These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Biofiltration for removal of PCE and TCE vapors from contaminated air  

SciTech Connect

Bench scale biofilters (vapor phase bioreactors) treating a mixture of gases have removed perchloroethylene and trichloroethylene from the air. In a biofilter using carbon as the support medium, an initial period of adsorptive removal was followed by biological removal of 61% of the PCE and 48% of the TCE. In a compost biofilter, removals after the initial period were 40% for PCE and 49% for TCE. The reactors were dominantly aerobic. Because aerobic degradation of PCE has not been observed, it is believed that degradation occurred by reductive dechlorination in anaerobic zones within the particles of the support medium. 12 refs., 5 figs., 2 tabs.

Devinny, J.S.; Webster, T.S. [Univ. of Southern California, Los Angeles, CA (United States); Torres, E. [County Sanitation Districts of Orange County, Fountain Valley, CA (United States)] [and others

1995-12-31

2

Insights into dechlorination of PCE and TCE from carbon isotope fractionation by vitamin B12  

NASA Astrophysics Data System (ADS)

Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is both a potential remediation technique and an analogue of the microbial reductive dechlorination reaction. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. 10 mg/L vitamin B12 degraded greater than 90% of an initial concentration of PCE of 20 mg/L. TCE, the primary product of PCE degradation, accounted for between 64 - 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded greater than 90% of an initial concentration of TCE of 20 mg/L. Cis-dichloroethene (cDCE), the primary product of TCE degradation, accounted for between 30 - 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described by a Rayleigh model with enrichment factors between -16.5 ppm and -15.8 ppm for PCE, and -17.2 ppm and -16.6 ppm for TCE. Fractionation was similar in all four experiments, with a mean enrichment factor of -16.5 +/- 0.6 ppm. These large enrichment factors indicate that isotopic analysis can be used to assess the occurrence of dechlorination of PCE and TCE by vitamin B12 in remediation situations. Significantly, the Rayleigh model could be used to predict the isotopic compositions of the major products of the reaction as well as the reactant, notwithstanding the lack of complete mass balance observed between product and reactant. This evidence suggests that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e for this reaction and those observed for microbial biodegradation of the chlorinated ethenes suggest that there may be differences in the rate determining step for these two processes. Determining which steps are rate determining during degradation may allow optimization of contaminant remediation.

Slater, G.; Sherwood Lollar, B.; Lesage, S.; Brown, S.

2003-04-01

3

PCE/TCE DEGRADATION USING MULCH BIOWALLS  

EPA Science Inventory

A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

4

ROLE OF PHARMACOKINETIC MODELING IN RISK ASSESSMENT -- PERCHLOROETHYLENE (PCE) AS AN EXAMPLE  

EPA Science Inventory

Available metabolic and pharmacokinetic data on perchloroethylene (PCE) are used as a basis for discussion of the use of such data in quantitative risk assessment. he emphasis is on methodologies for improving risk assessment rather than on the risk assessment of PCE per se. he d...

5

Perchloroethylene (PCE) oxidation by percarbonate in Fe(2+)-catalyzed aqueous solution: PCE performance and its removal mechanism.  

PubMed

The performance of Fe(2+)-catalyzed sodium percarbonate (SPC) stimulating the oxidation of perchloroethylene (PCE) in groundwater remediation was investigated. The experimental results showed that PCE could be completely oxidized in 5 min at 20 °C with a Fe(2+)/SPC/PCE molar ratio of 8/8/1, indicating the effectiveness of Fe(2+)-catalyzed SPC oxidation for PCE degradation. Fe(2+)-catalyzed SPC oxidation was suitable for the nearly neutral pH condition, which was superior to the conventional Fenton oxidation in acidic condition. In addition, the investigations by using hydroxyl radical scavengers and free radical probe compounds elucidated that PCE was degraded mainly by hydroxyl radical (HO) oxidation in Fe(2+)/SPC system. In conclusion, Fe(2+)-catalyzed SPC oxidation is a highly promising technique for PCE-contaminated groundwater remediation, but more complex constituents in groundwater should be carefully considered for its practical application. PMID:25460751

Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Zang, Xuke; Wu, Xiaoliang; Xu, Minhui; Ndong, Landry Biyoghe Bi; Qiu, Zhaofu; Sui, Qian; Fu, George Yuzhu

2015-01-01

6

BINARY DESORPTION ISOTHERMS OF TCE AND PCE FROM SILICA GEL AND NATURAL SOLIDS. (R822626)  

EPA Science Inventory

Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to descr...

7

REPORT ON THE GEOELECTRICAL DETECTION OF SURFACTANT ENHANCED AQUIFER REMEDIATION OF PCE: PROPERTY CHANGES IN AQUEOUS SOLUTIONS DUE TO SURFACTANT TREATMENT OF PERCHLOROETHYLENE: IMPLICATIONS TO GEOPHYSICAL MEASUREMENTS  

EPA Science Inventory

Select physicochemical properties of nine surfactants which are conventionally used in the remediation of perchloroethylene (PCE, a.k.a. tetrachloroethene) were evaluated with varying concentrations of PCE and indicator dyes in aqueous solutions using a response surface quadrati...

8

ADVANCED OXIDATION PROCESSES FOR TREATING GROUNDWATER CONTAMINATED WITH TCE (TRICHLOROETHYLENE) AND PCE (TETRACHLOROETHYLENE): LABORATORY STUDIES (JOURNAL VERSION)  

EPA Science Inventory

Oxidation of trichloroethylene (TCE) and tetrachloroethylene (PCE) with various dosages of ozone or ozone plus hydrogen peroxide was studied in laboratory experiments. The results show that hydrogen peroxide accelerates the oxidation of TCE and PCE by ozone. At peroxide-to-ozone ...

9

Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.  

PubMed

A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. PMID:24316808

Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

2014-01-15

10

FY00 Phytoremediation of Trichloroethylene and Perchloroethylene in the Southern Sector of SRS  

SciTech Connect

This treatability study addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene (TCE) and perchloroethylene (PCE) -contaminated groundwater. The primary objective is to determine how the trees uptake TCE and PCE, accumulate it, and/or transform it.

Brigmon, R.L.

2000-12-15

11

Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS  

Microsoft Academic Search

A method for determining compound-specific Cl isotopic compositions (?37Cl) was developed for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), trans-dichloroethene (trans-DCE) and 1,1-dichloroethene (1,1-DCE). The isotope ratio mass spectrometry (IRMS) used in this study has nine collectors, including two for m\\/z 50 and 52 (CH3Cl) and two for m\\/z 94 and 96 (CH3Br). The development of this method is based on

Orfan Shouakar-Stash; Robert J. Drimmie; Min Zhang; Shaun K. Frape

2006-01-01

12

PHOTOCHEMICAL REACTIVITY OF PERCHLOROETHYLENE  

EPA Science Inventory

Perchloroethylene (PCE), a solvent used in dry cleaning, has been suspected of contributing significantly to photochemical ozone/oxidant (O3/Ox) problems in urban atmospheres. Past evidence, however, was neither complete nor consistent. To interpret more conclusively the past evi...

13

Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site  

SciTech Connect

Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears to be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.

Brigmon, R.L.

2001-01-10

14

Transition Metal Catalyst Assisted Reductive Dechlorination of Perchloroethylene by Anaerobic Aquifer Enrichments  

SciTech Connect

Bioremediation of groundwater contaminated with chlorinated solvents, such as perchloroethylene (PCE) or carbon tetrachloride, can be accomplished by adding nutrients to stimulate a microbial community capable of reductive dechlorination. However, biotransformation of these solvents, especially PCE, typically occurs very slowly or not at all. Experiments were conducted to evaluate whether the addition of transition metal tetrapyrrole catalysts would increase the reductive transformation of PCE to trichloroethylene (TCE) by sulfate-reducing enrichment cultures. Batch assays were used to test vitamin B12 and two synthetic sulfonatophenyl porphine catalysts for the stimulation of reductive dechlorination of PCE by sulfate-reducing bacteria (SRB) enriched from aquifer sediments from two locations at Dover Air Force Base. Cells from the enrichments were concentrated and added to batch assay vials. Vials containing SRB cells amended with vitamin B12 exhibited enhanced transformation of PCE to TCE compared with reactors amended with either synthetic catalysts or reactors containing cells alone. Methane production was observed in reactors that exhibited maximum levels of dechlorination. Storage of aquifer sediments between enrichments led to decreased levels of PCE dechlorination in subsequent assays.

Lee, Brady Douglas; Schaller, Kastli Dianne; Apel, William Arnold; Watwood, Maribeth E.

2000-04-01

15

Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA  

USGS Publications Warehouse

Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 ??l/L of TCE and 0.07 ??l/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals.

Spring, S.E.; Miles, A.K.; Anderson, M.J.

2004-01-01

16

PHOTOCHEMICAL REACTIVITY OF PERCHLOROETHYLENE: A NEW APPRAISAL  

EPA Science Inventory

Perchloroethylene (PCE), a solvent used in dry cleaning, has been suspected of contributing significantly to photochemical ozone/oxidant (O3/O(x)) problems in urban atmospheres. Past evidence, however, was neither complete nor consistent. To interpret more conclusively the past e...

17

PBPK Modeling of the Percutaneous Absorption of Perchloroethylene from a Soil Matrix in Rats and Humans  

Microsoft Academic Search

Perchloroethylene (PCE) is a widely used volatile organic chemi- cal. Exposures to PCE are primarily through inhalation and dermal contact. The dermal absorption of PCE from a soil matrix was compared in rats and humans using real-time MS\\/MS exhaled breath technology and physiologically based pharmacokinetic (PBPK) mod- eling. Studies with rats were performed to compare the effects of loading volume,

Torka S. Poet; Karl K. Weitz; Richard A. Gies; Jeffrey A. Edwards; Karla D. Thrall; Richard A. Corley; Hanafi Tanojo; Xiaoying Hui; Howard I. Maibach; Ronald C. Wester

2002-01-01

18

RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)  

EPA Science Inventory

The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

19

Confronting workplace exposure to chemicals with LCA: examples of trichloroethylene and perchloroethylene in metal degreasing and dry cleaning.  

PubMed

Life-Cycle Assessment (LCA) aims to assess all environmental impacts "from cradle to grave". Nevertheless, existing methods for Life-Cycle Impact Assessment (LCIA) generally do not consider impacts from chemical exposure at the workplace. This is a severe drawback, because neglecting occupational health effects may result in product or process optimizations at the expense of workers' health. We adapt an existing LCIA method to consider occupational health effects from the use of perchloroethylene (PCE) and trichloroethylene (TCE) in dry cleaning and metal degreasing. The results show that, in applications such as metal degreasing and dry cleaning, long-term (steady-state) concentrations at the workplace are up to 6 orders of magnitude higher than ambient air levels. Legal threshold values may be exceeded, depending on machine technology, size, and surrounding working conditions. The impact from workplace exposure to the total human-toxicity potential of the complete life cycle of PCE and TCE (including use, production, and disposal) is accordingly high. We therefore conclude that occupational health effects need to be considered in LCA to prevent overlooking key environmental-health impacts in LCA. PMID:16245853

Hellweg, Stefanie; Demou, Evangelia; Scheringer, Martin; McKone, Thomas E; Hungerbühler, Konrad

2005-10-01

20

PROPERTY CHANGES IN AQUEOUS SOLUTIONS DUE TO SURFACTANT TREATMENT OF PCE: IMPLICATIONS TO GEOPHYSICAL MEASUREMENTS  

EPA Science Inventory

Select physicochemical properties of aqueous solutions composed of surfactants, dye, and perchloroethylene (PCE) were evaluated through a response surface quadratic design model of experiment. Nine surfactants, which are conventionally used in the remediation...

21

Optimization of simultaneous chemical and biological mineralization of perchloroethylene  

SciTech Connect

Optimization of the simultaneous chemical and biological mineralization of perchloroethylene (PCE) by modified Fenton`s reagent and Xanthobacter flavus was investigated by using a central composite rotatable experimental design. Concentrations of PCE, hydrogen peroxide, and ferrous iron and the microbial cell number were set as variables. Percent mineralization of PCE to CO{sub 2} was investigated as a response. A second-order, quadratic response surface model was generated and fit the data adequately, with a correlation coefficient of 0.72. Analysis of the results showed that the PCE concentration had no significant effect within the tested boundaries of the model, while the other variables, hydrogen peroxide and iron concentrations and cell number, were significant at {alpha} = 0.05 for the mineralization of PCE. The {sup 14}C radiotracer studies showed that the simultaneous chemical and biological reactions increased the extent of mineralization of PCE by more than 10% over stand-alone Fenton reactions.

Bueyueksoenmez, F.; Hess, T.F.; Crawford, R.L.; Paszczynski, A. [Univ. of Idaho, Moscow, ID (United States). Center for Hazardous Waste Remediation Research; Watts, R.J. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

1999-06-01

22

PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS  

EPA Science Inventory

Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

23

USE OF A PHYSIOLOGICALLY BASED MODEL TO PREDICT SYSTEMIC UPTAKE AND RESPIRATORY ELIMINATION OF PERCHLOROETHYLENE  

EPA Science Inventory

The pharmacokinetics of inhaled perchloroethylene (PCE) were studied in male Sprague-Dawley rats to characterize pulmonary absorption and elimination. irect measurements of the time-course of PCE in the blood and breath were used to evaluate the ability of a physiologically-based...

24

Effect of temperature on perchloroethylene dechlorination by a methanogenic consortium  

SciTech Connect

The effect of temperature on the kinetics of growth, substrate metabolism, and perchloroethylene (PCE) dechlorination by a methanogenic consortium is reported. In all cases, a simple kinetic model accurately reflected experimental data. Values for the substrate and methane yield coefficients, and the maximum specific growth rate are fairly consistent at each temperature. Also, the substrate and methane yield coefficients show little temperature sensitivity. In contrast, both the maximum specific growth rate and the PCE dechlorination yield coefficient (Y{sub PCE}) are temperature dependent.

Gao, J.; Skeen, R.S.; Hooker, B.S.

1995-04-01

25

Interaction of Perchloroethylene with Cerium Oxide in Three-Way Catalysts  

PubMed Central

The role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO2, reducing the cerium to create CeCl3. PMID:21218178

Rupp, Erik C.; Betterton, Eric A.; Arnold, Robert G.

2010-01-01

26

Contamination of ground water by PCE - A national perspective  

USGS Publications Warehouse

Perchloroethylene (PCE) has physical and chemical properties that make it likely to persist in groundwater if released to the environment. The US Geological Survey has collected or compiled data on the occurrence of PCE in groundwater from major aquifers around the US. These data represent the occurrence of PCE in the groundwater resource as a whole and not occurrence at specific release sites. PCE was detected at measurable concentrations in nearly one in 10 wells in major aquifers throughout the country. Trichloroethylene was found most commonly with PCE and its presence may be due, in part, to reductive dechlorination of PCE. This is an abstract of a paper presented at the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation Conference (Houston, TX 11/6-7/2006).

Moran, M.J.; Delzer, G.C.

2006-01-01

27

Quantification of perchloroethylene residues in dry-cleaned fabrics.  

PubMed

We have used a novel gas chromatography/mass spectrometry (GC/MS)-based approach to quantify perchloroethylene (PCE) residues in dry-cleaned fabrics. Residual PCE was extracted from fabric samples with methanol and concentration was calculated by the gas chromatographic peak area, standardized using PCE calibration data. Extracts examined were from samples of 100% wool, polyester, cotton, or silk, which were dry cleaned from one to six times in seven different Northern Virginia dry-cleaning establishments. Additional experiments were conducted to investigate the kinetics of PCE release in the extraction solvent and to the open air. We found that polyester, cotton, and wool retained ??µM levels of PCE, that these levels increased in successive dry-cleaning cycles, and that PCE is slowly volatilized from these fabrics under ambient room air conditions. We found that silk does not retain appreciable PCE. Measured differences across dry-cleaning establishments and fabric type suggest more vigorous monitoring of PCE residues may be warranted. Environ. Toxicol. Chem. 2011;30:2481-2487. © 2011 SETAC. PMID:21898565

Sherlach, Katy S; Gorka, Alexander P; Dantzler, Alexa; Roepe, Paul D

2011-11-01

28

WASHABILITY CURVES FOR PYRITE REMOVAL IN COAL USING PERCHLOROETHYLENE AS HEAVY MEDIUM  

Microsoft Academic Search

Pyritic sulfur is removed from raw, high sulfur coal by gravitational separation using a suitable solvent, or heavy medium. This is possible due to the inherent difference in the specific gravity of clean coal and the mineral matter in it. The effectiveness of perchloroethylene (PCE) as a heavy medium was experimentally evaluated. The most important factors governing the efficiency of

Padmakar Vishnubhatt; Sunggyu Lee

1993-01-01

29

Catalytic Dechlorination of Gas-phase Perchloroethylene under Mixed Redox Conditions  

PubMed Central

The validity of a new method to destroy gas-phase perchloroethylene (PCE) is demonstrated at bench scale using a fixed-bed reactor that contains a Pt/Rh catalyst. Hydrogen and oxygen were simultaneously fed to the reactor together with PCE. The conversion efficiencies of PCE were sensitive to H2/O2 ratio and reactor temperature. When the temperature was ? 400 °C and H2/O2 was ? 2.15, PCE conversion efficiency was maintained at ? 90%. No catalyst deactivation was observed for over two years, using only mild, convenient regeneration procedures. It is likely that PCE reduction steps precede oxidation reactions and that the importance of oxidation lies in its elimination of intermediates that would otherwise lead to catalyst poisoning. In practice, this catalytic dechlorination method holds potential for low-cost, large-scale field operation. PMID:19234593

Orbay, Özer; Gao, Song; Barbaris, Brian; Rupp, Erik; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric A.

2008-01-01

30

A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater  

PubMed Central

A mass balance study was performed under controlled field conditions to investigate the phytoremediation of perchloroethylene (PCE) by hybrid poplar trees. Water containing 7–14 mg L?1 PCE was added to the test bed. Perchloroethylene, trichloroethylene, and cis-dichloroethylene were detected in the effluent at an average of 0.12 mg L?1, 3.9 mg L?1, and 1.9 mg L?1, respectively. The total mass of chlorinated ethenes in the water was reduced by 99%. Over 95% of the recovered chlorine was as free chloride in the soil, indicating near-complete dehalogenation of the PCE. Transpiration, volatilization, and accumulation in the trees were all found to be minor loss mechanisms. In contrast, 98% of PCE applied to an unplanted soil chamber was recovered as PCE in the effluent water or volatilized into the air. These results suggest that phytoremediation can be an effective method for treating PCE-contaminated groundwater in field applications. PMID:19345455

James, C. Andrew; Xin, Gang; Doty, Sharon L.; Muiznieks, Indulis; Newman, Lee; Strand, Stuart E.

2010-01-01

31

Studies on the use of perchloroethylene as a heavy medium for the removal of pyrites from coal  

SciTech Connect

Previous studies have shown that perchloroethylene (PCE) shows promise for use as a heavy medium for the removal of pyrites from fine coal. The studies are continued here, as the coal cleaning effectiveness of mixtures of PCE and kerosene are investigated. Float/sink experiments are run for different medium densities obtained by varying the proportions of PCE and kerosene. The effectiveness of the cleaning process is judged by data taken from a long tube sampling apparatus. Among the variables investigated are medium density, residence time, and solvent-to-coal ratio. The data is used to support scale-up predictions for a plant apparatus.

Thome, T.L.; Fullerton, K.L.; Lee, S. [Univ. of Akron, OH (United States). Dept. of Chemical Engineering

1996-12-31

32

Surfactant enhanced removal of PCE in a nominally two-dimensional, saturated, stratified porous medium  

NASA Astrophysics Data System (ADS)

Although surfactant enhanced remediation of nonaqueous phase liquids (NAPLs) by pump-and-treat technology has been studied extensively in the laboratory with one-dimensional columns, very few multi-dimensional investigations have been reported. In this study we focus on the removal of perchloroethylene (PCE) from a two-dimensional, saturated porous medium containing a low permeability sand layer situated in an otherwise high permeability sand. A PCE spill was applied at the surface of the porous medium and allowed to redistribute until static equilibrium was achieved. The porous medium was then flushed with various surfactant and co-solvent formulations injected at the PCE source location and extracted at the bottom of the porous medium using a configuration similar to that of Abdul and Ang [Abdul, S.A., Ang, C.C., 1994. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: Phase II. Pilot study. Ground Water 32, 727-734]. Effluent samples were analyzed for dissolved PCE concentrations. Volumetric water and PCE content values were determined at a number of locations by means of dual-energy gamma radiation measurements. Once surfactant flushing had started, PCE moved as a distinct separate phase ahead of the surfactant front. Most of this downward moving PCE accumulated on top of the low permeability sand layer. Some PCE, however, passed quickly through this layer and subsequently through the high permeability sand below it. Movement of some of the PCE into and through the low permeability sand layer was attributed to local heterogeneities combined with reduced interfacial tensions associated with the surfactant formulation. Clean-up of PCE in most of the high permeability sand was considered to be effective. PCE accumulated on top of the fine layer, however, posed a significant challenge to remediation and required several pumping configurations and surfactant/co-solvent formulations before most of it was removed.

Walker, R. C.; Hofstee, C.; Dane, J. H.; Hill, W. E.

1998-10-01

33

Coal desulfurization by perchloroethylene processing  

SciTech Connect

Three coals, Indiana No. 5, Illinois No. 6, and Freeport-PA, were treated using the Midwest Ore Processing Company patented coal desulfurization process in batch equipment designed to process 10 lb of coal. The organic sulfur extractions were performed at a 30 minute residence time at 120{degrees}C and atmospheric pressure. Subsequently, ash and pyrite were separated from extracted coal using gravity separation in perchloroethylene.

Leehe, H.H.; Snell, G.J. (Midwest Ore Processing Co., Inc., Plainville, IN (United States))

1992-05-01

34

Thermocatalytic Destruction of Gas-Phase Perchloroethylene Using Propane as a Hydrogen Source  

PubMed Central

The use of propane in combination with oxygen to promote the destruction of perchloroethylene (PCE) over a platinum (Pt)/rhodium (Rh) catalyst on a cerium/zirconium oxide washcoat supported on an alumina monolith was explored. Conversions of PCE were measured in a continuous flow reactor with residence times less than 0.5 s and temperatures ranging from 200 to 600°C. The presence of propane was shown to increase significantly the conversion of PCE over oxygen-only conditions. Conversions close to 100% were observed at temperatures lower than 450°C with 20% oxygen and 2% propane in the feed, which makes this process attractive from a practical standpoint. In the absence of oxygen, PCE conversion is even higher, but the catalyst suffers significant deactivation in less than an hour. Even though results show that oxygen competes with reactants for active sites on the catalyst, the long-term stability that oxygen confers to the catalyst makes the process an efficient alternative to PCE oxidation. A Langmuir-Hinshelwood competitive adsorption model is proposed to quantify PCE conversion. PMID:19217713

Willinger, Marty; Rupp, Erik; Barbaris, Brian; Gao, Song; Arnolda, Robert; Betterton, Eric; Sáez, A. Eduardo

2009-01-01

35

In situ biodegradation of perchloroethylene in constructed wetland mesocosms  

SciTech Connect

Anaerobic reductive dehalogenation initiates degradation of highly chlorinated organic compounds. Subsequent intermediate chlorinated compounds are in turn more readily degraded in aerobic environments. Thus, complete degradation of chlorinated compounds to nontoxic end products requires both anaerobic and aerobic environments. These environments are provided by constructed wetland bioremediation systems, which through the interaction of vegetation, microbial, chemical, and physical processes, result in waste water renovation. The authors integrated the ecological engineering technology of constructed wetland systems with developments in plant-rhizosphere degradation of organic contaminants to examine the effectiveness of constructed wetland systems for in situ bioremediation of waste water contaminated with a chlorinated hydrocarbon, perchloroethylene (PCE) and an aromatic hydrocarbon, toluene. A mesocosm was designed to provide sequential anaerobic and vegetated-aerobic cells with complete control of water and gas flux and to emulate wetland properties such as hydric soil composition, physicochemical parameters, and the presence of wetland vegetation (Eleocharis acicularis). Treatments included contaminated and non-contaminated wetland cells and sterile controls. The fate and transport of PCE, toluene, and metabolic by-products were determined in effluent and chamber headspace, and extracts of soil and plant tissue. These analyses provide the basis for evaluating contaminant fate in wetland systems. Manipulation of aeration and hydrologic regimes in the wetland cells will facilitate testing conditions that affect degradation processes. The experimental apparatus is a innovative design for experimentation on the degradation of volatile organic compounds in plant-soil systems.

Hoylman, A.M.; Rosensteel, B.A.; Trettin, C.C. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1994-12-31

36

Development of a physiologically based pharmacokinetic model for perchloroethylene using tissue concentration-time data.  

PubMed

The tissue disposition of perchloroethylene (PCE) was characterized experimentally in rats in order to (1) obtain input parameters from in vivo data for the development of a physiologically based pharmacokinetic (PBPK) model, and (2) use the PBPK model to predict the deposition of PCE in a variety of tissues following inhalation exposure. For the derivation of model input parameters, male Sprague-Dawley rats received a single bolus of 10 mg PCE/kg body wt in polyethylene glycol 400 by ia injection through an indwelling carotid arterial cannula. Other male Sprague-Dawley rats inhaled 500 ppm PCE for 2 hr in dynamic exposure inhalation chambers. Serial samples of brain, liver, kidney, lung, heart, skeletal muscle, perirenal fat, and blood were taken for up to 72 hr following ia injection, during the 2-hr inhalation exposure, and for up to 72 hr postexposure. Blood and tissue PCE concentrations were analyzed using a gas chromatography headspace technique. Following ia administration, the tissues exhibited similar terminal elimination half-lives (t1/2). As comparable tissue t1/2 are consistent with a blood-flow-limited model, tissue:blood partition coefficients were calculated for noneliminating compartments by division of the area under the tissue concentration-time curve (AUC) by the blood AUC. Liver PCE concentration versus time data were employed in the calculation of in vivo metabolic rate constants. A PBPK model was developed using these parameters derived from the ia data set and used to predict tissue PCE concentrations during and following PCE inhalation. Predicted tissue levels were in close agreement with the levels measured over time in the seven tissues and in blood. Tissue concentration-time data can thus provide valuable input for parameter estimation and for validation of PBPK model simulations, as long as independent in vivo data sets are used for each step. PMID:8079354

Dallas, C E; Chen, X M; O'Barr, K; Muralidhara, S; Varkonyi, P; Bruckner, J V

1994-09-01

37

PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans.  

PubMed

Perchloroethylene (PCE) is a widely used volatile organic chemical. Exposures to PCE are primarily through inhalation and dermal contact. The dermal absorption of PCE from a soil matrix was compared in rats and humans using real-time MS/MS exhaled breath technology and physiologically based pharmacokinetic (PBPK) modeling. Studies with rats were performed to compare the effects of loading volume, concentration, and occlusion. In rats, the percutaneous permeability coefficient (K(P)) for PCE was 0.102 +/- 0.017, and was independent of loading volume, concentration, or occlusion. Exhaled breath concentrations peaked within 1 h in nonoccluded exposures, but were maintained over the 5 h exposure period when the system was occluded. Three human volunteers submerged a hand in a container of PCE-laden soil for 2 h and their exhaled breath was continually monitored during and for 2.5 h following exposure. The absorption and elimination kinetics of PCE were slower in these subjects than initially predicted based upon the PBPK model developed from rat dermal kinetic data. The resulting K(P) for humans was over 100-fold lower than for the rat utilizing a single, well-stirred dermal compartment. Therefore, two additional PBPK skin compartment models were evaluated: a parallel model to simulate follicular uptake and a layered model to portray a stratum corneum barrier. The parallel dual dermal compartment model was not capable of describing the exhaled breath kinetics, whereas the layered model substantially improved the fit of the model to the complex kinetics of dermal absorption through the hand. In real-world situations, percutaneous absorption of PCE is likely to be minimal. PMID:11961212

Poet, Torka S; Weitz, Karl K; Gies, Richard A; Edwards, Jeffrey A; Thrall, Karla D; Corley, Richard A; Tanojo, Hanafi; Hui, Xiaoying; Maibach, Howard I; Wester, Ronald C

2002-05-01

38

Alternatives to perchloroethylene-based garment care: Assessing the viability of professional wet cleaning. Final report  

SciTech Connect

The report analyzes the viability of Cleaner by Nature, a 100% professional wet cleaner, and whether professional wet cleaning represents a viable pollution prevention approach in eliminating perchloroethylene (PCE), a chemical solvent used in dry cleaning. The analysis includes a comprehensive plant level case study, and comparative performance, financial, and environmental assessments of wet cleaning and PCE-based dry cleaning. The major issues associated with the viability analyses were identified and specific information was collected in relation to how the clothes were cleaned (a customer garment profile, a problem garment analysis, a technical evaluation or repeat clean test, a wearer survey, and customer satisfaction surveys); how wet cleaning did financially (a start-up cost analysis and a profit/loss analysis); what environmental impacts were identified (water, energy, and chemical inputs and outputs); and what contributing factors (technology changes, garment manufacturing and labeling, and regulator or legislative actions) influence the viability of professional wet cleaning.

Gottlieb, R.; Sinsheimer, P.; Goodheart, J.; Tranby, C.; Bechtel, L.

1997-12-01

39

TRICHLOROETHYLENE (TCE) ISSUE PAPERS  

EPA Science Inventory

These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

40

HORIZONTAL LASAGNA TO BIOREMEDIATE TCE  

EPA Science Inventory

Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNATM technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE. Electroosmosis was c...

41

NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE): DISCUSSION PAPER  

EPA Science Inventory

This paper is a background document for a meeting of neurotoxicity experts to discuss the central nervous system effects of exposure to perchloroethylene (perc). The document reviews the literature on neurological testing of people exposed to perc occupationally in dry cleanin...

42

MEASUREMENT OF PERCHLOROETHYLENE IN AMBIENT AIR  

EPA Science Inventory

Perchloroethylene (i.e., tetrachloroethylene) is an organic solvent widely used in dry cleaning and industrial metal degreasing operations. Short-term field studies were conducted in each of three major metropolitan areas which were selected on the basis of the number, density an...

43

Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.  

PubMed

Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. PMID:24853618

Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

2014-01-01

44

The viability of professional wet cleaning as a pollution prevention alternative to perchloroethylene dry cleaning.  

PubMed

The vast majority of dry cleaners worldwide use the toxic chemical perchloroethylene (PCE), which is associated with a number of adverse health and environmental impacts. Professional wet cleaning was developed as a nontoxic alternative to PCE dry cleaning but has not been widely adopted as substitute technology. In the greater Los Angeles, CA, region, a demonstration project was set up to showcase this technology and evaluate its commercial viability by converting seven cleaners from PCE dry cleaning to professional wet cleaning. The demonstration site cleaners who switched to professional wet cleaning were able to maintain their level of service and customer base while lowering operating costs. The cleaners were able to transition to professional wet cleaning without a great degree of difficulty and expressed a high level of satisfaction with professional wet cleaning. Crucial to this success was the existence of the demonstration project, which helped to develop a supporting infrastructure for professional wet cleaning that had otherwise been lacking in the garment care industry. PMID:17355078

Sinsheimer, Peter; Grout, Cyrus; Namkoong, Angela; Gottlieb, Robert

2007-02-01

45

The Physiological Opportunism of Desulfitobacterium hafniense Strain TCE1 towards Organohalide Respiration with Tetrachloroethene  

PubMed Central

Desulfitobacterium hafniense strain TCE1 is capable of metabolically reducing tetra- and trichloroethenes by organohalide respiration. A previous study revealed that the pce gene cluster responsible for this process is located on an active composite transposon, Tn-Dha1. In the present work, we investigated the effects on the stability of the transposon during successive subcultivations of strain TCE1 in a medium depleted of tetrachloroethene. At the physiological level, an increased fitness of the population was observed after 9 successive transfers and was correlated with a decrease in the level of production of the PceA enzyme. The latter observation was a result of the gradual loss of the pce genes in the population of strain TCE1 and not of a regulation mechanism, as was postulated previously for a similar phenomenon described for Sulfurospirillum multivorans. A detailed molecular analysis of genetic rearrangements occurring around Tn-Dha1 showed two independent but concomitant events, namely, the transposition of the first insertion sequence, ISDha1-a, and homologous recombination across identical copies of ISDha1 flanking the transposon. A new model is proposed for the genetic heterogeneity around Tn-Dha1 in D. hafniense strain TCE1, along with some considerations for the cleavage mechanism mediated by the transposase TnpA1 encoded by ISDha1. PMID:22729540

Duret, Aurélie; Holliger, Christof

2012-01-01

46

PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE  

EPA Science Inventory

Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

47

Trichloroethylene (TCE) adsorption using sustainable organic mulch.  

PubMed

Soluble substrates (electron donors) have been commonly injected into chlorinated solvent contaminated plume to stimulate reductive dechlorination. Recently, different types of organic mulches with economic advantages and sustainable benefits have received much attention as new supporting materials that can provide long term sources of electron donors for chlorinated solvent bioremediation in engineered biowall systems. However, sorption capacities of organic mulches for chlorinated solvents have not been studied yet. In this study, the physiochemical properties of organic mulches (pine, hardwood and cypress mulches) were measured and their adsorption capacity as a potential media was elucidated. Single, binary and quaternary isotherm tests were conducted with trichloroethylene (TCE), tetrachloroethylene (PCE), trans-dichloroethylene (trans-DCE) and cis-dichloroethylene (cis-DCE). Among the three tested mulches, pine mulch showed the highest sorption capacity for the majority of the tested chemicals in single isotherm test. In binary or quaternary isotherm tests, competition among chemicals appears to diminish the differences in Q(e) for tested mulches. However, pine mulch also showed higher adsorption capacity for most chemicals when compared to hardwood and cypress mulches in the two isotherm tests. Based upon physicochemical properties of the three mulches, higher sorption capacity of pine mulch over hardwood and cypress mulches appears to be attributed to a higher organic carbon content and the lower polarity. PMID:20605328

Wei, Zongsu; Seo, Youngwoo

2010-09-15

48

A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts  

USGS Publications Warehouse

A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

1993-01-01

49

FTIR quantification of industrial hydraulic fluids in perchloroethylene  

NASA Technical Reports Server (NTRS)

The purpose of this summer research project was to investigate whether perchloroethylene can be used as a solvent for the quantitative analysis of industrial hydraulic fluids by infrared spectroscopy employing Beer's law. Standard calibration curves using carbon-hydrogen stretching (generic) and ester absorption peaks were prepared for a series of standard dilutions at low ppm levels of concentration of seven hydraulic fluids in perchloroethylene. The absorbance spectras were recorded with 1.5-10 mm fixed and variable path length sample cells made of potassium bromide. The results indicate that using ester infrared spectral peak, it is possible to detect about 20 ppm of the hydraulic fluid in perchloroethylene.

Mehta, Narinder K.

1993-01-01

50

HORIZONTAL LASAGNA^TM TO BIOREMEDIATE TCE  

EPA Science Inventory

Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNA technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE. Electroosmosis wa...

51

Physiological Adaptation of Desulfitobacterium hafniense Strain TCE1 to Tetrachloroethene Respiration?†  

PubMed Central

Desulfitobacterium spp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells of Desulfitobacterium hafniense strain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest that D. hafniense strain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration. PMID:21478312

Prat, Laure; Maillard, Julien; Grimaud, Régis; Holliger, Christof

2011-01-01

52

Graphene packed needle trap device as a novel field sampler for determination of perchloroethylene in the air of dry cleaning establishments.  

PubMed

In this paper we describe the application of a needle trap microextraction device packed with graphene nanoplatelets for the sampling and analysis of perchloroethylene in dry cleaning. The study was carried out in two phases. First the parameters for the sampling and analysis of perchloroethylene by NTD were evaluated and optimized in the laboratory. Then the sampler was used to determine the levels of perchloroethylene in a dry-cleaning shop. In the laboratory phase of the study the performance of the NTD packed with the proposed sorbent was examined in a variety of sampling conditions to evaluate the technique. The technique was also compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. Both the NTDs and SPME performed better at lower sampling temperatures and relative humidity levels. The post-sampling storage times for a 95% recovery of the analyte were 5, 5 and 3 days for NTD-graphene, NTD-PDMS and SPME-CAR/PDMS respectively. The optimum desorption time was 3 min for NTDs packed with either graphene or PDMS and 1 min for SPME-CAR/PDMS. The limits of detection for the GC/MS detection system were 0.023 and 0.25 ng mL(-1) for NTDs packed with graphene and PDMS and 0.014 ng mL(-1) for SPME coated with CAR/PDMS. In the second stage of the study the evaluated technique was applied to the sampling and analysis of perchloroethylene in dry cleaning. In this environment the performance of the NTD-graphene as a field sampler for PCE was similar to that of the SPME-CA/PDMS, and better than the NIOSH 1003 method which had greater measurement variations. The results show that a NTD packed with carbonic graphene nanoplatelets and used as an active exhaustive sampling technique is effective for determination of VOC and HVOC occupational/environmental pollutants in air. PMID:25281085

Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Emam, Maryam Rafiei; Shahna, Farshid Ghorbani; Soltanian, Ali Reza

2015-01-01

53

Decontamination of TCE and U-rich waters by granular iron: Role of sorbed Fe(II)  

Microsoft Academic Search

Uranium (UOâ{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and

Laurent Charlet; E. Liger; P. Gerasimo

1998-01-01

54

Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.  

PubMed

At concentrations above the critical micelle concentration, surfactants can significantly enhance the solubilization of residual nonaqueous phase liquids (NAPL) and, for this reason, are the focus of research on surfactant-enhanced aquifer remediation (SEAR). As a consequence of their amphiphilic nature, surfactants may also partition to various extents between the organic and aqueous phases, thereby affecting SEAR performance. We report here on the observation and analysis of the effect of surfactant partitioning on the dissolution kinetics of residual perchloroethylene (PCE) by aqueous solutions (1000 mg/L) of the non-ionic surfactant Triton X-100 in a model porous medium. For this fluid system, batch equilibration experiments showed that the surfactant partitions strongly into the NAPL (NAPL-water partition coefficient equal to 12.5). Dynamic interfacial tension (IFT) measurements were employed to study surfactant diffusion and interfacial adsorption. The dynamic IFT measurements were consistent with partitioning of the surfactant between the two liquid phases. PCE dissolution experiments, conducted in a transparent glass micromodel using an aqueous surfactant solution, were contrasted to experiments using clean water. Surfactant partitioning was observed to delay significantly the onset of micellar solubilization of PCE, an observation reproduced by a numerical model. This effect is attributed to the reduction of surfactant concentration in the immediate vicinity of the NAPL-water interface, which accompanies transport of the surfactant into the NAPL. Accordingly, it is suggested that both the rate and the extent of diffusion of the surfactant into the NAPL affect the onset of and the driving force for micellar solubilization. While many surfactants do not readily partition in NAPL, this possibility must be considered when selecting non-ionic surfactants for the enhanced solubilization of residual chlorinated solvents in porous media. PMID:16274842

Sharmin, Rumana; Ioannidis, Marios A; Legge, Raymond L

2006-01-01

55

Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings  

SciTech Connect

The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

2010-09-01

56

INHIBITORY EFFECTS OF PERCHLOROETHYLENE ON HUMAN NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.  

EPA Science Inventory

Perchloroethylene (PERC) is a volatile organic solvent with a variety of industrial uses. PERC exposure has been shown to cause adverse neurological effects including deficits in vision and memory in exposed individuals. Despite knowledge of these effects, the mechanisms by whi...

57

PROCESS ENGINEERING STUDIES OF THE PERCHLOROETHYLENE COAL CLEANING PROCESS  

Microsoft Academic Search

The perchloroethylene coal cleaning process has proven to be very effective in removing both organic and pyritic sulfur from high-sulfur coals. The process removes 30%- 70% of the organic sulfur and 90%- 99% of the pyritic sulfur with very little loss (<1.0 wt%) of hydrocarbons and their heating value. The process has been investigated on a bench- scale and a

Kathy L. Fullerton; Sunggyu Lee; Conrad J. Kulik

1991-01-01

58

A Continuous Flow Column Study of Anaerobic PCE Transformation With the Evanite Culture and Hanford Aquifer Solids  

NASA Astrophysics Data System (ADS)

Anaerobic reductive dehalogenation of tetrachloroethene (PCE) and trichoroethene (TCE) is a promising technology for the in situ treatment of high concentration source zones in contaminated aquifers. Continuous flow column studies were performed where a mixed dehalogenating culture (Evanite culture) that contains Dehalococcides-like microorganisms was bioaugmented into aquifer solids from the Hanford DOE site. Studies conducted prior to bioaugmentation showed PCE transport was retarded due to sorption onto the aquifer solids. Upon bioaugmentation and with continuous lactate addition, PCE (10 mg/L) was transformed to cis-dichloroethene ( cis-DCE), and enhanced transformation of sorbed PCE was observed. Prolonged production of cis-DCE was associated with iron reducing conditions, while eventual vinyl chloride (VC) reduction to ethene was associated with sulfate reducing conditions. Microbial processes included lactate fermentation to acetate and propionate, iron reduction, sulfate reduction, and reductive dehalogenation, with reductive dehalogenation utilizing 2 to 3% of the electron donor addition. PCE was completely transformed to ethene within a hydraulic residence time of one day. Upon competition of the column tests spatial samples of aquifer solids were analyzed using molecular methods and solids were used in batch microcosm activity tests. Dehalococcoides sp. 16S rRNA gene copy numbers dropped from ~ 74% of total Eubacterial 16S rRNA genes in the original inoculum, to about 0.5 to 4% through out the column, consistent with the estimates of electron donor utilization for dehalogenation reactions. Microcosm tests showed most of PCE transformation activity at the entrance of the column, consistent with the Dehalococcoides sp. 16S rRNA gene copy numbers being highest in that area. Roughly 20% of the Dehalococcoides sp. population in the column possessed a vcrA gene for the respiration of VC to ethene. The vcrA-positive subpopulation decreases to about 5% towards the column outflow, while VC microcosm activity tests show fairly constant rates of VC transformation across the column. The column studies demonstrated that complete transformation of PCE to ethene can be obtained over short spatial and temporal scales.

Semprini, L.; Behrens, S.; Azizian, M.; Sabalowsky, A.; Dolan, M.; Ruiz-Hass, P.; Ingle, J.; Spormann, A.

2005-12-01

59

Phytoremediation of trichloroethene (TCE) using cottonwood trees  

USGS Publications Warehouse

The ability of cottonwood trees for phytoremediation was studied on aerobic shallow groundwater containing TCE. Cottonwood trees were planted over a 0.2-ha area at the Naval Air Station at Fort Worth, TX, in April 1996. Two years later, groundwater chemistry in the terrace alluvial aquifer was changing locally. Dissolved oxygen (DO) concentrations declined at the southern end of the whip plantings while total iron concentration increased. Groundwater chemistry near a mature cottonwood tree ~ 60 m from the caliper trees was different from that observed elsewhere. Anaerobic conditions near the mature cottonwood tree were evident. Reductive dechlorination of TCE occurred in the aquifer near the mature tree, as demonstrated by very small concentration of TCE in groundwater, a small median ratio of TCE to the degradation product cis-1,2-DCE and the presence of vinyl chloride.

Jones, S.A.; Lee, R.W.; Kuniansky, E.L.

1999-01-01

60

Exposure assessment to trichloroethylene and perchloroethylene for workers in the dry cleaning industry.  

PubMed

Perchloroethylene and trichloroethylene are two particular organochloro compounds, are often used for dry-cleaning. In the present study the excretion of urinary Perchloroethylene and trichloroethylene were evaluated as biomarkers of exposure to these compounds. The mean value of Perchloroethylene in breathing zone and the total Perchloroethylene uptake during the work shift of the three groups of dry-cleaning workers according to the capacity of the dry-cleaning machine (8, 12 and 18 kg) were 31.04, 50.87 and 120.99 mg m(-3) and 11.46, 22.6 and 41.6 ?g L(-1), respectively, which were significantly greater than the occupationally nonexposed groups. A good correlation (r = 0.907) between the mean values of Perchloroethylene in breathing zone and the urinary concentrations was observed. PMID:21416139

Rastkari, Noushin; Yunesian, Masud; Ahmadkhaniha, Reza

2011-04-01

61

Modeling perchloroethylene degradation under ultrasonic irradiation and photochemical oxidation in aqueous solution  

PubMed Central

Sonolysis and photochemical degradation of different compounds such as chlorinated aliphatic hydrocarbons are among the recent advanced oxidation processes. Perchloroethylene is one of these compounds that has been mainly used as a solvent and degreaser. In this work, elimination of perchloroethylene in aqueous solution by ultrasonic irradiation, andphotochemical oxidation by ultra violet ray and hydrogen peroxide were investigated. Three different initial concentrations of perchloroethylene at different pH values, detention periods, and concentrations of hydrogen peroxide were investigated. Head space gas chromatography with FID detector was used for analyses of perchloroethylene. This research was performed in 9 months from April through December 2011. Results showed that perchloroethylene could be effectively and rapidly degraded by ultrasonic irradiation, photochemical oxidation by ultra violet ray, hydrogen peroxide and a combination of these methods. Kinetics of perchloroethylene was strongly influenced by time, initial concentration and pH value. Degradation of Perchloroethylene increased with decrease in the initial concentration of perchloroethylene from 0.3 to 10 mg/L at all initial pH. The results showed an optimum degradation condition achieved at pH?=?5 but did not affect significantly the perchloroethylene destruction in the various pH values. Kinetic modeling applied for the obtained results showed that the degradation of perchloroethylene by ultrasound and photo-oxidation followed first order and second order model. The percentage of removal in the hybrids reactor was higher than each of the reactors alone, the reason being the role of hydroxyl radical induced by ultrasound and photochemical reaction. PMID:23369271

2012-01-01

62

Modeling perchloroethylene degradation under ultrasonic irradiation and photochemical oxidation in aqueous solution.  

PubMed

Sonolysis and photochemical degradation of different compounds such as chlorinated aliphatic hydrocarbons are among the recent advanced oxidation processes. Perchloroethylene is one of these compounds that has been mainly used as a solvent and degreaser. In this work, elimination of perchloroethylene in aqueous solution by ultrasonic irradiation, andphotochemical oxidation by ultra violet ray and hydrogen peroxide were investigated. Three different initial concentrations of perchloroethylene at different pH values, detention periods, and concentrations of hydrogen peroxide were investigated. Head space gas chromatography with FID detector was used for analyses of perchloroethylene. This research was performed in 9 months from April through December 2011.Results showed that perchloroethylene could be effectively and rapidly degraded by ultrasonic irradiation, photochemical oxidation by ultra violet ray, hydrogen peroxide and a combination of these methods. Kinetics of perchloroethylene was strongly influenced by time, initial concentration and pH value. Degradation of Perchloroethylene increased with decrease in the initial concentration of perchloroethylene from 0.3 to 10 mg/L at all initial pH. The results showed an optimum degradation condition achieved at pH?=?5 but did not affect significantly the perchloroethylene destruction in the various pH values. Kinetic modeling applied for the obtained results showed that the degradation of perchloroethylene by ultrasound and photo-oxidation followed first order and second order model. The percentage of removal in the hybrids reactor was higher than each of the reactors alone, the reason being the role of hydroxyl radical induced by ultrasound and photochemical reaction. PMID:23369271

Kargar, Mahdi; Nabizadeh, Ramin; Naddafi, Kazem; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Pahlevanzadeh, Bagher

2012-01-01

63

Health Assessment Document for Tetrachloroethylene (Perchloroethylene) (Final Report)  

EPA Science Inventory

Tetrachloroethylene (PCE) is a volatile solvent with important commercial applications. It has been detected in the ambient air of a variety of urban and nonurban areas of the United States. It has less frequently been detected in water but has been monitored generally at levels ...

64

Fenton Oxidation of TCE Vapors in a Foam Reactor  

E-print Network

Fenton Oxidation of TCE Vapors in a Foam Reactor Eunsung Kan,a,b Seongyup Kim,a and Marc A.interscience.wiley.com). DOI 10.1002/ep.10205 Oxidation of dilute TCE vapors in a foam reactor using Fenton's reagent foam and oxidation by Fenton's reagents. Laboratory investiga- tions demonstrated that TCE elimination

65

Engineering TCE-Degrading Rhizobacteria for Heavy Metal  

E-print Network

Engineering TCE-Degrading Rhizobacteria for Heavy Metal Accumulation and Enhanced TCE Degradation are currently co-contami- nated with organic pollutants such as trichloroethene (TCE) and heavy metals that will survive and thrive in soil heavily polluted with heavy metals. In this work, a gene coding for the metal

Chen, Wilfred

66

Monitoring TCE Degradation by In-situ Bioremediation in TCE-Contaminated site  

NASA Astrophysics Data System (ADS)

Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we investigated two different tests (i.e., biostimulation and bioaugmentation) of biological remediation through the Well-to-Well test (injection well to extraction well) in TCE-contaminated site. Also solutions (Electron donor & acceptor, tracer) were injected into the aquifer using a liquid coupled with nitrogen gas sparging. In biostimulation, we use 3 phases to monitoring biological remediation. Phase 1: we inject formate solution to get electron donor hydrogen (hydrogen can be generated from fermentation of formate). We also inject bromide as tracer. Phase 2: we made injection solution by formate, bromide and sulfate. The reason why we inject sulfate is that as a kind of electron accepter, sulfate reduction process is helpful to create anaerobic condition. Phase 3: we inject mixed solution made by formate, sulfate, fumarate, and bromide. The degradation of fumarate has the same mechanism and condition with TCE degradation, so we added fumarate to make sure that if the anaerobic TCE degradation by indigenous microorganisms started up (Because low TCE concentration by gas sparging). In the bioaugmentation test, we inject the Evanite culture (containing dehalococcoides spp) and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the field by measuring TCE and VC reductases.

Han, K.; Hong, U.; Ahn, G.; Jiang, H.; Yoo, H.; Park, S.; Kim, N.; Ahn, H.; Kwon, S.; Kim, Y.

2012-12-01

67

3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.  

PubMed

Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc. The Cl effects (combined with an inverse H effect in TCE) suggested that dechlorination proceeded through nucleophilic reactions with cobalamin rather than by an electron transfer mechanism. Depletions of (37)Cl in daughter compounds, resulting from fractionation at positions away from the dechlorination center (secondary isotope effects), further support the nucleophilic dechlorination mechanism. Determination of C and Cl isotope ratios of the reactants and products in the reductive dechlorination chain offers a potential tool for differentiation of Dhc activity from alternative transformation mechanisms (e.g., aerobic degradation and reductive dechlorination proceeding via outer sphere mechanisms), in studies of in situ attenuation of chlorinated ethenes. Hydrogenation of the reaction products (DCE, VC, and ethene) showed a major preference for the (1)H isotope. Detection of depleted dechlorination products could provide a line of evidence in discrimination between alternative sources of TCE (e.g., evolution from DNAPL sources or from conversion of PCE). PMID:23895211

Kuder, Tomasz; van Breukelen, Boris M; Vanderford, Mindy; Philp, Paul

2013-09-01

68

Occupational exposure to perchloroethylene in dry-cleaning shops in Tehran, Iran.  

PubMed

Perchloroethylene, the most widely used solvent in dry cleaning, is toxic to the liver, kidneys and central nervous system and may be a human carcinogen. An exposure assessment was carried out in 69 dry-cleaning shops using perchloroethylene in Tehran city, Iran. The 8-h time weighted average (TWA) breathing zone air samples and end-exhaled air samples were obtained from 179 workers who worked as the job titles included machine operator (n=71), presser (n=63) and counter area (clerk) (n=45). The mean perchloroethylene concentrations in breathing zone air were 11.5 ppm, 9.6 ppm and 7.2 ppm respectively. The mean perchloroethylene concentrations in end-exhaled air of the same participants in Saturday morning (prior to shift of workweek) were 1.7 ppm, 1.5 ppm and 1.1 ppm, but in Thursday evening (end of shift at end of workweek) were 2.4 ppm, 2.0 ppm and 1.5 ppm respectively. This study found that, the mean perchloroethylene concentrations in breathing zone air and end-exhaled air in the dry-cleaning workers were lower than the TLV (25 ppm) and BEI (5 ppm) recommended by ACGIH. Regression analysis showed that the concentration of perchloroethylene in breathing zone air (TWA) was highly and significantly correlated with the concentration of perchloroethylene in end-exhaled air in Saturday morning with a regression equation Y=0.147X + 0.031 (r=0.99, p<0.001) and also in Thursday evening with a regression equation Y=0.201X + 0.072 (r=0.98, p<0.001) where X is the concentration of perchloroethylene in breathing zone air and Y is that the concentration of perchloroethylene in end-exhaled air. The results also showed the potential utility of measuring the concentration of perchloroethylene in end-exhaled air as a method for assessing relative exposure in dry cleaning shops which use it. PMID:19367044

Azimi Pirsaraei, Seyed Reza; Khavanin, Ali; Asilian, Hassan; Soleimanian, Ardalan

2009-04-01

69

Biodegradation of vapor phase trichloroethylene (TCE) in compost packed biofilters  

SciTech Connect

Batch and column scale biofiltration experiments were performed to measure biodegradation of gaseous trichloroethylene (TCE) in finished compost. Compost was amended with hydrocarbon gas (methane or propane) as primary substrate to support microorganisms capable of cometabolic TCE degradation. In column biofilter experiments hydrocarbon utilization was observed within 10-15 days; gaseous TCE (50 ppmv) was then introduced continuously into the biofilter at approximately 1 L min{sup -1}. Columns supplied with 0.5% v/v methane removed 73% TCE after 8 days of continuous column operation, whereas amendment with 0.25% v/v methane corresponded with TCE removal of 93%, which was observed after 1.5 h of column operation. Similar results were obtained for propane amendment. Biofilters without hydrocarbon amendment exhibited no TCE biodegradation over 35 days. These results, analyzed together with those obtained in batch experiments, indicate that hydrocarbon identity and concentration and other related parameters influence the extent of ICE breakdown.

Sukesan, S.; Watwood, M.E. [Idaho State Univ., Pocatello, ID (United States)

1996-10-01

70

TCE degradation in a methanotrophic attached-film bioreactor  

Microsoft Academic Search

Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L[sub sb]) were observed. Batch TCE degradation rates at 35C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q[sub max]) of 10.6 mg TCE\\/gVS [center dot] day and a half velocity coefficient

Donna E. Fennell; Yarrow M. Nelson; Sheila E. Underhill; Thomas E. White; William J. Jewell

1993-01-01

71

Cometabolic Degradation of TCE Vapors in a Foamed Emulsion  

E-print Network

A R C A . D E S H U S S E S * Department of Chemical and Environmental Engineering, University resulting in widespread contamination of soil, groundwater, and air (1, 2). TCE is a significant contamination has been attempted by many different methods (4-7). Among the many treatment methods for TCE

72

CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)  

EPA Science Inventory

The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

73

Treatment of trichloroethylene (TCE) in a membrane biofilter  

SciTech Connect

This article reports on the biodegradation of trichloroethylene (TCE) in a hollow-fiber membrane biofilter. Air contaminated with TCE was passed through microporous hollow fibers while an oxygen-free nutrient solution was recirculated through the shell side of the membrane module. The biomass was attached to the outside surface of the microporous hollow fibers by initially supplying toluene in the gas phase that flows through the fibers. While studies on TCE biodegradation were conducted, there was no toluene present in the gas phase. At 20-ppmv inlet concentration of TCE and 36-s gas-phase residence time, based on total internal volume of the hollow fibers, 30% removal efficiency of TCE was attained. At higher air flow rates or lower gas-phase residence times, lower removal efficiencies were observed. During TCE degradation, the pH of the liquid phase on the shell side of the membrane module decreased due to release of chloride ions. A mathematical model was developed to describe the synchronous aerobic/anaerobic biodegradation of TCE.

Parvatiyar, M.G.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering] [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering; Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States). Risk Reduction Engineering Lab.] [Environmental Protection Agency, Cincinnati, OH (United States). Risk Reduction Engineering Lab.

1996-04-05

74

Long-term perchloroethylene exposure: a limited meta-analysis of neurobehavorial deficits in occupationally and residentially exposed groups  

EPA Science Inventory

The literature concerning the neurobehavioral and neurophysiological effects of long-term exposure to perchloroethylene (PERC) in humans was meta-analyzed to provide a quantitative review and synthesis. The useable data base from this literature comprised studies reporting effec...

75

CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK  

EPA Science Inventory

The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

76

TCE adsorption by GAC preloaded with humic substances  

SciTech Connect

Adsorption of trichloroethylene (TCE) by activated carbon preloaded with humic and fulvic acids was studied under several conditions in completely mixed batch systems. The authors investigated how molecular weight and molecular-weight distribution of preloaded humic substances affected subsequent adsorption of TCE. The capacity of carbon to adsorb TCE was most greatly reduced in carbon that was preloaded with humic acid components having molecular weights less than about 1,400 g/mol as polystyrene sulfonate. The adsorption capacity was greatly reduced in carbon that was preloaded with whole humic mixtures in which lower molecular weights predominated. The energy distributions of adsorbent indicate that preloaded compounds preferentially occupy high-energy sites, making them inaccessible to subsequently encountered TCE.

Kilduff, J.E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Environmental and Energy Engineering; Karanfil, T. [Clemson Univ., Anderson, SC (United States). Environmental Systems Engineering Dept.; Weber, W.J. Jr. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

1998-05-01

77

Field demonstration of vapor phase TCE bioreactor. Final report  

SciTech Connect

The objective of this Cooperative Research and Development Agreement (CRADA), was to demonstrate the effectiveness of a vapor-phase bioreactor system for the destruction of trichloroethylene (TCE) from contaminated groundwater. A field demonstration was per-formed using groundwater at the Oak Ridge K-25 Site contaminated with a complex mixture of organic chemicals. This site is managed and operated by Martin Marietta Energy Systems, Inc. for the Department of Energy (DOE). Analysis of the data generated during the test can be summarized in three major observations. First, TCE was degraded in the presence of all the organics found in the steam strip condensate. This was observed during treatment of both the steam strip condensate and condensate amended with TCE to increase its concentration relative to the other components. The conclusion that TCE was being biodegraded was supported by performing mass balance control experiments with the reactor and by tracking recalcitrant chemicals also present in the steam stripper condensate. Second, there appeared to be an initial lag period of up to 24 hours before onset of TCE degradation in the reactor. The source of this lag was not determined but could be related to either an acclimation of the microorganisms to other chemicals found in the condensate or reversible inhibitory effects on TCE degradation. The duration of TCE degradative activity was relatively short for only 2 to 5 days. compared to previous demonstrations where TCE was the sole contaminant. However, several of the runs were interrupted due to mechanical and not biological issues. Third, other chemical contaminants were also degraded. by the bacteria used in the vapor phase reactor which is consistent with previous work performed both at ENVIROGEN and elsewhere.

NONE

1994-12-14

78

The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.  

PubMed

To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production. PMID:25174423

Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

2015-01-01

79

EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS  

EPA Science Inventory

Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

80

Drip Irrigation Aided Phytoremediation for Removal of TCE from Groundwater  

SciTech Connect

Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting from discharges of this organic solvent during past disposal practices. This contaminated groundwater occurs primarily at depths of 9 meters to 15 meters below ground surface, well below the depths that are typically penetrated by plant roots. The process investigated in this study involved pumping water from the contaminated aquifer and discharging the water into overlying test plots two inches below the surface using drip irrigation. The field treatability study was conducted from 8/31/00 to 4/18/02 using six 0.08 hectare test plots, two each containing pines, cottonwoods, and no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to determine the principal biotic and abiotic pathways for its removal. Results demonstrated that the process provides a viable method to remove TCE-contaminated groundwater. The data clearly showed that the presence of trees reduced volatilization of TCE from the drip irrigation system to the atmosphere. Influent groundwater TCE concentrations averaging 89 mg/L were reduced to non-detectable levels (less than 5 mg/L) within the upper two feet of soil (rhizosphere).

Wilde, E.W.

2003-04-24

81

EMERGING TECHNOLOGY BULLETIN: TWO-ZONE PCE BIOREMEDIATION SYSTEM - ABB ENVIRONMENTAL SERVICES, INC. - U.S. ENVIRONMENTAL PROTECTION AGENCY  

EPA Science Inventory

ABB Environmental Services, Inc.'s (ABB-ES), research has demonstrated that sequential anaerobic/aerobic biodegradation of tetrachloroethylene (PCE) is feasible if the proper conditions can be established. The anaerobic process can potentially completely dechlorinate PCE. Howeve...

82

Coupling Surfactant Flushing and Bioaugmentation for PCE-DNAPL Source Zone Treatment  

NASA Astrophysics Data System (ADS)

Enhanced solubilization flushing using a biodegradable surfactant (Tween 80) was combined with bioaugmentation to initiate microbial reductive dechlorination and detoxify residual tetrachloroethene (PCE)- dense nonaqueous phase liquid (DNAPL). Dechlorination activity, spatial distribution of Dehalococcoides spp., and down-gradient plume development were monitored in a 2-D aquifer cell equipped with eighteen sampling ports. Saturation distributions of the PCE-DNAPL source zone were quantified using a light transmission system to determine the ganglia-to-pool (GTP) volume ratio, which was approximately 1.5 (i.e., 60% ganglia and 40% pools) prior to surfactant flushing. Flushing with three pore volumes (PVs) of 4% (w/w) Tween 80 solution recovered approximately 55% of the original PCE mass and reduced PCE effluent concentration from saturation (200 mg/L) to less than 50 mg/L. Following the introduction of reduced basal salts medium amended with 10 mM lactate, nine side ports located upstream and within the initial PCE- DNAPL source zone were augmented with Bio-Dechlor INOCULUM (BDI), a PCE-to-ethene dechlorinating consortium. Flux-averaged measurements of aqueous effluent samples revealed the conversion of PCE to cis-dichloroethene (DCE) with minimal lag time (7 days, approx. 1 PV), and vinyl chloride and ethene were detected within 10 PVs after bioaugmentation. Quantitative real-time PCR (qPCR) targeting Dehalococcoides spp. demonstrated growth once aqueous PCE concentrations decreased below inhibitory levels (~540 mM), with significant growth (2 to 4-orders of magnitude) near the remaining source zone. These results demonstrate the successful colonization of a pool-dominated (NAPL saturation >0.13) PCE- DNAPL source zone by a dechlorinating consortium following partial mass removal, and the potential for locally bioenhanced DNAPL dissolution.

Cápiro, N. L.; Granbery, E. K.; Amos, B. K.; Löffler, F. E.; Pennell, K. D.

2008-12-01

83

Socioeconomic disparities in indoor air, breath, and blood perchloroethylene level among adult and child residents of buildings with or without a dry cleaner.  

PubMed

In many cities, dry cleaners using perchloroethylene are frequently located in multifamily residential buildings and often cause elevated indoor air levels of perchloroethylene throughout the building. To assess individual perchloroethylene exposures associated with co-located dry cleaners, we measured perchloroethylene in residential indoor air, and in blood and breath of adults and children residing in buildings with a dry cleaner as part of the New York City (NYC) Perc Project. We also measured perchloroethylene in indoor air, and in blood and breath of residents of buildings without a dry cleaner for comparison. Here, we evaluate whether an environmental disparity in perchloroethylene exposures is present. Study participants are stratified by residential building type (dry cleaner or reference) and socioeconomic characteristics (race/ethnicity and income); measures of perchloroethylene exposure are examined; and, the influence of stratified variables and other factors on perchloroethylene exposure is assessed using multivariate regression. All measures of perchloroethylene exposure for residents of buildings with a dry cleaner indicated a socioeconomic disparity. Mean indoor air perchloroethylene levels were about five times higher in minority (82.5 ug/m(3)) than in non-minority (16.5 ug/m(3)) households, and about six times higher in low-income (105.5 ug/m(3)) than in high income (17.8 ug/m(3)) households. Mean blood perchloroethylene levels in minority children (0.27 ng/mL) and adults (0.46 ng/mL) were about two and three times higher than in non-minority children (0.12 ng/mL) and adults (0.15 ng/mL), respectively. Mean blood perchloroethylene levels in low income children (0.34 ng/mL) and adults (0.62 ng/mL) were about three and four times higher than in high income children (0.11 ng/mL) and adults (0.14 ng/mL), respectively. A less marked socioeconomic disparity was observed in perchloroethylene breath levels with minority and low income residents having slightly higher levels than non-minority and high income residents. Multivariate regression affirmed that indoor air perchloroethylene level in dry cleaner buildings was the single most important factor determining perchloroethylene in blood and breath. Neither age, gender, nor socioeconomic status significantly influenced perchloroethylene levels in breath or blood. We previously reported that increased indoor air, breath, and blood perchloroethylene levels among NYC Perc Project child participants were associated with an increased risk for slightly altered vision. Thus, the disproportionately elevated perchloroethylene exposures of minority and low-income child residents of buildings with a dry cleaner shown here constitutes an environmental exposure disparity with potential public health consequences. Among residents of buildings without a dry cleaner, we observed some small increases in perchloroethylene breath and blood levels among non-minority or high income residents compared to minority or low income residents. These differences were not attributable to differences in indoor air levels of perchloroethylene which did not differ across socioeconomic categories, but appear to be associated with more frequent exposures dry cleaned garments. PMID:23453848

Storm, Jan E; Mazor, Kimberly A; Shost, Stephen J; Serle, Janet; Aldous, Kenneth M; Blount, Benjamin C

2013-04-01

84

TCE remediation using in situ, resting-state bioaugmentation  

SciTech Connect

A field test has demonstrated that an in situ biofilter using resting-state cells effectively remediated groundwater with about 425 ppb of trichloroethene (TCE) as the sole contaminant species. About 5.4 kg (dry weight equivalent) of a strain of methanotrophic bacteria (Methylosinus trichosporium OB3b) was suspended in 1800 L of groundwater (5.4 x 10{sup 9} cells/mL) and injected into an aquifer through a single well at a depth of 27 m, several meters below the water table. The injected groundwater was devoid of TCE and growth substrates but was amended with a phosphate solution (10 mM) to buffer the pH and phenol red (20 {mu}m) to act as a tracer. Approximately 50% of the injected bacteria attached to the sediments, forming an in situ, fixed-bed bioreactor of unknown geometry. Contaminated groundwater was subsequently withdrawn through the biofilter region by extracting at 3.8 L/min for 30 h and then at 2.0 L/min for the remaining 39 days of the field experiment. TCE concentrations in the extracted groundwater decreased from 425 to less than 10 ppb during the first 50h of withdrawal, which is equivalent to a 98% reduction. TCE concentration extracted through the biofilter gradually increased to background values at 40 days when the experiment was terminated. 31 refs., 7 figs., 2 tabs.

Duba, A.G.; Jackson, K.J.; Jovanovich, M.C.; Knapp, R.B.; Taylor, R.T. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States)

1996-06-01

85

75 FR 25319 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages; Correction  

Federal Register 2010, 2011, 2012, 2013, 2014

...TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program Availability...a correction to a notice of the Tax Counseling for the Elderly (TCE) Program Availability...application packages for the 2011 Tax Counseling for the Elderly (TCE) Program....

2010-05-07

86

76 FR 30243 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013, 2014

...TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program Availability...Application Packages for the 2012 Tax Counseling for the Elderly (TCE) Program. DATES...package to the IRS for the 2012 Tax Counseling for the Elderly (TCE) Program is...

2011-05-24

87

78 FR 17777 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013, 2014

...TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program Availability...Application Packages for the 2014 Tax Counseling for the Elderly (TCE) Program. DATES...application package to the IRS for the Tax Counseling for the Elderly (TCE) Program is...

2013-03-22

88

77 FR 20695 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013, 2014

...TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program Availability...Application Packages for the 2013 Tax Counseling for the Elderly (TCE) Program. DATES...application package to the IRS for the Tax Counseling for the Elderly (TCE) Program is...

2012-04-05

89

75 FR 22437 - Tax Counseling for the Elderly (TCE) Program Availability of Application Packages  

Federal Register 2010, 2011, 2012, 2013, 2014

...TREASURY Internal Revenue Service Tax Counseling for the Elderly (TCE) Program Availability...Application Packages for the 2011 Tax Counseling for the Elderly (TCE) Program. DATES...package to the IRS for the 2011 Tax Counseling for the Elderly (TCE) Program is...

2010-04-28

90

Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.  

PubMed

Nanoscale zero-valent iron (nZVI) has received considerable attention as a potential in situ remediation technology for treating chlorinated solvent source zones. Experimental and mathematical modeling studies were conducted to investigate the performance of nZVI in the transformation of tetrachloroethene (PCE) entrapped as a dense nonaqueous phase liquid (DNAPL). Injection of a 60 g/L suspension of nZVI into a column containing 20-30 mesh Ottawa sand and PCE-DNAPL at a residual saturation of 5.5% resulted in a uniform distribution of nZVI and minimal displacement of PCE. Subsequent flushing with 267 pore volumes of water containing 3mM CaCl(2) at a Darcy velocity of 0.75 m/day resulted in steady-state effluent concentrations of PCE near the solubility limit (ca. 200mg/L) and production of dissolved-phase ethene (10-30 mg/L). Over the duration of the experiment, approximately 30% of the initial PCE-DNAPL mass reacted to form ethene, 50% was eluted as dissolved-phase PCE, and 20% remained in the column as PCE-DNAPL. To further explore the implications of the nZVI column results, a multiphase transport model was developed that incorporated rate-limited PCE-DNAPL dissolution and reactions with nZVI. Using a fitted pseudo first-order transformation rate coefficient of 1.421/h, the model accurately captured observed trends in effluent concentrations of PCE and ethene and overall mass balance. A model sensitivity study reveals a strong dependence of treatment effectiveness on system characteristics. The sensitivity analysis suggests that an increase in the extent of PCE transformation is facilitated by decreasing flow rate, emplacement of nZVI down-gradient of the DNAPL source zone, and decreasing length of the DNAPL source zone. These findings indicate that, although emplacement of high concentrations of nZVI within a PCE-DNAPL source zone can result in substantial transformation of the parent compound, careful attention to design parameters (e.g. flow rate, location and amount nZVI delivered) will be required to achieve complete conversion to benign reaction products. PMID:20888664

Taghavy, Amir; Costanza, Jed; Pennell, Kurt D; Abriola, Linda M

2010-11-25

91

Characterization of Microbial Communities in TCE-Contaminated Seep Zone Sediments  

SciTech Connect

Hundreds of sites across the United States contain trichloroethene (TCE) contamination, including the Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. Previous studies have indicated that microorganisms are capable of efficiently degrading TCE to nonhazardous end products. In this project, molecular and growth based methods were used for microbial characterization of a TCE impacted seepzone where TCE degradation is naturally occurring. The results from this work provide clear evidence that the SRB may play a significant role in TCE degradation along the Twin Lakes seepline.

ROBIN, BRIGMON

2005-03-07

92

GeneCARD-FISH: Detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization.  

PubMed

Due to the direct involvement in the biodegradation of chlorinated solvents, reductive dehalogenase genes (RDase) are considered biomarkers of the metabolic potential of different strains of Dehalococcoides mccartyi (Dhc). This is known to be the only microbe able to completely reduce toxic chlorinated solvents to harmless ethene. In the last years, several Molecular Biological Tools (MBTs) have been developed to optimize the detectability of Dhc cells and/or the RDase genes, with particular attention to the most important indicators of ethene formation, namely tceA and vcrA genes. Despite qPCR has been indicated as the MBT of choice, the use of CARD-FISH recently demonstrated to provide a more accurate quantification of Dhc cells in a wide concentration range, overcoming the drawbacks of loosing nucleic acids during the preparation of the sample associated with qPCR. CARD-FISH assays usually target 16S rRNA and up to date no protocol able to discriminate different Dhc strains by detecting RDase genes has been developed. This study reports the first evidence of in situ detection of tceA and vcrA genes into Dhc cells by applying a new procedure named geneCARD-FISH. Dhc strains carrying tceA and vcrA genes were identified and quantified in a PCE-to-ethene dechlorinating microbial enrichment and overall they represented 58.63%±2.45% and 40.46%±1.86% of the total Dhc cells, respectively. These values were markedly higher than those obtained by qPCR, which strongly underestimated the actual concentration of vcrA gene (0.08%±0.01% of Dhc 16S rRNA gene copies). The assay was successfully applied also for the analysis of environmental samples and remarkably strengthens the biomonitoring activities at field scale by providing the specific in situ discrimination of Dhc cells carrying the key-RDase genes. PMID:25595619

Matturro, B; Rossetti, S

2015-03-01

93

Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions  

NASA Astrophysics Data System (ADS)

Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization routines. Complete disappearance of PCE from DNAPL and aqueous phase was observed in a span of 14 days in systems triggered with biosurfactant production through enhanced dissolution and biodegradation. Synergistic effect of dissolution process towards biodegradation was observed as bioavailability of PCE was increased by 3.1 times in systems with biosurfactant production. Modelling studies illustrate that biodegradation on the other hand synergistically enhanced dissolution by elevating the dissolution rates by 1.4 times. This study also suggests a mass transfer phenomenon is greatly influenced not only by surface active molecules but by microbes as well.

Dominic, J.; Nambi, I. M.

2013-12-01

94

Isolation of a methanogenic bacterium, Methanosarcina sp. strain FR, for its ability to degrade high concentration of perchloroethylene.  

PubMed

Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product. PMID:10383226

Cabirol, N; Villemur, R; Perrier, J; Jacob, F; Fouillet, B; Chambon, P

1998-12-01

95

A Planet Hunters Search of the Kepler TCE Inventory  

NASA Astrophysics Data System (ADS)

NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.

Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji

2013-07-01

96

Enhanced Reductive Dechlorination of TCE in a Basalt Aquifer  

SciTech Connect

A field evaluation of enhanced reductive dechlorination of trichloroethene (TCE) in groundwater has been in progress since November 1998 to determine whether in situ biodegradation can be significantly enhanced through the addition of an electron donor (lactate). An in situ treatment cell was established in the residual source area of a large TCE plume in a fractured basalt aquifer utilizing continuous ground water extraction approximately 150 meters downgradient of the injection location. After a 1-month tracer test and baseline sampling period, the pulsed injection of lactate was begun. Ground water samples were collected from 11 sampling points on a biweekly basis and in situ water quality parameters were recorded every 4 hours at two locations. Within 2 weeks after the initial lactate injection, dissolved oxygen and redox potential were observed to decrease substantially at all sampling locations within 40 m of the injection well. Decreases in nitrate and sulfate concentrations were also observed. Both quantitative in situ rate estimation methods and qualitative measures such as changes in redox conditions, decreases in chlorine number, and changes in biomass indicator parameters are being used throughout the test to evaluate the extent to which biodegradation of TCE is enhanced.

K. S. Sorenson; L. N. Peterson (INEEL); R. Ely (U of Idaho)

1999-04-01

97

Enhanced Reductive Dechlorination of TCE in a Basalt Aquifer  

SciTech Connect

A field evaluation of enhanced reductive dechlorination of trichloroethene (TCE) in ground water has been in progress since November 1998 to determine whether in situ biodegradation can be significantly enhanced through the addition of an electron donor (lactate). An in situ treatment cell was established in the residual source area of a large TCE plume in a fractured basalt aquifer utilizing continuous ground water extraction approximately 150 meters downgradient of the injection location. After a 1-month tracer test and baseline sampling period, the pulsed injection of lactate was begun. Ground water samples were collected from 11 sampling points on a biweekly basis and in situ water quality parameters were recorded every 4 hours at two locations. Within 2 weeks after the initial lactate injection, dissolved oxygen and redox potential were observed to decrease substantially at all sampling locations within 40 m of the injection well. Decreases in nitrate and sulfate concentrations were also observed. Both quantitative in situ rate estimation methods and qualitative measures such as changes in redox conditions, decreases in chlorine number, and changes in biomass indicator parameters are being used throughout the test to evaluate the extent to which biodegradation of TCE is enhanced.

Sorenson, Kent Soren; Peterson, Lance Nutting; Ely, R. L.

1999-04-01

98

Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE  

SciTech Connect

Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites was evaporating through the leaves to the atmosphere. The characterization of the isolates obtained in this study shows that the bacterial community associated with Oak and Ash on a TCE-contaminated site, was strongly enriched with TCE-tolerant strains. However, this was not sufficient to degrade all TCE before it reaches the leaves. A possible strategy to overcome this evapotranspiration to the atmosphere is to enrich the plant-associated TCE-degrading bacteria by in situ inoculation with endophytic strains capable of degrading TCE.

Weyens, N.; van der Lelie, D.; Taghavi, S.; Barac, T.; Boulet, J.; Artois, T.; Carleer, R.; Vangronsveld, J.

2009-11-01

99

Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.  

PubMed

Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8)s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. PMID:25192648

Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

2015-01-01

100

Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation.  

PubMed

In this study, the inhibitory effect of TCE on nitrification process was investigated with an enriched nitrifier culture. TCE was found to be a competitive inhibitor of ammonia oxidation and the inhibition constant (K(I)) was determined as 666-802 microg/l. The TCE affinity for the AMO enzyme was significantly higher than ammonium. The effect of TCE on ammonium utilization was evaluated with linearized plots of Monod equation (e.g., Lineweaver-Burk, Hanes-Woolf and Eadie-Hofstee plots) and non-linear least square regression (NLSR). No significant differences were found among these data evaluation methods in terms of kinetic parameters obtained. PMID:16467966

Alpaslan Kocamemi, Bilge; Ceçen, Ferhan

2007-02-01

101

Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.  

PubMed

The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

2013-01-01

102

Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations  

PubMed Central

The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

2013-01-01

103

FIELD MEASUREMENT OF VAPOR INTRUSION RATES AT A PCE SITE (ABSTRACT ONLY)  

EPA Science Inventory

A field study was performed to evaluate vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. Results from an initial site ch...

104

Chemical Reduction of PCE by Zero Valent Iron Colloids Batch and Column Experiments  

E-print Network

of degradation potential of nZVI particles in column tests: experimental simulation of plume vs. source/l · Significant increase of pH after Ca(OH)2 injection · nZVI-reinjection induced recovery of PCE-degradation of the art for plume treatment · Injectable nano-scaled zero valent iron particles (nZVI) have potential

Cirpka, Olaf Arie

105

IN SITU CHEMICAL AND BIOLOGICAL TREATMENT OF TCE IN GROUNDWATER AT A LEGACY RAILROAD SITE  

E-print Network

IN SITU CHEMICAL AND BIOLOGICAL TREATMENT OF TCE IN GROUNDWATER AT A LEGACY RAILROAD SITE Vibhav Mankad, PE and Nathan Diem, CRA Lauren Mancuso, UPRR 2014 Railroad Environmental Conference Urbana · Railroad Legacy ­ acquisitions and mergers · Trichloroethene (TCE) used as degreaser in manufacturing

Illinois at Urbana-Champaign, University of

106

Microfracture Surface Geochemistry and Adherent Microbial Population Metabolism in TCE-Contaminated Competent Bedrock  

Microsoft Academic Search

A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE biodegradation. The bedrock is a metasandstone and metashale of the Silurian Kittery Formation. Eleven microfractures (MF 01-11) were extracted from cores of

T. Taylor Eighmy; Jean C. M. Spear; Julia Case; Michelle Mills; Kimberly Newman; Nancy E. Kinner; Hallie Marbet; Jose Casas; Wallace Bothner; Joanne Coulburn; Louis S. Tisa; Michelle Majko; Elise R. Sullivan; Mary E. Gonsoulin

2007-01-01

107

MICROFRACTURE SURFACE GEOCHEMISTRY AND ADHERENT MICROBIAL POPULATION METABOLISM IN TCE-CONTAMINATED COMPETENT BEDROCK  

EPA Science Inventory

A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...

108

REMEDIATION Spring 2003 Biological reduction of trichloroethene (TCE), driven by the transformation products of  

E-print Network

decade, microbial degradation ofTCE has been extensively studied (Hop- kins et al., 1993; Mars et al oxidation ofTCE is catalyzed by the enzymes induced and expressed for the initial oxidation of the growth et al., 1997; Smatlak et al., 1996; Ballapragada et al., 1997). The potential for enhancing anaerobic

Semprini, Lewis

109

Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments  

NASA Astrophysics Data System (ADS)

SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and is most pronounced in the dechlorination of TCE to DCE.

Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

2006-12-01

110

Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns  

NASA Astrophysics Data System (ADS)

The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

Harkness, Mark; Fisher, Angela

2013-08-01

111

Solubilities of Toluene, Benzene and TCE in High-Biomass Systems  

SciTech Connect

We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

Barton, John W. [Battelle Eastern Science & Technology Center; Vodraska, Christopher D [ORNL; Flanary, Sandie A. [Oak Ridge National Laboratory (ORNL); Davison, Brian H [ORNL

2008-01-01

112

A field method for near real-time analysis of perchloroethylene in end-exhaled breath.  

PubMed

The field method for near real-time analysis of perchloroethylene (Perc) in breath is simple, fast, and reproducible for Perc breath analysis in field settings and should prove useful in industrial hygiene practice. The method allows Perc monitoring with good specificity to the sub-part per million (ppm) level within minutes of exposure. A commercially available, portable gas chromatograph with a photoionization detector was used in these analyses. Gas chromatograph settings were optimized in the laboratory for measurement of Perc in Tedlar bags. Laboratory development of the method included evaluation of the sensitivity, specificity, precision, and speed of analysis for Perc. Replicate aliquots of Perc at concentrations ranging from 0.01 to 100 ppm were used to construct a calibration curve. The mean retention time for Perc was 238 sec. The impact of potential interference by acetone, toluene, isoprene, methanol, ethanol, acetaldehyde, carbon tetrachloride, benzene, or chloroform was evaluated by mixing Perc with each compound and performing analyses. Measurements of Perc in human breath samples collected in Tedlar bags in a workplace setting were made and compared to measurements of the same samples made by an established analytical method using charcoal tubes (National Institute of Occupational Safety and Health [NIOSH] Method 1003). The accuracy, precision, and speed of the gas chromatograph method were determined. Measurements made with the new method were within a margin of +/- 8.8% (95% CI, n = 6) of measurements made according to NIOSH Method 1003 for field samples in the range of 0.9 to 6 ppm. Method precision was determined by calculating the pooled coefficient of variation for all measurements (replicates = 3) made in the field and was found to be 5.8%. PMID:15238304

Sweet, Nathaniel D; Burroughs, G E; Ewers, Lynda; Talaska, Glenn

2004-08-01

113

IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES  

EPA Science Inventory

The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

114

IDENTIFICATION OF CHLOROMETHANE FROMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES  

EPA Science Inventory

The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

115

Comparison of TCeMA and TDMA for Inter-Satellite Communications using OPNET Simulation  

NASA Technical Reports Server (NTRS)

A robust data link protocol, enabling unique physical and MAC layer technologies and sub-network level protocols, is needed in order to take advantage of the full potential of using both TDMA and CDMA in a satellite communication network. A novel MAC layer protocol, TDMA with CDMA-encoding multiple access (TCeMA) integrated with null-steered digital beam-forming spatial multiplexing, is investigated to support flexible spacecraft communications. Abstract models of the TCeMA and TDMA processes are developed in OPNFiT and a comparison of the performances of TCeMA and TDMA in a satellite network simulation are made. TCeMA provides the better connectivity and capacity with respect to TDMA for satellite communication traffic.

Hain, Regina Rosales; Ramanathan, Ram; Bergamo, Marcos; Wallett, Thomas M.

2003-01-01

116

UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL  

EPA Science Inventory

The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

117

In-situ bioremediation of TCE-contaminated groundwater  

SciTech Connect

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A barrier to wider use of in situ bioremediation technology is that results are often variable and difficult to predict. In situ bioremediation has shown some very notable and well publicized successes, but implementation of the technology is complex. An incomplete understanding of the effects of variable site characteristics and the lack of adequate tools to predict and measure success have made the design, control and validation of bioremediation more empirical than desired. The long-term objective of this project is to improve computational tools used to assess and optimize the expected performance of bioremediation at a site. An important component of the approach is the explicit inclusion of uncertainties and their effect on the end result. The authors have extended their biokinetics model to include microbial competition and predation processes. Predator species can feed on the microbial species that degrade contaminants, and the simulation studies show that species interactions must be considered when designing in situ bioremediation systems. In particular, the results for TCE indicate that protozoan grazing could reduce the amount of biodegradation by about 20%. These studies also indicate that the behavior of barrier systems can become complex due to predator grazing.

Travis, B.J. [Los Alamos National Lab., NM (United States); Rosenberg, N.D. [Lawrence Livermore National Lab., CA (United States)

1998-12-31

118

Modeling the uptake and transpiration of TCE using phreatophytic trees. Master`s Thesis  

SciTech Connect

Phytoremediation is a recent addition to the numerous methods used today to remediate ground water contaminants. It is proving more effective and efficient compared to existing remediation techniques. The use of phreatophytes, or water seeking trees, has great potential for phytoremediation. These trees are fast growing, long lived, grow their roots down to the ground water table, transpire large amounts of water, and are proven to actively remove contaminants from the soil horizon. The purpose of this research is to develop quantitative concepts for understanding the dynamics of TCE uptake and transpiration by phreatophytic trees over a short rotation woody crop time frame. This will he done by constructing a system dynamics model of this process and running it over a wide range of conditions. This research will offer managers a tool to simulate long-term uptake and transpiration of TCE at potential sites. The results of this study indicate that TCE is actively removed from the soil horizon by phreatophytic trees and a significant proportion of this TCE is then transpired. Changes in soil horizon parameters, xylem flow rates, and variables in the uptake equation greatly influence TCE uptake rates as well as transpiration. Also, parameters used in equations representing flows in and out of the leaf greatly influence transpiration. Better understanding of these processes is essential for managers to accurately predict the amount of TCE removed and transpired during potential phytoremediation projects.

Wise, D.P.

1997-12-01

119

Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor  

NASA Technical Reports Server (NTRS)

Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

1995-01-01

120

In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination — A proof of concept study  

NASA Astrophysics Data System (ADS)

In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S 2O 82-) can be activated by ferrous ion (Fe 2+) to generate sulfate radicals ( Eo = 2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S 2O 82- or sulfate radical (SO 4rad - ) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S 2O 82- or Fe 2+ through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe 2+ or S 2O 82- fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-?-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded + TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl - per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

Liang, Chenju; Lee, I.-Ling

2008-09-01

121

Effect of perchloroethylene, smoking, and race on oxidative DNA damage in female dry cleaners.  

PubMed

Perchloroethylene (PERC) is used widely as an industrial dry cleaning solvent and metal degreaser. PERC is an animal carcinogen that produces increased incidence of renal adenomas, adenocarcinomas, mononuclear cell leukemia, and hepatocellular tumors. Oxidative DNA damage and lipid peroxidation were assessed in 38 women with (dry cleaners) or without (launderers) occupational exposure to PERC. PERC exposure was assessed by collecting breathing zone samples on two consecutive days of a typical work week. PERC levels were measured in blood drawn on the morning of the second day of breathing zone sample collection in dry cleaners and before a typical workday in launderers. Blood PERC levels were two orders of magnitude higher in dry cleaners compared to launderers. A significant correlation was noted between time weighted average (TWA) PERC and blood PERC in dry cleaners (r=0.7355, P<0.002). 8-Hydroxydeoxyguanosine (8-OHdG), ng/mg deoxyguanosine (dG) in leukocyte nuclear DNA was used as an index of steady-state oxidative DNA damage. Urinary 8-OHdG, microg/g creatinine was used as an index of oxidative DNA damage repair. Urinary 8-epi-prostaglandin F(2alpha) (8-epi-PGF), ng/g creatinine was used as an index of lipid peroxidation. The mean+/-S.D. leukocyte 8-OHdG in launderers was 16.0+/-7.3 and was significantly greater than the 8.1+/-3.6 value for dry cleaners. Urinary 8-OHdG and 8-epi-PGF were not significantly different between dry cleaners and launderers. Unadjusted Pearson correlation analysis of log transformed PERC exposure indices and biomarkers of oxidative stress indicated a significant association in launderers between blood PERC and day 1 urinary 8-OHdG (r=0.4661, P<0.044). No significant associations between exposure indices and biomarkers were evident in linear models adjusted for age, body mass index, race, smoking (urinary cotinine, mg/g creatinine) and blood levels of the antioxidants Vitamin E and beta-carotene. The mean+/-S.D. leukocyte 8-OHdG value in control white women was 17.8+/-7.4 and was significantly greater than the 11.8+/-5.9 in control black women. No significant differences by race were evident for the other biomarkers. Smoking status was not significantly associated with any of the oxidative damage indices. Results indicate a reduction in oxidative DNA damage in PERC exposed dry cleaners relative to launderers, but PERC could not clearly be defined as the source of the effect. PMID:12948810

Toraason, Mark; Butler, Mary Ann; Ruder, Avima; Forrester, Christy; Taylor, Lauralynn; Ashley, David L; Mathias, Patty; Marlow, Kate L; Cheever, Kenneth L; Krieg, Edward; Wey, Howard

2003-08-01

122

Microbial enhancement of TCE and 1,2-DCA solute flux in UF-membrane bioreactors  

SciTech Connect

An ultrafiltration membrane process was used to remove and biograde chlorinated aliphatic hydrocarbons trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) from dilute aqueous streams. The effect of microbial biodegradative activity on TCE and 1,2-DCA solute flux in a polypropylene membrane was examined using microbial strains Pseudomonas cepacia PRI{sub 31} for the biodegradation of TCE and Xanthobacter autotrophicus GJ10 for the biodegradation of 1,2-DCA. Initial experiments were conducted in diaphragm cells in the absence of microorganisms to determine the diffusion coefficient of 1,2-DCA and TCE in the polypropylene ultrafiltration (UF) membranes. The diffusivities were 4.7 {times} 10{sup {minus}8} cm{sup 2}/s for 1,2-DCA and 1.41 {times} 10{sup {minus}7} cm{sup 2}/s for TCE. Subsequent experiments were conducted with microorganisms on the permeate side to examine the effect of microbial degradation of 1,2-DCA and TCE on the solute flux across the UF membrane. Experiments were conducted sequentially in batch and flow diaphragm cells and then in a hollow-fiber UF module to systematically examine the effect of microbial activity on the solute flux in each configuration and the ability of mathematical models to predict the microbial enhancement of solute flux. Microbial biodegradation of TCE and 1,2-DCA significantly enhanced the solute flux, and experimental results were correlated with steady- and nonsteady-state solute component balance models for the flow and batch diaphragm cells, respectively. Model and experimental results agree well. Implications for using membrane bioreactors to treat CAH contaminated groundwater and industrial effluents are discussed.

Inguva, S.; Boensch, M.; Shreve, G.S. [Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science] [Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science

1998-09-01

123

TCE Transport to Woburn Wells G and H  

NSDL National Science Digital Library

To prepare to view the TCE animation, students could view the 'A Civil Action' movie and the instructor could read to them excerpts from the trial testimony and images from Woburn, wells G and H, geologic materials, geologic cross sections, the trial participants, and the federal courtroom in Boston (available as a attachment to this activity and at a website listed below). The discussion in Bair (2001) about scientists in the courtroom, the specific (excerpted) testimony presented by the three expert witnesses in the 'A Civil Action' trial, a chart summarizing the differences in their testimony, and the views of a federal judge on the goal of science versus the goal of a civil trial may also be worthwhile reading by the class prior to the assignment. The instructor could also show students the large plates included in the USGS report by Myette and others (1987) that display potentiometric data and contours before and after the famous aquifer test performed in December 1985 and January 1986, just before the trial, and discuss the ramifications of having only two sets of water-level measurements to characterize all the changes in the flow system between 1964 and 1979, when wells G and H periodically operated. This makes students consider the substantial differences in making predictions based on a steady-state conceptualization of the flow system or a transient conceptualization. The instructor could also show the animation of induced infiltration from the Aberjona River to wells G and H that also was created by Martin van Oort (M.S., 2005) and based on the research of Maura Metheny (M.S., 1998; Ph.D., 2004) at Ohio State University. Viewing both animations enables students to see that the water produced by wells G and H is a highly transient mixture derived from many different source areas within the valley. The article by Bair and Metheny (2002) concerning the remediation activities at the Wells G & H Superfund Site could be used to show how groundwater contamination is cleaned up, why different remediation schemes needed to be used in different hydrogeologic settings, and why cleanup to U.S. EPA standards can take decades.

Scott Bair

124

Impacts of Residual Surfactant on Tetrachloroethene (PCE) Degradation Following Pilot-Scale SEAR Treatment at a Chloroethene-Impacted Site  

NASA Astrophysics Data System (ADS)

A pilot-scale surfactant-enhanced aquifer remediation (SEAR) demonstration was completed during the summer of 2000 at the Bachman Road site (Oscoda, MI USA). For this test, an aqueous solution of 60 g/L Tween 80 (polyoxyethylene (20) sorbitan monooleate) was used to recover tetrachloroethene (PCE) from a suspected source zone, located underneath a former dry-cleaning facility. Tween 80 was selected for use based upon its demonstrated capacity to solubilize PCE, “food-grade” status, and biodegradative potential. Hydraulic control was maintained throughout the test, with 95% of the injected surfactant mass recovered by a single extraction well. Source-zone monitoring conducted 15 months after SEAR treatment revealed the presence of previously undetected volatile fatty acids (acetate and formate) and PCE degradation products (trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichlorethene, and vinyl chloride), in conjunction with PCE concentration reductions of approximately two orders-of-magnitude. The detection of volatile fatty acids is relevant, as they are likely fermentation products of residual Tween 80. Microbial reductive dechlorination is limited by available electron donors, and microcosm studies demonstrated that both acetate and formate support reductively dechlorinating populations present at the oligotrophic Bachman Road site aquifer. Surfactant transport simulations, using a regional flow model developed for the site, were employed to determine appropriate down-gradient monitoring locations. Drive point samples taken 15 months post-treatment in the vicinity of the simulated residual surfactant plume, contained elevated concentrations of acetate and PCE daughter products. Ongoing efforts include continued site-monitoring, and microcosm studies to corroborate a causal relationship between Tween 80 fermentation and PCE dechlorination.

Ramsburg, C. A.; Abriola, L. M.; Pennell, K. D.; Löffler, F. E.; Gamache, M.; Petrovskis, E. A.

2003-04-01

125

A study of the effect of perchloroethylene exposure on the reproductive outcomes of wives of dry-cleaning workers  

SciTech Connect

The purpose of this investigation was to compare the reproductive outcomes of wives of men exposed to perchloroethylene in the dry-cleaning industry compared to those of wives of laundry workers. Seventeen female partners of dry cleaners and 32 partners of laundry workers were interviewed. The number of pregnancies and the standardized fertility ratios were similar between the two groups. Wives of dry cleaners did not have higher rates of spontaneous abortions. However, wives of dry cleaners were more than twice as likely to have a history of attempting to become pregnant for more than 12 months or to have sought care for an infertility problem. Cox proportional hazards models indicated that dry-cleaners' wives had half of the per-cycle pregnancy rate of wives of laundry workers, when controlling for other potential confounders (estimated rate ratio of 0.54, 95% C.I. = 0.23, 1.27).

Eskenazi, B.; Fenster, L.; Hudes, M.; Wyrobek, A.J.; Katz, D.F.; Gerson, J.; Rempel, D.M. (Program of Maternal and Child Health, School of Public Health, University of California, Berkeley (United States))

1991-01-01

126

Characterization of uranium surfaces machined with aqueous propylene glycol-borax or perchloroethylene-mineral oil coolants  

SciTech Connect

The use of perchloroethylene (perc) as an ingredient in coolants for machining enriched uranium at the Oak Ridge Y-12 Plant has been discontinued because of environmental concerns. A new coolant was substituted in December 1985, which consists of an aqueous solution of propylene glycol with borax (sodium tetraborate) added as a nuclear poison and with a nitrite added as a corrosion inhibitor. Uranium surfaces machined using the two coolants were compared with respects to residual contamination, corrosion or corrosion potential, and with the aqueous propylene glycol-borax coolant was found to be better than that of enriched uranium machined with the perc-mineral oil coolant. The boron residues on the final-finished parts machined with the borax-containing coolant were not sufficient to cause problems in further processing. All evidence indicated that the enriched uranium surfaces machined with the borax-containing coolant will be as satisfactory as those machined with the perc coolant.

Cristy, S.S.; Bennett, R.K. Jr.; Dillon, J.J.; Richards, H.L.; Seals, R.D.; Byrd, V.R.

1986-12-31

127

In situ, subsurface monitoring of vapor-phase TCE using fiber optics  

SciTech Connect

A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site.

Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Colston, B. Jr.; Brown, S.; Milanovich, F. [Lawrence Livermore National Lab., CA (United States); Lee, L.T. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.

1993-03-05

128

Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model.  

PubMed

This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the TCE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution. PMID:16624443

Robert, Thomas; Martel, Richard; Conrad, Stephen H; Lefebvre, René; Gabriel, Uta

2006-06-30

129

FY01 Phytoremediation of Chlorinated Ethenes in Southern Sector Seepline Sediments of SRS  

SciTech Connect

This treatability study is now in the second year of deployment for the Southern Sector Phytoremediation Project. Phytoremediation is the use of vegetation and associated media to treat contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that promises effective and safe cleanup of certain hazardous wastes. This ongoing work addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene- (TCE-) and perchloroethylene- (PCE-) contaminated groundwater. The primary objective is to determine how the trees and sediments uptake groundwater TCE and PCE, biodegrade it, and/or transform it. The experimental focus of this project is the biological removal of VOCs from seepline groundwater and sediments.

Brigmon, R.L.

2004-01-30

130

Retardation of volatile organic compounds in ground water in low organic carbon sediments  

SciTech Connect

It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K{sub d} of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K{sub d}s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described.

Hoffman, F.

1995-04-01

131

Impact of turbidity on TCE and degradation products in ground water  

Microsoft Academic Search

Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. However, few studies have been conducted to determine the impact of particulates on trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride concentrations. Laboratory batch studies and

Cynthia J. Paul; Robert W. Puls

1997-01-01

132

Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.  

PubMed

Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea. PMID:25174420

Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan

2015-01-01

133

Water Research 36 (2002) 19731982 Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by  

E-print Network

Water Research 36 (2002) 1973­1982 Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because

Alvarez, Pedro J.

134

Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall)  

Microsoft Academic Search

A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base in Oklahoma, USA to treat trichloroethylene (TCE) contamination in groundwater emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 meters deep, and 0.5 meters wide. The barrier is also called a Biowall because one of the

Xiaoxia Lu; John T. Wilson; Hai Shen; Bruce M. Henry; Donald H. Kampbell

2007-01-01

135

Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall).  

PubMed

A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base in Oklahoma, USA to treat trichloroethylene (TCE) contamination in groundwater emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 meters deep, and 0.5 meters wide. The barrier is also called a Biowall because one of the mechanisms for removal of TCE is anaerobic biodegradation. This study aimed at evaluating the performance of the pilot-scale Biowall after its installation. Data from over four years' monitoring indicated that the Biowall greatly changed geochemistry in the study area and stimulated TCE removal. The concentration of TCE in the Biowall and downgradient of the Biowall was greatly reduced as compared to that in ground water upgradient of the Biowall, while the concentration of cis-DCE in the Biowall and downgradient of the Biowall was much higher than that observed upgradient of the Biowall. Over time, the concentration of vinyl chloride in the Biowall and downgradient of the Biowall increased. Dehalococcoides DNA was detected within and downgradient of the Biowall, corresponding to the observation that vinyl chloride was produced at these locations. Results from a tracer study indicated that the regional groundwater flow pattern ultimately determined the flow direction in the area around the Biowall. The natural groundwater velocity was estimated at an average of 0.060 +/- 0.015 m/d. PMID:18161555

Lu, Xiaoxia; Wilson, John T; Shen, Hai; Henry, Bruce M; Kampbell, Donald H

2008-01-01

136

Monitoring Performance of a Dual Wall Permeable Reactive Barrier for Treating Perchlorate and TCE  

Microsoft Academic Search

AMEC Geomatrix, through collaboration with Aerojet General Corporation and the University of California, Davis (UCD), has performed work leading to the installation of a dual wall permeable reactive barrier (PRB) system capable of treating perchlorate and chlorinated aliphatic hydrocarbon compounds (CAHs), including trichloroethylene (TCE), at Aerojet's Area 40 site in Sacramento, California. This unique system consisted of an upgradient zero-valent

C. E. Dowman; Y. Hashimoto; S. Warner; P. Bennett; D. Gandhi; F. Szerdy; S. Neville; C. Fennessy; K. M. Scow

2008-01-01

137

EFFECTIVE REMOVAL OF TCE IN A LABORATORY MODEL OF A PRB CONSTRUCTED WITH PLANT MULCH  

EPA Science Inventory

Ground water contaminated with TCE is commonly treated with a permeable reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative ...

138

FIELD SCALE EVALUATION OF TREATMENT OF TCE IN A BIOWALL AT THE OU-1 SITE  

EPA Science Inventory

A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

139

Superfund Record of Decision (EPA Region 4): Davis Park Road TCE, Gastonia, NC, September 29, 1998  

SciTech Connect

This decision document presents the selected remedial action for the Davis Park Road TCE Site in Gastonia, Gaston County, North Carolina. This remedy addressees the principle threat posed by the Site. The major threat is the contaminated groundwater emanating from beneath the Site.

NONE

1998-10-01

140

Diversity of Pristine Methanotrophic Communities in a Basalt Aquifer: Implications for Natural Attenuation of TCE  

NASA Astrophysics Data System (ADS)

Natural attenuation of a large trichloroethylene (TCE) plume within the oxic Snake River Plain Aquifer (SRPA) appears to be occurring by aerobic co-metabolism. Methanotrophs are some of the key TCE degraders known to inhabit the aquifer. To better understand the role methanotrophs may have in TCE degradation and the relationship of methanotrophs to dissolved methane concentrations, groundwater collected from wells in the SRPA was analyzed for geochemical properties and methanotroph diversity. Microorganisms removed from groundwater by filtration were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target Type I and Type II methanotroph 16S rDNA or genes that code for soluble (mmoX) and particulate (pmoA) methane monooxygenase subunits were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. Groundwater had dissolved methane concentrations that ranged from 1 to >1000 nM. Analysis of sequencing results suggest that the group Methylocystaceae is a predominant Type II methanotroph in each sample. Methanotrophs can be detected and enriched from groundwater containing even low methane concentrations. Analysis of gene sequences provides assessments of methanotroph abundance and diversity with respect to the aquifer methane concentrations, imparting greater insight into the genetic potential of the microbial community capable of degrading TCE. This research will continue to focus on the evaluation of natural attenuation by methanotrophs.

Reed, D. W.; Newby, D. T.; Delwiche, M. E.; Igoe, A.; McKinley, J. P.; Roberto, F. F.; Colwell, F. S.

2001-12-01

141

The impact of additives found in industrial formulations of TCE on the wettability of sandstone  

E-print Network

The impact of additives found in industrial formulations of TCE on the wettability of sandstone) that are often encountered in industrial solvent formulations. Wettability assessments were made on sandstone wetting preference of sandstone which frequently resulted in neutral wetting conditions. The large volume

Sheffield, University of

142

Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability  

NASA Astrophysics Data System (ADS)

For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

Park, J.; Yoo, K.

2013-12-01

143

Formulation design for target delivery of iron nanoparticles to TCE zones  

NASA Astrophysics Data System (ADS)

Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

Wang, Ziheng; Acosta, Edgar

2013-12-01

144

RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)  

EPA Science Inventory

A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

145

LESSONS LEARNED FROM IN-SITU RESISTIVE HEATING OF TCE AT FORT LEWIS, WASHINGTON  

EPA Science Inventory

The EGDY is the source of a potentially expanding, three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This i...

146

A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS  

EPA Science Inventory

Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

147

The 3rd Annual International TCE Conference Machine Learning & Big Data  

E-print Network

The 3rd Annual International TCE Conference Machine Learning & Big Data Call for Presentations and Big Data. Topics include learning from huge datasets, compressing, streaming, inferring, utilizing to submit a presentation on all facets related to Machine Learning and Big Data. A limited number

Schuster, Assaf

148

Preliminary technology report for Southern Sector bioremediation  

SciTech Connect

This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE.

Brigmon, R.L.; White, R.; Hazen, T.C.; Jones, D.; Berry, C.

1997-06-01

149

Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination  

NASA Technical Reports Server (NTRS)

Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.

Downie, John D.

1992-01-01

150

Change of pH and Iron Ion Concentration During Photodegradation of TCE with Ferrioxalate/UVvis Process  

NASA Astrophysics Data System (ADS)

Recently, some studies show various organic compounds such as pesticides and dyes degraded with the irradiation of ultraviolet light and visible light in the presence of oxalic acid and ferric ion (ferrioxalate/UVvis process). The process has much advance than other technologies because it can utilize the wavelength of 300˜450nm and also under the condition of neutral pH. Chlorinated organic compounds such as trichloroethene (TCE), which have caused ground water pollution on a lot of sites, have never been applied by photodegradation with this process. In this study, we showed the degradation of TCE in the presence of oxalic acid and iron ion and the change of pH, ferric and ferrous ion concentration during the photodegradation of TCE with ferrioxalate/UV-vis process. TCE was degraded in the presence of oxalic acid and iron ion. In the reactions, the equilibrium of oxalate ion and iron ion is important since it determines the amount of ferrioxalate complex which absorbs light and induces the reactions of the degradation of TCE. Thus, the pH value and iron ion concentration are the important factors which determine the amount of ferrioxalate complex. The pH is nearly constant during the photodegradation of TCE. The ferrous ion concentration was decreased as soon as beginning photodegradation of TCE, and then the ferrous ion concentration and ferric ion concentration became constant.

Hareyama, Wataru; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi; Nakazawa, Hiroshi

2006-05-01

151

Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).  

PubMed

In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered. PMID:24901632

Chang, Y C; Huang, S C; Chen, K F

2014-01-01

152

Change of pH and Iron Ion Concentration During Photodegradation of TCE with Ferrioxalate/UVvis Process  

SciTech Connect

Recently, some studies show various organic compounds such as pesticides and dyes degraded with the irradiation of ultraviolet light and visible light in the presence of oxalic acid and ferric ion (ferrioxalate/UVvis process). The process has much advance than other technologies because it can utilize the wavelength of 300{approx}450nm and also under the condition of neutral pH. Chlorinated organic compounds such as trichloroethene (TCE), which have caused ground water pollution on a lot of sites, have never been applied by photodegradation with this process. In this study, we showed the degradation of TCE in the presence of oxalic acid and iron ion and the change of pH, ferric and ferrous ion concentration during the photodegradation of TCE with ferrioxalate/UV-vis process. TCE was degraded in the presence of oxalic acid and iron ion. In the reactions, the equilibrium of oxalate ion and iron ion is important since it determines the amount of ferrioxalate complex which absorbs light and induces the reactions of the degradation of TCE. Thus, the pH value and iron ion concentration are the important factors which determine the amount of ferrioxalate complex. The pH is nearly constant during the photodegradation of TCE. The ferrous ion concentration was decreased as soon as beginning photodegradation of TCE, and then the ferrous ion concentration and ferric ion concentration became constant.

Hareyama, Wataru; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi [Graduate School of Environmental Studies, Tohoku University, Sendai (Japan); Nakazawa, Hiroshi [Graduate School of Engineering, Iwate University, Morioka (Japan)

2006-05-15

153

Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.  

PubMed

Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls. PMID:20213342

Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

2010-08-01

154

Evaluation of the TCE catalytic oxidation unit at Wurtsmith Air Force Base  

SciTech Connect

Wurtsmith Air Force Base is the site of an air-stripping-with-emissions-control system to remove volatile organic compounds (VOCs), chiefly trichloroethylene (TCE), from groundwater. The purpose of this study was to evaluate the performance of a fluidized-bed catalytic oxidation unit for destroying halogenated organics with respect to catalyst bed temperature and operating time. The objectives included identification of any products of incomplete combustion formed and determination of the utility costs for the unit. Samples were collected over a period of {approximately} 19 months with volatile organic sampling trains according to the Environmental Protection Agency (EPA) Method 30. Samples were taken at catalyst bed temperatures of 315, 370, 425, and 480 C. The results indicate that the incinerator was destroying the TCE with >97% efficiency when operated at {ge}370 C. A conservative cost estimate for utilities was determined to be $0.36/1,000 gal of water treated.

Hylton, T.D. (Oak Ridge National Lab., Tennessee (United States))

1992-02-01

155

Impact of turbidity on TCE and degradation products in ground water  

SciTech Connect

Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. However, few studies have been conducted to determine the impact of particulates on trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride concentrations. Laboratory batch studies and field investigations were conducted to evaluate the effects of suspended solids on VOC concentrations in ground water samples analyzed by purge-and-trap gas chromatography. Three different solids were used to assess the effects of suspended particulates. The solids were aquifer material from a field site in North Carolina and two reference clay minerals (kaolinite and Na-montmorillonite). During the laboratory portion of this study, the solids were used to determine effects on TCE concentrations under controlled laboratory conditions. The same solids were used in a field study to compare the laboratory results with field results.

Paul, C.J.; Puls, R.W.

1997-06-01

156

Retaining and recovering enzyme activity during degradation of TCE by methanotrophs  

SciTech Connect

To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. 19 refs., 3 figs.

Palumbo, A.V.; Strong-Gunderson, J.M.; Carroll, S. [Oak Ridge National Lab., TN (United States)

1997-12-31

157

In Situ Redox Manipulation of Subsurface Sediments from Fort Lewis, Washington: Iron Reduction and TCE Dechlorination Mechanisms  

SciTech Connect

The feasibility of chemically treating sediments from the Ft. Lewis, Washington, Logistics Center to develop a permeable barrier for dechlorination of TCE was investigated in a series of laboratory experiments.

Szecsody, James E.; Fruchter, Jonathan S.; Sklarew, Deborah S.; Evans, John C.

2000-03-17

158

Evaluation of the TCE catalytic oxidation unit at Wurtsmith Air Force Base  

Microsoft Academic Search

Wurtsmith Air Force Base is the site of an air-stripping-with-emissions-control system to remove volatile organic compounds (VOCs), chiefly trichloroethylene (TCE), from groundwater. The purpose of this study was to evaluate the performance of a fluidized-bed catalytic oxidation unit for destroying halogenated organics with respect to catalyst bed temperature and operating time. The objectives included identification of any products of incomplete

T. D. Hylton

1992-01-01

159

Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater  

PubMed Central

A novel reactive electrochemical flow system consisting of iron anode and porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides proton and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (< 7.5 mg/L) and high current (> 45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants from flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures. PMID:23067023

Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N.

2012-01-01

160

Influence of pH on persulfate oxidation of TCE at ambient temperatures  

Microsoft Academic Search

In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30°C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of

Chenju Liang; Zih-Sin Wang; Clifford J. Bruell

2007-01-01

161

Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system  

NASA Astrophysics Data System (ADS)

The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 ?g/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain groundwater flow. Mass transport shows that most of the TCE mass flux from the TCE plumes ends up in the Nelson River, but at low concentrations, thus restricting TCE concentrations in the municipal wells at levels much lower than the maximum concentration limit.

Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

2009-05-01

162

CIS-DCE AND VC MICROBIAL COMMUNITY CHANGES ASSOCIATED WITH A SHIFT FROM REDUCTIVE DECHLORINATION OF PCE TO REDUCTIVE DECHLORINATION OF  

EPA Science Inventory

Subcultures that reductively dechlorinate cis-dichloroethene (cis-DCE) or vinyl chloride (VC) were derived from three independent enrichments that completely dechlorinated tetrachloroethene (PCE) to ethene in order to study the reductive dechlorination of the lesser chlorinated e...

163

In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3  

SciTech Connect

We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} and TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.

Angel, S. M.; Langry, K. C.; Ridley, M. N.

1990-05-01

164

The transfer of trichloroethylene (TCE) from a shower to indoor air: Experimental measurements and their implications  

SciTech Connect

Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations.We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 51 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37C) or cold (22C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.

McKone, T.E.; Knezovich, J.P. (Univ. of California, Livermore (United States))

1991-08-01

165

The transfer of trichloroethylene (TCE) from a shower to indoor air: Experimental measurements and their implications  

SciTech Connect

Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water to showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37C) or cold (22C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.

McKone, T.E.; Knezovich, J.P. (Univ. of California, Livermore (United States))

1991-05-01

166

The role of microbial reductive dechlorination of TCE at a phytoremediation site  

USGS Publications Warehouse

In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (???22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.

Godsy, E.M.; Warren, E.; Paganelli, V.V.

2003-01-01

167

Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.  

PubMed

To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies. PMID:19192817

Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

2008-12-01

168

Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site  

SciTech Connect

The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

2004-10-06

169

Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater  

PubMed Central

Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (?122 A/m3 ? Iv ? 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min?1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•? and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

2014-01-01

170

Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.  

PubMed

A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction. PMID:23726693

Xie, Wenjing; Yuan, Songhu; Mao, Xuhui; Hu, Wei; Liao, Peng; Tong, Man; Alshawabkeh, Akram N

2013-07-01

171

Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models  

NASA Astrophysics Data System (ADS)

Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes indicates a highly heterogeneous system resulting in large preferential flow components. The distributions are highly correlated with statistically-developed spatial flow models. High degree of tailing in breakthrough curves indicate significant amount of mass limitations, particularly in diffuse flow regions. Higher flow rates in the system result in increasing preferential flow region volumes, but lower mass transfer limitations. Future work will involve experiments with non-aqueous phase liquid TCE, DEHP, and a mixture of these, and geo-temporal statistical modeling. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

Anaya, A. A.; Padilla, I. Y.

2012-12-01

172

Risk of Learning and Behavioral Disorders Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Mothers completed a questionnaire on disorders of attention, learning and behavior in their children and on potential confounding variables. The final cohort consisted of 2,086 children. Results of crude and multivariate analyses showed no association between prenatal exposure and receiving tutoring for reading or math, being placed on an Individual Education Plan, or repeating a school grade (adjusted Odds Ratios (OR)=1.0–1.2). There was also no consistent pattern of increased risk for receiving a diagnosis of Attention Deficit Disorder (ADD) or Hyperactive Disorder (HD), special class placement for academic or behavioral problems, or lower educational attainment. Modest associations were observed for the latter outcomes only in the low exposure group (e.g., adjusted ORs for ADD were 1.4 and 1.0 for low and high exposure, respectively). (All ORs are based on an unexposed referent group.) Results for postnatal exposure through age five years were similar to those for prenatal exposure. We conclude that prenatal and early postnatal PCE exposure is not associated with disorders of attention, learning and behavior identified on the basis of questionnaire responses and at the exposure levels experienced by this population. PMID:18353612

Janulewicz, Patricia A; White, Roberta F; Winter, Michael R; Weinberg, Janice M; Gallagher, Lisa E; Vieira, Veronica; Webster, Thomas F; Aschengrau, Ann

2008-01-01

173

Remediation of TCE-contaminated groundwater using zero valent iron and direct current: experimental results and electron competition model  

NASA Astrophysics Data System (ADS)

The objectives of this study are to design an optimal electro-enhanced permeable reactive barrier (E2PRB) system for the remediation of trichloroethylene (TCE)-contaminated water using zero valent iron (ZVI) and direct current (DC) and to investigate the mechanisms responsible for TCE degradation in different ZVI-DC configurations. A series of column experiments was conducted to evaluate the effect of different arrangements of electrodes and ZVI barriers in the column on the TCE removal capacity (RC). In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive dechlorination of TCE was improved up to six times with simultaneous application of ZVI and DC compared to that using ZVI only. The most effective arrangement of electrode and ZVI for TCE removal was the column set with ZVI and a cathode installed at the down gradient. Based on the electrokinetic study for the column systems with only DC input, single acid front movement could explain different RCs. An enhanced dechlorination rate of TCE using E2PRB systems, compared to a conventional PRB system, was observed, and is considered to be attributed to more electron sources: (1) external DC, (2) electrolysis of water, (3) oxidation of ZVI, (4) oxidation of dissolved Fe2+, (5) oxidation of molecular hydrogen at the cathode, and (6) oxidation of Fe2+ in mineral precipitates. Each of these electron sources was evaluated for their potential influencing the TCE RC through the electron competition model and energy consumption. A strong correlation between the quantity of electrons generated, RC, and the energy-effectiveness was found.

Moon, Ji-Won; Moon, Hi-Soo; Kim, Heonki; Roh, Yul

2005-09-01

174

Public health assessment for Newton County Wells (a/k/a Silver Creek TCE), Joplin, Jasper County, Missouri, Region 7: CERCLIS number MOD985798339. Final report  

SciTech Connect

The Newton County TCE site contains an uncontrolled groundwater plume of trichloroethylene (TCE) contamination. The source of contamination is believed to be FAG Bearings. From 1973 to 1982, FAG Bearings produced ball bearings using TCE as a commercial degreaser. It is alleged that improper disposal and leaks of an alleged closed system of TCE led to the contamination of soil at the industrial site, the groundwater aquifer, and subsequently, 82 private water wells. Exposure pathways at the site consist of inhalation of, ingestion of, and dermal contact with TCE-contaminated groundwater and surface water. Because completed and potential exposure pathways exist, the Newton County TCE site has been classified as a Public Health Hazard.

NONE

1999-07-19

175

Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design.  

PubMed

A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted to recover dense nonaqueous phase liquid (DNAPL) tetrachloroethene (PCE) from a sandy glacial outwash aquifer underlying a former dry cleaning facility at the Bachman Road site in Oscoda, MI. Part one of this two-part paper describes site characterization efforts and a comprehensive approach to SEAR test design, effectively integrating laboratory and modeling studies. Aquifer coring and drive point sampling suggested the presence of PCE-DNAPL in a zone beneath an occupied building. A narrow PCE plume emanating from the vicinity of this building discharges into Lake Huron. The shallow unconfined aquifer, characterized by relatively homogeneous fine-medium sand deposits, an underlying clay layer, and the absence of significant PCE transformation products, was judged suitable for the demonstration of SEAR. Tween 80 was selected for application based upon its favorable solubilization performance in batch and two-dimensional sand tank treatability studies, biodegradation potential, and regulatory acceptance. Three-dimensional flow and transport models were employed to develop a robust design for surfactant delivery and recovery. Physical and fiscal constraints led to an unusual hydraulic design, in which surfactant was flushed across the regional groundwater gradient, facilitating the delivery of concentrations of Tween 80 exceeding 1% (wt) throughout the treatment zone. The potential influence of small-scale heterogeneity on PCE-DNAPL distribution and SEAR performance was assessed through numerical simulations incorporating geostatistical permeability fields based upon available core data. For the examined conditions simulated PCE recoveries ranged from 94to 99%. The effluent treatment system design consisted of low-profile air strippers coupled with carbon adsorption to trap off-gas PCE and discharge of treated aqueous effluent to a local wastewater treatment plant. The systematic and comprehensive design methodology described herein may serve as a template for application at other DNAPL sites. PMID:15819238

Abriola, Linda M; Drummond, Chad D; Hahn, Ernest J; Hayes, Kim F; Kibbey, Tohren C G; Lemke, Lawrence D; Pennell, Kurt D; Petrovskis, Erik A; Ramsburg, C Andrew; Rathfelder, Klaus M

2005-03-15

176

Potential for Methanotroph-Mediated Natural Attenuation of TCE in a Basalt Aquifer  

NASA Astrophysics Data System (ADS)

Methanotrophic bacteria are one of the microbial communities believed to be responsible for natural attenuation of a trichloroethylene (TCE) plume in the Snake River Plain Aquifer (SRPA). To better understand the role that indigenous methanotrophs may have in TCE degradation in the aquifer, groundwater was collected from four SRPA wells and analyzed for geochemical properties and methanotroph diversity. Dissolved methane concentrations in the aquifer ranged from 1 to >1000 nM. Stable carbon isotope ratios for dissolved methane suggest a microbial source for the methane (del 13C values of ca. -61 per mil in three wells). The combination of 13C enriched methane and 13C depleted-dissolved inorganic carbon in one of the wells suggests that microbial oxidation of methane occurs. Filtered groundwater yielded microorganisms that were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target taxonomic (type I and type II 16S rDNA) or functional (mmoX and pmoA methane monooxygenase subunits) genes were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. DNA sequencing and alignment results suggest that clones with sequences most similar to Methylocystis sp. (a type II methanotroph) and Methylobacter sp. (a type I methanotroph) are frequently present in filtered groundwater with the former often represented in enrichment cultures as well. Methanotroph genes are detected in the aquifer even in wells having methane concentrations as low as 1 nM. Methanotroph presence and a microbial origin for the dissolved methane indicate that microbial cycling of this key gas may play a role in the destruction of TCE in the aquifer.

Colwell, F. S.; Newby, D. T.; Reed, D. W.; Igoe, A.; Petzke, L.; Delwiche, M. E.; McKinley, J. P.; Roberto, F. F.; Whiticar, M. J.

2002-12-01

177

The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI  

NASA Astrophysics Data System (ADS)

Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE degradation by nZVI. The degradation of TCE was measured using GC Headspace samples. Furthermore, additional experiments were conducted to investigate the interaction between binders and TCE as well as binders and nZVI. The results of these experiments led to the conclusion that jet grouting could be well suited for the delivery of nZVI to TCE contaminated source zones. Currently, soil column experiments and large-scale experiments in test facilities are performed to confirm the batch testing results.

Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

2014-05-01

178

Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils.  

PubMed

Hydrogen peroxide decomposition and trichloroethylene (TCE) oxidation kinetics were studied through batch slurry experiments, performed on two TCE contaminated soils (a sandy soil and a clay soil), characterized by different texture and organic fraction; besides, experiments were also performed on sandy soil columns, in order to more closely reproduce the typical conditions of an in situ treatment. The results of the batch tests indicated that hydrogen peroxide lifetime was correlated to the oxidation efficiency; namely, complete TCE oxidation was achieved only for the conditions characterized by longer hydrogen peroxide lifetime, that was obtained by addition of a proper stabilizer (KH(2)PO(4)). The soil properties were also observed to influence both hydrogen peroxide decomposition and TCE oxidation kinetics, probably as a consequence of the different TOC content. The soil column experiments, performed on 10, 20, and 30 cm long columns, indicated that hydrogen peroxide decomposition, which was almost complete at 30 cm depth, was on the contrary negligible when the stabilizer was added. In agreement with this observation, the performance of TCE oxidation were greatly improved in the latter case. Based upon the collected results, it can be concluded that hydrogen peroxide experiments may be useful, at least in the first screening phase of the design activity, for selecting, among the different operating conditions, those that may be potentially more effective for the oxidation treatment. PMID:15072817

Baciocchi, Renato; Boni, Maria Rosaria; D'Aprile, Laura

2004-03-19

179

Preliminary study of propyl bromide exposure among New Jersey dry cleaners as a result of a pending ban on perchloroethylene.  

PubMed

Many states are considering, and some states have actively pursued, banning the use of perchloroethylene (PERC) in dry cleaning establishments. Proposed legislation has led many dry cleaners to consider the use of products that contain greater than 90% n-propyl bromide (n-PB; also called 1-bromopropane or 1-BP). Very little information is known about toxicity and exposure to n-PB. Some n-PB-containing products are marketed as nonhazardous and "green" or "organic." This has resulted in some users perceiving the solvent as nontoxic and has resulted in at least one significant poisoning incident in New Jersey. In addition, many dry cleaning operators may not realize that the machine components and settings must be changed when converting from PERC to n-PB containing products. Not performing these modifications may result in overheating and significant leaks in the dry cleaning equipment. A preliminary investigation was conducted of the potential exposures to n-PB and isopropyl bromide (iso-PB; also called 2-bromopropane or 2-BP) among dry cleaners in New Jersey who have converted their machines from PERC to these new solvent products. Personal breathing zone and area samples were collected using the National Institute for Occupational Safety and Health Sampling and Analytical Method 1025, with a slight modification to gas chromatography conditions to facilitate better separation of n-PB from iso-PB. During the preliminary investigation, exposures to n-PB among some workers in two of three shops were measured that were greater than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for n-PB. The highest exposure measured among a dry cleaning machine operator was 54 parts per million (ppm) as an 8-hr time-weighted average, which is more than 5 times the ACGIH TLV of 10 ppm. The preliminary investigation also found that the work tasks most likely to result in the highest short-term exposures included the introduction of solvent to the machine, maintenance of the machine, unloading and handling of recently cleaned clothes, and interrupting the wash cycle of the machine. In addition, this assessment suggested that leaks may have contributed to exposure and may have resulted from normal machine wear over time, ineffective maintenance, and from the incompatibility of n-PB with gasket materials. PMID:20863050

Blando, James D; Schill, Donald P; De La Cruz, Mary Pauline; Zhang, Lin; Zhang, Junfeng

2010-09-01

180

Evaluation of the TCE catalytic oxidation unit at Wurtsmith Air Force Base  

SciTech Connect

Remediation of VOC-contaminated groundwater is frequently performed by air stripping, a process that transfers the contaminants from the water phase to the air phase by contacting the phases countercurrently through a packed-bed column. Air stripping has proven to be effective and economic for removing volatile organic compounds (VOCs) from groundwater; in many cases, however, the states require the use of an emissions control device, such as a catalytic oxidation unit or a catalytic incinerator, in conjunction with the air stripping unit. Incineration is an attractive choice for emissions control since the contaminants are destroyed on site. Wurtsmith Air Force Base is the site of an air-stripping-with-emissions-control system to remove VOCs, chiefly trichloroethylene (TCE), from groundwater. A fluidized-bed catalytic oxidation unit treats the air stream to destroy the organic contaminants. The purpose of this study was to evaluate the performance of this unit and its catalyst for destroying halogenated organics with respect to catalyst bed temperature and operating time. The objectives included identification of any products of incomplete combustion formed and determination of the utility costs for the unit. Samples were collected over a period of {approximately}19 months with volatile organic sampling trains according to EPA Method 30. Samples were taken at catalyst bed temperatures of 315, 370, 425, and 480{degree}C. The results indicate that the incinerator was destroying the TCE with >97% efficiency when operated at 370{degree}C or greater. 6 refs., 9 figs., 2 tabs.

Hylton, T.D. (Oak Ridge National Lab., TN (USA)); Marchand, E.G. (Air Force Engineering and Services Center, Tyndall AFB, FL (USA))

1991-01-01

181

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report  

SciTech Connect

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

NONE

1997-10-24

182

Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol.  

PubMed

The degradation of trichloroethylene (TCE), chloroform (CF), and 1,2-dichloroethane (1,2-DCA) by four aerobic mixed cultures (methane, propane, toluene, and phenol oxidizers) grown under similar chemostat conditions was measured. Methane and propane oxidizers were capable of degrading both saturated and unsaturated chlorinated organics (TCE, CF, and 1,2-DCA). Toluene and phenol oxidizers degraded TCE but were not able to degrade CF, 1,2-DCA, or other saturated organics. None of the cultures tested were able to degrade perchloroethylene (PCE) or carbon tetrachloride (CC(4)). For the four cultures tested, degradation of each of the chlorinated organics resulted in cell inactivation due to product toxicity. In all cases, the toxic products were rapidly depleted, leaving no toxic residues in solution. Among the four tested cultures, the resting cells of methane oxidizers exhibited the highest transformation capacities (T(c)) for TCE, CF, and 1,2-DCA. The T(c) for each chlorinated organic was observed to be inversely proportional to the chlorine carbon ratio (Cl/C). The addition of low concentrations of growth substrate or some catabolic intermediates enhanced TCE transformation capacities and degradation rates, presumably due to the regeneration of reducing energy (NADH); however, addition of higher concentrations of most amendments reduced TCE transformation capacities and degradation rates. Reducing energy limitations and amendment toxicity may significantly affect T(c) measurements, causing a masking of the toxicity associated with chlorinated organic degradation. PMID:18623237

Chang, H L; Alvarez-Cohen, L

1995-03-01

183

Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.  

PubMed

The objective of this study was to develop a controlled-oxidant-release technology combining in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) concepts to remediate trichloroethene (TCE)-contaminated groundwater. In this study, a potassium permanganate (KMnO4)-releasing composite (PRC) was designed for KMnO4 release. The components of this PRC included polycaprolactone (PCL), KMnO4, and starch with a weight ratio of 1.14:2:0.96. Approximately 64% (w/w) of the KMnO4 was released from the PRC after 76 days of operation in a batch system. The results indicate that the released KMnO4 could oxidize TCE effectively. The results from a column study show that the KMnO4 released from 200 g of PRC could effectively remediate 101 pore volumes (PV) of TCE-contaminated groundwater (initial TCE concentration = 0.5 mg/L) and achieve up to 95% TCE removal. The effectiveness of the PRC system was verified by the following characteristics of the effluents collected after the PRC columns (barrier): (1) decreased TCE concentrations, (2) increased ORP and pH values, and (3) increased MnO2 and KMnO4 concentrations. The results of environmental scanning electron microscope (ESEM) analysis show that the PCL and starch completely filled up the pore spaces of the PRC, creating a composite with low porosity. Secondary micro-scale capillary permeability causes the KMnO4 release, mainly through a reaction-diffusion mechanism. The PRC developed could be used as an ISCO-based passive barrier system for plume control, and it has the potential to become a cost-effective alternative for the remediation of chlorinated solvent-contaminated groundwater. PMID:24568784

Liang, S H; Chen, K F; Wu, C S; Lin, Y H; Kao, C M

2014-05-01

184

Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.  

PubMed

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 ?g L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. PMID:22784864

Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

2012-10-01

185

Efficient Bayesian updating with PCE-based particle filters based on polynomial chaos expansion and CO2 storage  

NASA Astrophysics Data System (ADS)

Underground flow systems, such as oil or gas reservoirs and CO2 storage sites, are an important and challenging class of complex dynamic systems. Lacking information about distributed systems properties (such as porosity, permeability,...) leads to model uncertainties up to a level where quantification of uncertainties may become the dominant question in application tasks. History matching to past production data becomes an extremely important issue in order to improve the confidence of prediction. The accuracy of history matching depends on the quality of the established physical model (including, e.g. seismic, geological and hydrodynamic characteristics, fluid properties etc). The history matching procedure itself is very time consuming from the computational point of view. Even one single forward deterministic simulation may require parallel high-performance computing. This fact makes a brute-force non-linear optimization approach not feasible, especially for large-scale simulations. We present a novel framework for history matching which takes into consideration the nonlinearity of the model and of inversion, and provides a cheap but highly accurate tool for reducing prediction uncertainty. We propose an advanced framework for history matching based on the polynomial chaos expansion (PCE). Our framework reduces complex reservoir models and consists of two main steps. In step one, the original model is projected onto a so-called integrative response surface via very recent PCE technique. This projection is totally non-intrusive (following a probabilistic collocation method) and optimally constructed for available reservoir data at the prior stage of Bayesian updating. The integrative response surface keeps the nonlinearity of the initial model at high order and incorporates all suitable parameters, such as uncertain parameters (porosity, permeability etc.) and design or control variables (injection rate, depth etc.). Technically, the computational costs for constructing the response surface depend on the number of parameters and the expansion degree. Step two consists of Bayesian updating in order to match the reduced model to available measurements of state variables or other past or real-time observations of system behavior (e.g. past production data or pressure at monitoring wells during a certain time period). In step 2 we apply particle filtering on the integrative response surface constructed at step one. Particle filtering is a strong technique for Bayesian updating which takes into consideration the nonlinearity of inverse problem in history matching more accurately than Ensemble Kalman filter do. Thanks to the computational efficiency of PCE and integrative response surface, Bayesian updating for history matching becomes an interactive task and can incorporate real time measurements.

Oladyshkin, S.; Class, H.; Helmig, R.; Nowak, W.

2011-12-01

186

Metal mobility during in situ chemical oxidation of TCE by KMnO4.  

PubMed

The potential for trace-metal contamination of aquifers as a side effect of In Situ Chemical Oxidation (ISCO) of chlorinated solvent contamination by KMnO(4) is investigated with column experiments. The experiments investigate metal mobility during in situ chemical oxidation of TCE by KMnO(4) under conditions where pH, flow rate, KMnO(4), TCE, and trace-metal concentrations were controlled. During ISCO, the injection of MnO(4) creates oxidizing conditions, and acidity released by the reactions causes a tendency toward low pH in aquifers. In order to evaluate the role of pH buffering on metal mobility, duplicate columns were constructed, one packed with pure silica sand, and one with a mixture of silica sand and calcite. Aqueous solutions of TCE and KMnO(4) (with 1 mg/L Cu, Pb, Zn, Mo, Ni, and Cr(VI)) were allowed to mix at the inlet to the columns. After the completion of the experiments, samples of Mn oxide were removed from the columns and analyzed by analytical scanning and transmission electron microscopy. In order to relate the results of the laboratory experiments to field settings, the analyses of Mn-oxide samples from the lab experiments were compared to samples of Mn oxide collected from a field-scale chemical-oxidation experiment that were also analyzed by analytical electron microscopy as well as time-of-flight secondary-ion mass spectroscopy. The pH ranged from 2.40 in the silica sand column to 6.25 in the calcite-containing column. The data indicate that aqueous Mo, Pb, Cu and Ni concentrations are attenuated almost completely within the columns. In contrast, Zn concentrations are not significantly attenuated and Cr(VI) is transported conservatively. The results indicate that within the range 2.40 to 6.25, metal mobility is not affected by pH. Comparison of analyses of Mn-oxide from the lab and field demonstrate that a variety of metals are sequestered from solution by Mn oxide. PMID:16876907

Al, Tom A; Banks, Vernon; Loomer, Diana; Parker, Beth L; Ulrich Mayer, K

2006-11-20

187

An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea  

NASA Astrophysics Data System (ADS)

An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

Koh, Y.; Lee, S.; Yang, J.; Lee, K.

2012-12-01

188

REVIEW OF INTRINSIC BIOREMEDIATION OF TCE IN GROUNDWATER AT PICATINNY ARSENAL, NEW JERSEY AND ST. JOSEPH, MICHIGAN  

EPA Science Inventory

Reductive dechlorination occurs frequently in large trichloro-ethylene (TCE) plumes. CE is transformed largely to cis-dichloroethylene (cis-DCE), then to vinyl chloride, and finally to compounds that do not contain organic chlorine. his abstract evaluates the rate and extent of n...

189

Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria  

SciTech Connect

Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

1996-07-01

190

Electro-enhanced Permeable Reactive Barrier : Optimal Design of PRB System With External Current for Effective TCE Removal From Groundwater  

NASA Astrophysics Data System (ADS)

The objective of this study was to design an optimal electro-enhanced permeable reactive barrier (E2PRB) system for remediation of trichloroethylene (TCE)-contaminated water using zero valent iron (ZVI) and direct current (DC). A series of column experiments were conducted to evaluate the location of Fe0 permeable reactive barrier (PRB) and the effects of electrode arrangement in the column on the TCE removal efficiency and iron corrosion processes. In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive dechlorination of TCE was improved with simultaneous application of both ZVI and DC compared to that used ZVI only to evaluate the synergistic effect (SE). The most effective arrangement of electrode and ZVI for TCE removal from simulated groundwater was a column set with ZVI and cathode installed at the down gradient (outlet side). Based on the electrochemical study in the E2PRB system, application of direct current provided external electrons to the system so that the system did not depend entirely on the oxidation of the medium for the reductive dechlorination of TCE. The enhanced dechlorination rate of TCE in ZVI-DC systems is considered to attributed to more generation and fast formation kinetic of electron by following reactions: (1) direct supply of electrons from external DC source (2) the electrolysis of water generating additional electrons at the vicinity of the anode (3) the electro-reduction of the compound by released electrons on the ZVI surfaces by oxidation (4) released electron through oxidation of dissolved ferrous iron, and (5) oxidation of atomic hydrogen at the cathode. The competition between five different electron sources generated from five sources evidently influenced on the TCE removal efficiency, valid lifetime of E2PRB system, and reduction of energy expenditure in both of electrochemical and electrokinetic aspects. The results from a series of experiments with twelve columns showed a trend that removal efficiency was more related to the electrode arrangement, but longevity of ZVI PRB and reduction of energy expenditure to location of ZVI installation.

Moon, J.; Moon, H.; Roh, Y.; Kim, H.; Song, Y.

2002-12-01

191

Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate  

NASA Astrophysics Data System (ADS)

Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8 mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3 h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions.

Hort, Ryan D.; Revil, André; Munakata-Marr, Junko

2014-09-01

192

Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study  

PubMed Central

Background Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. Objectives This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. Methods Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. Results Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. Conclusions The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood. These findings should be confirmed in follow-up investigations of other exposed populations. PMID:22136431

2011-01-01

193

Monitoring Performance of a Dual Wall Permeable Reactive Barrier for Treating Perchlorate and TCE  

NASA Astrophysics Data System (ADS)

AMEC Geomatrix, through collaboration with Aerojet General Corporation and the University of California, Davis (UCD), has performed work leading to the installation of a dual wall permeable reactive barrier (PRB) system capable of treating perchlorate and chlorinated aliphatic hydrocarbon compounds (CAHs), including trichloroethylene (TCE), at Aerojet's Area 40 site in Sacramento, California. This unique system consisted of an upgradient zero-valent iron (ZVI) permeable reactive barrier (PRB) that is intended to not only degrade CAHs, but also, provide hydrogen generated from the ZVI corrosion process, to a downgradient bio-effective PRB (carbohydrate solution circulated through a gravel-packed trench) for destroying perchlorate. The subsurface was characterized during a site investigation, and numerous logistical and site-specific challenges of installation were addressed. The site-specific challenges included installation of a passive remediation system in a remote location with no access to electricity. The selected remediation system was keyed into the undulating bedrock 20 to 25 feet below the ground surface without the use of shoring. Under a collaborative effort, UCD provided initial bench testing. AMEC Geomatrix designed and installed the dual wall system consisting of two approximately parallel 50-foot long by 2-foot thick by 25-foot deep PRB segments which are separated by about 8 feet perpendicular to the approximate direction of groundwater flow. AMEC Geomatrix performed the installation of performance monitoring network, which consisted of 21 wells, and monitored these points for a 6-month period. Monitoring and sampling techniques were designed to measure water levels and water quality parameters in the subsurface during sampling events, to better assess the hydrologic and chemical processes. The monitoring results indicate that the upgradient ZVI PRB effectively treats groundwater with TCE concentrations approaching 60 mg/L, and in addition, may reduce concentrations of perchlorate from approximately 25 mg/L to less than 1 mg/L. A database was maintained to manage analytical results, water quality parameters, and water levels from each sampling event, and geographic information system (GIS) was used to generate plan diagrams of the treatment and performance. The small footprint of the monitoring network allowed for visualizations of the sample results in vertical segments, cross-gradient, within the PRBs, and upgradient or downgradient of the treatment zone. This method of monitoring treatment performance allowed for rapid assessment of the effectiveness of the dual walled PRB as new data became available. The initial time and cost to set up the data management structure (database to GIS) would allow for the ability to monitor the remediation performance more efficiently and to make more effective decisions, including assessment of the carbohydrate depletion within the bio-effective PRB.

Dowman, C. E.; Hashimoto, Y.; Warner, S.; Bennett, P.; Gandhi, D.; Szerdy, F.; Neville, S.; Fennessy, C.; Scow, K. M.

2008-12-01

194

Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1Trichloroethane (TCA) in Aqueous Systems and Soil Slurries  

Microsoft Academic Search

Under thermally activated conditions (i.e., temperature of 40?99°C), there is considerable evidence that the persulfate anion () can be converted to a powerful oxidant known as the sulfate free radical (), which could be used in situ to destroy groundwater contaminants. In this laboratory study only limited trichloroethylene (TCE) degradation and no 1,1,1-trichloroethane (TCA) degradation was observed at 20°C. However,

Chen Ju Liang; Clifford J. Bruell; Michael C. Marley; Kenneth L. Sperry

2003-01-01

195

Field performance of air-sparging system for removing TCE from groundwater  

SciTech Connect

The removal of volatile organic compounds from groundwater by air sparging (AS) is well-established, although reliable methods for predicting the time required to reach site closure have not been established. To develop and improved understanding of mass transfer processes that limit AS performance, two extended controlled shutdowns of an operating AS system were performed. Monitoring of TCE concentrations in source zone groundwater indicated tailing and rebound behavior similar to that observed for pump-and-treat systems. A simple two-compartment model provided a reasonable description of the 3-year AS history, using parameters calibrated from data collected during the first shutdown period. Comparison of the calibrated rate constants with parameters estimated from laboratory soil columns suggest that, for the study site, aqueous diffusion to discrete air channels has a stronger influence on system performance than rate-limited desorption. Predictions based on the calibrated model indicated that restoration of the source zone to drinking water standards would require approximately 1 decade for the current AS system.

Rabideau, A.J.; Blayden, J.M.; Ganguly, C. [State Univ. of New York, Buffalo, NY (United States). Dept. of Civil, Structural, and Environmental Engineering] [State Univ. of New York, Buffalo, NY (United States). Dept. of Civil, Structural, and Environmental Engineering

1999-01-01

196

Degradation of TCE using Persulfate (PS) and Peroxymonosulfate (PMS): Effect of Inorganic Ions in Groundwater  

E-print Network

Abstract — The objective of this study was to investigate the effects of inorganic ions on persulfate (PS) and peroxymonosulfate (PMS) oxidation to degrade trichloroethylene (TCE) in groundwater. First, the groundwater samples, which was taken from Wonju, Korea, were analyzed, and the highest concentration of target ions (Mg 2+, Ca 2+, Fe 2+, Mn 2+, Cl-, HCO 3) in those samples were used for the batch experiment. Based on batch test, all of target ions did not neither increase nor decrease the reactivity of both PS and PMS. Because of the fluctuation of groundwater compositions, it could be worthwhile to evaluate which ions increase or decrease the reactivity of oxidants. Therefore, a batch system with an excess of target ion was tested. The results showed that ferrous ion increased the reactivity of both PS and PMS. However, chloride ion increased the reactivity of PMS, but it inhibited the reactivity of PS. Moreover, residual concentration of PMS and PS were remained approximately 97~98%, and the pH of system was dramatically reduced when PMS was used. The last of target ions (Mg 2+, Ca 2+, Mn 2+, HCO 3) will be also tested with the condition of an excess.

Ki-man Park; Hong-kyun Lee; Si-hyun Do; Sung-ho Kong

197

Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater.  

PubMed

Iron and sulfur reducing conditions generally develop in permeable reactive barrier systems (PRB) constructed to treat contaminated groundwater. These conditions allow formation of FeS mineral phases. FeS readily degrades TCE, but a transformation of FeS to FeS2 could dramatically slow the rate of TCE degradation in the PRB. This study uses acid volatile sulfide (AVS) and chromium reducible sulfur (CRS) as probes for FeS and FeS2 to investigate iron sulfide formation and transformation in a column study and PRB field study dealing with TCE degradation. Solid phase iron speciation shows that most of the iron is reduced and sulfur partitioning measurements show that AVS and CRS coexist in all samples, with the conversion of AVS to CRS being most significant in locations with potential oxidants available. In the column study, 54% of FeS was transformed to FeS2 after 2.4 years. In the field scale PRB, 43% was transformed after 5.2 years. Microscopy reveals FeS, Fe3S4 and FeS2 formation in the column system; however, only pyrite formation was confirmed byX-ray diffraction. The polysulfide pathway is most likely the primary mechanism of FeS transformation in the system, with S0 as an intermediate species formed through H2S oxidation. PMID:18800550

He, Y Thomas; Wilson, John T; Wilkin, Richard T

2008-09-01

198

Analysis of flow processes during TCE infiltration in heterogeneous soils at the Savannah River Site, Aiken, South Carolina  

SciTech Connect

Contamination of soils and groundwater from volatile organic compounds (VOCs), such as organic solvents and hydrocarbon fuels, is a problem at many industrial facilities. Key to successfully characterizing, containing, and eventually remediating the contamination is a thorough understanding, based on sound scientific principles, of the complex interplay of physical, chemical, and biological processes in geologic media, which affect the migration and distribution of the contaminants, and their response to remediation operations. This report focusses on physical mechanisms that affect contaminant behavior under the conditions encountered at the Savannah River site (SRS). Although other contaminants are present at the site, for the purpose of this discussion we will restrict ourselves to the processes following a spill and infiltration of trichloroethylene (TCE), which is the main contaminant at the location of the Integrated Demonstration Project. We begin by briefly describing the main physical processes following release of TCE into the subsurface. Subsequently we will present simple engineering models that can help to evaluate contaminant migration processes in a semi-quantitative way. Finally, we will discuss results of detailed numerical simulations of TCE infiltration into a heterogeneous medium consisting of sands and clays. These simulations attempt to shed light on the initial distribution of contaminants at the site prior to the start of remediation operations. We also point out limitations of present numerical modeling capabilities, and identify issues that require further research in order that a realistic description of contaminant behavior in the subsurface may be achieved.

Pruess, K.

1992-06-01

199

Hydrostratigraphic Mapping of the Milford-Souhegan Glacial Drift Aquifer, and Effects of Hydrostratigraphy on Transport of PCE, Operable Unit 1, Savage Superfund Site, Milford, New Hampshire  

USGS Publications Warehouse

The Savage Municipal Well Superfund site in the Town of Milford, New Hampshire, was underlain by a 0.5-square mile plume (as mapped in 1994) of volatile organic compounds (VOCs), most of which consisted of tetrachloroethylene (PCE). The plume occurs mostly within highly transmissive stratified-drift deposits but also extends into underlying till and bedrock. The plume has been divided into two areas called Operable Unit 1 (OU1), which contains the primary source area, and Operable Unit 2 (OU2), which is defined as the extended plume area outside of OU1. The OU1 remedial system includes a low-permeability barrier wall that encircles the highest detected concentrations of PCE and a series of injection and extraction wells to contain and remove contaminants. The barrier wall likely penetrates the full thickness of the sand and gravel; in many places, it also penetrates the full thickness of the underlying basal till and sits atop bedrock. From 1998 to 2004, PCE concentrations decreased by an average of 80 percent at most wells outside the barrier wall. However, inside the barrier, PCE concentrations greater than 10,000 micrograms per liter (ug/L) still exist (2008). The remediation of these areas of recalcitrant PCE presents challenges to successful remediation. The U.S. Geological Survey (USGS), in cooperation with the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA), Region 1, is studying the solute transport of VOCs (primarily PCE) in contaminated groundwater in the unconsolidated sediments (overburden) of the Savage site and specifically assisting in the evaluation of the effectiveness of remedial operations in the OU1 area. As part of this effort, the USGS analyzed the subsurface stratigraphy to help understand hydrostratigraphic controls on remediation. A combination of lithologic, borehole natural gamma-ray and electromagnetic (EM) induction logging, and test drilling has identified 11 primary hydrostratigraphic units in OU1. These 11 units consist of several well-sorted sandy layers with some gravel that are separated by poorly sorted cobble layers with a fine-grained matrix. Collectively these units represent glacial sediments deposited by localized ice-margin fluctuations. For the most part, the units are semi-planar, particularly the cobble units, and truncated by an undulating bedrock surface. The lowermost unit is a basal till that ranges in thickness from zero to greater than 10 feet and mantles the bedrock surface. The 11 units have different lithologic and hydraulic characteristics. The hydraulic conductivity of the well-sorted sand and gravel units is typically greater than the conductivity of the poorly sorted cobble units and the basal till. The hydraulic conductivity ranges from 5 to greater than 500 feet per day. Lateral and vertical variation in lithology and hydraulic conductivity are inferred by variations in borehole natural gamma-ray counts and estimates of hydraulic conductivity. The comparison of hydrostratigraphic units with the spatial distribution of PCE concentrations suggests that solute transport away from source areas is primarily lateral within the permeable sandy units in the middle to lower parts of the aquifer. Along the centerline of the interior barrier area, highest PCE concentrations are in the sandy units to the east of suspected source areas.

Harte, Philip T.

2010-01-01

200

Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.  

PubMed

This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (?: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

2013-01-01

201

Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (?: 127.5 mm3, 95% CI: ?259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0 mm3, 95% CI: ?4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0 mm3, 95% CI: ?13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

2013-01-01

202

Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.  

PubMed

The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC groundwater plume discharges to a surface water receptor; and, monitoring requirements to assess the variability in CHC attenuation within a reach are expected to be onerous. Further research on transient hyporheic zone dechlorination is recommended. PMID:25461025

Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

2015-02-01

203

Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge  

PubMed Central

Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 ?M PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules. PMID:9572963

Hörber, Christine; Christiansen, Nina; Arvin, Erik; Ahring, Birgitte K.

1998-01-01

204

A Dechlorinating Community Resulting From In Situ Biostimulation of a TCE-contaminated Deep Fracture Basalt Aquifer  

SciTech Connect

Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is generated primarily via the acetoclastic pathway, using acetate generated by lactate fermentation and acetogenesis in both systems.

T. Wood; D. E. Cummings

2004-12-01

205

Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols  

Microsoft Academic Search

A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells\\u000a of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of\\u000a cell wall and contained cytochrome c. Optimum growth occurred at pH 7.2–7.8 and 34–38??C. The organism grew with l-lactate, pyruvate, butyrate, formate, succinate, or ethanol as electron donors,

Jan Gerritse; Veronique Renard; Teresa M. Pedro Gomes; Paul A. Lawson; Matthew D. Collins; Jan C. Gottschal

1996-01-01

206

In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer. Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.

JE Szecsody; JS Fruchter; DS Sklarew; JC Evans

2000-03-21

207

Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.  

PubMed

This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 ?gL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. PMID:25168960

Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

2014-10-15

208

Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA  

USGS Publications Warehouse

In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

2012-01-01

209

Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols.  

PubMed

A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of cell wall and contained cytochrome c. Optimum growth occurred at pH 7.2-7.8 and 34-38 degrees C. The organism grew with L-lactate, pyruvate, butyrate, formate, succinate, or ethanol as electron donors, using either tetrachloroethene, 2-chlorophenol, 2,4,6-trichlorophenol, 3-chloro-4-hydroxy-phenylacetate, sulfite, thiosulfate, or fumarate as electron acceptors. Strain PCE1 also grew fermentatively with pyruvate as the sole substrate. L-Lactate and pyruvate were oxidized to acetate. Tetrachloroethene was reductively dechlorinated to trichloroethene and small amounts ( 5%) of cis-1,2-dichloroethene and trans-1,2-dichloroethene. Chlorinated phenolic compounds were dechlorinated specifically at the ortho-position. On the basis of 16S rRNA sequence analysis, the organism was identified as a species within the genus Desulfitobacterium, which until now only contained the chlorophenol-dechlorinating bacterium, Desulfitobacterium dehalogenans. PMID:8593100

Gerritse, J; Renard, V; Pedro Gomes, T M; Lawson, P A; Collins, M D; Gottschal, J C

1996-02-01

210

Design and construction techniques for permeable reactive barriers.  

PubMed

Adequate site characterization, bench-scale column testing, and hydrogeologic modeling formed the basis for the design and construction of permeable reactive barriers for groundwater remediation at various sites, such as Dover Air Force Base, DE and Naval Air Station, Moffett Field, CA. Dissolved chlorinated solvents, such as perchloroethylene (PCE) and trichloroethylene (TCE), have been the focus at many sites because the passive nature of the reactive barrier operation makes such barriers particularly useful for treating groundwater contaminants that can persist in the aquifer for several years. A combination of conventional and innovative site characterization, design, and construction techniques were used at these sites to increase the potential cost effectiveness of field application. PMID:10518664

Gavaskar, A R

1999-08-12

211

Degradation of multi-DNAPLs by a UV/persulphate/ethanol system with the additional injection of a base solution.  

PubMed

This study was conducted to investigate the inhibited influences on and solution to the degradation of four types of dense non-aqueous phase liquids (DNAPLs) (i.e. perchloroethylene [PCE], trichloroethylene [TCE], chloroform [CF], and carbon tetrachloride [CT]) all at the same instance in groundwater (GW). Degradations of DNAPLs in de-ionized water (DW) and GW were carried out by applying an ultraviolet radiation-activated persulphate (UV/PS) system. PCE and TCE were degraded by over 90% and CT was only degraded by 25% in both DW and GW. However, CF was degraded by over 90% in DW, while it was only degraded by 50% in GW. First of all, degradations with an inorganic anion (either Cl(-) or [Formula: see text]) indicated that the lower degradation of CF in GW was caused by the existence of the chloride ion. Moreover, the low CF degradation in GW was overcome by the additional injection of a base solution (sodium hydroxide [NaOH]) into the UV/PS system. The results showed that PCE, TCE, and CF were degraded by over 90%, respectively, when a molar ratio of [base]0:[PS]0 was larger than 0.5:1, but CT was still not effectively degraded in the UV/PS system. To achieve effective CT degradation, UV/PS with the ethanol (EtOH) system was evaluated and it was found that it degraded CT over 90%. However, at this time, CF was not effectively degraded in the UV/PS/EtOH system. Finally, degradations of DNAPLs in the UV/PS/EtOH system with the additional injection of a base solution were conducted and it showed that multi-DNAPLs were degraded by over 90%, respectively, when the molar ratio of [PS]0:[EtOH]0:[base]0 was 1:1:3. PMID:25342163

Jung, Jae-Gu; Do, Si-Hyun; Kwon, Yong-Jae; Kong, Sung-Ho

2015-04-01

212

Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation  

Microsoft Academic Search

This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes

Beth L. Parker; Steven W. Chapman; Martin A. Guilbeault

2008-01-01

213

Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.  

PubMed

A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7?m) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination. PMID:25463237

Sheu, Y T; Chen, S C; Chien, C C; Chen, C C; Kao, C M

2015-03-01

214

Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds  

SciTech Connect

The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

1995-01-23

215

Investigation of the potential source area, contamination pathway, and probable release history of chlorinated-solvent-contaminated groundwater at the Capital City Plume Site, Montgomery, Alabama, 2008-2010  

USGS Publications Warehouse

Detection of the organic solvent perchloroethylene (PCE) in a shallow public-supply well in 1991 and exposure of workers in 1993 to solvent vapors during excavation activities to depths near the water table provided evidence that the shallow aquifer beneath the capital city of Montgomery, Alabama, was contaminated. Investigations conducted from 1993 to 1999 by State and Federal agencies confirmed the detection of PCE in the shallow aquifer, as well as the detection of the organic solvent trichloroethylene (TCE) and various inorganic compounds, but the source of the groundwater contamination was not determined. In May 2000 the U.S. Environmental Protection Agency proposed that the site, called the Capital City Plume (CCP) Site, be a candidate for the National Priorities List. Between 2000 and 2007, numerous site-investigation activities also did not determine the source of the groundwater contamination. In 2008, additional assessments were conducted at the CCP Site to investigate the potential source area, contamination pathway, and the probable release history of the chlorinated-solvent-contaminated groundwater. The assessments included the collection of (1) pore water in 2008 from the hyporheic zone of a creek using passive-diffusion bag samplers; (2) tissue samples in 2008 and 2009 from trees growing in areas of downtown Montgomery characterized by groundwater contamination and from trees growing in riparian zones along the Alabama River and Cypress Creek; and (3) groundwater samples in 2009 and 2010. The data collected were used to investigate the potential source area of contaminants detected in groundwater, the pathway of groundwater contamination, and constraints on the probable contaminant-release history. The data collected between 2008 and 2010 indicate that the PCE and TCE contamination of the shallow aquifer beneath the CCP Site most likely resulted from the past use and disposal of industrial wastewater from printing operations containing chlorinated solvents into the sanitary sewer and (or) stormwater systems of Montgomery. Moreover, chlorinated-solvent use and disposal occurred at least between the 1940s and 1970s at several locations occupied by printing operations. The data also indicate that PCE and TCE contamination continues to occur in the shallow subsurface near potential release areas and that PCE and TCE have been transported to the intermediate part of the shallow aquifer.

Landmeyer, James E.; Miller, Scott; Campbell, Bruce G.; Vroblesky, Don A.; Gill, Amy C.; Clark, Athena P.

2011-01-01

216

Demonstration of low latency Intra/Inter Data-Centre heterogeneous optical sub-wavelength network using extended GMPLS-PCE control-plane.  

PubMed

This paper reports on the first user/application-driven multi-technology optical sub-wavelength network for intra/inter Data-Centre (DC) communications. Two DCs each with distinct sub-wavelength switching technologies, frame based synchronous TSON and packet based asynchronous OPST are interconnected by a WSON inter-DC communication. The intra/inter DC testbed demonstrates ultra-low latency (packet-delay <270 µs and packet-delay-variation (PDV)<10 µs) flexible data-rate traffic transfer by point-to-point, point-to-multipoint, and multipoint-to-(multi)point connectivity, highly suitable for cloud based applications and high performance computing (HPC). The extended GMPLS-PCE-SLAE based control-plane enables innovative application-driven end-to-end sub-wavelength path setup and resource reservation across the multi technology data-plane, which has been assessed for as many as 25 concurrent requests. PMID:23482117

Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Simeonidou, Dimitra; Bernini, Giacomo; Carrozzo, Gino; Ciulli, Nicola; Levins, John; Basham, Mark; Dunne, John; Georgiades, Michael; Belovidov, Alexander; Andreou, Lenos; Sanchez, David; Aracil, Javier; Lopez, Victor; Fernández-Palacios, Juan P

2013-03-11

217

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report  

SciTech Connect

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

NONE

1995-01-01

218

Interactions of water contaminants. I. Plasma enzyme activity and response surface methodology following gavage administration of CCl4 and CHCl3 or TCE singly and in combination in the rat  

SciTech Connect

The joint hepatotoxicity of CCl4 and CHCl3 or TCE in male CD rats following simultaneous oral administration has been investigated. Rats with chronic indwelling arterial cannulas were administered a single oral dose of CCl4 and CHCl3 or CCl4 and TCE in 5% Emulphor at doses of 0 to 700 mg/kg. Hepatotoxicity was evaluated by measuring the activity of AST, ALT, and SDH in plasma at 0, 3, 6, 12, 24, 36, 48, and 72 hr postgavage. Response data were analyzed for interaction using response surface methodology. CCl4 alone displayed dose-dependent toxicity. TCE demonstrated little evidence of hepatotoxicity. In combination, both CCl4/CHCl3 and CCl4/TCE displayed a synergistic (supraadditive) response for peak plasma enzyme activity.

Borzelleca, J.F.; O'Hara, T.M.; Gennings, C.; Granger, R.H.; Sheppard, M.A.; Condie, L.W. Jr. (Medical College of Virginia, Richmond (USA))

1990-04-01

219

A conservative evaluation of the transport of TCE from the confined aquifer beneath J-Field, Aberdeen Proving Ground, Maryland, to a hypothetical receptor.  

SciTech Connect

Past disposal operations at the Toxic Burn Pits (TBP) area of J-Field, Aberdeen Proving Ground, Maryland, have resulted in volatile organic compound (VOC) contamination of groundwater. Although the contaminant concentration is highest in the surficial aquifer, VOCs are also present in the confined aquifer, which is approximately 30 m (100 ft) deep at the TBP area. This study focuses on the confined aquifer, a sandy valley-fill Pleistocene unit in a paleochannel cut into Cretaceous sands and clays. This report documents the locations of the region's pumping wells, which are over 6 km (4 mi) away from the TBP. The distances to the pumping wells and the complex stratigraphy limit the likelihood of any contamination reaching a receptor well. Nonetheless, a worst-case scenario was evaluated with a model designed to simulate the transport of trichloroethylene (TCE), the main chemical of concern, from the confined aquifer beneath the TBP along a hypothetical, direct flowpath to a receptor well. The model was designed to be highly conservative (i.e., based on assumptions that promote the transport of contaminants). In addition to the direct flowpath assumption, the model uses the lowest literature value for the biodegradation rate of TCE, a low degree of sorption, a continuous-strength source, and a high flow velocity. Results from this conservative evaluation indicate that the simulated contaminant plume extends into areas offshore from J-Field, but decays before reaching a receptor well. The 5-ppb contour, for example, travels approximately 5 km (3 mi) before stagnating. Recent field analyses have documented that complete biodegradation of TCE to ethene and ethane is occurring directly below the TBP; therefore, the likelihood of TCE or its daughter products reaching a pumping well appears negligible. Thus, the model results may be useful in proposing either a no action or a natural attenuation alternative for the confined aquifer.

Martino, L. E.; Patton, T. L.; Quinn, J. J.

1999-01-04

220

Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple  

Microsoft Academic Search

The objective of the laboratory study is to examine the conditions under which transition metal ions (e.g., ferrous ion, Fe2+) could activate the persulfate anion (S2O82?) to produce a powerful oxidant known as the sulfate free radical (SO4?) with a standard redox potential of 2.6 V. The SO4? is capable of destroying groundwater contaminants in situ such as trichloroethylene (TCE).

Chenju Liang; Clifford J. Bruell; Michael C. Marley; Kenneth L. Sperry

2004-01-01

221

Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996  

SciTech Connect

Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna{trademark} process.

Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S. [General Electric Research and Development, Schenectady, NY (United States)

1997-04-01

222

Atmos. Chem. Phys., 11, 50115025, 2011 www.atmos-chem-phys.net/11/5011/2011/  

E-print Network

(trichloromethane), CCl4 (tetrachloromethane), Cl2C = CCl2 (perchloroethylene, PCE), CH3CCl3 (methyl chloroform, MCF of other anthropogenic halocarbons, such Correspondence to: M. Shao (mshao@pku.edu.cn) as CCl4, CHCl3, CH3

Meskhidze, Nicholas

223

Efficient Degradation of TCE in Groundwater Using Pd and Electro-generated H2 and O2: A Shift in Pathway from Hydrodechlorination to Oxidation in the Presence of Ferrous Ions  

PubMed Central

Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H2 and O2 is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H2O2 up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radical are detected due to decomposition of H2O2, slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 ?M improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 ?M/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na2SO4, NaCl, NaNO3, NaHCO3, K2SO4, CaSO4 and MgSO4 does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppresses degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.

2012-01-01

224

Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.  

PubMed

Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 ?M improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 ?M/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

2012-03-20

225

Reclamation of Elemental Sulfur from Flue Gas Biodesulfurization Waste Sludge  

Microsoft Academic Search

Perchloroethylene (PCE) extraction was used to reclaim elemental sulfur from flue gas biodesulfurization sludge. The sludge was generated from a biodesulfurization system that concurrently treated the flue gas scrubbing solution and wastewater of citric acid production. The sludge contained approximately 40–60% elemental sulfur; other components included flue gas dust, biomass, inorganic salts, and flocculants. The sulfur was extracted with PCE

Chengwen Wang; Yujue Wang; Yanqi Zhang; Qi Zhao; Ran Wang; Wang Chen; Elisabeth Gilmore; Peter Adams; Lester Lave; Huabo Duan; Weifeng Jia; Jinhui Li; Violeta Mugica; Sara Hernandez; Miguel Torres; Rocio García; Antton Melendez; Estibaliz García; Pedro Carnicer; Egoitz Pena; Miren Larrion; Juan Legarreta; Cristina Gutierrez-Canas; Parikhit Sinha; William Schew; Aniket Sawant; Kyle Kolwaite; Sarah Strode; Stephanie Weber; Jill Engel-Cox; Raymond Hoff; Ana Prados; Hai Zhang; Valerie Garcia; Kristen Foley; Edith Gego; David Holland; S. Rao; Sundar Christopher; Pawan Gupta; Christian Murray; Frederick Lipfert; Jung-Nan Hsu; Hsunling Bai; Shou-Nan Li; Chuen-Jinn Tsai

2010-01-01

226

Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers  

Microsoft Academic Search

Strains of Dehalococcoides are the only microbes known that can completely dechlorinate PCE, TCE, cis-DCE, and vinyl chloride to ethylene. Either naturally occurring strains or bioaugmentation cultures of Dehalococcoides are widely used for in situ bioremediation of contaminated groundwater. Naturally occurring strains have an important role in natural attenuation of PCE, TCE, cis-DCE, and vinyl chloride in groundwater. This study

Xiaoxia Lu; John T. Wilson; Donald H. Kampbell

2006-01-01

227

Single-Well Push-Pull Tests for Evaluating In Situ TCE, cis-DCE, and trans-DCE Cometabolism by Toluene-Utilizing Microorganisms  

NASA Astrophysics Data System (ADS)

Single-well-push-pull tests were performed to assess the feasibility of in situ aerobic cometabolism of chlorinated aliphatic hydrocarbons (CAHs), such as trichloroethylene (TCE) and cis-1,2-dichloroethylene (cis-DCE), by toluene-grown microorganisms. The tests were performed in the saturated zone at Fort Lewis, Washington, which is contaminated with TCE and cis-DCE. The tests assessed the heterogeneity of the indigenous microorganisms towards toluene utilization and CAH transformation. The tests were conducted in two multi-level monitoring wells at two different depths. Transport characteristics of the dissolved solutes were compared using bromide as a conservative tracer. Toluene utilization was evaluated by observing repeated uptake under natural gradient flow conditions and during push-pull activity tests. For the push-pull activity tests, the injected solution was amended with the substrates of interest, and after injection was permitted to reside in the formation for 24 hours and then extracted. Toluene utilization was indicated by decreases in concentration, when normalized to bromide as a conservative tracer, dissolved oxygen uptake, and the production of ortho-cresol as an intermediate oxidation product. Isobutene added to the injected groundwater was transformed to isobutene oxide, indicating that microorganisms that express an ortho-monooxygenase were stimulated. Similar rates of toluene utilization, isobutene, cis-DCE, and trans-DCE transformation were achieved at the four different locations tested. Rate estimates obtained in the 24-hour activity tests were similar to those achieved in the 50-hour natural gradient tests. The results indicated that at the four locations tested, there was little difference in the rates of toluene utilization and cometabolic transformation.

Semprini, L.; Azizian, M.; Istok, J. D.

2004-12-01

228

CROWTM PROCESS APPLICATION FOR SITES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUIDS AND CHLORINATED HYDROCARBONS  

SciTech Connect

Western Research Institute (WRI) has successfully applied the CROWTM (Contained Recovery of Oily Wastes) process at two former manufactured gas plants (MGPs), and a large wood treatment site. The three CROW process applications have all occurred at sites contaminated with coal tars or fuel oil and pentachlorophenol (PCP) mixtures, which are generally denser than water and are classified as dense non-aqueous phase liquids (DNAPLs). While these types of sites are abundant, there are also many sites contaminated with gasoline, diesel fuel, or fuel oil, which are lighter than water and lie on top of an aquifer. A third site type occurs where chlorinated hydrocarbons have contaminated the aquifer. Unlike the DNAPLs found at MGP and wood treatment sites, chlorinated hydrocarbons are approximately one and a half times more dense than water and have fairly low viscosities. These contaminants tend to accumulate very rapidly at the bottom of an aquifer. Trichloroethylene (TCE) and perchloroethylene, or tetrachloroethylene (PCE), are the major industrial chlorinated solvents that have been found contaminating soils and aquifers. The objective of this program was to demonstrate the effectiveness of applying the CROW process to sites contaminated with light non-aqueous phase liquids (LNAPLs) and chlorinated hydrocarbons. Individual objectives were to determine a range of operating conditions necessary to optimize LNAPL and chlorinated hydrocarbon recovery, to conduct numerical simulations to match the laboratory experiments and determine field-scale recoveries, and determine if chemical addition will increase the process efficiency for LNAPLs. The testing consisted of twelve TCE tests; eight tests with PCE, diesel, and wood treatment waste; and four tests with a fuel oil-diesel blend. Testing was conducted with both vertical and horizontal orientations and with ambient to 211 F (99 C) water or steam. Residual saturations for the horizontal tests ranged from 23.6% PV to 0.3% PV. Also conducted was screening of 13 chemicals to determine their relative effectiveness and the selection of three chemicals for further testing.

L.A. Johnson, Jr.

2003-06-30

229

Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.  

PubMed

This study pilot-tested carboxymethyl cellulose (CMC) stabilized zero-valent iron (ZVI) nanoparticles (with a trace amount of Pd catalyst) for in situ destruction of chlorinated ethenes such as perchloroethylene (PCE) and trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) that had been in groundwater for decades. The test site was located in a well-characterized secondary source zone of PCBs and chlorinated ethenes. Four test wells were installed along the groundwater flow direction (spaced 5 ft apart), including one injection well (IW), one up-gradient monitoring well (MW-3) and two down-gradient monitoring wells (MW-1 and MW-2). Stabilized nanoparticle suspension was prepared on-site and injected into the 50-ft deep, unconfined aquifer. Approximately 150 gallons of 0.2 g/L Fe-Pd (CMC = 0.1 wt%, Pd/Fe = 0.1 wt%) was gravity-fed through IW-1 over a 4-h period (Injection #1). One month later, another 150 gallons of 1.0 g/L Fe-Pd (CMC = 0.6 wt%, Pd/Fe = 0.1 wt%) was injected into IW-1 at an injection pressure <5 psi (Injection #2). When benchmarked against the tracer, approximately 37.4% and 70.0% of the injected Fe was detected in MW-1 during injection #1 and #2, respectively, confirming the soil mobility of the nanoparticles through the aquifer, and higher mobility of the particles was observed when the injection was performed under higher pressure. Rapid degradation of PCE and TCE was observed in both MW-1 and MW-2 following each injection, with the maximum degradation being observed during the first week of the injections. The chlorinated ethenes concentrations gradually returned to their pre-injection levels after approximately 2 weeks, indicating exhaustion of the ZVI's reducing power. However, the injection of CMC-stabilized nanoparticle and the abiotic reductive dechlorination process appeared to have boosted a long-term in situ biological dechlorination thereafter, which was evidenced by the fact that PCE and TCE concentrations showed further reduction after two weeks. After 596 days from the first injection, the total chlorinated ethenes concentration decreased by about 40% and 61% in MW-1 and MW-2, respectively. No significant long-term reduction of PCB 1242 was observed in MW-1, but a reduction of 87% was evident in MW-2. During the 596 days of testing, the total concentrations of cis-DCE (dichloroethylene) and VC (vinyl chloride) decreased by 20% and 38% in MW-1 and MW-2, respectively. However, the combined fraction of cis-DCE and VC in the total chlorinated ethenes (PCE, TCE, cis-DCE and VC) increased from 73% to 98% and from 62% to 98%, respectively, which supports the notion that biological dechlorination of PCE and TCE was active. It is proposed that CMC-stabilized ZVI-Pd nanoparticles facilitated the early stage rapid abiotic degradation. Over the long run, the existing biological degradation process was boosted with CMC as the carbon source and hydrogen from the abiotic/biotic processes as the electron donor, resulting in the sustained enhanced destruction of the chlorinated organic chlorinated ethenes in the subsurface. PMID:20106501

He, Feng; Zhao, Dongye; Paul, Chris

2010-04-01

230

The Relationship between Multiple Myeloma and Occupational Exposure to Six Chlorinated Solvents  

PubMed Central

Objectives Few studies have examined whether exposure to chlorinated solvents is associated with increased risk of multiple myeloma (MM). Using occupational exposure information, we evaluated associations between the risk of MM and exposure to six chlorinated solvents: 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), methylene chloride (DCM), perchloroethylene (PCE), carbon tetrachloride, and chloroform. Methods MM cases were identified through cancer registries and controls were identified in the general population. In-person interviews obtained lifetime occupational histories and additional information on jobs with likely solvent exposure. We reviewed each job and assigned exposure metrics of probability, frequency, intensity, and confidence using job-exposure matrices modified by job-specific questionnaire information. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between MM and having ever been exposed to each, and any, chlorinated solvent and also analyzed whether associations varied by duration and cumulative exposure. We also considered all occupations that were given the lowest confidence scores as unexposed and repeated all analyses. Results Risk of MM was significantly elevated for subjects ever exposed to TCA (OR (95% CI): 1.8 (1.1–2.9)). Ever-exposure to TCE or DCM also entailed elevated, but not statistically significant, risks of MM; these became statistically significant when occupations that had low confidence scores were considered unexposed (TCE: 1.7 (1.0–2.7); DCM: 2.0 (1.2–3.2)). Increasing duration and cumulative exposure to TCE were associated with significantly increasing risk of MM when jobs given low confidence were considered unexposed. Increasing cumulative exposure to PCE was also associated with increasing MM risk. We observed non-significantly increased MM risks with exposure to chloroform; however, few subjects were exposed. Conclusions Evidence from this relatively large case-control study suggests that exposures to certain chlorinated solvents may be associated with increased incidence of MM; however, the study is limited by relatively low participation (52%) among controls. PMID:20833760

Gold, Laura S; Stewart, Patricia A; Milliken, Kevin; Purdue, Mark; Severson, Richard; Seixas, Noah; Blair, Aaron; Hartge, Patricia; Davis, Scott; De Roos, Anneclaire J

2011-01-01

231

Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996  

SciTech Connect

Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky.

Hughes, B.M.; Athmer, C.J.; Sheridan, P.W. [and others

1997-04-01

232

HEALTH ASSESSMENT DOCUMENT FOR TETRACHLOROETHYLENE (PERCHLOROETHYLENE)  

EPA Science Inventory

Tetrachloroethylene (PERC) is believed to exert its adverse effects upon humans via metabolism by the liver. Concern that PERC is likely to be a human carcinogen is based upon the evidence of the National Cancer Institute bioassay, in which PERC induced a statistically significan...

233

Desorption Behavior of Trichloroethene and Tetrachloroethene in U.S. Department of Energy Savannah River Site Unconfined Aquifer Sediments  

SciTech Connect

The DOE Savannah River Site (SRS) is evaluating the potential applicability of the monitored natural attenuation (MNA) process as a contributor to the understanding of the restoration of its unconfined groundwater aquifer known to be contaminated with the chlorinated hydrocarbon compounds trichloroethylene (TCE) and tetrachloroethylene (PCE). This report discusses the results from aqueous desorption experiments on SRS aquifer sediments from two different locations at the SRS (A/M Area; P-Area) with the objective of providing technically defensible TCE/PCE distribution coefficient (Kd) data and data on TCE/PCE reversible and irreversible sorption behavior needed for further MNA evaluation.

Riley, Robert G.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Brown, Christopher F.

2006-06-21

234

Biofiltration for control of volatile organic compounds (VOCS)  

SciTech Connect

Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

1995-10-01

235

Sensitive and Specific In-Situ Sensor for Monitoring Contaminated Water  

SciTech Connect

We report on the development of a high-sensitivity and high-specificity sensor, combining membrane extraction, pre-concentration, and gas-chromatographic differential mobility spectrometry (GC/DMS), for in situ detection of chlorinated hydrocarbons in water. Direct in-situ detection was achieved by membrane conversion of aqueous analyte to vapor, followed by vapor spectroscopy using GC/DMS analyzer. The limit of detection (LOD) reaches 0.37 parts per billion in volume (ppbv), or 0.54 ug/L, for aqueous trichloroethylene (TCE) and 1.6 ug/L for perchloroethylene (PCE) by incorporating a preconcentrator between the membrane extraction and GC/DMS detection systems. The high specificity was achieved using two-dimensional separation parameters of GC retention time and DMS compensation voltage. The presence of co-contaminants and foreign contaminants, such as benzene, toluene, CCl4, and CHCl3 did not interfere with the identification of chlorinated hydrocarbons. This highly-sensitive and -specific sensor paves the way for developing field-deployable sensors for in-situ and real-time monitoring of chlorinated hydrocarbons in groundwater and surface water.

Du, Yongzhai [ORNL] [ORNL; Watson, David B [ORNL] [ORNL; Whitten, William B [ORNL] [ORNL; Li, Haiyang [ORNL] [ORNL; Nazarov, Erkinjun [Sionex Corp] [Sionex Corp; Xu, Jun [ORNL] [ORNL

2010-01-01

236

Mortality among aircraft manufacturing workers  

PubMed Central

OBJECTIVES: To evaluate the risk of cancer and other diseases among workers engaged in aircraft manufacturing and potentially exposed to compounds containing chromate, trichloroethylene (TCE), perchloroethylene (PCE), and mixed solvents. METHODS: A retrospective cohort mortality study was conducted of workers employed for at least 1 year at a large aircraft manufacturing facility in California on or after 1 January 1960. The mortality experience of these workers was determined by examination of national, state, and company records to the end of 1996. Standardised mortality ratios (SMRs) were evaluated comparing the observed numbers of deaths among workers with those expected in the general population adjusting for age, sex, race, and calendar year. The SMRs for 40 cause of death categories were computed for the total cohort and for subgroups defined by sex, race, position in the factory, work duration, year of first employment, latency, and broad occupational groups. Factory job titles were classified as to likely use of chemicals, and internal Poisson regression analyses were used to compute mortality risk ratios for categories of years of exposure to chromate, TCE, PCE, and mixed solvents, with unexposed factory workers serving as referents. RESULTS: The study cohort comprised 77,965 workers who accrued nearly 1.9 million person-years of follow up (mean 24.2 years). Mortality follow up, estimated as 99% complete, showed that 20,236 workers had died by 31 December 1996, with cause of death obtained for 98%. Workers experienced low overall mortality (all causes of death SMR 0.83) and low cancer mortality (SMR 0.90). No significant increases in risk were found for any of the 40 specific cause of death categories, whereas for several causes the numbers of deaths were significantly below expectation. Analyses by occupational group and specific job titles showed no remarkable mortality patterns. Factory workers estimated to have been routinely exposed to chromate were not at increased risk of total cancer (SMR 0.93) or of lung cancer (SMR 1.02). Workers routinely exposed to TCE, PCE, or a mixture of solvents also were not at increased risk of total cancer (SMRs 0.86, 1.07, and 0.89, respectively), and the numbers of deaths for specific cancer sites were close to expected values. Slight to moderately increased rates of non-Hodgkin's lymphoma were found among workers exposed to TCE or PCE, but none was significant. A significant increase in testicular cancer was found among those with exposure to mixed solvents, but the excess was based on only six deaths and could not be linked to any particular solvent or job activity. Internal cohort analyses showed no significant trends of increased risk for any cancer with increasing years of exposure to chromate or solvents. CONCLUSIONS: The results from this large scale cohort study of workers followed up for over 3 decades provide no clear evidence that occupational exposures at the aircraft manufacturing factory resulted in increases in the risk of death from cancer or other diseases. Our findings support previous studies of aircraft workers in which cancer risks were generally at or below expected levels.   PMID:10615290

Boice, J. D.; Marano, D. E.; Fryzek, J. P.; Sadler, C. J.; McLaughlin, J. K.

1999-01-01

237

Retentive Memory of Bacteria: Long-Term Regulation of Dehalorespiration in Sulfurospirillum multivorans?  

PubMed Central

The gram-negative, strictly anaerobic epsilonproteobacterium Sulfurospirillum multivorans is able to gain energy from dehalorespiration with tetrachloroethene (perchloroethylene [PCE]) as a terminal electron acceptor. The organism can also utilize fumarate as an electron acceptor. Prolonged subcultivation of S. multivorans in the absence of PCE with pyruvate as an electron donor and fumarate as an electron acceptor resulted in a decrease of PCE dehalogenase (PceA) activity. Concomitantly, the pceA transcript level equally decreased as shown by reverse transcriptase PCR. After 35 subcultivations (approximately 105 generations), a pceA transcript was not detectable and the PceA protein and activity were completely absent. In such long-term subcultivated S. multivorans cells, the biosynthesis of catalytically active PceA was restored to the initial level within about 50 h (approximately three generations) by the addition of PCE or trichloroethene. Single colonies obtained from PceA-depleted cultures were able to induce PCE dechlorination, indicating that long-term subcultured cells still contained the functional pceA gene. The results point to a novel type of long-term regulation of PCE dehalogenase gene expression in S. multivorans. PMID:19103925

John, Markus; Rubick, Raffael; Schmitz, Roland P. H.; Rakoczy, Jana; Schubert, Torsten; Diekert, Gabriele

2009-01-01

238

RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT  

SciTech Connect

Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

2005-05-26

239

Innovative Technologies And Vadose Zone Treatment Of Chlorinated Volatile Organic Compounds - Case Study  

SciTech Connect

Over the last 10 years a mix of innovative and conventional characterization techniques has been used to assess the contamination of vadose zone sediments beneath the pilot-scale test facility known as TNX at the Savannah River Site (SRS) in South Carolina. Shallow soils and groundwater beneath the TNX facility are contaminated with chlorinated volatile organic compounds (CVOCs), trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), perchloroethylene (PCE), and chloroform (CHCl{sub 3}). An interim pump and treat remediation system was placed in operation in 1996 to provide hydraulic containment of groundwater containing greater than 500 ug/L dissolved TCE. In 1994, a vadose zone study was initiated to determine the degree and extent of CVOC contamination above the contaminated groundwater. Headspace sampling and analysis, acoustic infrared spectroscopy, cone penetrometry, and vadose zone pumping tests were used to determine contaminant concentrations and physical properties related to soil vapor extraction. In 2001, soil vapor extraction (SVE), a presumptive remedy for CVOCs in soils similar to those present beneath TNX, was selected to treat the CVOC contamination. Cone Penetrometer Testing (CPT) with soil vapor sampling provided a detailed understanding of the subsurface geology and CVOC distribution which was essential for proper well design and placement. Twelve SVE wells were installed using direct push technology (DPT) and were tested to determine specific capacity and CVOC concentrations. This information was then used to develop a strategy for operating the SVE system. Based on the results of the baseline testing and previous studies, sets of 2 to 3 extraction wells will be treated using SVE at one month intervals. This will allow continuous operation of the SVE system and give individual wells up to 3 months for rebound between treatments. This method of operation is intended to maximize contaminant recovery from individual wells and reduce the overall capital investment and operating cost of the SVE system.

NOONKESTER, JAY V.; NICHOLS, RALPH L.; DIXON, KENETH L.

2005-08-02

240

Green remediation: enhanced reductive dechlorination using recycled rinse water as bioremediation substrate  

SciTech Connect

Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of a substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)

Dawson, Gaynor; McKeon, Tom [CALIBRE Systems, Inc., Bellevue, WA (United States)

2007-07-01

241

DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION  

EPA Science Inventory

An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

242

IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS  

EPA Science Inventory

Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

243

IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS  

EPA Science Inventory

Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

244

MICROBIAL UTILIZATION OF VADOSE ZONE ORGANIC CARBON FOR REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE  

EPA Science Inventory

Aqueous extracts from a calcareous spodosol were used as the primary substrate to study the reductive dechlorination of tetrachloroethene (PCE). A comparison was made between extracts obtained using pure water and water saturated with trichloroethene (TCE). The latter solutions w...

245

Applications of Monitored Natural Attenuation in the USA (Presentation)  

EPA Science Inventory

Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

246

Applications of Monitored Natural Attenuation in the USA (Abstract)  

EPA Science Inventory

Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

247

BIOTRANSFORMATION OF TRICHLOROETHYLENE IN SOIL  

EPA Science Inventory

The organic contaminants that are most commonly detected in groundwater are low-molecular-weight, chlorinated aliphatic hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The authors exposed unsatu...

248

SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION  

EPA Science Inventory

Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

249

BIODEGRADATION OF CHLORINATED SOLVENTS: REACTIONS NEAR DNAPL AND ENZYME FUNCTION  

EPA Science Inventory

Chlorinated solvents are among the most common organic chemical groundwater contaminants at DOE sites, as well as at DOD and industrial facilities. Included are the solvents trichloroethene (TCE), tetrachloroethene (PCE), and carbon tetrachloride (CT). Commonly these contaminan...

250

ENHANCED SOURCE REMOVAL OF NONAQUEOUS PHASE LIQUID CONTAMINANTS BY CHEMICAL-BASED FLOODING  

EPA Science Inventory

Nonaqueous phase liquids (NAPLs) such as gasoline and halogenated solvents (trichloroethylene (TCE) and teterachloroethylene (PCE), etc) enter the subsurface after a spill, or from leaking underground storage tanks. The presence of residual dense nonaqueous phase liquids (DNAPL) ...

251

Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation  

ERIC Educational Resources Information Center

We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

2011-01-01

252

Complete reductive dechlorination of trichloroethene by a groundwater microbial consortium.  

PubMed

Bioremediation promises to be an important technique in the removal of trichloroethene (TCE) and tetrachloroethene (PCE) from contaminated waste sites and contaminated groundwater systems. However, the use of aerobic degradation to degrade these compounds is not always possible. Thus, anaerobic degradation is a promising alternative that may be used to remediate these sites. Recently, literature reports indicate complete anaerobic dechlorination of TCE and PCE by microorganisms enriched from wastewater treatment plants. We report here the complete dechlorination of TCE to ethene in anaerobic microcosms by microorganisms enriched from a TCE contaminated groundwater aquifer using glucose as an electron donor. Initial TCE degradation activity occurred after 10 days of incubation and TCE was no longer detected after 20 days of incubation. During the incubation period, the reductive dechlorination products associated with TCE degradation were detected. Ultimately, all of the TCE was converted to ethene. The glucose culture was further enriched and demonstrated increased rates of TCE conversion to ethene. Our results show that organisms isolated from a contaminated groundwater site are capable of completely degrading TCE to ethene at appreciable rates, and indicate the potential of using in situ anaerobic bioremediation to clean up TCE contaminated sites. PMID:9472315

Bolesch, D G; Nielsen, R B; Keasling, J D

1997-11-21

253

Development of an integrated, in-situ remediation technology. Draft topical report for task No. 9. Part II. Entitled: TCE degradation using non-biological methods, September 26, 1994--May 25, 1996  

SciTech Connect

Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The use of zero valence iron for reductive dechlorination of aliphatic chlorinated hydrocarbons is currently under investigation by a number of research groups as a potential method of in-situ treatment of contaminated ground water. The reaction appears to involve the transfer of electrons to chloro-aliphatic compounds by the oxidation of zero valence iron to ferrous iron (Fe{sup +2}). Our studies have indicated that this reaction is consistent with those of corrosion, and as such, can be influenced or increased by the presence of small amounts of metals (5% by weight) such as copper, tin, silver, gold and palladium coated on the iron surface. Incomplete coverage of the iron surface with a more electropositive metal results in an open galvanic cell, which increases the oxidation of iron and facilitates and increases the concurrent reduction of trichloroethylene and other chlorinated aliphatic compounds to the corresponding alkenes and alkanes. Our results show that plating more electropositive metals onto certain iron surfaces results in approximately a factor of ten increase in the dechlorination rate of small organochlorine compounds such as TCE.

Orth, R.G.; McKenzie, D.E.

1997-04-01

254

Compound-specific isotope analysis: Questioning the origins of a trichloroethene plume  

USGS Publications Warehouse

Stable carbon isotope ratios of trichloroethene (TCE), cis-1,2- dichloroethene, and trans-1,2-dichloroethene were determined by use of gas chromatography-combustion-isotope ratio mass spectroscopy to determine whether compound-specific stable carbon isotopes could be used to help understand the origin and history of a TCE groundwater plume in Fort Worth, TX. Calculated ??13C values for total chlorinated ethenes in groundwater samples, which can approximate the ??13C of a spilled solvent if all degradation products are accounted for, were useful for determining whether separate lobes of the plume resulted from different sources. Most notably, values for one lobe, where tetrachloroethene (PCE) has been detected periodically, were outside the range for manufactured TCE but within the range for manufactured PCE, whereas values for a separate lobe, which is downgradient of reported TCE spills, were within the range for manufactured TCE. Copyright ?? Taylor & Francis Group, LLC.

Eberts, S.M.; Braun, C.; Jones, S.

2008-01-01

255

DNAPLs at DOE sites: Background and assessment of characterization technologies  

SciTech Connect

The Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP) within the Office of Technology Development (OTD) has responsibility for identification, evaluation, and delivery of technologies needed for the work of the Department of Energy`s Office of Environmental Restoration and Waste Management. This report addresses part of that responsibility by providing summary information on DNAPL site characterization. A dense nonaqueous phase liquid (DNAPL) is a source of contamination that can persist in the subsurface for decades before dissipating completely into the vapor phase and groundwater. The DNAPL chemicals of particular concern to the DOE are chlorinated volatile organic compounds (Cl VOCS) such as carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and perchloroethylene (PCE). These Cl VOCs were used in multiple ton quantities at DOE sites and were often released to the subsurface. The predicted fate of released Cl VOC liquid is downward movement through the soil under the force of gravity. As it moves, some of the Cl VOC liquid becomes trapped in the soil pores as residual saturation. The liquid also moves rapidly downward if small fractures are present. This migration continues until an impermeable or semi-permeable layer is encountered. Then lateral movement or spreading occurs. The downward and lateral migration in the subsurface leads to DNAPL pools, lenses, and residual saturation that can cause long-term contamination of groundwater at levels well above drinking water standards. Although Cl VOCs have been detected as dissolved components in the groundwater and as vapor in the soil gas at several DOE sites, direct evidence of their presence as DNAPL is sparse and no measurements of the amounts of DNAPL present within a given volume of subsurface have been made. Consequently, unresolved DNAPL issues exist at DOE sites.

Junk, G.A.; Haas, W.J. Jr.

1993-12-01

256

Degradation of Perchloroethylene and Dichlorophenol by Pulsed-Electric  

E-print Network

to the nervous, epidermal, and skeletal systems are some of the effects observed in humans and animals exposed) and pesticides (i.e., 2,4-dichloro- phenoxyacetic acid) (Kroschwitz, 1993). Because of its many applications% of 108 sampled finished drinking water sites (Syracuse Research Corpora- tion, 1992). Damage

Wood, Thomas K.

257

Intrinsic and accelerated anaerobic biodegradation of perchloroethylene in groundwater  

SciTech Connect

The DuPont Niagara Falls Plant is located in a heavily industrialized area of Niagara Falls, New York, adjacent to the Niagara River. The plant has been in continuous operation since 1898 and manufactured various organic and inorganic chemicals. Chlorinated solvents were produced from 1930 to 1975 at the plant. Numerous hydrogeologic investigations have described the subsurface hydrogeology and indicated that the groundwater underlying the plant was impacted by a variety of chlorinated aliphatic hydrocarbons in a wide range of concentrations. DuPont initiated in-field evaluations to determine whether biological reductive anaerobic dechlorination was occurring naturally and, if so, whether such dechlorination could be enhanced in situ. A field program was subsequently implemented could be enhanced in situ. A field program was subsequently implemented in a preselected area of the plant through use of an in situ borehole bioreactor to attempt to stimulate indigenous biological reductive dechlorination of chlorinated aliphatics by the addition of yeast extract (substrate) and sulfate (electron acceptor). At this location, a very active microbial population developed, which reduced the in situ concentrations of chlorinated aliphatic compounds by more than 94%, but did not increase the typical biological degradation products. This may have been due to an alternative biological degradation pathway or to very rapid biological kinetics. Efforts to elucidate this mechanism have been initiated under a separate laboratory program.

Buchanan, R.J. Jr.; Ellis, D.E. [DuPont Co., Wilmington, DE (United States); Odom, J.M.; Lee, M.D. [DuPont Co., Newark, DE (United States); Mazierski, P.F. [DuPont Co., Niagara Falls, NY (United States). Environmental Remediation Services

1995-12-31

258

Trichloroethylene (TCE) adsorption using sustainable organic mulch  

Microsoft Academic Search

Soluble substrates (electron donors) have been commonly injected into chlorinated solvent contaminated plume to stimulate reductive dechlorination. Recently, different types of organic mulches with economic advantages and sustainable benefits have received much attention as new supporting materials that can provide long term sources of electron donors for chlorinated solvent bioremediation in engineered biowall systems. However, sorption capacities of organic mulches

Zongsu Wei; Youngwoo Seo

2010-01-01

259

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.

Fernando, Quintus (Tucson, AZ); Muftikian, Rosy (Tucson, AZ); Korte, Nic (Grand Junction, CO)

1997-01-01

260

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

Fernando, Quintus (Tucson, AZ); Muftikian, Rosy (Tucson, AZ); Korte, Nic (Grand Junction, CO)

1998-01-01

261

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

Fernando, Quintus (Tucson, AZ); Muftikian, Rosy (Tucson, AZ); Korte, Nic (Grand Junction, CO)

1997-01-01

262

Is neurotoxicity associated with environmental trichloroethylene (TCE)?  

PubMed

Individuals who lived near 2 electronic manufacturing plants were exposed to odorous chlorinated solvents by inhalation (directly) and by out gassing from well water. An exposure zone was defined by concentrations of trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, and vinyl chloride in groundwater. The author adopted trichloroethylene as a "shorthand" for the exposure designation. Residents complained of impaired recall and concentration, and of dizziness; therefore, the focus of this investigation was brain functions. Neurobehavioral functions, Profile of Mood States, frequencies of 35 symptoms, and questionnaire responses provided by 236 residents from exposure zones were compared with responses provided by 161 unexposed regional referents and by 67 Phoenix residents who lived outside the exposure zone areas. Pulmonary functions were measured with spirometry. Residents of the exposure zones were compared with regional referents, and the former had significantly (p < .05) delayed simple and choice reaction times, impaired balance, delayed blink reflex latency R-1, and abnormal color discrimination. In addition, these individuals had impaired (1) cognitive functions, (2) attention and perceptual motor speed, and (3) recall. Individuals who lived in exposure zones had airway obstructions. Adverse mood state scores and frequencies of 33 of 35 symptoms were elevated. In conclusion, individuals who lived in the exposure zones had neurobehavioral impairments, reduced pulmonary functions, elevated Profile of Mood State scores, and excessive symptom frequencies. PMID:12194155

Kilburn, Kaye H

2002-01-01

263

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1997-03-18

264

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1997-04-01

265

Dechlorination of TCE with palladized iron  

DOEpatents

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1998-06-02

266

Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry  

PubMed Central

Background The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. Methods Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA) in urine. Results Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA) after adjusting for a random participant effect and fixed effects of time and body mass index. Conclusion Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days) and multiplicity (air, blood, exhaled breath, and urine) of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term. PMID:18412959

McKernan, Lauralynn T; Ruder, Avima M; Petersen, Martin R; Hein, Misty J; Forrester, Christy L; Sanderson, Wayne T; Ashley, David L; Butler, Mary A

2008-01-01

267

Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.  

PubMed Central

Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation. Images PMID:3223763

Fathepure, B Z; Boyd, S A

1988-01-01

268

Bubbleless gas transfer technology for the in situ remediation of chlorinated hydrocarbons  

SciTech Connect

The primary objective of this project is to demonstrate the ability of hydrogen to supply reducing equivalents for the reductive dehalogenation of perchloroethylene (PCE). This objective will be accomplished by two types of activities. First, laboratory experiments will compare the kinetics of hydrogen-mediated dehalogenation with natural routes of loss (hydrolysis and natural attenuation). Secondly, bench-scale column experiments will be performed to demonstrate hydrogen-mediated reductive dehalogenation in aquifer sediments.

Gallagher, J.R.; Kurz, M.D.

1999-10-31

269

Electrochemical deposition of green rust on zero-valent iron  

E-print Network

Chair of Advisory Committee: Dr. Bill Batchelor Perchloroethylene (PCE) is a toxic contaminant that has been introduced into the environment over many years through industrial and agricultural wastes. Research has been done in the past...’ble Vijay D. Kulkarni) …whose toil in the barren soil of my mind bore this fruit, finally! vi ACKNOWLEDGEMENTS I hereby wholeheartedly acknowledge the help provided by my lab-mates, especially Jin- Kun Song and Choi; and my advisor Dr. Batchelor...

Kulkarni, Dhananjay Vijay

2006-08-16

270

Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues  

PubMed Central

Background: The U.S. Environmental Protection Agency (EPA) completed a toxicological review of tetrachloroethylene (perchloroethylene, PCE) in February 2012 in support of the Integrated Risk Information System (IRIS). Objectives: We reviewed key findings and scientific issues regarding the human health effects of PCE described in the U.S. EPA’s Toxicological Review of Tetrachloroethylene (Perchloroethylene). Methods: The updated assessment of PCE synthesized and characterized a substantial database of epidemiological, experimental animal, and mechanistic studies. Key scientific issues were addressed through modeling of PCE toxicokinetics, synthesis of evidence from neurological studies, and analyses of toxicokinetic, mechanistic, and other factors (tumor latency, severity, and background rate) in interpreting experimental animal cancer findings. Considerations in evaluating epidemiological studies included the quality (e.g., specificity) of the exposure assessment methods and other essential design features, and the potential for alternative explanations for observed associations (e.g., bias or confounding). Discussion: Toxicokinetic modeling aided in characterizing the complex metabolism and multiple metabolites that contribute to PCE toxicity. The exposure assessment approach—a key evaluation factor for epidemiological studies of bladder cancer, non-Hodgkin lymphoma, and multiple myeloma—provided suggestive evidence of carcinogenicity. Bioassay data provided conclusive evidence of carcinogenicity in experimental animals. Neurotoxicity was identified as a sensitive noncancer health effect, occurring at low exposures: a conclusion supported by multiple studies. Evidence was integrated from human, experimental animal, and mechanistic data sets in assessing adverse health effects of PCE. Conclusions: PCE is likely to be carcinogenic to humans. Neurotoxicity is a sensitive adverse health effect of PCE. Citation: Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, Barone S Jr, Makris SL, Glenn B, Subramaniam RP, Gwinn MR, Dzubow RC, Chiu WA. 2014. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect 122:325–334;?http://dx.doi.org/10.1289/ehp.1307359 PMID:24531164

Hogan, Karen A.; Scott, Cheryl Siegel; Cooper, Glinda S.; Bale, Ambuja S.; Kopylev, Leonid; Barone, Stanley; Makris, Susan L.; Glenn, Barbara; Subramaniam, Ravi P.; Gwinn, Maureen R.; Dzubow, Rebecca C.; Chiu, Weihsueh A.

2014-01-01

271

CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL  

EPA Science Inventory

The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

272

Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80  

NASA Astrophysics Data System (ADS)

Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

2010-12-01

273

Factors affecting the adsorption of trichloroethylene onto activated carbons  

NASA Astrophysics Data System (ADS)

In this work, an experimental study aimed at the assessment of the factors affecting the adsorption of trichloroethylene (TCE) from water solutions onto activated carbons is presented. The influence of sorbent properties, such as B.E.T. surface area, micropore volume, chemical composition and acid/basic surface functional groups on TCE adsorption capacity is experimentally assessed by testing a set of 12 sorbents. Moreover, the effect of the presence of other species in solution, such as sodium acetate and tetrachloroethylene (PCE), is studied through parametric TCE adsorption isotherms realization. The experimental results show that the TCE adsorption capacity is promoted by a high B.E.T. surface area, micropore volume and C content and it is significantly affected by the presence of a non-ionic compound of similar structure (PCE), however it does not depend on the presence of an organic salt (sodium acetate). These results confirm that neither TCE-carbon ionic interaction nor sorbent ionization phenomena are involved in the TCE adsorption, since its mechanism is based on dispersion forces (London-Van Der Walls interaction). A thorough analysis of the experimental data set suggests that, in consideration of the TCE adsorption mechanism, the maximization of basal plane extent (as the B.E.T. surface area) and its effective fraction (as the C content) is a valid criterion to select or synthesize a new suitable sorbent for TCE adsorption from waters.

Erto, A.; Andreozzi, R.; Lancia, A.; Musmarra, D.

2010-06-01

274

Using ²²²Rn as a naturally occurring tracer to estimate NAPL contamination in an aquifer.  

PubMed

The naturally occurring radioisotope (222)Rn was used as a partitioning tracer to evaluate the presence and amount of a non-aqueous phase liquid (NAPL) in an aquifer. The batch experiment results of a diesel contaminated soil showed that the emanation rate of (222)Rn decreased to 31%, relative to a background rate. Batch experiment results of water contaminated by gasoline, diesel, PCE and TCE were similar. A field study to examine TCE contamination was conducted using 54 groundwater samples in Wonju city, Republic of Korea. Estimates of TCE contamination ranged from <0.001 mg/L to 14.3mg/L, and (222)Rn concentrations ranged from 1.89 Bq/L to 444. Results of (222)Rn analysis showed that TCE contamination was mainly restricted to an asphalt laboratory area and that the (222)Rn values of a NAPL-contaminated aquifer were correlated with TCE analytical results. PMID:23602707

Yoon, Yoon Yeol; Koh, Dong Chan; Lee, Kil Yong; Cho, Soo Young; Yang, Jae Ha; Lee, Kang Kun

2013-11-01

275

Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments.  

PubMed

The anaerobic Dehalococcoides spp. is the only microorganism known to completely dechlorinate the hazardous compounds tetrachloroethene (PCE) or trichloroethene (TCE) via dichloroethene (DCE) and vinyl chloride (VC) to the terminal product, ethene. In this study, growth of Dehalococcoides spp. (DHC) and the expression of DHC dehalogenase genes were demonstrated for Yangtze enrichment cultures. Reductive dechlorination of chloroethenes occurred in Yangtze sediment without the addition of any external auxiliary substrates. All Yangtze enrichment cultures completely dechlorinated PCE and cis-DCE to ethene. To investigate expression of the dehalogenase genes pceA, tceA, vcrA, and bvcA, a protocol for messenger RNA (mRNA) extraction followed by reverse transcription and quantitative PCR analysis was established. During dechlorination, an increase in gene copy numbers of pceA, tceA, and vcrA was observed. However, temporary formation of mRNA was only measured in the case of the dehalogenase genes tceA and vcrA. Comparison of DHC dehalogenase patterns indicated that the Yangtze DHC community does not match any of the previously published enrichment cultures that were obtained from contaminated areas in the USA or Europe. PMID:25233916

Kranzioch, Irene; Ganz, Selina; Tiehm, Andreas

2014-09-20

276

ANNUAL REPORT. DEVELOPMENT OF RADON AS A NATURAL TRACER FOR MONITORING THE REMEDIATION OF NAPL CONTAMINATION IN THE SUBSURFACE  

EPA Science Inventory

Dense non-aqueous phase liquids (DNAPLs) such as trichloroethene (TCE) and perchloroethene (PCE) present long-term challenges in terms of quantification in the subsurface at many DOE facilities. Over the past year we have continued investigating a potentially lower-cost method fo...

277

EFFECT OF FENTON'S REAGENT ON SUBSURFACE MICROBIOLOGY AND BIODEGRADATION CAPACITY  

EPA Science Inventory

Microcosm studies were conducted to determine the effect of Fenton's reagent on subsurface microbiology and biodegradation capacity in a DNAPL (PCE/TCE) contaminated aquifer previously treated with the reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatmen...

278

PHYSIOLOGICALLY-BASED TOXICOKINETIC MODELING OF THREE WATERBORNE CHLOROETHANES IN CHANNEL CATFISH, ICTALURUS PUNCTATUS  

EPA Science Inventory

A physiologically-based toxicokinetic model for fish was used to describe the uptake and disposition of three chlorinated ethanes in channel catfish (Ictalurus punctatus). atfish were simultaneously exposed to 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachlo...

279

Cyclodextrin-enhanced solubilization and removal of residual-phase chlorinated solvents from porous media  

SciTech Connect

The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced by up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.

Boving, T.B.; Wang, X.; Brusseau, M.L. [Univ. of Arizona, Tucson, AZ (United States)] [Univ. of Arizona, Tucson, AZ (United States)

1999-03-01

280

Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture  

Microsoft Academic Search

Use of an appropriate hydrogen level is necessary to favor dehalogenation of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE), over other hydrogen using processes. This study examined the competition between dehalogenators and other microorganisms occurring in a benzoate-acclimated dehalogenating methanogenic mixed culture. Results show that the dehalogenators competed best against methanogens and homoacetogens when the hydrogen level was

Yanru Yang; Perry L. McCarty

1998-01-01

281

Desorption Behavior of Trichloroethene and Tetrachloroethene in U.S. Department of Energy Savannah River Site Unconfined Aquifer Sediments  

Microsoft Academic Search

The DOE Savannah River Site (SRS) is evaluating the potential applicability of the monitored natural attenuation (MNA) process as a contributor to the understanding of the restoration of its unconfined groundwater aquifer known to be contaminated with the chlorinated hydrocarbon compounds trichloroethylene (TCE) and tetrachloroethylene (PCE). This report discusses the results from aqueous desorption experiments on SRS aquifer sediments from

Robert G. Riley; Jim E. Szecsody; Alexandre V. Mitroshkov; Christopher F. Brown

2006-01-01

282

Degradation of Perchloroethene by zero-valent iron evaluated by carbon isotope fractionation  

NASA Astrophysics Data System (ADS)

Perchloroethene (PCE) is a widely spread groundwater contaminant in formally used industrial sites. Zero valent iron (ZVI) is used for in situ chemical reduction (ISCR) of PCE contaminants in the groundwater. A key factor in the application of in situ remediation technologies is a proper monitoring of contaminant reduction. The measurement of the stable isotope ratio is a promising method that is already used for quantifying microbial degradation of chlorinated contaminants. The carbon isotope ratio of PCE, measured by - isotope ratio mass spectrometry coupled to a gas chromatograph via a combustion interface (GC-C-IRMS), increases during degradation of PCE and can be directly related to the degree of degradation. It can be used to directly quantify chemical degradation and thus serves as a useful monitoring tool for groundwater remediation. An experiment to determine the carbon isotopic fractionation factor was performed as a lab experiment using Nanofer Star (NANOIRON). Two different PCE concentrations (c1: 220mgL-1, c2: 110mgL-1) mixed with 0.5 g of ZVI were sealed under deoxygenated conditions in 250 ml glas bottles locked with mininert caps. The bottles were incubated on a shaker for 865 h. Samples were taken weekly to measure the change in the carbon isotopic ratio of PCE as well as its concentration. Results showed a strong increase in the carbon isotope ratio (?-value) of PCE (start: -27 o end: -4 ), which indicates a significant dechlorination process of PCE. Beside PCE also one degradation product (Trichloroethylene - TCE) was measured. TCE was further dechlorinated as indicated by the ?-value change of TCE from -26 o to -4 oȦn unexpected intermediate value of -45 o for TCE was observed in the experiment. This fluctuation could be induced by the time depending concentration due to degradation and conversation processes. Furthermore, it seems that the progress of the ?-value is affected by the starting concentration of PCE (?-value of c1 < c2) as there is a higher ratio of PCE to ZVI.

Leitner, Simon; Watzinger, Andrea; Reichenauer, Thomas G.

2014-05-01

283

Electrical impedance tomography of the 1995 OGI perchloroethelyne release  

SciTech Connect

Goal is to determine if electrical impedance tomography (EIT) might be useful to map free product DNAPL (dense nonaqueous phase liquids) contamination. EIT was used to image the plume resulting from a release of 189 liters (50 gallons) of perchloroethylene (PCE) into a saturated aquifer constructed of sand with two layers of bentonite. Images were made in 4 planes, before, during, and after the release, to generate a detailed picture of the spatial and temporal development of the plume. Information of the EI (both in phase and out of phase voltages) was used at several different frequencies to produce images. Some frequency dispersion was observed in the images before and after the PCE release. Laboratory measurements of organic contamination in soil indicate detectable dispersion. A search for this effect in EIT images reveals weak evidence, the signal appearing just above the measurement uncertainty, of a change in the reactance in the soil because of the PCE.

Dailey, W.; Ramirez, A.

1996-10-01

284

Structural basis for organohalide respiration.  

PubMed

Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region. PMID:25278505

Bommer, Martin; Kunze, Cindy; Fesseler, Jochen; Schubert, Torsten; Diekert, Gabriele; Dobbek, Holger

2014-10-24

285

Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes.  

PubMed

Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. PMID:7574658

McClay, K; Streger, S H; Steffan, R J

1995-09-01

286

Induction of toluene oxidation activity in pseudomonas mendocina KR1 and pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes  

SciTech Connect

Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. 22 refs., 4 tabs.

McClay, K.; Streger, S.H.; Steffan, R.J. [Envirogen Inc., Lawrenceville, NJ (United States)

1995-09-01

287

Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes.  

PubMed Central

Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. PMID:7574658

McClay, K; Streger, S H; Steffan, R J

1995-01-01

288

Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalian cytochrome P450 2E1.  

PubMed

Cytochrome P450 2E1 (CYP2E1) is a key enzyme in the mammalian metabolism of several low molecular weight volatile organic compounds (VOCs), such as trichloroethylene (TCE), vinyl chloride (VC), carbon tetrachloride (CT), benzene, chloroform, and bromodichloromethane (BDCM), which are all common environmental pollutants that pose risks to human health. We have developed a transgenic tobacco (Nicotiana tabacum cv. Xanthii) that expresses CYP2E1 with increased activity toward TCE and ethylene dibromide. In experiments with tobacco plant cuttings exposed to VOCs in small hydroponic vessels, the transgenic tobacco had greatly increased rates of removal of TCE, VC, CT, benzene, toluene, chloroform, and BDCM, compared to wild-type or vector control tobacco, but not of perchloroethylene or 1,1,1-trichloroethane. PMID:18350910

James, C Andrew; Xin, Gang; Doty, Sharon L; Strand, Stuart E

2008-01-01

289

Biomonitoring study of dry cleaning workers using cytogenetic tests and the comet assay.  

PubMed

Perchloroethylene (PCE) is the main solvent used in the dry cleaning industry worldwide. The aim of the present work was to evaluate the genotoxic potential of occupational exposure to PCE in dry cleaning workers. The study was carried out in 59 volunteers (30 workers, 29 controls). The genotoxic effect was evaluated by analyzing chromosome aberrations (CAs), and micronuclei (MN) and DNA damage (assessed by the comet assay) in peripheral blood lymphocytes. Environmental monitoring of exposure was carried out on personal breathing zone air samples collected during two consecutive working days by measuring the concentration of PCE air levels. The mean PCE concentration in workplace air of dry cleaning workers was 31.40 mg/m(3). There were no significant differences in CA frequency between dry cleaning workers and the controls, but analysis showed a significant association of CA frequency with employment duration and frequency of exposure to PCE. The MN frequency and DNA damage detected by alkaline comet assay were significantly increased in dry cleaning workers compared to the controls. The results suggest that (a) chronic occupational exposure to dry cleaning solvents below permissible occupational exposure limit of 70 mg/m(3) (i.e., ~10.3 ppm) may lead to an increased risk of genetic damage among dry cleaning workers, and (b) CA, MN tests, and comet assay are useful to monitor populations exposed to low doses of PCE. PMID:24116666

Everatt, R?ta; Slapšyt?, Gražina; Mierauskien?, J?rat?; Dedonyt?, Veronika; Bakien?, Liuda

2013-01-01

290

Interplay between subsurface structural heterogeneity and multi-species reactive transport in human health risk predictions  

NASA Astrophysics Data System (ADS)

The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel times and other higher order statistics. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme, and the total risk (TR) for human health related to the mixtures of the four carcinogenic plumes is evaluated. Results show two distinct spatio-temporal behavior of the TR estimation. At a fixed environmentally sensitive location, aquifers with a high degree of connectivity display a lower TR. On the other hand, at the same environmentally sensitive location, the poorly connected aquifer yields higher TR. Our results reflect the interplay between the characteristic reactive time for each component and the characteristic travel time of the plume since the production of VC depends on these factors.

Henri, C.; Fernandez-Garcia, D.; de Barros, F.

2013-12-01

291

Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems  

SciTech Connect

The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

Burris, D.R.; Smith, M.H. [Armstrong Lab., Tyndall Air Force Base, FL (United States)] [Armstrong Lab., Tyndall Air Force Base, FL (United States); Delcomyn, C.A. [Applied Research Associates, Inc., Tyndall Air Force Base, FL (United States)] [Applied Research Associates, Inc., Tyndall Air Force Base, FL (United States); Roberts, A.L. [Johns Hopkins Univ., Baltimore, MD (United States)] [Johns Hopkins Univ., Baltimore, MD (United States)

1996-10-01

292

Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision  

PubMed Central

Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants’ gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthony’s D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: –0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

2012-01-01

293

Mixed Redox Catalytic Destruction of Chlorinated Solvents in Soils and Groundwater: From the Laboratory to the Field  

PubMed Central

A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945

Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric

2010-01-01

294

Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.  

PubMed

Reductive dehalogenation of tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC) was examined in four cultures containing Dehalococcoides-like microorganisms. Dechlorination and growth kinetics were compared using a Monod growth-rate model for multiple electron acceptor usage with competition. Included were the Victoria mixed culture containing Dehalococcoides species strain VS (from Victoria, TX), the mixed culture KB-1/VC (from southern Ontario), the Pinellas mixed culture (from Pinellas, FL), and D. ethenogenes strain 195. All cultures, with the exception of D. ethenogenes strain 195, grew with VC as catabolic electron acceptor. A dilution method was developed that allows a valid comparison to be made of dehalogenating kinetics between different mixed cultures. Using this procedure, maximum growth rates on VC were found to be similar for strain VS and KB-1/VC (0.42-0.49 +/- 0.02 d(-1)) but slower for the Pinellas culture (0.28 +/- 0.01 d(-1)). The 16S rRNA gene sequences were determined to ensure that no cross contamination between cultures had occurred. Following enrichment of the VC dechlorinating microorganisms on VC, the cultures were amended with DCE, TCE, or PCE. The three mixed cultures failed to dechlorinate PCE or did so very slowly. However, the dilution technique indicated that all experienced growth on TCE and DCE as well as on VC. Maximum growth rates on DCE alone were quite similar (0.43-0.46 d(-1)), while the Pinellas culture grew faster on TCE alone (0.49 d(-1)) than did the other two mixed cultures (0.33-0.35 d(-1)). Half-velocity and inhibition constants for growth on TCE were also determined for the three mixed cultures; both constants were found to be essentially equal and the same for the different cultures, varying between only 8.6 and 10.5 microM. The ability of the strain VS, KB-1/VC, and Pinellas cultures to utilize TCE rapidly with conversion to ethene is quite different from that of any other reported microorganism. It was separately confirmed with more traditional cell-counting techniques that strain VS coupled TCE, as well as DCE and VC, utilization with growth. This is the first report of an organism obtaining energy for growth through every step in the reduction of TCE to ethene. Also, as suggested by the dilution technique, the dehalogenating organisms in the KB-1/VC and Pinellas cultures appear to obtain growth from TCE utilization as well. Such ability to grow while dehalogenating TCE to ethene will be an important advantage for their use in bioaugmentation. PMID:15487786

Cupples, Alison M; Spormann, Alfred M; McCarty, Perry L

2004-09-15

295

A review of potential neurotoxic mechanisms among three chlorinated organic solvents  

SciTech Connect

The potential for central nervous system depressant effects from three widely used chlorinated solvents, trichloroethylene (TCE), perchloroethylene (PERC), and dichloromethane (DCM), has been shown in human and animal studies. Commonalities of neurobehavioral and neurophysiological changes for the chlorinated solvents in in vivo studies suggest that there is a common mechanism(s) of action in producing resultant neurotoxicological consequences. The purpose of this review is to examine the mechanistic studies conducted with these chlorinated solvents and to propose potential mechanisms of action for the different neurological effects observed. Mechanistic studies indicate that this solvent class has several molecular targets in the brain. Additionally, there are several pieces of evidence from animal studies indicating this solvent class alters neurochemical functions in the brain. Although earlier evidence indicated that these three chlorinated solvents perturb the lipid bilayer, more recent data suggest an interaction between several specific neuronal receptors produces the resultant neurobehavioral effects. Collectively, TCE, PERC, and DCM have been reported to interact directly with several different classes of neuronal receptors by generally inhibiting excitatory receptors/channels and potentiating the function of inhibitory receptors/channels. Given this mechanistic information and available studies for TCE, DCM, and PERC, we provide hypotheses on primary targets (e.g. ion channel targets) that appear to be most influential in producing the resultant neurological effects. - Research Highlights: > Comparison of neurological effects among TCE, PERC, and DCM. > Correlation of mechanistic findings to neurological effects. > Data support that TCE, PERC, and DCM interact with several ion channels to produce neurological changes.

Bale, Ambuja S., E-mail: bale.ambuja@epa.gov; Barone, Stan; Scott, Cheryl Siegel; Cooper, Glinda S.

2011-08-15

296

Degradation of perchloroethylene and nitrate by high-activity modified green rusts  

E-print Network

, nitrate reduction by GR-F(Cu) and GR-F(Pt) was further studied to determine the effects on degradation rates of pH, Cu(II) addition, and initial nitrate concentration. A reaction model with four sequential steps was proposed to describe the process...

Choi, Jeong Yun

2006-10-30

297

CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R822721C633)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

298

SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS  

EPA Science Inventory

The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

299

Characterization of the Corrinoid Iron-Sulfur Protein Tetrachloroethene Reductive Dehalogenase of Dehalobacter restrictus  

PubMed Central

The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 ± 1 kDa, whereas the native molecular mass was 71 ± 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-?-d-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 ± 0.1 mol of cobalamin, 0.6 ± 0.02 mol of cobalt, 7.1 ± 0.6 mol of iron, and 5.8 ± 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 ± 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The Km values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 ± 3.2, 23.7 ± 5.2, and 47 ± 10 ?M, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy. PMID:12902251

Maillard, Julien; Schumacher, Wolfram; Vazquez, Francisco; Regeard, Christophe; Hagen, Wilfred R.; Holliger, Christof

2003-01-01

300

Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico  

SciTech Connect

The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

1996-02-01

301

Use of a 2-inch, dual screen well to conduct aquifer tests in the upper and lower Lost lake aquifer zones: Western sector, A/M area, SRS  

SciTech Connect

The Western Sector, A/M Area is located just west of the M-Area Settling Basin on an upland area. The area is adjacent to the gently inclined area where the upland drops off to the Savannah River floodplain. Water in the parts of the uppermost aquifers contains dissolved contaminants which originated at the land surface and have leached downward into the groundwater. Subsurface contamination originated in the locality of the M-Area Settling Basin and Lost Lake, which is a Carolina Bay. These locations functioned as disposal sites for industrial solvents during the early years of operation of the Savannah River Site. The primary groundwater contaminants are trichloroethylene (TCE) and tetrachloroethylene (PCE), and groundwater concentrations of TCE are significantly greater than the PCE.

Hiergesell, R.A.; Novick, J.S.

1996-09-01

302

FY02 Final Report on Phytoremediation of Chlorinated Ethenes in Southern Sector Sediments of the Savannah River Site  

SciTech Connect

This final report details the operations and results of a 3-year Seepline Phytoremediation Project performed adjacent to Tims Branch, which is located in the Southern Sector of the Savannah River Site (SRS) A/M Area. Phytoremediation is a process where interactions between vegetation, associated microorganisms, and the host substrate combine to effectively degrade contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that shows promise for the effective and safe cleanup of certain hazardous wastes. It has the potential to remediate numerous volatile organic compounds (VOCs). Extensive characterization work has demonstrated that two VOCs, tetrachloroethylene (PCE) and trichloroethylene (TCE) are the major components of the VOC-contaminated groundwater that is migrating through the Southern Sector and Tims Branch seepline area (WSRC, 1999). The PCE and TCE are chlorinated ethenes (CE), and have been detected in seepline soils and ground water adjacent to the ecologically-sensitive Tims Branch seepline area.

Brigmon, R..L.

2004-01-30

303

Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.  

SciTech Connect

This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

2003-08-01

304

Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: Application to urban plume in Verl, Germany  

USGS Publications Warehouse

Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times. ?? 2011 American Chemical Society.

Limmer, M.A.; Balouet, J.-C.; Karg, F.; Vroblesky, D.A.; Burken, J.G.

2011-01-01

305

Vibrating pervaporation modules: Effect of module design on performance  

Microsoft Academic Search

A commercial-scale vibrating pervaporation membrane module was fabricated and evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions. Experiments with surrogate solutions of four hydrophobic VOCs (1,1,1-trichloroethane (TCA), trichloroethylene (TCE), tetrachloroethylene (PCE), and methyl t-butyl ether (MTBE)) were performed. VOC removal performance for this module was compared to published data for two earlier full-scale vibrating modules of

Leland M. Vane; Franklin R. Alvarez

2005-01-01

306

Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities.  

PubMed

Tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants that also impact tidal flats, especially near urban and industrial areas. However, very little is known about dechlorinating microbial communities in tidal flats. Titanium pyrosequencing, 16S rRNA gene clone libraries, and dechlorinator-targeted quantitative real-time PCR (qPCR) characterized reductive dechlorinating activities and populations in tidal flat sediments collected from South Korea's central west coast near Kangwha. In microcosms established with surface sediments, PCE dechlorination to TCE began within 10 days and 100% of the initial amount of PCE was converted to TCE after 37 days. cis-1,2-Dichloroethene (cis-DCE) was observed as dechlorination end product in microcosms containing sediments collected from deeper zones (i.e., 35-40 cm below ground surface). Pyrosequencing of bacterial 16S rRNA genes and 16S rRNA gene-targeted qPCR results revealed Desulfuromonas michiganensis-like populations predominanted in both TCE and cis-DCE producing microcosms. Other abundant groups included Desulfuromonas thiophila and Pelobacter acidigallici-like populations in the surface sediment microcosms, and Desulfovibrio dechloracetivorans and Fusibacter paucivorans-like populations in the deeper sediment microcosms. Dehalococcoides spp. populations were not detected in these sediments before and after incubation with PCE. The results suggest that tidal flats harbor novel, salt-tolerant dechlorinating populations and that titanium pyrosequencing provides more detailed insight into community structure dynamics of the dechlorinating microcosms than conventional 16S rRNA gene sequencing or fingerprinting methods. PMID:21053056

Lee, Jaejin; Lee, Tae Kwon; Löffler, Frank E; Park, Joonhong

2011-07-01

307

Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes  

E-print Network

and Bont, 1992). The end products in VC biodegradation are found to be methane, ethene and carbon dioxide, as reported in several studies conducted by Bradley (Bradley and Chapelle, 1996; Bradley and Chapelle, 1998; Bradley and Chapelle, 1999; Bradley... and Chapelle, 2000). Several studies (Andreas et al., 2009; Song and Carraway, 2005) have shown that chloroethenes (PCE, TCE, DCE and VC) can be degraded by zero-valent iron (ZVI). Most of this research shows a reductive dechlorination mechanism...

Liu, Xu

2013-07-27

308

Microbial based chlorinated ethene destruction  

DOEpatents

A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

Bagwell, Christopher E. (Aiken, SC); Freedman, David L. (Clemson, SC); Brigmon, Robin L. (North Augusta, SC); Bratt, William B. (Atlanta, GA); Wood, Elizabeth A. (Marietta, GA)

2009-11-10

309

A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water  

Microsoft Academic Search

1,1,2-Trichloroethylene (TCE), 1,1-dichloroethylene, cis and trans-1,2-dichloroethylene and tetrachloroethylene (PCE), at concentrations of 20 ppm in aqueous solutions were rapidly hydrodechlorinated to ethane (in a few minutes), on the surface of palladized iron in batch experiments that were performed in closed vials. No intermediate reaction products such as 1,1-dichloroethylene, 1,2-dichloroethylenes and vinyl chloride were detected at concentrations > 1 ppm either

Rosy Muftikian; Quintus Fernando; Nic Korte

1995-01-01

310

Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?  

NASA Astrophysics Data System (ADS)

Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (?13C and ?37Cl) tend to show a linear correlation with a slope (m ? ?C/?Cl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.

Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

2014-05-01

311

Mechanisms, chemistry and kinetics of the anaerobic biodegradation of cis-dichloroethylene and vinyl chloride. First annual progress report, September 15, 1996--September 14, 1997  

SciTech Connect

'This three-year project is to study the anaerobic biological conversion of cis-1,2- dichloroethene (cDCE) and vinyl Chloride (VC) to ethene. The study is being conducted in three separate phases, the first to better understand the mechanisms involved in cDCE and VC biodegradation, the second to evaluate the chemistry of the processes involved, and the third, to study factors affecting reaction kinetics. Major funding is being provided by the US Department of Energy, but the DuPont Chemical Company has also agreed to directly cost-share on the project at a rate of $75,000 per year for the three year period. Tetrachloroethylene (PCE) and trichloroethylene (TCE) are solvents that are among the most widely occurring organic groundwater contaminants. The biological anaerobic reduction-of chlorinated aliphatic hydrocarbons (CAHs) such as PCE and TCE to cDCE and VC in groundwater was reported in the early 1980s. Further reduction of PCE and its intermediates to ethene was reported in 1989. Several pure cultures of anaerobic bacteria have been found to reductively dehalogenate PCE to cDCE Rates of reduction of PCE and TCE to cDCE are high and the need for electron donor addition for the reactions is small. However, the subsequent reduction of cDCE to VC, and then of VC to the harmless end product, ethene, is much slower and only recently has a pure culture been reported that is capable of reducing cDCE to VC or VC to ethene. There are numerous. reports of such conversions in mixed cultures. The reduction of cDCE and VC to ethene is where basic research is most needed and is the subject of this study.'

McCarty, P.L.; Spormann, A.

1997-01-01

312

Evaluation of the Webler-Brown model for estimating tetrachloroethylene exposure from vinyl-lined asbestos-cement pipes  

PubMed Central

Background From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies. Methods Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences. Results The mean and median measured PCE concentrations in the water samples were 66 and 0.5 ?g/L, respectively, and the range extended from non-detectable to 2432 ?g/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (? = 0.84 vs. 0.34), in areas with simple vs. complex geometry (? = 0.51 vs. 0.38), and near pipes installed in 1973–1976 vs. other years (? = 0.56 vs. 0.42 for 1968–1972 and 0.37 for 1977–1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations. Conclusion PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available. PMID:18518975

Spence, Lisa A; Aschengrau, Ann; Gallagher, Lisa E; Webster, Thomas F; Heeren, Timothy C; Ozonoff, David M

2008-01-01

313

Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry.  

PubMed

Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes. PMID:12143993

Witt, Michael E; Klecka, Gary M; Lutz, Edward J; Ei, Tom A; Grosso, Nancy R; Chapelle, Francis H

2002-07-01

314

Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.  

PubMed Central

Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

Kästner, M

1991-01-01

315

Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: Groundwater biogeochemistry  

USGS Publications Warehouse

Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.

Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.

2002-01-01

316

Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.  

PubMed

In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

2014-07-01

317

Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.  

SciTech Connect

Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

2003-01-01

318

Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea  

NASA Astrophysics Data System (ADS)

To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe ( N=5), Mn ( N=6), Cu ( N=1), TCE ( N=6), PCE ( N=8), 1,2-DCA ( N=1), and 1,2-dichloropropane ( N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas ( P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.

Park, Seong-Sook; Kim, Soon-Oh; Yun, Seong-Taek; Chae, Gi-Tak; Yu, Soon-Young; Kim, Seungki; Kim, Young

2005-10-01

319

Effects of capillary pressure and use of polymer solutions on dense, non-aqueous-phase liquid retention and mobilization in a rough-walled fracture  

SciTech Connect

In this laboratory study, perchloroethylene (PCE) was permitted to migrate through a horizontal rough-walled limestone fracture under controlled conditions to assess fracture retention capacity. Retention of immiscible-phase PCE in the absence of an applied wetting-phase hydraulic gradient varied between 11% and 26% of the fracture volume. A portion of this residual could be removed through water flooding; however, even at the maximum applied hydraulic gradient of 1.0, residual PCE remained in the fracture. The observed correlation of reduced residual saturation with capillary number (N[sub c]) demonstrated that this rough-walled fracture exhibited behavior similar to that of a porous medium under water-flooding conditions. For a given hydraulic gradient, polymer-enhanced floods (using xanthan gum) were not as successful as conventional water flooding at removing residual from the fracture. The traditional form of the capillary number became an increasingly poor predictor of mobilization behavior as the viscosity of the displacing phase was increased. Incorporation of ([mu][sub w]/[mu][sub nw])[sup [minus]0.5] into the traditional capillary number provided a more appropriate dimensionless group with which to correlate residual PCE saturation in the fracture as [mu][sub w] increased.

Longino, B.L.; Kueper, B.H. (Queen's Univ., Kingston, Ontario (Canada). Dept. of Civil Engineering)

1999-07-15

320

Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.  

PubMed

Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and ? and ?-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5??A of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ?61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. PMID:24119162

Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

2014-01-01

321

Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater  

PubMed Central

Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and ? and ?-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 ?A of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ?61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. PMID:24119162

Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

2014-01-01

322

Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration  

USGS Publications Warehouse

Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B.V. All rights reserved.

Johnson, R.H.; Poeter, E.P.

2007-01-01

323

Risk-based economic decision analysis of remediation options at a PCE-contaminated site.  

PubMed

Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model. A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions. PMID:20117877

Lemming, Gitte; Friis-Hansen, Peter; Bjerg, Poul L

2010-05-01

324

Dechlorination of PCE by mixtures of green rust and zero-valent iron  

E-print Network

such as pH (8, 9, and 10), ZVI pretreatment, and preparation method of the mixtures (GR[S]?? synthesized in the presence of ZVI; GR[S]?? and ZVI mixed after preparation). For all the experimental conditions evaluated, the activities of these reductants...

Marchal, Fabienne

2012-06-07

325

Introduction Competition for H2 in a PCE-contaminated aquifer  

E-print Network

is a bacterial anaerobic respiration in which CEs are sequentially reduced to harmless ethene. The interestingA detected on the site In presence of Fe(III) organohalide respiring bacteria are outcompeted for H2 (fig.2. Chlorinated ethenes (CEs) belong to the most common groundwater contaminants. Organohalide respiration

326

Three-fluid retention in porous media involving water, PCE and air  

Microsoft Academic Search

A classical way to obtain three-fluid retention curves in porous media from measured two-fluid retention curves is based on the Leverett concept, which states that the total volumetric liquid content in a water-wet porous medium, containing water, a nonaqueous-phase liquid (NAPL) and air, is a function of the capillary pressure across the interface between the continuous NAPL and air. This

C. Hofstee; J. H. Dane; W. E. Hill

1997-01-01

327

Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base.  

PubMed

Area 6 at Dover Air Force Base (Dover, DE) has been the location of an in-depth study by the RTDF (Remediation Technologies Development Forum Bioremediation of Chlorinated Solvents Action Team) to evaluate the effectiveness of natural attenuation of chlorinated ethene contamination in groundwater. Compound-specific stable carbon isotope measurements for dissolved PCE and TCE in wells distributed throughout the anaerobic portion of the plume confirm that stable carbon isotope values are isotopically enriched in 13C consistent with the effects of intrinsic biodegradation. During anaerobic microbial reductive dechlorination of chlorinated hydrocarbons, the light (12C) versus heavy isotope (13C) bonds are preferentially degraded, resulting in isotopic enrichment of the residual contaminant in 13C. To our knowledge, this study is the first to provide definitive evidence for reductive dechlorination of chlorinated hydrocarbons at a field site based on the delta13C values of the primary contaminants spilled at the site, PCE and TCE. For TCE, downgradient wells show delta13C values as enriched as -18.0/1000 as compared to delta13C values for TCE in the source zone of -25.0 to -26.0/1000. The most enriched delta13C value on the site was observed at well 236, which also contains the highest concentrations of cis-DCE, VC, and ethene, the daughter products of reductive dechlorination. Stable carbon isotope signatures are used to quantify the relative extent of biodegradation between zones of the contaminant plume. On the basis of this approach, it is estimated that TCE in downgradient well 236 is more than 40% biodegraded relative to TCE in the proposed source area. PMID:11347596

Sherwood Lollar, B; Slater, G F; Sleep, B; Witt, M; Klecka, G M; Harkness, M; Spivack, J

2001-01-15

328

Isolation and Characterization of a Facultatively Aerobic Bacterium That Reductively Dehalogenates Tetrachloroethene to cis-1,2-Dichloroethene  

PubMed Central

A rapidly-growing facultatively aerobic bacterium that transforms tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE) at high rates in a defined medium was isolated from a contaminated site. Metabolic characterization, cellular fatty acid analysis, and partial sequence analysis of 16S rRNA showed that the new isolate, strain MS-1, has characteristics matching those of the members of the family Enterobacteriaceae. Strain MS-1 can oxidize about 58 substrates including many carbohydrates, short-chain fatty acids, amino acids, purines, and pyrimidines. It can transform up to 1 mM PCE (aqueous) at a rate of about 0.5 (mu)mol of PCE(middot) h(sup-1)(middot)mg (dry weight) of cell(sup-1). PCE transformation occurs following growth on or with the addition of single carbon sources such as glucose, pyruvate, formate, lactate, or acetate or with complex nutrient sources such as yeast extract or a mixture of amino acids. PCE dehalogenation requires the absence of oxygen, nitrate, and high concentrations of fermentable compounds such as glucose. Enterobacter agglomerans biogroup 5 (ATCC 27993), a known facultative bacterium that is closely related to strain MS-1, also reductively dehalogenated PCE to cis-1,2-DCE. To our knowledge, this is the first report on isolation of a facultative bacterium that can reductively transform PCE to cis-1,2-DCE under defined physiological conditions. Also, this is the first report of the ability of E. agglomerans to dehalogenate PCE. PMID:16535267

Sharma, P. K.; McCarty, P. L.

1996-01-01

329

Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor  

NASA Astrophysics Data System (ADS)

A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ?mol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ?mol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.

Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

2010-12-01

330

Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics  

NASA Astrophysics Data System (ADS)

Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE < TCE < CF. Notably, the partitioning of all Tween surfactants into the NAPLs consisting of the least hydrophilic PCE was minimal. The partitioning behavior among different surfactants was somewhat complicated. The partitioning extent into CF-NAPLs increased in the order of Tween 20 < Tween 40 < Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

KANG, S.; Jeong, H. Y.

2013-12-01

331

Lowering temperature to increase chemical oxidation efficiency: The effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.  

PubMed

In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. PMID:24974015

de Weert, J P A; Keijzer, T J S; van Gaans, P F M

2014-12-01

332

Time-Dependent Interfacial Properties and DNAPL Mobility  

SciTech Connect

Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

Tuck, D.M.

1999-03-10

333

Probabilistic Health Risk Assessment of Chemical Mixtures: Importance of Travel Times and Connectivity  

NASA Astrophysics Data System (ADS)

Subsurface contamination cases giving rise to groundwater pollutions are extensively found in all industrialized countries. Under this pressure, risk assessment methods play an important role in population protection by (1) quantifying the potential impact on human health of an aquifer contamination and (2) helping and driving decisions of groundwater-resource managers. Many reactive components such as chlorinated solvents or nitrates potentially experience attenuation processes under common geochemical conditions. This represents an attractive and extensively used remediation solution but leads often to the production of by-products before to reach a harmless chemical form. This renders mixtures of contaminants a common issue for groundwater resources managers. In this case, the threat posed by these contaminants to human health at a given sensitive location greatly depends on the competition between reactive and advective-dispersive characteristic times. However, hydraulic properties of the aquifer are known to be spatially variable, which can lead to the formation of preferential flow channels and fast contamination pathways. Therefore, the uncertainty on the spatial distribution of the aquifer properties controlling the plume travel time may then play a particular role in the human health risk assessment of chemical mixtures. We investigate here the risk related to a multispecies system in response to different degrees of heterogeneity of the hydraulic conductivity (K or Y =ln(K)). This work focuses on a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport through three-dimensional mildly (?Y 2=1.0) and highly (?Y 2=4.0) heterogeneous aquifers. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme, and statistics of the total risk for human health (RT) related to the mixtures of the four carcinogenic plumes are evaluated. Results show two distinct spatiotemporal behavior of the RT estimation. Simulations in highly heterogeneous aquifers display a lower mean of RT close to the injection and higher further away. We explain this by the distinct ranges of travel times and connectivity metrics related to the two sets of aquifers. A high ?Y 2 trends to decrease the travel time (and increase the connectivity). Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in our case, early travel times lead a limited production of highly toxic daughter species and a lower total risk. Our results reflect then the interplay between the characteristic reactive time for each component and the characteristic travel time of the plume since the production of VC depends on these factors.

Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

2014-05-01

334

Integrating pollution prevention technology into public policy: the case of professional wet cleaning.  

PubMed

This paper discusses opportunities to promote pollution prevention technologies through public policy, describing the case of dry cleaning. The crisis in dry cleaning is associated with the industry's reliance on perchloroethylene (PCE), the chemical cleaning solvent used by the vast majority of cleaners. The limits to the current pollution control or end-of-pipe system of laws and regulations and the search for nontoxic alternatives are analyzed in light of the environmental and occupational hazards associated with PCE use. Criteria to evaluate those alternatives are then described, including their application to professional wet cleaning, a commercially available pollution prevention alternative to PCE. The article concludes with an evaluation of several public policy instruments that could be used to promote the diffusion of professional wet cleaning as a potential solution to this regulatory crisis. These include environmental and occupational regulations designed to reduce or eliminate risk from exposure to toxic substances as well as incentive-based programs. Both barriers and opportunities for the use of each instrument are identified. This review reveals that, while the pollution control approach to public policy has deepened the regulatory crisis in the garment care industry, policy instruments are currently available to create an effective transition toward a pollution prevention outcome. PMID:11993858

Sinsheimer, Peter; Gottlieb, Robert; Farrar, Corice

2002-04-15

335

Assessment of subsurface chlorinated solvent contamination using tree cores at the front street site and a former dry cleaning facility at the Riverfront Superfund site, New Haven, Missouri, 1999-2003  

USGS Publications Warehouse

Tree-core sampling has been a reliable and inexpensive tool to quickly assess the presence of shallow (less than about 30 feet deep) tetrachloroethene (PCE) and trichloroethene (TCE) contamination in soils and ground water at the Riverfront Superfund Site. This report presents the results of tree-core sampling that was successfully used to determine the presence and extent of chlorinated solvent contamination at two sites, the Front Street site (operable unit OU1) and the former dry cleaning facility, that are part of the overall Riverfront Superfund Site. Traditional soil and ground-water sampling at these two sites later confirmed the results from the tree-core sampling. Results obtained from the tree-core sampling were used to design and focus subsequent soil and ground-water investigations, resulting in substantial savings in time and site assessment costs. The Front Street site is a small (less than 1-acre) site located on the Missouri River alluvium in downtown New Haven, Missouri, about 500 feet from the south bank of the Missouri River. Tree-core sampling detected the presence of subsurface PCE contamination at the Front Street site and beneath residential property downgradient from the site. Core samples from trees at the site contained PCE concentrations as large as 3,850 mg-h/kg (micrograms in headspace per kilogram of wet core) and TCE concentrations as large as 249 mg-h/kg. Soils at the Front Street site contained PCE concentrations as large as 6,200,000 mg/kg (micrograms per kilogram) and ground-water samples contained PCE concentrations as large as 11,000 mg/L (micrograms per liter). The former dry cleaning facility is located at the base of the upland that forms the south bank of the Missouri River alluvial valley. Tree-core sampling did not indicate the presence of PCE or TCE contamination at the former dry cleaning facility, a finding that was later confirmed by the analyses of soil samples collected from the site. The lateral extent of PCE contamination in trees was in close agreement with the extent of subsurface PCE contamination determined using traditional soil and ground-water sampling methods. Trees growing in soils containing PCE concentrations of 60 to 5,700 mg/kg or larger or overlying ground water containing PCE concentrations from 5 to 11,000 mg/L generally contained detectable concentrations of PCE. The depth to contaminated ground water was about 20 to 25 feet below the land surface. Significant quantitative relations [probability (p) values of less than 0.05 and correlation coefficient (r2) values of 0.88 to 0.90] were found between PCE concentrations in trees and subsurface soils between 4 and 16 feet deep. The relation between PCE concentrations in trees and underlying ground water was less apparent (r2 value of 0.17) and the poor relation is thought to be the result of equilibrium with PCE concentrations in soil and vapor in the unsaturated zone. Based on PCE concentrations detected in trees at the Front Street site and trees growing along contaminated tributaries in other operable units, and from field hydroponic experiments using hybrid poplar cuttings, analysis of tree-core samples appears to be able to detect subsurface PCE contamination in soils at levels of several hundred micrograms per liter or less and PCE concentrations in the range of 8 to 30 mg/L in ground water in direct contact with the roots. Loss of PCE from tree trunks by diffusion resulted in an exponential decrease in PCE concentrations with increasing height above the land surface in most trees. The rate of loss also appeared to be a function of the size and growth characteristics of the tree as some trees exhibited a linear loss with increasing height. Diffusional loss of PCE in small (0.5-inch diameter) trees was observed to occur at a rate more than 10 times larger than in trees 6.5 inches in diameter. Concentrations of PCE also exhibited directional variability around the tree trunks and concentration differe

Schumacher, John G.; Struckhoff, Garrett C.; Burken, Joel G.

2004-01-01

336

Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene  

DOEpatents

A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

Googin, J.M.; Napier, J.M.; Travaglini, M.A.

1982-03-31

337

Characterization Report to Support the Phytoremediation Efforts for Southern Sector, Savannah River Site, Aiken, South Carolina  

SciTech Connect

In February, 1999, we conducted a small-scale characterization effort to support future remediation decisions for the Southern Sector of the upper Three Runs watershed. The study concentrated on groundwater adjacent to the seepline at Tim's Branch above and below Steed's Pond. the primary compounds of interest were the volatile organic contaminants (VOCs), trichlorethylene (TCE) and tetrachloroethylene (PCE). Due to the site topography and hydrogeology, samples collected north of Steed's Pond were from the M-Area (water table) aquifer; while those locations south of Steed's Pond provided samples from the Lost Lake aquifer. Results of the study suggest that the leading edge of the A/M Area plume in the Lost Lake aquifer may be approaching the seepline at Tim's Branch below Steed's Pond, south of Road 2. Neither TCE nor PCE were detected int he samples targeting the seepline of the water table aquifer. The concentrations found for both TCE and PCE associated with the Lost Lake aquifer outcrop region were slightly above the detection limit of the analytical instrument used. The findings of this study are consistent with the conceptual model for the organic contaminant plume in the A/M Area of the Savannah River Site (SRS) -- the plume in the Southern Sector is known to be depth discrete and primarily in the Lost lake Aquifer. The sites with detected VOCs are in the most upstream accessible reaches of Tim's Branch where water from the Lost Lake Aquifer crops out. Additional characterization efforts should be directed near this region to confirm the results and to support future planning for the dilute-distal portions of the A/M Area plume. These data, combined with existing groundwater plume data and future characterization results will provide key information to estimate potential contaminant flux to the seepline and to assess the effectiveness of potential clean-up activities such as phytoremediation.

Jerome, K.M.

1999-06-08

338

Laboratory and field evaluations of methodology for measuring emissions of chlorinated solvents from stationary sources. Project report  

SciTech Connect

Several chlorinated solvents are being evaluated for future emission regulations by the U.S. Environmental Protection Agency (EPA). Many state and local agencies already regulate chlorinated solvents. Therefore, measurement methodologies for these compounds should be investigated. Entropy was commissioned by the Quality Assurance Division of EPA's Atmospheric Research and Exposure Assessment Laboratory to perform laboratory and field studies to evaluate sampling and analytical techniques for the measurement of carbon tetrachloride (CCl4), chloroform (CHCl3), perchloroethylene (PERC), and trichloroethylene (TCE) emissions from stationary sources. The studies were conducted in two phases: preliminary work and field studies evaluating EPA Method 18 when applied to the emissions of PERC from degreasing facilities and laboratory and field studies evaluating modified EPA Method 18 sampling procedures for collection of all four chlorinated solvents under high temperature and high moisture conditions.

Carver, A.C.; DeWees, W.G.; Coppedge, E.A.

1990-02-01

339

Superfund Record of Decision (EPA Region 9): Spectra-Physics, (Teledyne Semiconductor), Mountain View, CA. (First remedial action), March 1991. Final report  

SciTech Connect

The Spectra-Physics site is composed of two Superfund sites: the Spectra-Physics site, a laser and related components manufacturing facility, and the Teledyne Semiconductor site, a semiconductor manufacturing facility, as well as offsite areas associated with a contaminated groundwater plume in Mountain View, California. Prior to the construction of public water and sewer connections in 1984, ground water use in the area included private water supply wells for homes and agriculture. Many of these wells have been abandoned, and only a few currently are in use. Since 1963, Spectra-Physics has manufactured lasers and associated components onsite, and has used VOCs including TCE as part of the manufacturing processes. The Record of Decision (ROD) addresses contamination of the ground water aquifers and onsite soil. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, and toluene. The selected remedial action for the site is included.

Not Available

1991-03-22

340

Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3  

SciTech Connect

This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

Hazen, T.C.

1991-09-18

341

Interfacial Tension Measurement in DNAPL/Aqueous Surfactant Systems  

PubMed

Spinning drop tensiometry has been used in the past to determine low interfacial tension between aqueous surfactant solutions and organic phases that are lighter than water. In this work, we extend the use of the technique to measurement of low interfacial tension between aqueous surfactant solutions and organic phases that are denser than water by altering the wettability of the spinning glass tube. The interfacial tensions of water-SDS-PCE and water-SDS-TCE are determined using this new method. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9441643

Cai; Mohanty

1997-11-15

342

Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air  

USGS Publications Warehouse

Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

Lopes, T.J.; Bender, D.A.

1998-01-01

343

A Major Cis Activator of the IRBP Gene Contains CRX-Binding and Ret1\\/PCE-I Elements  

Microsoft Academic Search

Purpose: Interphotoreceptor retinoid binding protein (IRBP) is expressed exclusively and to high levels in photoreceptive cells. This study was an attempt to delineate the minimal regulated control region of the murine IRBP promoter involved in this expression pattern. Methods: Fragments of the mouse IRBP 5' flanking region were tested for promoter activity in transient transfections of embryonic chick retina cells

Jeffrey H. Boatright; Diane E. Borst; John W. Peoples; James Bruno; Carrie L. Edwards; Jing-Sheng Si; John M. Nickerson

1997-01-01

344

76 FR 13182 - Settlement Agreement for Recovery of Past Response Costs; 345 North 700 East, Richfield PCE Site...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Agreement for Recovery of Past Response Costs; 345 North 700 East, Richfield...at this Site for Past Response Costs, as those terms are defined in...reimbursement of Past Response Costs. Opportunity for Comment: For thirty...

2011-03-10

345

Evaluation of the TCE catalytic oxidation unit at Wurtsmith Air Force Base  

Microsoft Academic Search

Remediation of VOC-contaminated groundwater is frequently performed by air stripping, a process that transfers the contaminants from the water phase to the air phase by contacting the phases countercurrently through a packed-bed column. Air stripping has proven to be effective and economic for removing volatile organic compounds (VOCs) from groundwater; in many cases, however, the states require the use of

T. D. Hylton; E. G. Marchand

1991-01-01

346

Spatial And Temporal Distribution Of Microbial Communities In A TCE DNAPL Site: SABRE Field Studies  

EPA Science Inventory

The SABRE (Source Area BioREmediation) project was conducted to evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. To study performance of this technology, a test cell was constructed with a longitudi...

347

BIOENHANCED IN-WELL VAPOR STRIPPING TO TREAT TRICHLOROETHYLENE(TCE)  

EPA Science Inventory

Removal of chlorinated solvent contaminants at their subsurface source is one of the most challenging problems for remediation of these prevalent contaminants. Here, the solvents are generally present as dense non-aqueous phase liquids (DNAPLs). The potential for applicatio...

348

Sustainability of TCE Removal in the Mulch Biowalls at Altus AFB  

EPA Science Inventory

A permeable mulch biowall was installed in June 2002 at Landfill 3 (LF-03), Operable Unit 1 (OU-1), Altus AFB, Oklahoma. The demonstration was conducted by Parsons for the AFCEE Technology Transfer Outreach Office. The biowall is approximately 455 feet long, by 24 feet deep, by...

349

Lossy-to-Lossless Compression of Hyperspectral Imagery Using Three-Dimensional TCE and an  

E-print Network

obtains lossy-to- lossless operation while closely matching the lossy performance of JPEG2000. Additionally, for lossless compression, it consistently outperforms not only JPEG2000 but often several is the JPEG2000 standard [5, 6]. Wavelet-based coders like JPEG2000 are typically developed for lossy com

Fowler, James E.

350

A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier  

EPA Science Inventory

A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

351

BENCH-SCALE PERFORMANCE OF PARTITIONING ELECTRON DONORS FOR TCE DNAPL BIOREMEDIATION  

EPA Science Inventory

The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethen...

352

CHARACTERIZATION AND REMEDIATION OF TCE CONTAMINATION AT A SUPERFUND SITE - TRADITIONAL AND INNOVATIVE APPROACHES  

Microsoft Academic Search

Remediation of industrial contaminants in a heterogeneous aquifer presents hydrogeologic challenges for remediation specialists due to fate and transport complexities. U.S. Air Force Plant 44 (AFP44), part of the Tucson International Airport Area (TIAA) Superfund Site, Tucson, Arizona, offers an ideal case study of the blend of traditional and innovative technology used in a state of the art approach to

Joseph R. Katz; ERROL L. MONTGOMERY

353

77 FR 6863 - Proposed Collection; Comment Request for VITA/TCE Program Forms  

Federal Register 2010, 2011, 2012, 2013, 2014

...assist seniors and individuals with low to moderate incomes, those with disabilities, and those for whom English is a second language. Current Actions: There are no changes being made to the form at this time. Type of Review: Extension...

2012-02-09

354

Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion  

Microsoft Academic Search

In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4?) with a redox potential of 2.6 V, which can potentially destroy organic

Chenju Liang; Clifford J Bruell; Michael C Marley; Kenneth L Sperry

2004-01-01

355

COMBINATION OF A SOURCE REMOVAL REMEDY AND BIOREMEDIATION FOR THE TREATMENT OF A TCE CONTAMINATED AQUIFER  

EPA Science Inventory

Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...

356

In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes  

PubMed Central

Summary The bioremediation of chloroethene contaminants in groundwater polluted systems is still a serious environmental challenge. Many previous studies have shown that cooperation of several dechlorinators is crucial for complete dechlorination of trichloroethene to ethene. In the present study, we used an explorative functional DNA microarray (DechloArray) to examine the composition of specific functional genes in groundwater samples in which chloroethene bioremediation was enhanced by delivery of hydrogen?releasing compounds. Our results demonstrate for the first time that complete biodegradation occurs through spatial and temporal variations of a wide diversity of dehalorespiring populations involving both Sulfurospirillum, Dehalobacter, Desulfitobacterium, Geobacter and Dehalococcoides genera. Sulfurospirillum appears to be the most active in the highly contaminated source zone, while Geobacter was only detected in the slightly contaminated downstream zone. The concomitant detection of both bvcA and vcrA genes suggests that at least two different Dehalococcoides species are probably responsible for the dechlorination of dichloroethenes and vinyl chloride to ethene. These species were not detected on sites where cis?dichloroethene accumulation was observed. These results support the notion that monitoring dechlorinators by the presence of specific functional biomarkers using a powerful tool such as DechloArray will be useful for surveying the efficiency of bioremediation strategies. PMID:22432919

Dugat?Bony, Eric; Biderre?Petit, Corinne; Jaziri, Faouzi; David, Maude M.; Denonfoux, Jérémie; Lyon, Delina Y.; Richard, Jean?Yves; Curvers, Cyrille; Boucher, Delphine; Vogel, Timothy M.; Peyretaillade, Eric; Peyret, Pierre

2012-01-01

357

Characterization of anaerobic chloroethene-dehalogenating activity in several subsurface sediments  

SciTech Connect

Anaerobic microcosms of subsurface soils from four locations were used to investigate the separate effects of several electron donors on tetrachloroethylene (PCE) dechlorination activity. The substrates tested were methanol, formate, lactate, acetate, and sucrose. Various levels of sulfate-reducing, acetogenic, fermentative, and methanogenic activity were observed in all sediments. PCE dechlorination was detected in all microcosms, but the amount of dehalogenation varied by several orders of magnitude. Trichloroethylene was the primary dehalogenation product; however, small amounts of cis-1,2-dichloroethylene, 1,1-dichloroethylene, and vinyl chloride were also detected in several microcosms. Lactate-amended microcosms showed large amounts of dehalogenation. in three of the four sediments. One of the two sediments which showed positive activity with lactate also had large amounts of delialogenation with methanol. Sucrose, formate, and acetate also stimulated large amounts of delialogenation in one sediment that showed activity with lactate. These results suggest that lactate may be an appropriate substrate for screening sediments for PCE or TCE delialogenation activity, but that the microbial response is not sufficient for complete in situ bioremediation. A detailed study of the Victoria activity revealed that delialogenation rates were more similar to the Cornell culture than to rates measured for methanogens, or a methanol-enriched sediment culture. This may suggest that these sediments contain a highly efficient delialogenation activity similar to the Cornell culture. This assertion is supported further by the fact that an average of 3% of added reducing equivalents could be diverted to dehalogenation in tests which were conducted using PCE-saturated hexadecane as a constant source of PCE during incubation. Further evidence is needed to confirm this premise. The application of these results to in situ bioremediation of highly contaminated areas are discussed.

Skeen, R.S.; Gao, J.; Hooker, B.S.; Quesenberry, R.D.

1996-11-01

358

Solvent Exposures and Parkinson’s Disease Risk in Twins  

PubMed Central

Objective Several case reports have linked solvent exposure to Parkinson’s disease (PD), but few studies have assessed associations with specific agents using an analytic epidemiologic design. We tested the hypothesis that exposure to specific solvents is associated with PD risk using a discordant twin pair design. Methods 99 twin pairs discordant for PD ascertained from the National Academy of Science/National Research Council (NAS/NRC) World War II Veteran Twins Cohort were interviewed regarding lifetime occupations and hobbies using detailed job-task-specific questionnaires. Exposures to 6 specific solvents selected a priori were estimated by expert raters unaware of case status. Results Ever exposure to trichloroethylene (TCE) was associated with significantly increased risk of PD (OR 6.1, 95%CI 1.2 – 33; p = 0.034), and exposure to perchloroethylene (PERC) and carbon tetrachloride (CCl4) tended toward significance (respectively: OR 10.5, 95%CI 0.97-113, p = 0.053; OR 2.3, 95%CI 0.9-6.1, p = 0.088). Results were similar for estimates of exposure duration and cumulative lifetime exposure. Interpretation Exposure to specific solvents may increase risk of PD. TCE is the most common organic contaminant in groundwater, and PERC and CCl4 are also ubiquitous in the environment. Our findings require replication in other populations with well-characterized exposures, but the potential public health implications are substantial. PMID:22083847

Goldman, Samuel M; Quinlan, Patricia J; Ross, G Webster; Marras, Connie; Meng, Cheryl; Bhudhikanok, Grace S; Comyns, Kathleen; Korell, Monica; Chade, Anabel R; Kasten, Meike; Priestley, Benjamin; Chou, Kelvin L; Fernandez, Hubert H; Cambi, Franca; Langston, J William; Tanner, Caroline M

2011-01-01

359

GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons.  

PubMed

Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample peaks for analysis. The He carrier gas is mixed with Ar and introduced directly into the torch of a multicollector ICPMS. The MC-ICPMS is run at a high mass resolution of >/=10 000 to eliminate interference of mass 37 ArH with Cl. The standardization approach is similar to that for continuous flow stable isotope analysis in which sample and reference materials are measured successively. We have measured PCE relative to a laboratory TCE standard mixed with the sample. Solvent samples of 200 nmol to 1.3 micromol (24-165 microg of Cl) were measured. The PCE gave the same value relative to the TCE as measured by the conventional method with a precision of 0.12 per thousand (2x standard error) but poorer precision for the smaller samples. PMID:16808479

Van Acker, Marc R M D; Shahar, Anat; Young, Edward D; Coleman, Max L

2006-07-01

360

DESORPTION BEHAVIOR OF TRICHLOROETHENE AND TETRACHLOROETHENE IN U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER SITE UNCONFINED AQUIFER SEDIMENTS  

SciTech Connect

Sorption is governed by the physico-chemical processes that partition solutes between the aqueous and solid phases in aquifers. For environmental systems, a linear equilibrium relationship between the amount of contaminant in the alternative phases is often assumed. In this traditional approach, the distribution coefficient, or K{sub d}, is a ratio of contaminant associated with the solid phase to the contaminant in the water phase. Recent scientific literature has documented time-dependant behaviors in which more contaminant mass is held in the solid phase than predicted by the standard model. Depending on the specific conceptualization, this has been referred to as nonlinear sorption, time-variable sorption, or ''irreversible sorption''. The potential impact of time-variable sorption may be beneficial or detrimental depending on the specific conditions and remediation goals. Researchers at the Pacific Northwest National Laboratory (PNNL) have been studying this process to evaluate how various soil types will affect this process for sites contaminated with chlorinated solvents. The results described in this report evaluate sorption-desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) in Savannah River Site (SRS) soils. The results of this study will be combined with ongoing PNNL research to provide a more comprehensive look at this process and its impact on contaminant plume stability and sustainability. Importantly, while the results of the study documented differences in sorption properties between two tested SRS soils, the data indicated that ''irreversible sorption'' is not influencing the sorption-desorption behaviors of TCE and PCE for these soils.

Vangelas, K; Robert G. Riley, R; James E. Szecsody, J; A. V. Mitroshkov, A; C. F. Brown, C; Brian02 Looney, B

2007-01-10

361

Field test of single well DNAPL characterization using alcohol injection/extraction  

SciTech Connect

Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S. [Westinghouse Savannah River Co., Aiken, SC (United States)

1996-10-29

362

Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC  

NASA Astrophysics Data System (ADS)

A laboratory experiment with two sequenced columns was performed as a preliminary study for the installation of a permeable reactive barrier (PRB) at a site where a mixed ground water contamination exists. The first column contained granular zero valent iron (ZVI), the second column was filled with granular activated carbon (GAC). Trichloromethane (TCM, 930 ?g/l) and chlorobenzene (MCB, 260 ?g/l) were added to the ground water from the site as the main contaminants. Smaller amounts (<60 ?g/l) of benzene, 1,2-dichloroethane, 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethene (1,1-DCE), trichloroethene (TCE), tetrachloroethene (PCE), 1,2-dichloropropane (1,2-DCP), bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM), vinyl chloride and chromate were also added to the water to simulate the complex contamination pattern at the site of interest. PCE, TCE, 1,1-DCE, DBCM, BDCM, TBM, MCB and chromate were remediated in contact with ZVI, while the remaining contaminants showed incomplete degradation. A fraction of 8 16.5% TCM was converted to dichloromethane (DCM). Remaining contaminant concentrations were efficiently sorbed by the GAC until breakthrough of DCM was observed after 1,230 exchanged pore volumes in the GAC. The results show that the complex mixture of contaminants can be remediated by a sequenced PRB consisting of ZVI and GAC and that DCM sorption capacity is the critical parameter for the dimensions of the GAC reactor.

Plagentz, Volkmar; Ebert, Markus; Dahmke, Andreas

2006-03-01

363

A physiologically based toxicokinetic model for lake trout (Salvelinus namaycush).  

PubMed

A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was parameterized and evaluated for lake trout (Salvelinus namaycush). Individual-based model parameterization was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model predictions. The PB-TK model was used to predict uptake of organic chemicals across the gill and accumulation in blood and tissues in lake trout. To evaluate the accuracy of the model, a total of 13 adult lake trout were exposed to waterborne 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE), concurrently, for periods of 6, 12, 24 or 48 h. The measured and predicted concentrations of TCE, PCE and HCE in expired water, dorsal aortic blood and tissues were generally within a factor of two, and in most instances much closer. Variability noted in model predictions, based on the individual-based model parameterization used in this study, reproduced variability observed in measured concentrations. The inference is made that parameters influencing variability in measured blood and tissue concentrations of xenobiotics are included and accurately represented in the model. This model contributes to a better understanding of the fundamental processes that regulate the uptake and disposition of xenobiotic chemicals in the lake trout. This information is crucial to developing a better understanding of the dynamic relationships between contaminant exposure and hazard to the lake trout. PMID:11090894

Lien, G J; McKim, J M; Hoffman, A D; Jenson, C T

2001-01-01

364

A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor  

NASA Astrophysics Data System (ADS)

Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to about 0.003 mM, representing 20% of the CT transformed. Other transformation products have not been identified. Neither methane nor carbon monoxide have been detected as transformation products. The transformation of PCE to ethene actually improved after the addition of CT. Thus, neither CT nor CF are inhibiting the reductive dehalogenation of PCE. The improvement in PCE transformation extent coincided with an increase in the aqueous hydrogen concentration from 5 nM, prior to CT addition, to 150 nM after CT addition. This increase in hydrogen was associated with the inhibition in acetate production and the increase in formate concentrations from below detection to 1.0 mM after CT addition. The results indicate that there are likely benefits in adding formate to produce hydrogen when contaminants are present that can inhibit fermentation. The results from the column study are consistent with our observations in batch reactors using the EV culture.

Semprini, L.; Azizian, M. F.; Kim, Y.

2011-12-01

365

Alternative Methods for Assessing Contaminant Transport from the Vadose Zone to Indoor Air  

NASA Astrophysics Data System (ADS)

Vapor intrusion, which is the transport of contaminant vapors from groundwater and the vadose zone to indoor air, has emerged as a significant human health risk near hazardous waste sites. Volatile organic compounds (VOCs) such as trichloroethylene (TCE) and tetrachloroethylene (PCE) can volatilize from groundwater and from residual sources in the vadose zone and enter homes and commercial buildings through cracks in the slab, plumbing conduits, or other preferential pathways. Assessment of the vapor intrusion pathway typically requires collection of groundwater, soil gas, and indoor air samples, a process which can be expensive and time-consuming. We evaluated three alternative vapor intrusion assessment methods, including 1) use of radon as a surrogate for vapor intrusion, 2) use of pressure differential measurements between indoor/outdoor and indoor/subslab to assess the potential for vapor intrusion, and 3) use of passive, longer-duration sorbent methods to measure indoor air VOC concentrations. The primary test site, located approximately 30 miles south of San Francisco, was selected due to the presence of TCE (10 - 300 ug/L) in shallow groundwater (5 to 10 feet bgs). At this test site, we found that radon was not a suitable surrogate to asses vapor intrusion and that pressure differential measurements are challenging to implement and equipment-intensive. More significantly, we found that the passive, longer-duration sorbent methods are easy to deploy and compared well quantitatively with standard indoor air sampling methods. The sorbent technique is less than half the cost of typical indoor air methods, and also provides a longer duration sample, typically 3 to 14 days rather than 8 to 24 hours for standard methods. The passive sorbent methods can be a reliable, cost-effective, and easy way to sample for TCE, PCE and other VOCs as part of a vapor intrusion investigation.

Baylor, K. J.; Lee, A.; Reddy, P.; Plate, M.

2010-12-01

366

Chlorinated organic compounds in ground water at Roosevelt Field, Nassau County, Long Island, New York  

USGS Publications Warehouse

Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field, a 200-acre area that is now a large shopping mall and office-building complex. The cooling water is discharged after use to the water table (upper glacial) aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated--the source plume, which has penetrated both aquifers , and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water in the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. (USGS)

Eckhardt, D.A.; Pearsall, K.A.

1989-01-01

367

Complete detoxification of short chain chlorinated aliphatics: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1997 annual progress report  

SciTech Connect

'The objectives of the research within this grant are: (1) Isolation and characterization of chlororespiring organisms responsible for the complete dehalogenation of chlorinated ethenes and propanes. (2) Development of conditions that yield high cell densities and induce dechlorinating activity. (3) Development of assay systems to detect the dechlorinating activity in cell-free extracts. (4) Purification and characterization of the dehalogenating enzymes. Anaerobic microcosms were obtained from a variety of geographically different sediment samples. In several microcosms complete dechlorination of tetrachloroethene (PCE) to ethene (ETH), and 1,2-dichloropropane ( 1,2-D) and/or 1,2,3-trichloropropane to propene was observed. Upon subsequent transfers to anaerobic medium, sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and 1,2-D to propene, respectively. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene and the dechlorination of PCE to cis-dichloroethene (cis-DCE). However,-the complete dechlorination of PCE to vinyl chloride (VC) and ETH was severely inhibited. The authors could show that BES inhibited the dechlorination of chloroethenes in cultures not containing methanogens. Previous to this study, BES was believed to be aspecific inhibitor of methanogens and the inhibitory effect of BES on declorination was explained by the involvement of methanogens in the dechlorination process. The non-methanogenic cultures obtained after the BES treatment were subsequently transferred to medium riot containing BES and complete dechlorination of PCE to ETH was observed as was in the original microcosms. Subcultures were further enriched with PCE, cis-DCE, VC, or 1,2-D as the only available electron acceptor and acetate, or acetate plus hydrogen as the only available electron donor(s). To date these cultures have undergone up to 45 transfers. Interestingly, two cultures that originally dechlorinated PCE to ETH, but were then enriched with cis-DCE or VC, lost their ability to-dechlorinate PCE or TCE. This finding indicates that different populations are involved in the complete dechlorination of PCE to ETH in these cultures. In contrast, one culture that was enriched with cis-DCE and VC, respectively, maintained its ability to dechlorinate PCE. Using molecular tools ({sup 16}S rDNA targeted PCR,TA cloning of {sup 1}6S rDNA genes, ARDRA analysis and sequencing) they showed that this culture consisted of three distinct organisms. Two of them could be isolated in pure Culture but neither of them showed any dechlorinating activity, indicating that one organism was responsible for the complete dechlorination of PCE to ETH in the mixed culture. The authors are currently focusing on the isolation and phylogenetic characterization of this organism.'

Loeffler, F.E.; Tiedje, J.M.

1997-01-01

368

Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process.  

PubMed

Formation of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and chlorinated phenols on CuCl(2) from unsubstituted phenol and three monochlorophenols was studied in a flow reactor over a temperature range of 100-425 degrees C. Heated nitrogen gas streams containing 8.0% oxygen were used as carrier gas. The 0.00024mol of unsubstituted phenol and 0.00039mol of each monochlorophenol were passed through a 1g and 1cm SiO(2) particle containing 0.5% (Cu by mass) CuCl(2). Chlorination preferentially occurred on ortho-(2, 6) and para-(4) positions. Chlorination increased up to 200 degrees C, and thereafter decreased as temperature increased. Chlorination of phenols plays an important role in the formation of the more chlorinated PCDD/Fs. Chlorinated benzenes are formed possibly from both chlorination of benzene and chlorodehydroxylation of phenols. Chlorinated phenols with ortho chlorine formed PCDD products, and major PCDD products were produced via loss of one chlorine. For PCDF formation, at least one unchlorinated ortho carbon was required. PMID:18054065

Ryu, Jae-Yong

2008-04-01

369

Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community.  

PubMed

To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides, an organohalide reducer, and Methanospirillum, a hydrogenotrophic methanogen, were quantified via qRT-PCR for mRNA and multiple reaction monitoring (MRM) of proteotypic peptides for protein. mRNA transcripts of the Dehalococcoides reductive dehalogenases PceA, TceA, and DMC1545, and hydrogenase HupL, as well as the Methanospirillum oxidoreductases MvrD and FrcA were shown to be similarly regulated with respect to their temporal responses to substrate addition. However, MvrD was two orders of magnitude lower in mRNA abundance. Per cell, Dehalococcoides protein biomarkers quantified were more abundant than Methanospirillum proteins. Comparing mRNA with protein abundance, poor correlations were observed between mRNA transcript levels and the net protein produced. For example, Dehalococcoides HupL and TceA transcripts were similarly abundant though TceA was far more abundant at the protein level (167?±?121 vs. 1095?±?337 proteins per cell, respectively). In Methanospirillum, MvrD maintained comparable per-cell protein abundance to FrcA (42?±?14 vs. 60?±?1 proteins per cell, respectively) despite the significantly lower transcript levels. Though no variability in protein decay rates was observed, the mRNA translation rate quantified for TceA was greater than the other Dehalococcoides targets monitored. These data suggest that there is considerable variation in the relationship between mRNA abundance and protein production both across transcripts within an organism and across organisms. This highlights the importance of empirically based studies for interpreting biomarker levels in environmentally relevant organisms. PMID:25467924

Rowe, Annette R; Mansfeldt, Cresten B; Heavner, Gretchen L; Richardson, Ruth E

2014-12-01

370

Analysis of Groundwater Quality Data with Exceedance of Water Quality Standards in Soil and Groundwater Information System(SGIS) in South Korea  

NASA Astrophysics Data System (ADS)

For a purpose of groundwater quality data management, Korea Ministry of Environment (ME) developed Soil and Groundwater Information System (SGIS) in 2005. SGIS provides the public with GW quality information observed in Groundwater Quality Monitoring Network (GQMN) by using exceedance (whether or not monitoring wells exceed GW quality standards) for one or more contaminants. Contaminants include 4 general contaminants (NO3-N, Cl, etc) and 15 specific hazardous contaminants(TCE, PCE, etc). This study analyzes GW quality data measured in general areas and contamination-concerned areas from 2006 to 2010 based on exceedance provided by SGIS. In both area, about 10% of GW exceed the standards. In general areas, the frequency of exceedance has reduced for drinking and non-drinking GW. On the other hand, in contamination-concerned areas, for drinking GW, the number of wells exceeding standards has increased for 5 years. In theses areas, the number of wells exceeding standards for non-drinking GW has been hardly changed, that is why that of domestic GW wells exceeding standards has decreased and that of industrial GW wells has increased. We carried out correlation analyses to investigate correlation between exceedance in a well for one or more contaminants and that for one specific contaminant. In results, in general areas, exceedance of one or more contaminants in a well is highly correlated with that of total coliforms for drinking GW (r=0.97) and with that of general bacteria(r=0.88) and NO3-N(r=0.46) for non-drinking GW. This implies that total coliforms is a major contaminants in general areas for drinking GW. Non-drinking GW is found to be mainly contaminated with general bacteria and NO3-N in these areas. In contamination concerned areas, there is positive correlation between exceedance of one or more contaminants and that of general bacteria for domestic GW (r=0.73), and exceedance of one or more contaminants is correlated with that of NO3-N for agricultural GW (r=0.85). Exceedance of one or more contaminants shows correlation with that of TCE (r=0.88) and PCE(r=0.52) for industrial GW. Results indicate that, in contamination concerned areas, for domestic usages, general bacteria is a major contaminant, for agricultural usages, NO3-N and for industrial usages, GW are mainly contaminated with TCE and PCE.

Lee, J.; Hyun, Y.

2012-12-01

371

Feasibility of dibromochloropropane (DBCP) and trichloroethylene (TCE) adsorption onto activated carbons made from nut shells of different almond varieties  

Technology Transfer Automated Retrieval System (TEKTRAN)

Steam-activated carbons were made from shells from five different almond varieties (‘Nonpareil,’ ‘Padre,’ Tuono,’ ‘23-122,’ and ‘Y120-74’) and from a mix of almond types. The purpose of the work was to evaluate if the composition of shells had any effect on the performance of the final product. The ...

372

DETERMINATION OF CAPILLARY PRESSURE-SATURATION CURVES INVOLVING TCE, WATER, AND AIR FOR A SAND AND A SANDY CLAY LOAM  

EPA Science Inventory

The contamination of aquifers and other groundwater by Non-Aqueous Phase Liquids (NAPLS) such as chlorinated solvents, has become a major concern in many areas of the U.S. Characterization and modeling of these contaminants requires accurate and realistic data for the fluids and ...

373

APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)  

EPA Science Inventory

Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

374

APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)  

EPA Science Inventory

Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

375

Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater  

EPA Science Inventory

Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

376

Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula)pce_2306 1079..1087  

E-print Network

Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch factors had effect on KP. The highest values of Klb were recorded under the blue light (3.63 and 3.13 ¥ 10

Sack, Lawren

377

EFFECT OF DECHLORINATING BACTERIA ON THE LONGEVITY AND COMPOSITION OF PCE-CONTAINING NONAQUEOUS PHASE LIQUIDS UNDER EQUILIBRIUM DISSOLUTION CONDITIONS. (R826694C703)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

378

STIMULATION OF REDUCTIVE DECHLORINATION OF TETRA- CHLOROETHENE (PCE) IN ANAEROBIC AQUIFER MICROCOSMS BY ADDITION OF SHORT-CHAIN ORGANIC ACIDS OR ALCOHOLS  

EPA Science Inventory

The effect of the addition of common fermentation products on the dehalogenation of tetrachloroethene was studied in methanogenic slurries made with aquifer solids. Lactate, propionate, crotonate, butyrate, and ethanol stimulated dehalogenation activity, while acetate, methanol, ...

379

78 FR 15721 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...  

Federal Register 2010, 2011, 2012, 2013, 2014

...NESHAP for Perchloroethylene Dry Cleaning Facilities (Renewal). ICR Numbers...operators of perchloroethylene dry cleaning facilities. Estimated Number of...increase in the total O&M costs for industry respondents. This increase...

2013-03-12

380

Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea  

NASA Astrophysics Data System (ADS)

In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca-HCO3 or Na-HCO3 types. TDS (107-14,500 /L), EC (225-25,500 ?S/cm), salinity (100-15,500 /kg), Na+ (13.39-2,866 /L) and Cl- (15.3-7,066 /L) concentrations are also higher than those of general groundwater. This fact indicates that groundwater in study area was polluted by saline water and/or anthropogenic sources. TCE, PCE, 1.1.1-trichloroethane (TCA) were analyzed by Busan Metropolitan City Institute of Health &Environment. PCE and TCA are not detected most of sites, while TCE is detected most of the sites and exceeds drinking water standard of Korea 0.03 /L. It is considered that TCE was derived from variety contamination sources such as car-washing centers, transportation companies, iron molding factories and waste treating companies. Risk assessment to human health and environmental resources by groundwater contamination was conducted. The RBCA Tool Kit for Chemical Releases can be used for the risk assessment at Tier 1 and Tier 2. The risk assessment determines risk-based concentration of constituents of concerns (COCs) that moves through groundwater, soil and air. It also evaluates carcinogenic risk and toxic effect when receptor exposures to the COCs. Tier 1 analysis determines risk-based screening levels (RBSLs) for one-site exposure. Tier 2 analysis evaluates RBSL and/or site-specific target levels (SSTLs) for both on-site and off-site receptor. RBSLs were calculated as 2.2E-2 /L for TCE and as 4.7E-3 /L for PCE at Tier 1 risk assessment. Average concentrations of TCE and PCE from measuring the groundwater samples were 0.15 mg/L and 0.016 mg/L, respectively. The actual measured values are higher than the RBSLs. Carcinogenic risk of TCE to animals was identified as B2 (inadequate or no human evidence but sufficient animal evidence). From this result, we will conduct the further detail risk assessment at Tier 2 level before conducting groundwater remediation. ACKNOWLEDGEMENT The authors wish to acknowledge the financial support of the Korea Science &Engineering Foundation (KOSEF) under the Basic Research Program (grant no: R02-2001-00249).

Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

2003-04-01

381

Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae  

PubMed Central

Background Geobacter lovleyi is a unique member of the Geobacteraceae because strains of this species share the ability to couple tetrachloroethene (PCE) reductive dechlorination to cis-1,2-dichloroethene (cis-DCE) with energy conservation and growth (i.e., organohalide respiration). Strain SZ also reduces U(VI) to U(IV) and contributes to uranium immobilization, making G. lovleyi relevant for bioremediation at sites impacted with chlorinated ethenes and radionuclides. G. lovleyi is the only fully sequenced representative of this distinct Geobacter clade, and comparative genome analyses identified genetic elements associated with organohalide respiration and elucidated genome features that distinguish strain SZ from other members of the Geobacteraceae. Results Sequencing the G. lovleyi strain SZ genome revealed a 3.9 Mbp chromosome with 54.7% GC content (i.e., the percent of the total guanines (Gs) and cytosines (Cs) among the four bases within the genome), and average amino acid identities of 53–56% compared to other sequenced Geobacter spp. Sequencing also revealed the presence of a 77 kbp plasmid, pSZ77 (53.0% GC), with nearly half of its encoded genes corresponding to chromosomal homologs in other Geobacteraceae genomes. Among these chromosome-derived features, pSZ77 encodes 15 out of the 24 genes required for de novo cobalamin biosynthesis, a required cofactor for organohalide respiration. A plasmid with 99% sequence identity to pSZ77 was subsequently detected in the PCE-dechlorinating G. lovleyi strain KB-1 present in the PCE-to-ethene-dechlorinating consortium KB-1. Additional PCE-to-cis-DCE-dechlorinating G. lovleyi strains obtained from the PCE-contaminated Fort Lewis, WA, site did not carry a plasmid indicating that pSZ77 is not a requirement (marker) for PCE respiration within this species. Chromosomal genomic islands found within the G. lovleyi strain SZ genome encode two reductive dehalogenase (RDase) homologs and a putative conjugative pilus system. Despite the loss of many c-type cytochrome and oxidative-stress-responsive genes, strain SZ retained the majority of Geobacter core metabolic capabilities, including U(VI) respiration. Conclusions Gene acquisitions have expanded strain SZ’s respiratory capabilities to include PCE and TCE as electron acceptors. Respiratory processes core to the Geobacter genus, such as metal reduction, were retained despite a substantially reduced number of c-type cytochrome genes. pSZ77 is stably maintained within its host strains SZ and KB-1, likely because the replicon carries essential genes including genes involved in cobalamin biosynthesis and possibly corrinoid transport. Lateral acquisition of the plasmid replicon and the RDase genomic island represent unique genome features of the PCE-respiring G. lovleyi strains SZ and KB-1, and at least the latter signifies adaptation to PCE contamination. PMID:22616984

2012-01-01

382

40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP  

Code of Federal Regulations, 2010 CFR

...Tetrachloroethene (perchloroethylene) Bromomethane Tetrachloromethane (carbon tetrachloride Butadiene Toluene Carbon disulfide Trichlorobenzene (1,2,4-) Chlorobenzene Trichloroethylene Chloroethane (ethyl chloride)...

2010-07-01

383

Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation  

USGS Publications Warehouse

Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

2002-01-01

384

Superfund Record of Decision (EPA Region 1): Stamina Mills site, North Smithfield, RI. (First remedial action), September 1990. Final report  

SciTech Connect

The five-acre Stamina Mills site is a former textile weaving and finishing facility in North Smithfield, Providence County, Rhode Island. A portion of the site is within the 100-year floodplain and wetland area of the Branch River. The manufacturing process used cleaning solvents, acids, bases and dyes for coloring, pesticides for moth proofing, and plasticizers to coat fabrics. Mill process wastes were placed in a landfill onsite. EPA initiated three removal actions from 1984 to 1990, including an extension of the municipal water supply to residents obtaining water from the affected aquifer; and treatment of two underground and one above-ground storage tanks, followed by offsite disposal. The Record of Decision (ROD) provides a final remedy and addresses both source control and management of contaminated ground water migration at the site. The primary contaminants of concern affecting the soil, debris, sediment, and ground water are VOCs including TCE and PCE; other organics including pesticides; and metals including chromium.

Not Available

1990-09-28

385

Superfund record of decision (EPA Region 7): Hastings Groundwater Contamination Site, Hastings, NE, June 1993  

SciTech Connect

The decision document presents the selected interim remedial actions for the Well Number 3 ground water operable units. The Well Number 3 Subsite is a subsite of the Hastings Ground Water Contamination Site, Hastings, Nebraska. The interim action ROD addresses two separate areas of groundwater contamination. Plume 1 is characterized by carbon tetrachloride (CCl4) and chloroform (CHCl3) contamination. Plume 2 is characterized primarily by trichloroethene (TCE), 1,1,1-trichloroethane (TCA), tetrachloroethene (PCE) and dichloroethene (DEC) contamination. These interim ground water remedies were developed to protect public health, welfare and the environment by controlling the migration and reducing the volume and mass of contaminants present in the ground water beneath and downgradient from each source area of the Well Number 3 Subsite.

Not Available

1993-06-30

386

Superfund Record of Decision (EPA Region 2): Higgins Farm, Franklin Township, Somerset County, NJ. (Second remedial action), September 1992. Final report  

SciTech Connect

The 75-acre Higgins Farm site is a former cattle farm in Franklin Township, Somerset County, New Jersey. During the 1960's, municipal sludge and penicillin waste were used as fertilizers on Higgins Farm. The site also contains three holding tanks and drums containing material removed from previous remedial investigations. In 1986, the owner excavated 50 containers, including drums; however, during excavation activities, some of the containers were punctured and their contents spilled onto the ground. The ROD addresses the final action for ground water to limit future migration of contaminated ground water to offsite areas, as OU2. The primary contaminants of concern affecting the ground water are VOCs, including benzene, PCE, TCE, and xylene.

Not Available

1992-09-30

387

Analysis and evaluation of VOC removal technologies demonstrated at Savannah River  

SciTech Connect

Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A. [Lawrence Livermore National Lab., CA (United States); Pruess, K. [Lawrence Berkeley Lab., CA (United States); Falta, R.W. [Clemson Univ., SC (United States)

1993-09-01

388

Induced Infiltration Animation: Woburn Wells G & H and the Aberjona River  

NSDL National Science Digital Library

It is still unknown whether the cluster of childhood leukemia cases in east Woburn was caused by TCE and PCE contamination from five known sources of contamination within the capture zones of municipal wells G and H, or whether the leukemias were caused by induced infiltration of Aberjona River water, which may have contained dissolved concentrations of arsenic, chromium, and lead. Several papers have been written about the arsenic, chromium, and lead contamination in Woburn. These papers could be read, combined with a broad discussion about mobility of heavy metals under different oxidation states, hypotheses drawn by the class, and experiments designed by the students to ascertain whether contaminated river water could have reached wells G and H. Designing an experiment to test an hypothesis is a higher-order thinking skill needed by all scientists and engineers.

Scott Bair

389

Superfund Record of Decision (EPA Region 9): Sacramento Army Depot, CA. (First remedial action), September 1989  

SciTech Connect

The 485-acre Sacramento Army Depot (SAAD) site, 7 miles southeast of downtown Sacramento, California, is surrounded by land zoned as commercial and light industrial property. SAAD is an electronic maintenance and repair depot consisting of storage, maintenance, and office facilities. Present operations include shelter repair, electro-optics equipment repair, metal plating, and treatment of metal-plating wastes. From approximately 1947 to 1972 paint sludges, oil, grease wood, trash, solvents and other industrial wastes were burned and disposed of onsite in burn pits. SAAD has since removed most of the burned material from the burn pits. The burn pits were subsequently covered with soil and revegetated. Ground-water samples, collected by SAAD from 1981 to 1984, indicated that several chemical compounds were present at levels above drinking-water standards in two areas. The primary contaminants of concern affecting the ground water are VOCs including TCE and PCE.

Not Available

1989-09-29

390

Air stripping of volatile organic chlorocarbons: System development, performance, and lessons learned  

SciTech Connect

The Savannah River Site, which has been in operation since the 1950`s, is a 780-square kilometer reservation that produces tritium for the national defense program. As a result of past waste handling practices, the ground water at several locations on the Site has become contaminated with solvents, metals, and radionuclides. In 1981, the ground water located under the Site`s fuel and target rod fabrication area (M-Area) was found to be contaminated with degreasing solvents, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1983, a program was started to evaluate air stripping and determine its applicability to cleanup of M-Area contamination. Lessons learned regarding the efficiency and effectiveness of air stripping technology are presented.

McKillip, S.T.; Sibley, K.L.; Horvath, J.G.

1991-12-31

391

Superfund Record of Decision (EPA Region 3): Arrowhead Associates/Scovill, Montross, VA. (First remedial action), September 1991. Final report  

SciTech Connect

The 30-acre Arrowhead Associates/Scovill site is a cosmetic-case manufacturing and filling facility in Westmoreland County, Virginia. The site overlies a shallow aquifer that is used by an estimated 500 people as a drinking water supply. Ownership of the site has changed hands several times. From 1966 to 1979, Scovill, Inc., and later Arrowhead Associates (AA), used the site for manufacturing cosmetic cases using electroplating, lacquering, and enameling processes. Currently, Virginia Elastics uses the former plating area as a storage warehouse. Numerous investigations by the State and EPA revealed extensive soil and ground water contamination. The Record of Decision (ROD) addresses final remediation of soil and ground water. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, PCE, TCE, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site is included.

Not Available

1991-09-30

392

Superfund Record of Decision (EPA region 3): Keystone Sanitation Landfill site, Adams County, Union Township, PA. (First remedial action), September 1990  

SciTech Connect

The 40-acre Keystone Sanitation Landfill site, an inactive, privately owned landfill, is in Union Township, Adams County, Pennsylvania. Surrounding land use is primarily agricultural with scattered residences. From 1966 to 1990, the unlined landfill accepted household and municipal wastes as well as industrial and construction debris, including phosphorus-contaminated sand, potato sludge, resin sludge, incineration ash, and dried latex paint. In 1982, State investigations revealed onsite ground water contamination and a contaminated onsite residential well. In 1984, EPA found low-level contamination in nearby residential wells. The Record of Decision (ROD) addresses Operable Unit 1, the containment of onsite source area and remediation of onsite contaminated ground water. A subsequent ROD will address offsite ground water contamination in monitoring and residential wells. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, PCE, TCE, vinyl chloride; other organics including acids, and phenols; and metals including chromium and lead.

Not Available

1990-09-30

393

Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1  

SciTech Connect

This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-09-01

394

Standardization of the reducing power of zero-valent iron using iodine.  

PubMed

Because iron-based materials that are used for the permeable reactive barrier systems come in various shapes, sizes, and with various surface properties depending on the manufacturing sources, their reductive powers vary in a wide spectrum. A new experimental procedure to evaluate the reductive power of iron material was developed in this study. Tri-iodide (I3(-)) was used as the representative oxidizing agent that reacts with zero-valent iron (ZVI). Three iron-based materials (two scraps, two powders) and four chlorinated chemicals [perchloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (TCA), and pentachlorophenol (PCP)] were used in this study. Redox reactions were conducted in glass vials containing aqueous solutions of chlorinated compounds or tri-iodide with known masses of iron material. After a predetermined reaction time each vial was opened and the solution was analyzed for the concentration of reduced compound. The apparent rate contant (k(i)(obs)) of iodine reduction reaction with ZVIs was found to be proportional to that (k(c)(obs)) of chlorinated contaminant. The surface area-normalized reduction rate constants (k(c)(nor)) for contaminants and tri-iodide (k(i)(nor)) were also proportional to each other. The ratio of rate constants, K(nor) (= k(c)(nor)/k(i)(nor)) was estimated for each contaminant; 3.29 × 10(-7), 5.86 × 10(-7), 6.70 × 10(-7), and 7.87 × 10(-10) M, for PCE, TCE, TCA, and PCP, respectively. The results of this study suggest that the reductive power of ZVI materials can be standardized using tri-iodide, and thus, can provide a good reference for the quantitative assessment of the reactivity of metallic reducing agents of environmental interest including ZVIs. PMID:24410682

Kim, Heonki; Yang, Haewon; Kim, Juyoung

2014-01-01

395

Comparison of diffusion- and pumped-sampling methods to monitor volatile organic compounds in ground water, Massachusetts Military Reservation, Cape Cod, Massachusetts, July 1999-December 2002  

USGS Publications Warehouse

To evaluate diffusion sampling as an alternative method to monitor volatile organic compound (VOC) concentrations in ground water, concentrations in samples collected by traditional pumped-sampling methods were compared to concentrations in samples collected by diffusion-sampling methods for 89 monitoring wells at or near the Massachusetts Military Reservation, Cape Cod. Samples were analyzed for 36 VOCs. There was no substantial difference between the utility of diffusion and pumped samples to detect the presence or absence of a VOC. In wells where VOCs were detected, diffusion-sample concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) were significantly lower than pumped-sample concentrations. Because PCE and TCE concentrations detected in the wells dominated the calculation of many of the total VOC concentrations, when VOC concentrations were summed and compared by sampling method, visual inspection also showed a downward concentration bias in the diffusion-sample concentration. The degree to which pumped- and diffusion-sample concentrations agreed was not a result of variability inherent within the sampling methods or the diffusion process itself. A comparison of the degree of agreement in the results from the two methods to 13 quantifiable characteristics external to the sampling methods offered only well-screen length as being related to the degree of agreement between the methods; however, there is also evidence to indicate that the flushing rate of water through the well screen affected the agreement between the sampling methods. Despite poor agreement between the concentrations obtained by the two methods at some wells, the degree to which the concentrations agree at a given well is repeatable. A one-time, well-bywell comparison between diffusion- and pumped-sampling methods could determine which wells are good candidates for the use of diffusion samplers. For wells with good method agreement, the diffusion-sampling method is a time-saving and cost-effective alternative to pumped-sampling methods in a long-term monitoring program, such as at the Massachusetts Military Reservation.

Archfield, Stacey A.; LeBlanc, Denis R.

2005-01-01

396

Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.  

PubMed

Degradative solidification/stabilization with ferrous iron (DS/S-Fe(II)) has been found to be effective in degrading a number of chlorinated aliphatic hydrocarbons including 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), tetrachloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), carbon tetrachloride (CT) and chloroform (CF). Previous studies have characterized degradation kinetics in DS/S-Fe(II) systems as affected by Fe(II) dose, pH and initial target organic concentration. The goal of this study is to investigate the importance of various chemical properties on degradation kinetics of DS/S-Fe(II). This was accomplished by first measuring rate constants for degradation of 1,1,1-TCA, 1,1,2,2-TeCA and 1,2-dichloroethane (1,2-DCA) in individual batch experiments. Rate constants developed in these experiments and those obtained from the literature were related to thermodynamic parameters including one-electron reduction potential, two-electron reduction potential, bond dissociation energy and lowest unoccupied molecular orbital energies. Degradation kinetics by Fe(II) in cement slurries were generally represented by a pseudo-first-order rate law. The results showed that the rate constants for chlorinated methanes (e.g. CT, CF) and chlorinated ethanes (e.g. 1,1,1-TCA) were higher than those for chlorinated ethylenes (e.g. PCE, TCE, 1,1-DCE and VC) under similar experimental conditions. The log of the pseudo-first-order rate constant (k) was found to correlate better with lowest unoccupied molecular orbital energies (E(LUMO)) (R2=0.874) than with other thermodynamic parameter descriptors. PMID:17707584

Jung, Bahngmi; Batchelor, Bill

2008-03-21

397

Anthropogenic Organic Compounds in Source and Finished Water from Community Water System Wells in Western and Central Connecticut, 2002-2004  

USGS Publications Warehouse

A water-quality assessment by the U.S. Geological Survey (USGS) determined the occurrence of anthropogenic (manmade) organic compounds (AOCs) in water from 15 community water system (CWS) wells and associated finished drinking water. The study, which focused on water from the unconfined glacial stratified aquifer in western and central Connecticut, was conducted as part of the USGS National Water-Quality Assessment Program (NAWQA) Source Water-Quality Assessment (SWQA) project and included analysis of water samples for 88 volatile organic compounds (VOCs), 120 pesticides, and 50 other anthropogenic organic compounds (OAOCs). During Phase I of the study, 25 AOCs were detected (12 VOCs, 10 pesticides, and 3 OAOCs) in source-water samples collected from 15 CWS wells sampled once from October 2002 to May 2003. Although concentrations generally were low (less than 1 microgram per liter), four compounds were detected at higher concentrations in ground water from four wells. The most frequently occurring AOCs were detected in more than half of the samples and included chloroform (87 percent), methyl tert-butyl ether (MTBE, 80 percent), 1,1,1-trichloroethane (67 percent), atrazine (60 percent), deethylatrazine (60 percent), perchloroethene (PCE, 53 percent), and simazine (53 percent). Trichloroethene (TCE) was detected in 47 percent of samples. Samples generally contained a mixture of compounds ranging from 2 to 19 detected compounds, with an average of 8 detected compounds per sample. During Phase II of the study, 42 AOCs were detected in source-water samples collected from 10 resampled CWS wells or their associated finished water. Trihalomethanes accounted for most of the VOCs detections with all concentrations less than 1 microgram per liter. Chloroform, the most frequently detected VOC, was found in all source-water and all finished-water samples. As with the Phase I samples, other frequently detected VOCs included MTBE, and the solvents 1,1,1-trichloroethane, PCE, and TCE. Triazine herbicides and their degradation products accounted for most of the detected pesticides.

Trombley, Thoams J.; Brown, Craig J.; Delzer, Gregory C.

2007-01-01

398

Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers  

NASA Astrophysics Data System (ADS)

Strains of Dehalococcoides are the only microbes known that can completely dechlorinate PCE, TCE, cis-DCE, and vinyl chloride to ethylene. Either naturally occurring strains or bioaugmentation cultures of Dehalococcoides are widely used for in situ bioremediation of contaminated groundwater. Naturally occurring strains have an important role in natural attenuation of PCE, TCE, cis-DCE, and vinyl chloride in groundwater. This study evaluated the relationship between selected biogeochemical parameters and the presence of Dehalococcoides DNA in field-scale plumes. A total of 81 monitoring wells were sampled from 15 groundwater plumes at 10 locations across the United States (one sample per monitoring well). The presence of Dehalococcoides DNA was determined with an assay based on the polymerase chain reaction (PCR) using DNA primers targeting the 16S rRNA gene of Dehalococcoides. The groundwater samples were also analyzed for concentrations of O2, NO3-1 plus NO2-1 - N, CH4, H2, Fe (II), SO4-2, TOC, Cl-1, and benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and for alkalinity, ORP, electrical conductivity, pH, and temperature. Dehalococcoides DNA was unequivocally detected in 26 wells, most of which exhibited methanogenic conditions. A two-sample Kolmogorov-Smirnov test was used to compare the distribution of each parameter in water where Dehalococcoides DNA was present to the distribution where Dehalococcoides DNA was absent. The only parameters for which the distributions were different at 95% confidence were NO3-1 plus NO2-1 - N, CH4, and ORP. Using these three statistically significant geochemical parameters as descriptors, a predictive model for the presence of Dehalococcoides DNA was developed using logistic regression with a binary response. Under conditions where data of direct biochemical assay are not available a calculated probability could be used to properly calibrate computer models of natural attenuation.

Lu, Xiaoxia; Wilson, John T.; Kampbell, Donald H.

2006-08-01

399

Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons  

NASA Astrophysics Data System (ADS)

In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

Cho, C.; Sung, K.; Corapcioglu, M.

2001-12-01

400

Relation of organic contaminant equilibrium sorption and kinetic uptake in plants  

USGS Publications Warehouse

Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

2005-01-01

401

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS  

SciTech Connect

Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

2002-06-01

402

Investigation of the Biodegradation of Chlorinated Ethenes at the Pore-Scale Using Silicon- Based Micromodels  

NASA Astrophysics Data System (ADS)

Groundwater contamination by chlorinated ethenes is a matter of serious concern in industrialized countries due to the hazardous nature of these solvents. Biodegradation of these contaminants has proved to be the most cost-effective remediation technology to solve this problem. One of the most common degradation pathways is anaerobic reductive dechlorination, in which chlorinated ethenes are successively reduced from PCE to TCE to DCE to Vinyl chloride and finally to ethene, an environmentally benign substance. The success rates of this degradation with batch cultures are not often repeatable in column or field scale experiments due to the complexities associated with the heterogeneous porous medium. Hence it is important to understand degradation phenomena at the pore-scale in order to devise successful remediation techniques at a larger scale. In this study, 1 cm2 silicon based micromodels were used to simulate the subsurface at the pore-scale. The microbial culture used was Dehalospirillum multivorans. A solution of PCE (0.2 mM) and lactate (1 mM) was fed continuously into the micromodel at a rate of 0.001ml/min, which translated to a Darcy velocity in the porous matrix of 9.6m/day. Micromodels were observed with epi-fluorescence and DIC microscopy with a microscope equipped with an automated stage, CCD camera and an image analysis system. Activity within the micromodel was verified by the presence of cis-DCE in the effluent, which indicated that 95% of the PCE had been degraded. Visible biomass was also observed within a few weeks of starting PCE feeding both by DIC and fluorescence microscopy. The active and inactive zones of degradation were identified by the use of pH sensitive fluorescent dyes. The aggregates of cell biomass were quantified based on their area and perimeter in the images. These measurements indicated that after a few weeks, the biomass had reached a steady-state with new cells growing at the same rate as the sloughing of old biomass. This is the first time an anaerobic organism had been successfully grown in a micromodel. Further experiments are being planned to conduct biodegradation experiments with mixed cultures in the presence of competing electron acceptors and with PCE as a separate phase in the micromodel.

Nambi, I. M.; Werth, C. J.; Sanford, R. A.

2001-05-01

403

Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride  

SciTech Connect

Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

McCarty, P.L.; Spormann, A.M.

2000-12-01

404

Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction  

NASA Astrophysics Data System (ADS)

Mineral-catalyzed Fenton-like oxidation of chlorinated ethylenes is an attractive technique for in situ soil and groundwater remediation. Stable carbon isotope enrichment factors associated with magnetite-catalyzed Fenton-like oxidation of trichloroethylene (TCE) have been determined, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by Fenton-like oxidation. The carbon enrichment factors (? values) ranged from - 2.7‰ to - 3.6‰ with a mean value of - 3.3 ± 0.3‰, and only small differences were observed for different initial reactive conditions. The ? values were robust and reproducible, and were relatively insensitive to a number of environmental factors such as ratios of reactants and PCE co-contamination, which can reduce the uncertainty associated with application of isotope enrichment factors for quantification of in situ remediation by Fenton-like reaction. ? values for Fenton-like oxidation of TCE were intermediate in those previously reported for aerobic biological processes (? = - 1.1 to - 20.7‰). Thus, field-derived ? values that are more negative than those for Fenton-like oxidation, may indicate the occurrence of aerobic biodegradation at contaminated sites undergoing in situ remediation with Fenton-like reaction. However, stable carbon isotope analysis is unable to determine whether there is the occurrence of biodegradation processes if field-derived ? values are less negative than those for Fenton-like oxidation.

Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Liu, Cunfu; Yu, Tingting; Li, Xiaoqian

2013-02-01

405

Superfund Record of Decision (EPA Region 7): Midwest Manufacturing/North Farm Site, Midwest Operable Unit, Kellogg, IA. (First remedial action), September 1990. Final report  

SciTech Connect

The 8-acre Midwest Manufacturing/North Farm site is located on a manufacturing site owned and operated by Smith-Jones, Inc. in Kellog, Iowa. From 1973 to 1981, Smith-Jones engaged in electroplating and painting operations of manufactured products, which involved the use of TCE to clean the product before it was coated with the metal. In 1977, the State required treatment of the wastewaters to precipitate metals. Site inspections in the early 1980s, by EPA revealed elevated heavy metal concentrations. Ground water sampling revealed contamination of the alluvial aquifer underlying the site. The ROD addresses both source control and ground water remediation at the site. The primary contaminants are VOCs, including PCE, TCE, toluene, and xylenes; and metals, including chromium, and lead. The selected remedial action for the site includes installing a low permeability cap over the waste disposal cell in accordance with RCRA landfill closure requirements; treating ground water using air stripping, and possible treatment of vapor/air mixture using carbon adsorption, and filtering water to remove inorganics, if needed; discharging the treated water onsite to the Skunk River or offsite to a publicly owned treatment works (POTW); implementing institutional controls including deed and ground water use restrictions; and ground water monitoring for 30 years.

Not Available

1990-09-27

406

Superfund Record of Decision (EPA Region 9): Teledyne Semiconductor (Spectra Physics), Mountain View, CA. (First remedial action), March 1991. Final report  

SciTech Connect

The Teledyne Semiconductor site is comprised of two Superfund sites: the Teledyne Semiconductor site, a semiconductor manufacturing facility, and the Spectra-Physics site, a laser and related components manufacturing facility, and offsite areas associated with a contaminated ground water plume in Mountain View, California. Land use in the area is predominantly commercial and industrial. In 1980, all underground solvent handling activities were discontinued and waste holding and disposal facilities were moved above ground. Spectra-Physics, Inc. has manufactured lasers and associated components onsite since 1963, and has used VOCs including TCE as part of the manufacturing processes. Wastewater and rinse water were discharged through five below-grade sumps into the sanitary water system. From 1982 to 1984, State investigations identified the release of VOCs from solvent tanks into onsite soil at both areas. The Record of Decision (ROD) addresses contamination of the ground water aquifers and onsite soil. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, toluene, and xylenes. The selected remedial action for the site is included.

Not Available

1991-03-22

407

In-situ bioremediation via horizontal wells  

SciTech Connect

This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation.

Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A. [Westinghouse Savannah River Technology Center, Aiken, SC (United States)

1993-12-31

408

Competitive uptake and phytomonitoring of chlorinated contaminant mixtures by Redosier dogwood (Cornus sericea).  

PubMed

Plant uptake is an important process in phytoremediation. The robust uptake of volatile organic compounds (VOCs) by plants offers opportunities to establish quantitative relationships between VOCs in plant tissues and in groundwater for the purpose of phytoscreening or phytomonitoring. Most previous research pertaining to phytoremediation neglected the competitive effects of co-contaminants on the uptake of VOCs by plants, yet recent studies appeared to indicate high competitive effects of co-contamination. This study investigated the competitive uptake of three chlorinated compounds in the presence and absence of other co-contaminants by Redosier dogwood in a greenhouse and examined the implications of this competitive phenomenon for phytomonitoring of contaminant mixtures in groundwater. Concentrations of VOCs in stems decreased along the height in both single and bi-solute systems, in agreement with previous observations in the literature. Examination of the VOCs in single and bi-solute systems showed that concentrations of individual compounds are comparable in single and bi-solute systems, yet the ratios of contaminants along the height in bi-solute systems revealed interesting trends. TCE/PCE ratio increased along height while TCE/1,1,2-TCA ratio was roughly constant. The result indicated that sampling point as well as the physicochemical properties of co-contaminants is highly important in phytomonitoring of contaminant mixtures. PMID:21598796

Wang, Chen; Ma, Xingmao; Walsh, Michael P

2011-04-01

409

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

SciTech Connect

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20

410

Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.  

PubMed

The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones