated with magnetite-catalyzed Fenton-like oxidation of trichloroethylene (TCE) have been determined, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by Fenton-like oxidation. The carbon enrichment factors (? values) ranged from - 2.7‰ to - 3.6‰ with a mean value of - 3.3 ± 0.3‰, and only small differences were observed for different initial reactive conditions. The ? values were robust and reproducible, and were relatively insensitive to a number of environmental factors such as ratios of reactants and PCE co-contamination, which can reduce the uncertainty associated with application of isotope enrichment factors for quantification of in situ remediation by Fenton-like reaction. ? values for Fenton-like oxidation of TCE were intermediate in those previously reported for aerobic biological processes (? = - 1.1 to - 20.7‰). Thus, field-derived ? values that are more negative than those for Fenton-like oxidation, may indicate the occurrence of aerobic biodegradation at contaminated sites undergoing in situ remediation with Fenton-like reaction. However, stable carbon isotope analysis is unable to determine whether there is the occurrence of biodegradation processes if field-derived ? values are less negative than those for Fenton-like oxidation.

Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Liu, Cunfu; Yu, Tingting; Li, Xiaoqian

2013-02-01

331

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

SciTech Connect

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20

332

Assessment of chloroethene biodegradation in the subsurface by microbiological, molecular and isotopic tools  

NASA Astrophysics Data System (ADS)

A multiple lines of evidence approach to assess the biodegradation potential of contaminated sites includes - site investigation analysing pollutant distribution (compounds, concentrations, isotopic composition) and hydrochemical conditions (redox conditions) - determination of the presence of pollutant degrading bacteria in the field by microbiological (most probable number, MPN) and molecular (polymerase chain reaction, PCR) methods - analysis of degradation processes in the laboratory by microcosms with determination of site specific isotopic enrichment factors enabling the quantification of biodegradation processes in the field. Results will be shown of the application of such a multiple lines of evidence approach at a chloroethene-contaminated site in Frankenthal, Germany. In anaerobic groundwater microcosms, reductive transformation of perchloroethene (PCE) and trichloroethene (TCE) was observed to mainly proceed to cis-1,2-dichloroethene (cDCE). 16S-PCR analysis showed a wide distribution of halorespiring bacteria capable of PCE degradation to cDCE, whereas Dehalococcoides - the only organisms described so far being able of complete reductive dechlorination down to ethene - was only found in one groundwater sample. Aerobic microcosms showed metabolic degradation of the lower chlorinated compounds cDCE and vinyl chloride (VC). Co-metabolic degradation of cDCE with VC as auxiliary substrate occurred, too. Significant stable carbon isotope fractionation was observed during anaerobic degradation of PCE and TCE as well as during aerobic degradation of cDCE and VC. Compiling the results of the different assessment methods, sequential dechlorination - PCE/TCE to cDCE anaerobically and cDCE to CO2 aerobically - was demonstrated to occur at the Frankenthal site. The extent of biodegradation in the field was calculated based on the enrichment factors determined in microcosms and the 13C-isotopic composition of the contaminants on site. The application of molecular methods is continuously increasing. For example, microbiological and molecular tools showed the presence and activity of halorespiring bacteria in sediment samples of the Yangtze river, China. PCR-detection demonstrated the presence of five different halorespiring bacterial groups as well as of four different dechlorinating enzymes of Dehalococcoides. In conclusion, our study demonstrates that (i) multiple lines of evidence approaches result in a profound understanding of the biodegradation processes occurring in the field, (ii) stable isotope fractionation is suitable for assessing and quantifying anaerobic and aerobic chloroethene degradation and (iii) detection and quantification of dechlorinating bacteria and enzymes by PCR methods provide more insight into biodegradation processes. Acknowledgement The authors gratefully acknowledge financial support by the German Ministry of Education and Research (BMBF, grant no 02WN0446, 02WN0447 and 02WT1130), the German Ministry of Economics and Technology (BMWi, grant no KF2265705AK9 and KF2285302AK9) and the federal state of Rhineland-Palatinate. We thank all project partners for fruitful cooperation.

Schmidt, K. R.; Kranzioch, I.; Heidinger, M.; Ertl, S.; Tiehm, A.

2012-04-01

333

Manganese and trace-metal mobility under reducing conditions following in situ oxidation of TCE by KMnO4: a laboratory column experiment.  

PubMed

The stability of Mn oxides, and the potential for mobilization of associated trace metals, were assessed by simulating the onset of microbially-mediated reducing conditions in a continuous-flow column experiment. The column had previously been used for an in situ chemical oxidation (ISCO) experiment in which trichloroethylene was reacted with permanganate in the presence of aqueous trace metals, which produced Mn oxyhydroxides (MnO(x)) that sequestered the trace metals and coated the column sand. The column influent solution represented the incursion of ambient groundwater containing dissolved organic carbon (DOC) into an ISCO treatment zone. The influx of DOC-containing groundwater initiated a series of cation-exchange, surface-complexation and reductive-dissolution reactions that controlled the release of aqueous metals from the system. Peak concentrations in the effluent occurred in the order Na, Mo, Cr, Zn, K, Mn, Fe, Pb, Mg, Ni, Cu and Ca. Manganese release from the column was controlled by a combination of cation exchange, reductive dissolution and precipitation of rhodochrosite. The trend in Fe concentrations was similar to that of Mn, and also resulted from a combination of reductive dissolution and cation exchange. Cation exchange and/or surface-complexation were the primary mechanisms controlling Cu, Ni, Mo and Pb release to solution, while Zn and Cr concentrations did not display coherent trends. Although metal release from the treatment zone was evident in the data, concentrations of trace metals remained below 0.05 mg L(-1) with the exception of Mo which reached concentrations on the order of 1 mg L(-1). The establishment of anaerobic conditions in ISCO-treated aquifers may result in a prolonged flux of aqueous Mn(II), but with the exception of MoO(4)(2-), it is unlikely that trace metals sequestered with MnO(x) during ISCO will be released to the groundwater in elevated concentrations. PMID:20889229

Loomer, Diana B; Al, Tom A; Banks, Vernon J; Parker, Beth L; Mayer, K Ulrich

2011-01-25

334

NUMERICAL MODELING AND UNCERTAINTIES IN RATE COEFFICIENTS FOR METHANE UTILIZATION AND TCE COMETABOLISM BY A METHANE OXIDIZING MIXED CULTURE. (R825689C036)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

335

Feasibility of adding TCE (trichloroethylene) still area and Northeast area plumes to ultraviolet radiation, ozone, hydrogen peroxide groundwater treatment plant, Department of Energy Kansas City Plant  

Microsoft Academic Search

The Department of Energy (DOE) Kansas City plant currently operates an Ultrox F-725 ozone\\/ultraviolet radiation\\/hydrogen peroxide plant for the treatment of groundwater that has been contaminated by halogenated volatile organic compounds (VOCs). The treated water is discharged to the municipal wastewater treatment plant and must, therefore, meet the effluent water quality discharge requirements specified in the discharge permit. The DOE

Peyton

1989-01-01

336

An Internal Reference Technique for Accurately Quantifying Specific mRNAs by Real-Time PCR with Application to the tceA Reductive Dehalogenase Gene  

Microsoft Academic Search

The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute

David R. Johnson; Patrick K. H. Lee; Victor F. Holmes; Lisa Alvarez-Cohen

2005-01-01

337

THE EFFECT OF UNCERTAINTY FACTOR PLACEMENT IN A PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL OF TRICHLOROETHYLENE (TCE) FOR ACUTE EXPOSURE GUIDELINE LEVELS (AEGL).  

EPA Science Inventory

PBPK models may be used in risk assessment to reduce uncertainties associated with dosimetry; however, other considerations may still lead to incorporation of uncertainty factors (UF). We investigated the consequences of incorporating UFs at three different steps in the modeling...

338

CYTOCHROME P450 1A1 AND STRESS PROTEIN INDUCTION IN EARLY LIFE STAGES OF MEDAKA (ORYZIAS LATIPES) EXPOSED TO TRICHLOROETHYLENE (TCE) SOOT AND DIFFERENT FRACTIONS. (R825433)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

339

Cracking of Clay Due to Contact with Waste Chlorinated Solvents  

NASA Astrophysics Data System (ADS)

Clays are known to crack upon desiccation. Desiccation cracks of up to 3 cm wide have been reported in natural soils. This raises the question if a similar behavior is seen when a dense non-aqueous phase liquids (DNAPL) waste is in contact with clay. The contact with organic liquids causes the clay structure to shrink, leading to the formation of cracks. Moreover, DNAPL waste not only contains the organic liquid solvent but also includes surface-active solutes or surfactants. Such solutes can enhance the interaction of the organic solvents with the clay. This research will assess whether or not contact with chlorinated organic waste causes cracking. In order to evaluate the possibility of cracking in the clay, microcosms have been constructed that mimic aquifer systems, consisting of a saturated layer of sand, a saturated layer of bentonite clay and a 2.5 cm layer of either pure chlorinated solvents or DNAPL waste. The onset of cracking for the microcosm with tetrachloroethylene (PCE) waste as the DNAPL layer occurred after ten days of contact. Similarly, at eight days, cracks were observed in a microcosm containing trichloroethylene (TCE) waste . Forty-four days later, the length and number of cracks have grown considerably; with a total crack length of 50 cm on a surface of 80 cm2 in the microcosm containing PCE waste. On the other hand it took approximately 161 days for the clay layer in the microcosm containing pure PCE to crack. To quantity the degree of cracking, crack maps were developed using the image software, Image J. Characteristics like crack length, crack aperture, and the percentage of total length for a range of apertures were calculated using this software. For example, for the PCE waste microcosm, it was calculated that 3.7% of the crack length had an aperture of 100-300 microns, 15.1% of the crack length had an aperture of 300-500 microns, 29.7% of the crack length had an aperture of 500-700 microns, 40.1% of the crack length had an aperture of 700-900 microns, 6.3% had an aperture of 900-1,100 microns and 5.1% had an aperture of over 1,100 microns. These data suggest that aquitards in the field might crack when in contact with the DNAPL waste. Moreover, it is apparent that the waste contains solutes that accelerate the cracking of the clay layer. Thus, models examining the impact of storage in low permeability layers need to consider the possible impact of cracking.

Otero, M.; Ayral, D.; Shipan, J.; Goltz, M. N.; Huang, J.; Demond, A. H.

2012-12-01

340

GE/NOMADICS IN-WELL MONITORING SYSTEM FOR VERTICAL PROFILING OF DNAPL CONTAMINANTS  

SciTech Connect

This report describes the Phase I effort to develop an Automated In Well Monitoring System (AIMS) for in situ detection of chlorinated volatile organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE) in groundwater. AIMS is composed of 3 primary components: (a) sensor probe, (b) instrument delivery system, and (c) communication/recharging station. The sensor probe utilizes an array of thickness shear mode (TSM) sensors coated with chemically-sensitive polymer films provides a low-cost, highly sensitive microsensor platform for detection and quantification. The instrument delivery system is used to position the sensor probe in 2 inch or larger groundwater monitoring wells. A communication/recharging station provides wireless battery recharging and communication to enable a fully automated system. A calibration curve for TCE in water was built using data collected in the laboratory. The detection limit of the sensor probe was 6.7 ppb ({micro}g/L) for TCE in water. A preliminary field test was conducted at a GE remediation location and a pilot field test was performed at the DOE Savannah River Site (SRS). The AIMS system was demonstrated in an uncontaminated (i.e., ''clean'') 2-inch well and in a 4-inch well containing 163.5 ppb of TCE. Repeat measurements at the two wells indicated excellent day-to-day reproducibility. Significant differences in the sensor responses were noted between the two types of wells but they did not closely match the laboratory calibration data. The robustness of the system presented numerous challenges for field work and limited the scope of the SRS pilot field test. However, the unique combination of trace detection (detection limits near the MCL, minimum concentration level) and size (operations in 2-inch or larger groundwater wells) is demonstration of the promise of this technology for long-term monitoring (LTM) applications or rapid site characterization. Using the lessons learned from the pilot field test, a number of design changes are proposed to increase the robustness of the system for extended field studies and commercialization.

Ronald E. Shaffer; Radislav Potyralio; Joseph Salvo; Timothy Sivavec; Lloyd Salsman

2003-04-01

341

40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants  

...121697 45. Naphthalene 91203 46. Phosgene 75445 47. Propionaldehyde 123386 48. Propylene oxide 75569 49. Styrene 100425 50. Tetrachloroethylene (perchloroethylene) 127184 51. Tetrachloromethane (carbon tetrachloride)...

2014-07-01

342

40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP  

Code of Federal Regulations, 2010 CFR

...chloride Allyl chloride N,N-dimethylaniline Benzene Propionaldehyde Benzyl chloride Propylene oxide Biphenyl Styrene Bromoform (tribromomethane) Tetrachloroethene (perchloroethylene) Bromomethane Tetrachloromethane (carbon...

2010-07-01

343

40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants  

Code of Federal Regulations, 2012 CFR

...121697 45. Naphthalene 91203 46. Phosgene 75445 47. Propionaldehyde 123386 48. Propylene oxide 75569 49. Styrene 100425 50. Tetrachloroethylene (perchloroethylene) 127184 51. Tetrachloromethane (carbon tetrachloride)...

2012-07-01

344

40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants  

Code of Federal Regulations, 2011 CFR

...121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386 49. Propylene oxide 75569 50. Styrene 100425 51. Tetrachloroethylene (perchloroethylene) 127184 52. Tetrachloromethane (carbon tetrachloride)...

2011-07-01

345

Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

2010-01-01

346

Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function  

SciTech Connect

Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.

McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

2003-12-11

347

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2005, p. 71457151 Vol. 71, No. 11 0099-2240/05/$08.00 0 doi:10.1128/AEM.71.11.71457151.2005  

E-print Network

Rights Reserved. Transcriptional Expression of the tceA Gene in a Dehalococcoides-Containing Microbial RDase was cloned, sequenced, and designated tceA (17). A second open reading frame, des- ignated tce

Alvarez-Cohen, Lisa

348

AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS  

EPA Science Inventory

Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

349

Evaluation of the impact of the exposure route on the human kinetic adjustment factor.  

PubMed

The objective of this study was to assess the impact of the exposure route on the human kinetic adjustment factor (HKAF), for which a default value of 3.16 is used in non-cancer risk assessment. A multi-route PBPK model was modified from the literature and used for computing the internal dose metrics in adults, neonates, children, elderly and pregnant women following three route-specific scenarios to chloroform, bromoform, tri- or per-chloroethylene (TCE or PERC). These include 24-h inhalation exposure, body-weight adjusted oral exposure and 30 min dermal exposure to contaminated drinking water. Distributions for body weight (BW), height (BH) and hepatic cytochrome P450 2E1 (CYP2E1) content were obtained from the literature, whereas model parameters (flows, volumes) were calculated from BW and BH. Monte Carlo simulations were performed and the HKAF was calculated as the ratio of the 95th percentile value of internal dose metrics in subpopulation to the 50th percentile value in adults. On the basis of the area under the parent compound's arterial blood concentration vs time curve (AUC(pc)), highest HKAFs were obtained in neonates for every scenario considered, and were the highest for bromoform (range: 3.6-7.4). Exceedance of the default value based on AUC(PC) was also observed for an oral exposure to chloroform in neonates (4.9). In all other cases, HKAFs remained below the default value. Overall, this study has pointed out the dependency of the HKAF on the exposure route, dose metrics and subpopulation considered, as well as characteristics of the chemicals investigated. PMID:20969910

Valcke, M; Krishnan, K

2011-03-01

350

Sorption of chlorinated solvents and degradation products on natural clayey tills.  

PubMed

The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (K(d) values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (K(d)=0.84-2.45Lkg(-1)), followed by trichloroethylene (TCE, K(d)=0.62-0.96Lkg(-1)), cis-dichloroethylene (cis-DCE, K(d)=0.17-0.82Lkg(-1)) and vinyl chloride (VC, K(d)=0.12-0.36Lkg(-1)). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (K(d)=0.2-0.45Lkg(-1)), followed by 1,1-dichloroethane (1,1-DCA, K(d)=0.16-0.24Lkg(-1)) and chloroethane (CA, K(d)=0.12-0.18Lkg(-1)). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (logK(ow)) correlated slightly better with logK(d) values than logK(oc) values indicating that the K(d) values may be independent of the actual organic carbon content (f(oc)). The estimated logK(oc) or logK(d) for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific K(d) values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes--in line with previous studies on PCE and TCE--suggest that sorption in clayey tills could be higher than typically expected. PMID:21459403

Lu, Cong; Bjerg, Poul L; Zhang, Fengjun; Broholm, Mette M

2011-06-01

351

Modeling the effects of naturally occurring organic carbon on chlorinated ethene transport to a public supply well.  

PubMed

The vulnerability of public supply wells to chlorinated ethene (CE) contamination in part depends on the availability of naturally occurring organic carbon to consume dissolved oxygen (DO) and initiate reductive dechlorination. This was quantified by building a mass balance model of the Kirkwood-Cohansey aquifer, which is widely used for public water supply in New Jersey. This model was built by telescoping a calibrated regional three-dimensional (3D) MODFLOW model to the approximate capture zone of a single public supply well that has a history of CE contamination. This local model was then used to compute a mass balance between dissolved organic carbon (DOC), particulate organic carbon (POC), and adsorbed organic carbon (AOC) that act as electron donors and DO, CEs, ferric iron, and sulfate that act as electron acceptors (EAs) using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. SEAM3D was constrained by varying concentrations of DO and DOC entering the aquifer via recharge, varying the bioavailable fraction of POC in aquifer sediments, and comparing observed and simulated vertical concentration profiles of DO and DOC. This procedure suggests that approximately 15% of the POC present in aquifer materials is readily bioavailable. Model simulations indicate that transport of perchloroethene (PCE) and its daughter products trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC) to the public supply well is highly sensitive to the assumed bioavailable fraction of POC, concentrations of DO entering the aquifer with recharge, and the position of simulated PCE source areas in the flow field. The results are less sensitive to assumed concentrations of DOC in aquifer recharge. The mass balance approach used in this study also indicates that hydrodynamic processes such as advective mixing, dispersion, and sorption account for a significant amount of the observed natural attenuation in this system. PMID:24372440

Chapelle, Francis H; Kauffman, Leon J; Widdowson, Mark A

2014-09-01

352

Selective Enrichment Yields Robust Ethene-Producing Dechlorinating Cultures from Microcosms Stalled at cis-Dichloroethene  

PubMed Central

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation. However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109 Dehalococcoides mccartyi cells mL?1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation. PMID:24950250

Delgado, Anca G.; Kang, Dae-Wook; Nelson, Katherine G.; Fajardo-Williams, Devyn; Miceli, Joseph F.; Done, Hansa Y.; Popat, Sudeep C.; Krajmalnik-Brown, Rosa

2014-01-01

353

Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene.  

PubMed

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation. However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 10(9) Dehalococcoides mccartyi cells mL(-1). Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation. PMID:24950250

Delgado, Anca G; Kang, Dae-Wook; Nelson, Katherine G; Fajardo-Williams, Devyn; Miceli, Joseph F; Done, Hansa Y; Popat, Sudeep C; Krajmalnik-Brown, Rosa

2014-01-01

354

Evaluation of Dairy Whey as a Subsurface Reactive Barrier Material  

NASA Astrophysics Data System (ADS)

Subsurface permeable reactive barriers (PRBs) in remediation of contaminated ground water are currently being utilized and refined as an alternative/supplement to costly pump-and-treat remediation. Identification of efficient reactive materials that are effective in the long-term is essential for the ultimate success of PRBs in ground water remediation. A variety of enhancements have been used: oxidants, reductants or sorbents. Electron donors create/strengthen reducing conditions that are favorable for microbial degradation of chlorinated hydrocarbons. Inexpensive, food-grade electron donors effectively enhance dechlorination activity, and those that are solids that can be slurried and then pressure grouted are the best candidates for maintaining an active biobarrier at low cost. Dried dairy whey (~70% alpha-lactose), a slowly dissolving solid, is a prime candidate. To determine the efficiency of whey in promoting dechlorination, it is essential to identify the aerobic and anaerobic metabolic pathways and perform quantitative analysis of breakdown products. We hypothesize that dissolved whey will undergo microbial degradation (aerobic and anaerobic) to form carboxylic acids, and that in a suboxic/reducing environment the anaerobic products will stimulate the microbial dechlorination of chlorinated hydrocarbons PCE, TCE, and DCE. Analysis of the breakdown products in the absence as well as the presence of chlorinated hydrocarbons will result in the calculation of rate constants. Kinetics will, in turn, provide us with residence time, loading (whey mass), and projected lifetime of the whey PRB under estimated loads of total chlorinated hydrocarbon contamination. Early results from our field-scale effort to treat a TCE-contaminated site show increased concentrations of cis- DCE and VC downgradient from the whey PRBs, indicative of enhanced TCE dechlorination. Results from an initial microcosm experiment show complete disappearance of chlorinated hydrocarbons in the presence of whey. Carboxylic acids appear to be the major products of whey degradation. We will attempt to draw metabolic pathways according to field as well as laboratory results and, ultimately, to apply laboratory reaction kinetics to the field and arrive at more reliable design criteria.

Semkiw, E.; Barcelona, M.; Kim, M.

2006-05-01

355

The legacy of chlorinated solvents in the Birmingham aquifer, UK: Observations spanning three decades and the challenge of future urban groundwater development  

NASA Astrophysics Data System (ADS)

Licensed abstraction well data collected during 1986-2008 from a total of 77 wells mainly located at industrial sites combined with historic land use data from 1975 has allowed insight into the legacy of chlorinated solvent contamination in the Birmingham aquifer that underlies the UK's second largest city. This legacy, expected to be reasonably symptomatic of those occurring in other urban aquifers, was characterised by: dominance of parent solvents, particularly TCE (trichloroethene) that widely exceeded drinking-water quality criteria; greater TCE occurrence in wells in proximity to increased historic land use by the metal/engineering solvent-user industry (the relationship providing a first-pass indicator of future resource development potential); regional groundwater vulnerability controls; well abstraction changes (over months to decades) influential of observed concentration transients and anticipated plume capture or release; persistence of contamination over decades (with less soluble PCE (perchloroethene) showing increased persistence relative to TCE) that was reasonably ascribed to slow contaminant release from DNAPL (dense non-aqueous phase liquid) sources and, or low permeability layers; presence of dechlorination products arising from solvent (bio)degradation, although this key attenuation process appeared to have moderate to weak influence regionally on plumes; and, inadvertent, but significant solvent mass removal from the aquifer by industrial abstractions. Key challenges to realising future urban groundwater development were identified based on the observed legacy and well capture zone simulations. Despite the extensive contamination of the aquifer, it should still be possible to develop wells of high (several megalitres per day) capacity for drinking water supply (or other lower grade uses) without the requirement for solvent treatment. In those areas with higher risk of contamination, our dataset, together with application of emergent risk assessment approaches (that our dataset may serve to validate), could be used to inform potential abstractors as to whether solvent treatment is likely to be required at a particular abstraction site with time. Challenges identified that were relevant to the future development of Birmingham and urban aquifers more generally include the adequacy of groundwater quality monitoring data and uncertainties in contaminant source terms, abstraction well capture zone predictions and plume natural attenuation, in particular degradation rates. The study endorses that despite significant solvent contamination encountered, strategies can, and need, to be increasingly found to reclaim urban aquifer resources and more sustainably meet urban water demands.

Rivett, Michael O.; Turner, Ryan J.; Glibbery (née Murcott), Penny; Cuthbert, Mark O.

2012-10-01

356

Changes in Groundwater Flow and Volatile Organic Compound Concentrations at the Fischer and Porter Superfund Site, Warminster Township, Bucks County, Pennsylvania, 1993-2009  

USGS Publications Warehouse

The 38-acre Fischer and Porter Company Superfund Site is in Warminster Township, Bucks County, Pa. Historically, as part of the manufacturing process, trichloroethylene (TCE) degreasers were used for parts cleaning. In 1979, the Bucks County Health Department detected TCE and other volatile organic compounds (VOCs) in water from the Fischer and Porter on-site supply wells and nearby public-supply wells. The Fischer and Porter Site was designated as a Superfund Site and placed on the National Priorities List in September 1983. A 1984 Record of Decision for the site required the Fischer and Porter Company to pump and treat groundwater contaminated by VOCs from three on-site wells at a combined rate of 75 gallons per minute to contain groundwater contamination on the property. Additionally, the Record of Decision recognized the need for treatment of the water from two nearby privately owned supply wells operated by the Warminster Heights Home Ownership Association. In 2004, the Warminster Heights Home Ownership Association sold its water distribution system, and both wells were taken out of service. The report describes changes in groundwater levels and contaminant concentrations and migration caused by the shutdown of the Warminster Heights supply wells and presents a delineation of the off-site groundwater-contamination plume. The U.S. Geological Survey (USGS) conducted this study (2006-09) in cooperation with the U.S. Environmental Protection Agency (USEPA). The Fischer and Porter Site and surrounding area are underlain by sedimentary rocks of the Stockton Formation of Late Triassic age. The rocks are chiefly interbedded arkosic sandstone and siltstone. The Stockton aquifer system is comprised of a series of gently dipping lithologic units with different hydraulic properties. A three-dimensional lithostratigraphic model was developed for the site on the basis of rock cores and borehole geophysical logs. The model was simplified by combining individual lithologic units into generalized units representing upward fining sedimentary cycles capped by a siltstone bed. These cycles were labeled units 1 through 8 and are called stratigraphic units in this report. Groundwater in the unweathered zone mainly moves through a network of interconnecting secondary openings--bedding-plane fractures and joints. Groundwater generally is unconfined in the shallower part of the aquifer and confined or semiconfined in the deeper part of the aquifer. The migration of VOCs from the Fischer and Porter Site source area is influenced by geologic and hydrologic controls. The hydrologic controls have changed with time. Stratigraphic units 2 and 3 crop out beneath the former Fischer and Porter plant. VOCs originating at the plant source area entered these stratigraphic units and moved downdip to the northwest. When the wells at and in the vicinity of the site were initially sampled in 1979-80, three public-supply wells (BK-366, BK-367, MG-946) and three industrial-supply wells (BK-368, BK-370, and BK-371) were pumping. Groundwater contaminated with VOCs flowed downdip and then northeast along strike toward well BK-366, downdip toward well BK-368, and downdip and then west along strike toward well MG-946. The long axis of the TCE plume is oriented about N. 18? W. in the direction of dip. In 1979-80, the leading edge of the plume was about 3,500 feet wide. With the cessation of pumping of the supply wells in 2004, the size of the plume has decreased. In 2007-09, the plume was approximately 2,000 feet long and 2,000 feet wide at the leading edge. On the western side of the site, TCE and tetrachloroethylene (PCE) appear to be moving downdip though stratigraphic unit 3. The downdip extent of TCE and PCE migration extended approximately 550 feet off-site to the northwest and 750 feet off-site to the north. TCE concentrations in water samples from wells at the western site boundary increased from 1996 to 2007. On the northern side of the site, TCE and P

Sloto, Ronald A.

2010-01-01

357

Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis  

NASA Astrophysics Data System (ADS)

This work describes the use of different complementing methods (mass balance, polymerase chain reaction assays and compound-specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent-contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at various times in the past, it is not enough to analyze chlorinated solvent concentrations along a flow path to convincingly demonstrate biodegradation. Moreover, only a few data were initially available to characterize the geochemical conditions at this site, which were apparently complex at the source zone due to (i) the presence of a steady oxygen supply to the groundwater by irrigation canal losses and river infiltration and (ii) an alkaline pH higher than 10 due to former underground lime disposal. A demonstration of the existence of biodegradation processes was however required by the regulatory authority within a timeframe that did not allow a full geochemical characterization of such a complex site. Thus a combination of different fast methods was used to obtain a proof of the biodegradation occurrence. First, a mass balance analysis was performed which revealed the existence of a strong natural attenuation process (biodegradation, volatilization or dilution), despite the huge uncertainty on these calculations. Second, a good agreement was found between carbon isotopic measurements and PCR assays (based on 16S RNA gene sequences and functional genes), which clearly indicated reductive dechlorination of different hydrocarbons (Tetrachloroethene—PCE-, Trichloroethene—TCE-, 1,2- cisDichloroethene— cis-1,2-DCE-, 1,2- transDichloroethene— trans-1,2-DCE-, 1,1-Dichloroethene—1,1-DCE-, and Vinyl Chloride—VC) to ethene. According to these carbon isotope measurements, although TCE biodegradation seems to occur only in the upgradient part of the studied zone, DCE and VC dechlorination (originating from the initial TCE dechlorination) occurs along the entire flowpath. TCE reductase was not detected among the Dehalococcoides bacteria identified by quantitative PCR (qPCR), while DCE and VC reductases were present in the majority of the population. Reverse transcriptase PCR assays (rt-PCR) also indicated that bacteria and their DCE and VC reductases were active. Mass balance calculations showed moreover that 1,1-DCE was the predominant DCE isomer produced by TCE dechlorination in the upgradient part of the site. Consequently, coupling rt-PCR assays with isotope measurements removes the uncertainties inherent in a simple mass balance approach, so that when the three methods are used jointly, they allow the identification and quantification of natural biodegradation, even under apparently complex geochemical and hydraulic conditions.

Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

2011-11-01

358

ADVANCEMENT OF NUCLEIC ACID-BASED TOOLS FOR MONITORING IN SITU REDUCTIVE DECHLORINATION  

SciTech Connect

Regulatory protocols generally recognize that destructive processes are the most effective mechanisms that support natural attenuation of chlorinated solvents. In many cases, these destructive processes will be biological processes and, for chlorinated compounds, will often be reductive processes that occur under anaerobic conditions. The existing EPA guidance (EPA, 1998) provides a list of parameters that provide indirect evidence of reductive dechlorination processes. In an effort to gather direct evidence of these processes, scientists have identified key microorganisms and are currently developing tools to measure the abundance and activity of these organisms in subsurface systems. Drs. Edwards and Luffler are two recognized leaders in this field. The research described herein continues their development efforts to provide a suite of tools to enable direct measures of biological processes related to the reductive dechlorination of TCE and PCE. This study investigated the strengths and weaknesses of the 16S rRNA gene-based approach to characterizing the natural attenuation capabilities in samples. The results suggested that an approach based solely on 16S rRNA may not provide sufficient information to document the natural attenuation capabilities in a system because it does not distinguish between strains of organisms that have different biodegradation capabilities. The results of the investigations provided evidence that tools focusing on relevant enzymes for functionally desired characteristics may be useful adjuncts to the 16SrRNA methods.

Vangelas, K; ELIZABETH EDWARDS, E; FRANK LOFFLER, F; Brian02 Looney, B

2006-11-17

359

Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina  

USGS Publications Warehouse

This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

2013-01-01

360

In planta passive sampling devices for assessing subsurface chlorinated solvents.  

PubMed

Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. PMID:24268175

Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

2014-06-01

361

Test plan for single well injection/extraction characterization of DNAPL  

SciTech Connect

Soils and groundwater beneath an abandoned Process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLS, or dense non aqueous Phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only ``proven`` cleanup method. New cleanup approaches based on enhanced removal by surfactants and/or alcohols have been proposed and tested at the pilot scale. As described below, carefully designed experiments similar to the enhanced removal methods may provide important characterization information on DNAPLs.

Looney, B.B.; Jerome, K.M.; Burdick, S.; Rossabi, J.; Jarosch, T.R.; Eddy-Dilek, C.A.

1995-12-01

362

Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility  

NASA Technical Reports Server (NTRS)

The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

1995-01-01

363

Superfund Record of Decision (EPA Region 4): City Industries, Winter Park, FL. (First remedial action), March 1990. Final report  

SciTech Connect

The City Industries site is a former hazardous waste recycling and transfer facility in Goldenrod Township, Orange County, Florida, near the cities of Winter Park and Orlando. The city of Winter Park's water supply well field is located approximately 1,900 feet west of the site. These wells draw from the deep Floridan aquifer, which is separated from a surficial aquifer by a 140-foot-thick confining layer. In 1971, a former fuel oil business at the site was developed into a waste-handling facility. Activities at the site included receiving, handling, storing, reclaiming, and disposing of various waste chemicals. Improper disposal practices and intentional dumping led to onsite soil and surficial ground water contamination. The Record of Decision (ROD) addresses contaminated ground water, which is migrating through the surficial aquifer, a potential drinking water source, and prevention of contaminant migration to the deeper Floridan aquifer. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, TCE, and toluene.

Not Available

1990-03-29

364

Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France  

NASA Astrophysics Data System (ADS)

A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

2014-09-01

365

Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions.  

PubMed

The present study focuses on the impact of microbial activities on the performance of various long-term operated laboratory-scale permeable reactive barriers. The barriers contained both aquifer and Fe0 compartments and had received either sulfate or iron(III)-EDTA to promote sulfate-reducing and iron(III)-reducing bacteria, respectively. After dismantlement of the compartments after almost 3 years of operation, DNA-based PCR-DGGE analysis revealed the presence of methanogenic, sulfate-reducing, metal-reducing, and denitrifying bacteria within as well as up- and downgradient of the Fe0 matrix. Under all imposed conditions, the main secondary phases were vivianite, siderite, ferrous hydroxy carbonate, and carbonate green rust as found by scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). Under sulfate-reduction promoting conditions, iron sulfides were formed in addition, resulting in 7 and 10 times higher degradation rates for PCE and TCE, respectively, compared to unreacted iron. These results indicate that the presence of sulfate-reducing bacteria in or around iron barriers and the subsequent formation of iron sulfides might increase the barrier reactivity. PMID:17874779

Van Nooten, Thomas; Lieben, François; Dries, Jan; Pirard, Eric; Springael, Dirk; Bastiaens, Leen

2007-08-15

366

Cometabolic bioremediation  

SciTech Connect

Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

Hazen, Terry C.

2009-02-15

367

Savannah River Site A/M Area Southern Sector Characterization Cone Penetrometer Report  

SciTech Connect

The Savannah River Site (SRS) is located in the Atlantic Coastal Plaingeologic province. This area is characterized by low relief, predominantly unconsolidated sediments of Cretaceous though Tertiary age. A multiple aquifer system underlies the A/M Area and affects the definition and distribution of a contaminant plume. The water table and uppermost confined aquifer (Steed Pond Aquifer) are contaminated with elevated concentrations of trichloroethylene(TCE) and tetrachloroethylene (PCE) and their associated compounds. The deeper aquifers in this area have less widely spread chlorinated hydrocarbon contamination.Cone penetrometer testing was selected as the method of investigation because it is minimally invasive, offers advanced technological capabilities in gathering lithologic data, and offers groundwater sampling capabilities. CPT testing utilizes a hydraulic push tool system. The probe collects real-time data that is processed by computer into soil/lithology classifications. The system can also be used to collect sediment and soil vapor samples although these features were not utilized during this project. Advantages of the CPT system include a small borehole diameter which minimizes cross-contamination of lithologic units, virtual elimination of drill cuttings and fluids that require disposal, collection of various types of undisturbed sediment and water samples and plotting of hydrostratigraphic and lithologic data while in the field.

Raabe, B.A. [Westinghouse Savannah River Company, Aiken, SC (United States)

1993-05-01

368

Remediation of DNAPLs in Low Permeability Soils. Innovative Technology Summary Report  

SciTech Connect

Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U. S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.

None

2000-09-01

369

Phytoremediation of hazardous wastes. Technical report, 23--26 July 1995  

SciTech Connect

A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.

1995-07-26

370

Phytoremediation of hazardous wastes  

SciTech Connect

A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

McCutcheon, S.C.; Wolfe, N.L. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.; Carreria, L.H.; Ou, T.Y. [Dyn Corp., Inc., Athens, GA (United States)

1995-11-01

371

Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))  

SciTech Connect

Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.

Jerome, K.M.; Looney, B.B.; Accorsi, F.; Dingens, M.; Wilson, J.T.

1996-09-01

372

Superfund Record of Decision (EPA Region 8): Mystery Bridge at Highway 20, Natrona County, WY. (First remedial action), September 1990  

SciTech Connect

The Mystery Bridge at Highway 20 site is an industrial area with two onsite residential subdivisions, in Natrona County, one mile east of Evansville, Wyoming. A portion of the site lies within the 100- and 500-year floodplains of the North Platte River and Elkhorn Creek. Two plants are located at the site: the DOW/DSI facility, an oil and gas production enhancement service facility; and the KN plant, which is a natural gas fractionation, compression, cleaning, odorizing and transmission plant. The site overlies a contaminated alluvial aquifer. In 1965, an underground pipe burst, releasing 5,000 to 10,000 gallons of absorption oil from the KN facility into the soil. From 1965 to 1987, a flare pit was used by KN to collect spent materials and wastes, and an onsite catchment area was used to collect the contaminated surface runoff etc. In 1987, site investigations revealed the presence of aromatic hydrocarbons in the soil in this area. The Record of Decision (ROD) addresses remediation of the onsite ground water emanating from the DOW/DSI and KN facilities; the VHO and BETX plumes respectively. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, TCE, toluene, and xylenes.

Not Available

1990-09-24

373

Chemical oxidation of volatile and semi-volatile organic compounds in soil  

SciTech Connect

Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

Gates, D.D.; Siegrist, R.L.; Cline, S.R.

1995-06-01

374

Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene  

Microsoft Academic Search

The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting (14)C-labeled PCE into water-saturated soil columns and displacing the free product with water. Miscible displacement experiments were conducted before and after PCE entrapment to determine the influence or residual PCE on column dispersivities. The

K. D. Pennell; M. Jin; L. M. Abriola; G. A. Pope

1994-01-01

375

EFFECT OF TRICHLOROETHYLENE ON THE EXPLORATORY AND LOCOMOTOR ACTIVITY OF RATS EXPOSED DURING DEVELOPMENT  

EPA Science Inventory

Trichloroethylene (TCE) is a common contaminant of underground water supplies. To examine the effect of TCE on the developing central nervous system, rats were exposed to TCE throughout gestation until 21 days postpartum via their dams' drinking water. TCE concentrations of 312 p...

376

ALTERACIONES PERCEPTIVAS Y PRÁXICAS EN PACIENTES CON TCE: RELEVANCIA EN LAS ACTIVIDADES DE LA VIDA DIARIA PERCEPTIVE AND PRAXIC IMPAIRMENTS IN TBI PATIENTS: SIGNIFICANCE IN ACTIVITIES OF DAILY LIVING  

Microsoft Academic Search

Objective: The main goal of the present study is to describe the implication of different perceptive and praxic deficits in daily life activities. We also review some assessing scales and intervention techniques used in the training of these mentioned alterations after a TBI. Development: There are three kinds of processes important for a correct ideation, motor planification and execution of

Marta García Peña; Ángel Sánchez Cabeza

377

Multicolored electrochromism in 4,4'-biphenyl dicarboxylic acid diethyl ester.  

PubMed

We investigated the properties of 4,4'-biphenyl dicarboxylic acid diethyl ester (PCE). The PCE underwent a 2-step reduction at -1.5 V and -2.2 V. The color of the PCE changed from colorless to yellow in the first step and consequently to red in the second reduction step. A PCE based EC cell using an NiO-modified electrode was also fabricated. The NiO electrode worked as a counter reaction material for PCE reduction. The PCE-NiO cell achieved multi-coloration ranging from colorless to yellow and red, and also achieved high coloration efficiency and long term switching stability. PMID:21614355

Imaizumi, Kinji; Watanabe, Yuichi; Nakamura, Kazuki; Omatsu, Takashige; Kobayashi, Norihisa

2011-07-01

378

40 CFR 63.324 - Reporting and recordkeeping requirements.  

Code of Federal Regulations, 2010 CFR

...Administrator or delegated State authority in writing...to § 63.320; or an estimation of perchloroethylene...Administrator or delegated State authority by registered...Administrator or delegated State authority by registered...other tenants, leased space, or owner...

2010-07-01

379

40 CFR 63.324 - Reporting and recordkeeping requirements.  

Code of Federal Regulations, 2013 CFR

...Administrator or delegated State authority in writing...to § 63.320; or an estimation of perchloroethylene...Administrator or delegated State authority by registered...Administrator or delegated State authority by registered...other tenants, leased space, or owner...

2013-07-01

380

40 CFR 63.324 - Reporting and recordkeeping requirements.  

Code of Federal Regulations, 2012 CFR

...Administrator or delegated State authority in writing...to § 63.320; or an estimation of perchloroethylene...Administrator or delegated State authority by registered...Administrator or delegated State authority by registered...other tenants, leased space, or owner...

2012-07-01

381

40 CFR 63.324 - Reporting and recordkeeping requirements.  

Code of Federal Regulations, 2011 CFR

...Administrator or delegated State authority in writing...to § 63.320; or an estimation of perchloroethylene...Administrator or delegated State authority by registered...Administrator or delegated State authority by registered...other tenants, leased space, or owner...

2011-07-01

382

HAZARDOUS AIR POLLUTANTS: DRY-DEPOSITION PHENOMENA  

EPA Science Inventory

Dry-deposition rates were evaluated for two hazardous organic air pollutants, nitrobenzene and perchloroethylene, to determine their potential for removal from the atmosphere to three building material surfaces, cement, tar paper, and vinyl asbestos tile. Dry-deposition experimen...

383

40 CFR 63.321 - Definitions.  

...Diverter valve means a flow control device that prevents room air from passing through a...tumbling them in a heated air stream (see reclaimer...Exhaust damper means a flow control device that prevents the air-perchloroethylene...

2014-07-01

384

EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)  

EPA Science Inventory

A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

385

40 CFR 63.322 - Standards.  

Code of Federal Regulations, 2011 CFR

... (3) Contain the dry cleaning machine inside a room enclosure if the dry...air-perchloroethylene gas-vapor stream from inside the dry cleaning machine drum through a carbon... (A) Operate the dry cleaning system inside a vapor barrier...

2011-07-01

386

40 CFR 63.322 - Standards.  

Code of Federal Regulations, 2010 CFR

... (3) Contain the dry cleaning machine inside a room enclosure if the dry...air-perchloroethylene gas-vapor stream from inside the dry cleaning machine drum through a carbon... (A) Operate the dry cleaning system inside a vapor barrier...

2010-07-01

387

Middlesex FUSRAP Site - A Path to Site-Wide Closure - 13416  

SciTech Connect

The road-map to obtaining closure of the Middlesex Sampling Plant FUSRAP site in Middlesex, New Jersey (NJ) has required a multi-faceted approach, following the CERCLA Process. Since 1998, the US ACE, ECC, and other contractors have completed much of the work required for regulatory acceptance of site closure with unrestricted use. To date, three buildings have been decontaminated, demolished, and disposed of. Two interim storage piles have been removed and disposed of, followed by the additional removal and disposal of over 87,000 tons of radiologically and chemically-impacted subsurface soils by the summer of 2008. The US ACE received a determination from the EPA for the soils Operable Unit, (OU)-1, in September 2010 that the remedial excavations were acceptable, and meet the criteria for unrestricted use as required by the 2004 Record of Decision (ROD) for OU-1. Following the completion of OU-1, the project delivery team performed additional field investigation of the final Operable Unit for Middlesex, OU-2, Groundwater. As of December 2012, the project delivery team has completed a Supplemental Remedial Investigation, which will be followed with a streamlined Feasibility Study, Proposed Plan, and ROD. Several years of historical groundwater data was available from previous investigations and the FUSRAP Environmental Surveillance Program. Historical data indicated sporadic detections of Volatile Organic Compounds (VOCs), primarily trichloroethylene (TCE), carbon tetrachloride (CT), and methyl tert-butyl ether (MTBE), with no apparent trend or pattern indicating extent or source of the VOC impact. In 2008, the project delivery team initiated efforts to re-assess the Conceptual Site Model (CSM) for groundwater. The bedrock was re-evaluated as a leaky multi-unit aquifer, and a plan was developed for additional investigations for adequate bedrock characterization and delineation of groundwater contaminated primarily by CT, TCE, and tetrachloroethene (PCE). The investigation was designed to accumulate multiple lines of evidence to determine the source and to delineate the extent of contamination, as required to complete the CERCLA Process and gain regulatory acceptance. Investigative techniques included in-well vertical flow tracing, borehole geophysics and packer testing of temporary test holes to characterize contamination in the bedrock fractures beneath the site, and to delineate likely source areas. (authors)

Miller, David M. [ECC, 110 Fieldcrest Ave, Ste 31, Edison, NJ, 08837 (United States)] [ECC, 110 Fieldcrest Ave, Ste 31, Edison, NJ, 08837 (United States); Edge, Helen [US Army Corps of Engineers - NYD, 26 Federal Plaza, Room 1811, New York, NY, 10278 (United States)] [US Army Corps of Engineers - NYD, 26 Federal Plaza, Room 1811, New York, NY, 10278 (United States)

2013-07-01

388

Integrating Safety Issues in Optimizing Solvent Selection and Process Design  

E-print Network

Health effect Examples of solvents Damage to nervous system n-hexane, perchloroethylene, n-butyl mercaptan Damage to liver or kidney Toluene, carbon tetrachloride, 1,1,2,2 ? tetrachloroethane, chloroform Reproductive hazards 2-methoxyethanol, 2... Health effect Examples of solvents Damage to nervous system n-hexane, perchloroethylene, n-butyl mercaptan Damage to liver or kidney Toluene, carbon tetrachloride, 1,1,2,2 ? tetrachloroethane, chloroform Reproductive hazards 2-methoxyethanol, 2...

Patel, Suhani Jitendra

2011-10-21

389

REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS  

EPA Science Inventory

Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

390

Anaerobic bacteria that dechlorinate perchloroethene.  

PubMed Central

In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

Fathepure, B Z; Nengu, J P; Boyd, S A

1987-01-01

391

Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea  

NASA Astrophysics Data System (ADS)

The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and Mn are presumed to be affected from decrepit pipelines under inproper management. The correlation matrix between hydrochemical data and local land-use data was examined, based on the areal calculation of land use (road, building for housing and official work, industrial building, forest, and agricultural land) within a circular (radius = 500 m) around a well. The results show that the areal percentage of road correlates positively with the concentrations of TDS, Na, Ca, HCO3, Br, Mn, and Ni, whereas the areal percentage of industrial building correlates well with Mg, SO4, Fe, TCE, and PCE. The present study suggests that urban groundwaters in Seoul are strongly affected by anthropogenic sources and show a strong effect by local land-use characteristics. As an useful guideline for evaluating the groundwater quality, we have obtained background water quality criteria as follows: Na (10.8 mg/l), K (1.2 mg/l), Ca (19.9 mg/l), Mg (1.6 mg/l), NO3 (8.3 mg/l), Cl (9.0 mg/l), SO4 (12.9 mg/l), and HCO3 (54.8 mg/l).

Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

2001-12-01

392

Geohydrology and water quality in the vicinity of the Gettysburg National Military Park and Eisenhower National Historic Site, Pennsylvania  

USGS Publications Warehouse

Wells in the Gettysburg National Military Park, Eisenhower National Historic Site, and Gettysburg Borough supply drinking water to the park staff and, annually, more than 1 million visitors. These water resources are vulnerable to contamination by pollutants from activities in and outside park boundaries. This report describes the hydrogeology and ground-water quality of a 12-square- mile area of the park and vicinity, and outlines a ground-water-quality monitoring plan. A network of about 60 wells was established to measure water levels and sample ground water. Water levels were measured continuously in five wells and synchronously in the larger network during spring and fall of 1986. Shale, siltstone, and sandstone of the Gettysburg Formation, intruded by a 2,000-foot-thick diabase sill in the southeastern part of the area, form the bedrock framework. These rocks are tilted about 20 degrees to the northwest. Two vertical diabase dikes extend northward and form barriers to ground-water flow in the Gettysburg Formation. The regolith and fractures near the surface in both the Gettysburg Formation rocks and diabase sill contain a shallow water-table aquifer. In the Gettysburg Formation, the shallow aquifer is connected to deep, discontinuous, tabular aquifers in beds prone to fracturing. Ground-water flow tends to be anisotropic parallel to the strike of bedding both in the shallow and deep aquifers to the Gettysburg Formation. Pumping affects water levels in wells more that 2,500 feet apart along strike. Calcium, magnesium, and bicarbonate are the dominant constituents in the ground water. Concentrations of dissolved solids are about 40 percent greater in water from the Gettysburg Formation than water from the diabase. Concentrations of nontoxic elements, iron and manganese, slightly exceed U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant levels in 4 of 21 samples. No concentration of the toxic trace elements arsenic, barium, cadmium, chromium, lead, selenium, or mercury exceeds the maximum contaminant levels (MCLs) established by USEPA. A nitrate concentration in excess of the USEPA MCL of 10 milligrams per liter was found only in water from one well. Pesticides were present, at nontoxic concentrations (near minimum detection limits) in water from five wells, two of which are currently (1987) in use. TCE and PCE were the dominant purgeable organic compounds (POC) detected. No POC were present in park wells above concentrations of 1 microgram per liter, and no concentration exceeded USEPA MCLs. POC were detected only in water from wells that are approximately aligned, and in a zone parallel to strike that extends into areas of know ground-water contamination and (or) production wells. Water-quality monitoring in the park is most important in the zone where TCE and PCE were detected. Areas that have production wells in which other contaminants in water have been detected are areas to be monitored for changes in concentration of the detected contaminants. Continued control of potential contaminants placed on the land surface, especially agricultural chemicals and wastes, can prevent or mitigate most ground-water contamination. Future monitoring activities will be dictated by events and conditions where and as they occur.

Becher, A.E.

1989-01-01

393

Reactive Transport Modeling of Chemical and Isotope Data to Identify Degradation Processes of Chlorinated Ethenes in a Diffusion-Dominated Media  

NASA Astrophysics Data System (ADS)

Chlorinated ethenes are among the most widespread contaminants in the subsurface and a major threat to groundwater quality at numerous contaminated sites. Many of these contaminated sites are found in low-permeability media, such as clay tills, where contaminant transport is controlled by diffusion. Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70's, resulting in contamination of the clay till and the underlying sandy layer (15 meters below surface). The clay till is heavily contaminated between 4 and 15 mbs, both with the mother compounds PCE/TCE and TCA and the daughter products (DCE, VC, ethene, DCA), indicating the occurrence of natural dechlorination of both PCE/TCE and TCA. Intact core samples of length 0.5m were collected from the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around the observed higher permeability zones such as sand lenses, sand stringers and fractures, where a higher degradation activity was expected. This study made use of a reactive transport model to investigate the appropriateness of several conceptual models. The conceptual models considered the location of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic ?-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion in the clay matrix, as heavier isotopes are expected to diffuse slower than lighter ones. The isotope data are shown to be crucial to distinguish between the tested conceptual models for transport and degradation, and made it possible to select a unique conceptual model for each core profile. This study reveals that biotic and abiotic degradation occurred concurrently in several zones inside the clay matrix, and that abiotic degradation of cis-DCE was the dominant attenuation process in the cores. Furthermore reductive dechlorination of cis-DCE to VC, and further to ethene, was documented in several zones in the low-permeability media. Previous studies have shown that degradation might be limited to high permeability zones in clay tills, thus limiting the applicability of remediation strategies based on enhanced biodegradation. Therefore the occurrence of degradation inside the clay matrix is an important finding, that is further supported by microbial and chemical data. Improved understanding of degradation processes in clay tills is useful for improving the reliability of risk assessment and the design of remediation schemes for chlorinated solvents.

Chambon, J. C.; Damgaard, I.; Jeannottat, S.; Hunkeler, D.; Broholm, M. M.; Binning, P. J.; Bjerg, P. L.

2012-12-01

394

76 FR 55061 - Two Proposed CERCLA Administrative Settlement Agreements for Long-Term Access at the Bountiful...  

Federal Register 2010, 2011, 2012, 2013

...for Long-Term Access at the Bountiful/Woods Cross 5th South PCE Plume NPL Site, Davis...for long-term access at the Bountiful/Woods Cross 5th South PCE Plume Site. The PCE...Cities of Bountiful, West Bountiful and Woods Cross in Davis County, Utah. The...

2011-09-06

395

Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae).  

PubMed

The citrus red mite, Panonychus citri, is known for its ability to rapidly evolve resistance to insecticides/acaricides and to adapt to hosts that produce toxins. To get better insight into the detoxification mechanism of P. citri, two carboxylesterase (CarE) genes, PCE1 and PCE2, were isolated and characterized. PCE1 and PCE2 contained open reading frames of 1,653 and 1,392 nucleotides, encoding proteins of 550 and 463 amino acid residues, respectively. Phylogenetic analyses showed that PCE1 and PCE2 were most closely related to the CarE genes from other phytophagous mites. The transcriptional profiles of two CarE genes among developmental stages (egg, larva, nymph, adult female, and adult male), after exposing to four acaricides (avermectin, azocyclotin, pyridaben, and spirodiclofen) and acid rain were investigated using real-time quantitative PCR (qPCR). The results showed that during development, PCE1 was highly expressed at the egg stage, whereas PCE2 was abundantly expressed at the adult stage of males. The expression levels of PCE1 were highly induced upon exposure to acaricides and acid rain. On the other hand, the expression levels of PCE2 were increased after treatment with avermectin and pyridaben. These results suggest that PCE1 and PCE2 may have distinct roles in different developmental stages and participate in the detoxification of acaricides. PMID:23404785

Zhang, Kun; Niu, Jin-Zhi; Ding, Tian-Bo; Dou, Wei; Wang, Jin-Jun

2013-04-01

396

Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan.  

PubMed

The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 microg/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs. PMID:19167026

Fan, Chihhao; Wang, Gen-Shuh; Chen, Yen-Chuan; Ko, Chun-Han

2009-03-15

397

Treatment of chlorinated ethenes in groundwater with ozone and hydrogen peroxide  

SciTech Connect

A study was conducted to enhance the performance of an advanced oxidation process in treating chlorinated ethenes in groundwater at IBM`s groundwater treatment system at its Essex Junction, Vermont facility. A model describing the reaction kinetics and mass transfer of a co-current ozone injection process is presented. This model, in conjunction with experiments, demonstrates that the treatment performance of the ozone treatment process at a given ozone/air concentration and ozone mass flowrate cannot be improved by varying process operating parameters such as number of ozone injectors utilized, use of a static mixer, or variation of groundwater flowrate through each injector. This is because dissolved ozone reaches equilibrium with the injected ozone/air mixture within two seconds of initial contact. Also, the Venturi-type ozone injection system presently in use destroys nearly half of the injected ozone. Injection of hydrogen peroxide in conjunction with ozone increases the overall tetrachloroethylene (PCE) treatment efficiency by a factor of four (in comparison to ozone alone) at a H{sub 2}O{sub 2}/O{sub 3} mass ratio of between 1 and 2. Treatment of trichloroethylene (TCE) is enhanced by a factor of two. This enhancement of the oxidative treatment process results in a reduction in solvent mass load to a granular activated carbon (GAC) adsorption system located downstream, thus potentially reducing the usage GAC and regeneration of spent GAC. However, residual hydrogen peroxide and/or hydroxyl free radicals from the oxidation process effluent may interact adversely with certain grades of GAC; the causes of this interaction and methods to attenuate it (i.e., the use of more resistant grades of GAC) are discussed. Overall O{sub 3}/H{sub 2}O{sub 2}/GAC system operating costs can potentially be reduced significantly (up to $20K annually). An economic analysis and system operation/cost optimization study are presented. 8 refs., 7 figs., 1 tab.

Clancy, P.B. [IBM Corp., Essex Junction, VT (United States); Armstrong, J.; Couture, M. [Dartmouth College, Hanover, NH (United States)] [and others

1996-12-31

398

IMPROVED DOWN-HOLE CPT TOOLS FOR THE DETECTION OF CHLORINATED SOLVENTS  

SciTech Connect

Conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between sampling devices and containers, ultimately affecting the quality of the analytical results. Inaccurate characterization data often leads to improperly designed remedial systems that slow the clean-up process and increase the cost. For these reasons, in situ methods for sample extraction and real time analysis provide attractive alternatives to conventional sampling and analysis. Under funding from the U.S. Department of Energy's Federal Energy Technology Center (FETC), the investigators continued development of a system that combines High Speed Gas Chromatography techniques with Cone Penetration Testing to achieve near-real time analysis of soils and groundwater for chlorinated and aromatic hydrocarbon contamination (PCE, TCE, BTEX) during site characterization. The system combines three new CPT tools with an up-hole analyzer. The Dynamic Thermal Desorption (DTD) probe provides the up-hole analyzer with continuously sampled soil gas, enhancing detection limits by heating the soil matrix during penetration to thermally desorb volatile organic contaminants. The CPT In Situ Purge Probe (CISP) purges a water sample in situ, transferring the purge gas up-hole for analysis. Alternatively, soil gas or purge gas from the DTD probe or the CISP can be diverted to a Downhole Trap Module (DTM), which traps contaminants on conventional trap media for