Sample records for teaching political science

  1. Teaching Political Science through Memory Work

    ERIC Educational Resources Information Center

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  2. Who SoTLs Where? Publishing the Scholarship of Teaching and Learning in Political Science

    ERIC Educational Resources Information Center

    Hamann, Kerstin; Pollock, Philip H.; Wilson, Bruce M.

    2009-01-01

    Political science, as a discipline, is a relative newcomer to the Scholarship of Teaching and Learning (SoTL). We examine authorship patterns of SoTL articles in "PS: Political Science & Politics," the "Journal of Political Science Education," and "International Studies Perspectives" from 1998-2008. Our findings indicate more collaborative SoTL…

  3. Teaching Writing and Critical Thinking in Large Political Science Classes

    ERIC Educational Resources Information Center

    Franklin, Daniel; Weinberg, Joseph; Reifler, Jason

    2014-01-01

    In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…

  4. Training the Next Generation of Teaching Professors: A Comparative Study of Ph.D. Programs in Political Science

    ERIC Educational Resources Information Center

    Ishiyama, John; Miles, Tom; Balarezo, Christine

    2010-01-01

    In this article, we investigate the graduate curricula of political science programs and 122 Ph.D.-granting political science programs in the United States and how they seek to prepare political science teachers. We first investigate whether the department offers a dedicated political science course at the graduate level on college teaching, and…

  5. Political Science--Yugoslav Theory and Practice.

    ERIC Educational Resources Information Center

    Spadijer, Balsa

    1979-01-01

    Examines political science teaching and research in Yugoslavia and relates developments within the teaching of this discipline to the Yugoslav social and political system. Concludes that political science activities should aim toward reinforcing the trend toward socialist self-management. Journal availability: see SO 507 303. (Author/DB)

  6. A Personal Polity Introduction to Political Science.

    ERIC Educational Resources Information Center

    Brazier, James E.

    This paper presents an innovative way to teach Introduction to Political Science by breaking with the convention of teaching a survey course of all political science subfields. Each student is invited to be a participant-observer and apply political science perspectives to the data collected from his/her personal polity. Readings, research, and…

  7. Achieving What Political Science Is For

    ERIC Educational Resources Information Center

    Isacoff, Jonathan B.

    2014-01-01

    This article argues for a political science discipline and teaching framework predicated empirically on the study of "real-world problems" and normatively on promoting civic engagement among political science students. I argue for a rethinking of political science and political science education in view of the pragmatist thought of John…

  8. Use of Multimedia in Teaching and Learning of Political Science in University of Uyo, Akwa Ibom State, Nigeria

    ERIC Educational Resources Information Center

    Udim, Davies Kelvin; Etim, Eyo Akon

    2016-01-01

    This paper examines the use of multimedia in teaching and learning of political science in University of Uyo, Akwa Ibom State, Nigeria. A survey research was adopted and the tool employed for this research study was a questionnaire titled "Use of Multimedia in Teaching and Learning of Political Science in University of Uyo" (UMTLPSUU).…

  9. Are We Teaching Them Anything?: A Model for Measuring Methodology Skills in the Political Science Major

    ERIC Educational Resources Information Center

    Siver, Christi; Greenfest, Seth W.; Haeg, G. Claire

    2016-01-01

    While the literature emphasizes the importance of teaching political science students methods skills, there currently exists little guidance for how to assess student learning over the course of their time in the major. To address this gap, we develop a model set of assessment tools that may be adopted and adapted by political science departments…

  10. "What's Positive about Positive Rights?" Students' Everyday Understandings and the Challenges of Teaching Political Science

    ERIC Educational Resources Information Center

    Ekström, Linda; Lundholm, Cecilia

    2018-01-01

    A review of research into teaching and learning in political science education concludes that this literature emphasizes student outcomes and "show and tell" descriptions of pedagogical interventions (Craig 2014). The present study instead aims to open the "black box" of conceptual learning in political science, illustrating…

  11. Metacognitive Strategies in the Introduction to Political Science Classroom

    ERIC Educational Resources Information Center

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  12. Teaching Politics in the National Parks

    ERIC Educational Resources Information Center

    Pahre, Robert; Steele, Carie

    2015-01-01

    Other than trips to government offices, political science has generally not used field experiences as part of the undergraduate curriculum. To illustrate the possibilities of such experiences, we discuss field-based courses and curricular units at three sites. Each uses a national park to teach students about environmental politics and policy…

  13. The Role of Political Theory in the Teaching of Political Science in Mexico.

    ERIC Educational Resources Information Center

    Suarez-Iniguez, Enrique

    1989-01-01

    Discusses three major problems within the field of political science in Mexico: the dearth of classes offered, lack of consensus on the content of courses, and the very limited role of political theory. Provides charts and statistics on the state of political science in the country. (RW)

  14. Political Science in the 21st Century. Report of the Task Force on Political Science in the 21st Century

    ERIC Educational Resources Information Center

    American Political Science Association (NJ1), 2011

    2011-01-01

    Is political science positioned to embrace and incorporate the changing demographics, increasing multicultural diversity, and ever-growing disparities in the concentration of wealth present in many nation-states? Can political science do so within its research, teaching, and professional development? These two questions were the focus of the work…

  15. German Politics "auf Deutsch": Teaching Comparative Politics in a Language across the Curriculum Format.

    ERIC Educational Resources Information Center

    Hallerberg, Mark; Cothran, Bettina

    1999-01-01

    Explores how language and political science professors can co-teach a course using the Language Across the Curriculum format to increase student understanding of a country's language and politics. Describes a Georgia Tech course taught in German on post-war German politics. Addresses the elements of a successful course and student and course…

  16. Teaching Political Science in the Arab World.

    ERIC Educational Resources Information Center

    Habiby, Raymond

    There are many impediments to the development of political science as a true academic discipline in the Arab world. Each nation has its own ideological and political framework, and freedoms are determined within this framework. To operate outside this framework is considered an attack on the legality of the system and a possible threat to national…

  17. Getting Political Science in on the Joke: Using "The Daily Show" and Other Comedy to Teach Politics

    ERIC Educational Resources Information Center

    Beavers, Staci L.

    2011-01-01

    The challenges of teaching introductory-level U.S. politics to reluctant audiences are well known and widely lamented. This article investigates the pedagogical potential of political satire, specifically "The Daily Show with Jon Stewart", in engaging students in this tough-to-teach course. Based on a review of available literature and…

  18. Editors' Introduction to the Thematic Issue: Mad about Methods? Teaching Research Methods in Political Science

    ERIC Educational Resources Information Center

    Adriaensen, Johan; Kerremans, Bart; Slootmaeckers, Koen

    2015-01-01

    The contributors to this special issue all seek to address the challenge of teaching research methods to political science students. This introduction aims to provide a concise framework for the various innovations presented throughout this issue, situating them in the wider literature. Particular emphasis is placed on the factors that distinguish…

  19. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    NASA Astrophysics Data System (ADS)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  20. Political Science in Asia and the Pacific: Status Reports on Teaching and Research in Ten Countries. Social and Human Sciences in Asia and the Pacific, RUSHSAP Series on Occasional Monographs and Papers, 10.

    ERIC Educational Resources Information Center

    Uchida, Takeo

    This publication contains reports on the status of teaching and research in political science in ten countries in the Asia-Pacific Region. These reports prepared according to a common guideline provide an opportunity for comparison. The essays review how political science has grown and taken root in the respective countries; the problems it faces;…

  1. SoTL as a Subfield for Political Science Graduate Programs

    ERIC Educational Resources Information Center

    Trepanier, Lee

    2017-01-01

    This article offers a theoretical proposal of how political science graduate programs can emphasize teaching in the discipline by creating the subfield of the scholarship of teaching and learning (SoTL). Currently, these programs neither prepare their students for academic positions where teaching is valued nor participate in a disciplinary trend…

  2. New and Upper Level Political Science Course Preparations: A Discussion of Challenges and Opportunities at the Teaching-Oriented Institution

    ERIC Educational Resources Information Center

    Richburg, Kimberly M.

    2012-01-01

    Designing and executing a new upper level political science course preparation can be a daunting task, especially when dealing with some of the challenges in the context of teaching-oriented institutions of higher learning. In this paper, I conduct an examination of both the challenges and the opportunities that can be afforded by environmental…

  3. A Political Philosophy Approach to Teaching American Politics.

    ERIC Educational Resources Information Center

    Bailey, Kevin E.

    1982-01-01

    Suggests an alternative to the civic training, political indoctrination, and descriptive presentation approaches used to teaching American government courses. Recommends a political philosophy approach within a framework of elite theory to help students develop a critical perspective on American politics. (DMM)

  4. The Social Study of Science and Society: The Implications of Political Specialization for Social Science Curriculum Development.

    ERIC Educational Resources Information Center

    Miller, Jon D.

    Given the lack of interest among college and high school students and the declining rates of participation in political affairs, the concept of political specialization has significant implications for teaching political science. Research reveals that almost 90 percent of high school students who do not plan to attend college are either completely…

  5. Cosmopolitan political science.

    PubMed

    Grande, Edgar

    2006-03-01

    Until recently, the term cosmopolitism could rarely be found in modern political science literature. It was only in the 1990s that the term was rediscovered by political scientists in the critical discourse on globalization. In this article, I will explore the full potential of cosmopolitism as an analytical concept for empirical political science. I will argue that the concept of cosmopolitism should not be restricted to the analysis of global politics. Indeed, cosmopolitism has much more to offer for political scientists. Properly understood, it enables--and necessitates--a re-invention of political science in the age of globalization, comparable to the behavioural revolution in political science in the 1950s. Such a paradigmatic shift should be based on a twofold transformation of existing disciplinary boundaries: A removal of the boundary between national (and comparative) and international politics on the one hand; and a re-definition of the boundaries between empirical and normative approaches on the other. As a result, cosmopolitism may serve as a new, critical theory of politics based on the integration of hitherto separated fields and sub-fields.

  6. Political Science and Speech Communication--A Team Approach to Teaching Political Communication.

    ERIC Educational Resources Information Center

    Blatt, Stephen J.; Fogel, Norman

    This paper proposes making speech communication more interdisciplinary and, in particular, combining political science and speech in a team-taught course in election campaigning. The goals, materials, activities, and plan of such a course are discussed. The goals include: (1) gaining new insights into the process of contemporary campaigns and…

  7. Ditching the Script: Moving beyond "Automatic Thinking" in Introductory Political Science Courses

    ERIC Educational Resources Information Center

    Glover, Robert W.; Tagliarina, Daniel

    2011-01-01

    Political science is a challenging field, particularly when it comes to undergraduate teaching. If we are to engage in something more than uncritical ideological instruction, it demands from the student a willingness to approach alien political ideas with intellectual generosity. Yet, students within introductory classes often harbor inherited…

  8. The Politics of Education: From Political Science to Multidisciplinary Inquiry.

    ERIC Educational Resources Information Center

    Wong, Kenneth K.

    1994-01-01

    Discusses how political science has shaped educational politics. Examines educational politics' contribution to political science theory-building, highlighting federalism, multiple power centers, race relations, and democratic schooling issues. Explores why educational politics researchers diverge from the new political science paradigm (the…

  9. Teaching children the structure of science

    NASA Astrophysics Data System (ADS)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  10. Clarity in Multimedia: The Role of Interactive Media in Teaching Political Science Theories

    ERIC Educational Resources Information Center

    Cunningham, Alan

    2010-01-01

    The field of political science has encountered a unique obstacle in its development. Contemporary political theory has diverged in opposite paths, becoming more conceptual and abstract as well as focused and concrete. The unfortunate result of this has been a lack of clarity in communicating political theory to a new generation of political…

  11. Study for Teaching Behavioral Sciences in Schools of Medicine, Volume III: Behavioral Science Perspectives in Medical Education.

    ERIC Educational Resources Information Center

    American Sociological Association, Washington, DC. Medical Sociology Council.

    Volume III of a study of teaching behavioral sciences in medical school presents perspectives on medical behavioral science from the viewpoints of the several behavioral disciplines (anthropology, psychology, sociology, political science, economics, behavioral biology and medical education). In addition, there is a discussion of translating…

  12. Simulation and Collaborative Learning in Political Science and Sociology Classrooms.

    ERIC Educational Resources Information Center

    Peters, Sandra; Saxon, Deborah

    The program described here used cooperative, content-based computer writing projects to teach Japanese students at an intermediate level of English proficiency enrolled in first-year, English-language courses in political science/environmental issues and sociology/environmental issues in an international college program. The approach was taken to…

  13. Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Alamri, Aziz S.

    Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools and therefore caused less consideration to the influence of these issues on enhancing the scientific literacy of people in general. The purpose of this study was to investigate how Saudi science teachers in the city of Tabuk in Saudi Arabia view and teach SSI in Saudi Arabia. This study employed semi-structured interviews with Saudi science teachers. Methodologically, this study used a constructivist grounded theory as a method for analysis to generate in-depth descriptive data about Saudi science teachers' views and teaching strategies of socio-scientific issues. Some direct and indirect benefits pertain to teaching science, understanding the relationship between science, religion, and society and some other topics are discussed in this study.

  14. Science Fiction in the Political Science Classroom: A Comment

    ERIC Educational Resources Information Center

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  15. Has Political Science Ignored Religion?

    ERIC Educational Resources Information Center

    Kettell, Steven

    2012-01-01

    A common complaint from political scientists involved in the study of religion is that religious issues have been largely overlooked by political science. Through a content analysis of leading political science and sociology journals from 2000 to 2010, this article considers the extent of this claim. The results show that political science…

  16. Politicizing science: conceptions of politics in science and technology studies.

    PubMed

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  17. Teaching African Politics at American Colleges and Universities: A Survey.

    ERIC Educational Resources Information Center

    Kenski, Henry C.; Kenski, Margaret C.

    Political scientists who teach African politics courses at U.S. colleges and universities were surveyed in 1973 to (1) discover successful teaching techniques, approaches, and texts; (2) determine the popularity of courses in African politics; and (3) collect data on the status of African politics as a research area. A questionnaire was mailed to…

  18. Debate on global warming as a socio-scientific issue: science teaching towards political literacy

    NASA Astrophysics Data System (ADS)

    dos Santos, Wildson Luiz Pereira

    2014-09-01

    The focus of this response to the original article by Tom G. H. Bryce and Stephen P. Day (Cult Stud Sci Educ. doi: 10.1007/s11422-012-9407-1, 2013) is the use of empirical data to illustrate and expand the understanding of key points of their argument. Initially, I seek to discuss possible answers to the three questions posed by the authors related to: (1) the concerns to be addressed and the scientific knowledge to be taken into account in the climate change debate, (2) the attention to be paid to perspectives taken by "alarmists" and "deniers," and (3) the approaches to be used to conduct controversial global warming debate. In this discussion, I seek to contribute to the debate proposed by the original paper, illustrating various points commented on by the authors and expanding to other possibilities, which highlight the importance of political issues in the debate. Therefore, I argue that socio-political issues must be taken into account when I aim for a scientific literacy that can enhance students' political education. Likewise, I extend the debate presented in the original article, emphasizing the attention that should be paid to these aspects and approaching science education from a critical perspective. Highlighting only the confirmation bias without considering political implications of the debate can induce a reductionist and empiricist view of science, detached from the political power that acts on scientific activity. In conclusion, I support the idea that for a critical science education, the discussion of political issues should be involved in any controversial debate, a view, which goes beyond the confirmation bias proposed by Bryce and Day for the global warming debate. These issues are indeed vital and science teachers should take them into account when preparing their lessons for the debate on climate change.

  19. Science communication as political communication

    PubMed Central

    Scheufele, Dietram A.

    2014-01-01

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  20. Science communication as political communication.

    PubMed

    Scheufele, Dietram A

    2014-09-16

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.

  1. Teaching Political Science with Chillers and Thrillers.

    ERIC Educational Resources Information Center

    Neuse, Steven M.

    1980-01-01

    Discusses using popular detective and espionage fiction in courses related to area politics, international relations, political terrorism, socialization, and bureaucratic politics. Suggests several novels and ways in which they may be integrated into courses. (KC)

  2. Wizarding in the Classroom: Teaching Harry Potter and Politics

    ERIC Educational Resources Information Center

    Deets, Stephen

    2009-01-01

    This article describes teaching a course called Harry Potter and Politics. Focusing on aspects of political culture, the class tackled themes of identity, institutional behavior, and globalization. Teaching Harry Potter has several benefits. Students are both familiar with the wizarding world and yet have enough distance to examine it…

  3. Political Science and Political Geography: Neglected Areas, Areas for Development.

    ERIC Educational Resources Information Center

    Laponce, J. A.

    1983-01-01

    Since at least the 1950s, political scientists have tended to ignore the possible contributions of political geography to political science because of a move away from considering spatial factors on political structure. Political scientists need to use more information from geography to enhance their understanding of political power and conflict.…

  4. Information Literacy in the Study of American Politics: Using New Media to Teach Information Literacy in the Political Science Classroom

    ERIC Educational Resources Information Center

    Cope, Jonathan; Flanagan, Richard

    2013-01-01

    Students have access to a vast amount of information about American politics through new media outlets (e.g., the Internet). We survey the perils and promise of this new landscape through a case study of a political science class at the College of Staten Island, City University of New York (CUNY), that examined congressional races in the 2010…

  5. Taking evolution seriously in political science.

    PubMed

    Lewis, Orion; Steinmo, Sven

    2010-09-01

    In this essay, we explore the epistemological and ontological assumptions that have been made to make political science "scientific." We show how political science has generally adopted an ontologically reductionist philosophy of science derived from Newtonian physics and mechanics. This mechanical framework has encountered problems and constraints on its explanatory power, because an emphasis on equilibrium analysis is ill-suited for the study of political change. We outline the primary differences between an evolutionary ontology of social science and the physics-based philosophy commonly employed. Finally, we show how evolutionary thinking adds insight into the study of political phenomena and research questions that are of central importance to the field, such as preference formation.

  6. Comparative Analysis of Western and Domestic Practice of Interactive Method Application in Teaching Social and Political Disciplines at the Universities

    ERIC Educational Resources Information Center

    Hladka, Halyna

    2014-01-01

    The comparative analysis of western and domestic practice of introducing active and interactive methods of studies in the process of teaching social science disciplines has been carried out. Features, realities, prospects and limitations in application of interactive methods of teaching in the process of implementing social-political science…

  7. Teaching science, technology, and society to engineering students: a sixteen year journey.

    PubMed

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  8. Rock and Roll Will Never Die: Using Music to Engage Students in the Study of Political Science

    ERIC Educational Resources Information Center

    Soper, Christopher

    2010-01-01

    Popular music is ubiquitous in the lives of our students, music is used by politicians at virtually every one of their campaign events, and musicians are increasingly active in politics, but music has never been considered as a pedagogical tool in teaching political science classes. This article describes the use of music in an introduction to…

  9. Does "Reacting to the Past" Increase Student Engagement? An Empirical Evaluation of the Use of Historical Simulations in Teaching Political Theory

    ERIC Educational Resources Information Center

    Weidenfeld, Matthew C.; Fernandez, Kenneth E.

    2017-01-01

    Within the teaching of political theory, an assumption is emerging that "Reacting to the Past" simulations are an effective tool because they encourage greater student engagement with ideas and history. While previous studies have assessed the advantages of simulations in other political science subfields or offered anecdotal evidence of…

  10. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  11. The Impact of Online Bibliographic Databases on Teaching and Research in Political Science.

    ERIC Educational Resources Information Center

    Reichel, Mary

    The availability of online bibliographic databases greatly facilitates literature searching in political science. The advantages to searching databases online include combination of concepts, comprehensiveness, multiple database searching, free-text searching, currency, current awareness services, document delivery service, and convenience.…

  12. Simulation in the Teaching of International Politics.

    ERIC Educational Resources Information Center

    Sorenson, David S.

    Following a brief history of the development of simulation as a research and teaching tool in the field of international politics, three specific simulations are examined in more depth. (1) Conflict in the Middle East: A Public Policy Simulation is intended to acquaint students with the political situation in that area and to help them understand…

  13. Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues

    ERIC Educational Resources Information Center

    Alamri, Aziz S.

    2017-01-01

    Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools…

  14. Science Teaching in Science Education

    ERIC Educational Resources Information Center

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  15. The Effects of Majoring in Political Science on Political Efficacy

    ERIC Educational Resources Information Center

    Dominguez, Casey B. K.; Smith, Keith W.; Williams, J. Michael

    2017-01-01

    This study tests, and finds support, for the hypotheses that a student who majors in political science will have stronger feelings of political competence and will be more willing to engage in hypothetical political actions than two peer groups: (a) those who major in other fields and (b) those who show an interest in politics but have not studied…

  16. Drawing Out Theory: Art and the Teaching of Political Theory.

    ERIC Educational Resources Information Center

    Miller, Char R.

    2000-01-01

    Discusses how to use art in introductory political theory courses. Provides examples of incorporating art to teach political theory, such as examining Machiavelli's "The Prince" and Michelangelo's "David" to understand Florentine (Florence, Italy) political theory. (CMK)

  17. Teaching Psychology: The Political Context

    ERIC Educational Resources Information Center

    Newland, John

    2008-01-01

    In this commentary, the author raises two critical aspects not adequately addressed in John Radford's (2008) wide ranging article on the teaching of psychology in higher education. The first aspect is the relevance of boundaries. The second aspect is the political context(s). These two issues, though artificially dissociated for current purposes,…

  18. The triumph of politics over wilderness science

    Treesearch

    Craig W. Allin

    2000-01-01

    The National Wilderness Preservation System reflects the triumph of politics over science. The history of wilderness allocation has reflected political rather than scientific sensibilities. The preeminence of politics over science extends to wilderness management as well and is illustrated here by representative examples from the modern history of Yellowstone National...

  19. Political Science and Business School Curriculum.

    ERIC Educational Resources Information Center

    Matasar, Ann B.

    In the business community an understanding of the workings of government is essential. Most undergraduate business curricula do not include political science courses even though the subject can make major contributions to the student's education. Three areas of the business core would be particularly enriched by political science: organization…

  20. What Have We Been Writing about?: Patterns and Trends in the Scholarship of Teaching and Learning in Political Science

    ERIC Educational Resources Information Center

    Craig, John

    2014-01-01

    It is more than 10 years since Kehl (2002) identified the increasing number of scholarship of teaching and learning (SoTL) papers being produced by political scientists. As noted by Hamann et al. (2009) and Whitman and Richlin (2007), this trend has developed further with increasing levels of research and publishing activity in political science…

  1. Teaching and Practicing Transformational Politics.

    ERIC Educational Resources Information Center

    Abalos, David T.

    This conference paper asserts that there are four faces to the stories of people's lives: (1) a personal face; (2) a political face; (3) a historical face; and (4) a sacred face. The study explains how each of these faces interacts in society and is used to analyze and to teach multicultural literary works as archetypal stories from the…

  2. Teaching American Politics through Student Projects: Electoral Reform Issues and Political Change.

    ERIC Educational Resources Information Center

    Alper, Donald K.; Hogan, Eugene

    1979-01-01

    Describes two projects which involve college students in political science courses on American politics in doing research and giving class reports on proposals for reforming the electoral college and the electoral process. Findings indicate that students participating in the projects become more aware of political realities and learn how to use…

  3. Preservice elementary teachers' personal science teaching efficacy and science teaching outcome expectancies: The influence of student teaching

    NASA Astrophysics Data System (ADS)

    Plourde, Lee Alton

    This study was unique in garnering an early view at how the deterioration of science teacher education begins. This investigation examined the impact of the student teaching semester on preservice elementary teachers' personal efficacy beliefs and outcome expectancy beliefs in science teaching. Participants in the study included the student teachers of three separate cohort groups commencing and completing their student teaching semester at the same time. Qualitative data were gathered from interviews and observations from selected individuals of these cohort groups. Quantitative and qualitative research methods were employed in the study. Utilizing a pretest and posttest one group research design, quantitative data were obtained from the administration of a psychometric test, Science Teaching Efficacy Belief Instrument for preservice teachers (STEBI-B). The pretest was administered at the beginning of the student teaching semester, before the student teachers began their "soloing" teaching, and the posttest was administered at the completion of the student teaching semester and "soloing" period. Qualitative data were derived from interviews and observations which were audio recorded and transcribed. The results of this study revealed that the student teaching semester did not have a statistically significant impact on the subjects' sense of personal self-efficacy, but the influence was statistically significant in regards to the student teachers' beliefs about children's ability to learn science. Data gathered through interviews and observations suggested that beliefs appear to originate from one or more of the following: a lack of practical work, personal involvement, and hands-on manipulation in science related activities in elementary, secondary, and tertiary education; a dependence of science courses on textbooks and lectures; the dispassionate association with science teachers/instructors; a focus on formalized tests with no performance assessments; the

  4. The competing meanings of "biopolitics" in political science. Biological and postmodern approaches to politics.

    PubMed

    Liesen, Laurette T; Walsh, Mary Barbara

    2012-01-01

    The term "biopolitics" carries multiple, sometimes competing, meanings in political science. When the term was first used in the United States in the late 1970s, it referred to an emerging subdiscipline that incorporated the theories and data of the life sciences into the study of political behavior and public policy. But by the mid-1990s, biopolitics was adopted by postmodernist scholars at the American Political Science Association's annual meeting who followed Foucault's work in examining the power of the state on individuals. Michel Foucault first used the term biopolitics in the 1970s to denote social and political power over life. Since then, two groups of political scientists have been using this term in very different ways. This paper examines the parallel developments of the term "biopolitics," how two subdisciplines gained (and one lost) control of the term, and what the future holds for its meaning in political science.

  5. Teaching International Politics in High School.

    ERIC Educational Resources Information Center

    English, Raymond, Ed.

    Approaches to teaching about international politics and avenues to peace should be realistic and pragmatic rather than based on generalities about global education and peace education. This volume contains essays on international economic relations, cultural and linguistic understanding, and the conflict of ideologies and value systems in…

  6. A Look at the Relationship of Curriculum and Instruction and the Art and Science of Teaching

    ERIC Educational Resources Information Center

    Flake, Lee Hatch

    2017-01-01

    The definition of instruction and curriculum may take on different meanings based on the purpose or interpretation whether political, social, or educational. Teaching effectively requires the skill of a knowledgeable and experienced educator. Teaching can be convincingly debated as being an art or a science or defined collectively as an art and a…

  7. Diversified integration of practical teaching resources in ideological and political course in colleges and universities

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chu, Biao

    2018-03-01

    To promote diversified integration and integrated use of practical teaching resources in ideological and political education in colleges and universities is helpful to extend the ideological and political teaching activities in colleges and universities, to update and supplement ideological and political knowledge, to build a harmonious learning environment for students and to comprehensively improve their ideological and political accomplishments. This article will analyze of ideological and political practical teaching resources diversified integration and the integration of programs by examples, and put forward personal opinions.

  8. Building Political Participation: The Role of Family Policy and Political Science Courses

    ERIC Educational Resources Information Center

    Parrott, Emily

    2017-01-01

    This mixed-methods study examined the long-term associations between two kinds of politics courses--required political science courses and required family policy courses--and the political participation, knowledge, skill, efficacy, and politically engaged identity of child and family studies alumni. Two special cases were examined: those who…

  9. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  10. Generalizing About the Use of Political Science in Government.

    ERIC Educational Resources Information Center

    Nagel, Stuart S.

    This paper develops some generalizations about uses of political scientists and political science in government. Information is based on essays written by political scientists which appear in the "Political Science Utilization Directory." Developed by the Policy Studies Organization, this publication includes largely verbatim survey results…

  11. Designing Science Laboratories: Learning Environments, School Architecture and Teaching and Learning Models

    ERIC Educational Resources Information Center

    Veloso, Luísa; Marques, Joana S.

    2017-01-01

    This article on secondary schools science laboratories in Portugal focuses on how school space functions as a pedagogical and political instrument by contributing to shape the conditions for teaching and learning dynamics. The article places the impact of changes to school layouts within the larger context of a public school renovation programme,…

  12. The Study of LGBT Politics and Its Contributions to Political Science

    ERIC Educational Resources Information Center

    Mucciaroni, Gary

    2011-01-01

    Although the study of LGBT (lesbian, gay, bisexual, transgender) politics appears to be widely accepted within political science, a recent survey of political scientists reported some skepticism about its legitimacy and scholarly worth (Novkov and Barclay 2010). This article examines potential concerns about LGBT studies and draws attention to the…

  13. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences

  14. Teaching Ethics in Science.

    ERIC Educational Resources Information Center

    Reiss, Michael

    1999-01-01

    Summarizes arguments for and against teaching ethics within science education, and clarifies what might be the several aims of teaching ethics in science. Discusses how ethics instruction might be incorporated into the science curriculum. (Contains 120 references.) (WRM)

  15. Learning to teach science for social justice in urban schools

    NASA Astrophysics Data System (ADS)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  16. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  17. Teaching Children Science. Second Edition.

    ERIC Educational Resources Information Center

    Abruscato, Joseph

    This book focuses on science teaching at the elementary school level. It includes chapters dealing with various science content areas and teaching processes including: (1) what is science; (2) why teach science; (3) process skills as a foundation for unit and lesson planning; (4) how to plan learning units, daily lessons, and assessment…

  18. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    ERIC Educational Resources Information Center

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  19. Speak up! Oral Examinations and Political Science

    ERIC Educational Resources Information Center

    Buehler, Melissa J.; Schneider, Laura U.

    2009-01-01

    Testing assessments of undergraduate political science students is predictable and stagnant. A missing, yet valuable, testing assessment tool that can contribute to the repertoire of political science is the oral examination. Borrowing this testing tool largely from foreign language departments, oral exams require students to "think on their…

  20. Secondary school science teaching, 1970--1992: Objectives as stated in periodical literature

    NASA Astrophysics Data System (ADS)

    Hemby, Brian Franklin

    Purpose of the study. The major purpose of this study was to identify and classify objectives for teaching science in secondary schools in the United States during the period 1970--1992. These objectives were identified by objective statements in articles from selected professional periodicals. Procedure. The 1970--1992 period was divided into two subperiods on the basis of major historical events. Selected professional periodicals were searched for statements of objectives of secondary school science teaching. These statements were catalogued into Knowledge, Process, Attitude and Interest, or Cultural Awareness categories. The resulting data were classified within and across the two subperiods according to frequency of occurrence, category, authorship, and year. Findings. The major findings of this investigation included the following: (1) Authors in Higher Education produced the most articles, both research-oriented and nonresearch-oriented, and the most statements in each subperiod. Miscellaneous authors produced the least articles and statements. (2) Statements in the Process category were most frequent in the two subperiods. (3) The "most important" objectives for secondary school science teaching were Philosophical, sociological, and political aspects (from the Cultural Awareness category), Processes, skills, and techniques (from the Process category), and Major facts, principles, or fundamentals (from the Knowledge category). (4) Attitude and Interest objectives were consistently ranked as least important throughout the study. (5) The ranking of "most important" objectives in research-oriented articles generally agreed with the ranking in articles as a whole. Conclusions. Based on the findings of this investigation, the following conclusions were made: (1) The objectives for teaching secondary school science were influenced by historical events, especially the Vietnam War, the Cold War, the AIDS pandemic, and the publication of A Nation at Risk: The

  1. The Arab-Israeli Conflict: A Decision-Making Game. Revised Edition. Supplementary Empirical Teaching Units in Political Science.

    ERIC Educational Resources Information Center

    Feste, Karen Ann

    The Middle East decision making game has been developed to provide college level political science students with some indication of the complexities of international political situations. The central issue examined in the game is the way in which perceptions of a conflict relate to foreign policy decision. The game is divided into two sections. In…

  2. Seeking Relevance: American Political Science and America

    ERIC Educational Resources Information Center

    Maranto, Robert; Woessner, Matthew C.

    2012-01-01

    In this article, the authors talk about the relevance of American political science and America. Political science has enormous strengths in its highly talented practitioners and sophisticated methods. However, its disconnection from its host society, while not so severe as for fields like English and sociology, nonetheless poses an existential…

  3. Integrating Gender into the Political Science Core Curriculum

    ERIC Educational Resources Information Center

    Cassese, Erin C.; Bos, Angela L.; Duncan, Lauren E.

    2012-01-01

    The New Research on Gender in Political Psychology Conference brought together new and experienced teachers with interests in gender politics. The conference session "Teaching Gender throughout the Curriculum" generated a great deal of discussion concerning the pedagogical practice of gender mainstreaming. Gender mainstreaming--the integration of…

  4. The Intersection of Science and Politics

    NASA Astrophysics Data System (ADS)

    Kim, Elias

    2016-03-01

    Politics and science often seem at odds. However, important political issues like climate change, cybersecurity, and space exploration require the input of both communities. To create the best possible policies, there must be a dialogue between politicians and scientists. SPS and John Mather gave me the opportunity to be part of this dialogue. Through the Mather Policy Internship, I worked for the House Committee on Energy and Commerce, which has jurisdiction over telecom, health care, energy supply, and other technical areas. I worked with the technology and communications subcommittee, conducting research on cybersecurity, spectrum auctions, and the internet of things. It is clear that even the commercial side of science would benefit from the help of the science community. My background gave me an edge over the other interns; I didn't need to learn what it meant for there to be signals of different wavelength. Most importantly, I learned what it will take to pursue a career in science policy. For the number of physics undergrads who do not wish to pursue a pure physics career, science policy is a strong option. Scientists bring a rigorous, fact-based approach that might benefit the political world as a whole. Thanks to SPS, AIP, and the John and Jane Mather Foundation for Science and the Arts.

  5. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  6. Science Teaching: What Does It Mean?

    ERIC Educational Resources Information Center

    Tseitlin, Michael; Galili, Igal

    2006-01-01

    This study considers the relationship between science, science teaching and the philosophy of science perceiving these three cultural phenomena as a semantic triad. This approach presents science teaching as being a form of a scientific reflection. The relationship of science teaching to the philosophy of science is advocated to be essential,…

  7. Radical Hope and Teaching: Learning Political Agency from the Politically Disenfranchised

    ERIC Educational Resources Information Center

    Edgoose, Julian

    2009-01-01

    If teaching is a political act, how can teachers hope to make a difference through their work? In this review essay, Julian Edgoose explores this question of hope in relation to three recent books: David Halpin's "Hope and Education," Jonathan Kozol's "Letters to a Young Teacher," and Jonathan Lear's "Radical Hope." Halpin describes how hope comes…

  8. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    NASA Astrophysics Data System (ADS)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  9. An Interdisciplinary Approach to Teaching International Law: Using the Tools of the Law School Classroom in Political Science

    ERIC Educational Resources Information Center

    Zartner, Dana

    2009-01-01

    As the world has grown more interconnected, many political science programs have added courses on international law, international organizations, the laws of war and peace, international human rights, and comparative judicial politics. While in many cases these are relatively new offerings within international studies, all of these subjects have…

  10. The influence of liberal political ideology on nursing science.

    PubMed

    Browne, A J

    2001-06-01

    Previous notions of science as impartial and value-neutral have been refuted by contemporary views of science as influenced by social, political and ideological values. By locating nursing science in the dominant political ideology of liberalism, the author examines how nursing knowledge is influenced by liberal philosophical assumptions. The central tenets of liberal political philosophy - individualism, egalitarianism, freedom, tolerance, neutrality, and a free-market economy - are primarily manifested in relation to: (i) the individualistic focus of our science; (ii) our view of society as essentially egalitarian and equitable; (iii) our preference for politically neutral knowledge development, and (iv) an economy of knowledge development that supports rather than challenges the status quo. I argue that exposing, rather than ignoring, the liberal ideological values inherent in nursing science will render these assumptions open to debate, stimulate ongoing development of critically oriented knowledge, and increase our capacity to influence the social, political and economic determinants of health.

  11. A Practical Guide to Political Action: Grassroots and English Teaching

    ERIC Educational Resources Information Center

    Burns, Leslie David

    2007-01-01

    Leslie David Burns calls teachers to the political forefront, believing that we need to educate our communities about our work by dispelling inaccurate public assumptions about literacy, "best" teaching practices, and accountability standards. He provides teachers with a list of practical steps for "intentional political action" at the grassroots…

  12. Sharpening the lens of culturally responsive science teaching: a call for liberatory education for oppressed student groups

    NASA Astrophysics Data System (ADS)

    Codrington, Jamila

    2014-12-01

    Wallace and Brand's framing of culturally responsive science teaching through the lens of critical race theory honors the role of social justice in science education. In this article, I extend the discussion through reflections on the particular learning needs of students from oppressed cultural groups, specifically African Americans. Understanding the political nature of education, I explore the importance of transforming science education so that it has the capacity to provide African American students with tools for their own liberation. I discuss Wallace and Brand's research findings in relation to the goal of liberatory education, and offer ideas for how science educators might push forward this agenda as they strive for culturally responsive teaching with oppressed student groups.

  13. The Politics of the Teaching of Reading

    ERIC Educational Resources Information Center

    Soler, Janet

    2016-01-01

    Historically, political debates have broken out over how to teach reading in primary schools and infant classrooms. These debates and "reading wars" have often resulted from public concerns and media reportage of a fall in reading standards. They also reflect the importance placed on learning to read by parents, teachers, employers, and…

  14. A pragmatic conception of science: Implications for science teaching

    NASA Astrophysics Data System (ADS)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  15. Competencies in Science Teaching

    ERIC Educational Resources Information Center

    Mathelitsch, Leopold

    2013-01-01

    The role of competencies is discussed with respect to science teaching. In particular, competence models from Germany, Switzerland and Austria are presented and compared. A special topical program, "Competencies in Mathematics and Science Teaching", was started in Austria three years ago. Initial experiences with this program are…

  16. Political Specialization and Social Science Education.

    ERIC Educational Resources Information Center

    Miller, Jon D.

    This paper outlines a two-dimensional model of political specialization and discusses its implications for social science education. The first dimension, interest specialization, involves the choice of whether or not to devote time and resources to political affairs at all. The interest specialization process of young adults and adults was…

  17. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice

  18. Perspectives on learning, learning to teach and teaching elementary science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  19. Getting started in the scholarship of teaching and learning: a "how to" guide for science academics.

    PubMed

    Rowland, Susan L; Myatt, Paula M

    2014-01-01

    SoTL stands for the Scholarship of Teaching and Learning. The acronym, said "sottle" or "sote-all," describes research that involves rigorous examination of teaching and learning by faculty who are actively involved in the educational process. The number of natural-science faculty engaged in SoTL is increasing, and their important work has broad implications for the measurement and improvement of college teaching and learning outcomes. The data show, however, that many faculty who conduct SoTL projects in science departments begin their education research careers with no training in SoTL research methodologies, and find they are working alone, with few colleagues who can nurture (or even understand) their efforts. In this article we provide a guide intended to help natural-science faculty initiate SoTL projects while they negotiate the mechanics and politics of developing and maintaining a SoTL research program in a science department. © 2013 by the American Association for the Study of Liver Diseases.

  20. Science and creationism: a response to Kenneth Tobin

    NASA Astrophysics Data System (ADS)

    Alexakos, Konstantinos

    2009-06-01

    In his December editorial on Michael Reiss, Kenneth Tobin (Cult Stud Sci Educ 3:793-798, 2008), raises some very important questions for science and science teachers regarding science education and the teaching of creationism in the classroom. I agree with him that students' creationist ideologies should be treated not as misconceptions but as worldviews. Because of creationism's peculiarly strong political links though, I argue that such discussion must address three critical and interconnected issues, including the uncertain state of teaching evolution in public schools nationally, the political convergence of the creationist political beliefs with bigoted worldviews, and creationism's inherent contrariness to science and human progress. I suggest that we as science educators therefore not consider all sides to be equally right and to instead take side against the politics of creationism. I also argue that we need much more serious discussion on how to better teach science to students who hold creationist worldviews, and that science educators such as Reiss need to be part of that.

  1. The Teaching Processes of Prospective Science Teachers with Different Levels of Science-Teaching Self-Efficacy Belief

    ERIC Educational Resources Information Center

    Saka, Mehpare; Bayram, Hale; Kabapinar, Filiz

    2016-01-01

    The concept of self-efficacy, which is an important variable in the teaching process, and how it reflects on teaching have recently been the focus of attention. Therefore, this study deals with the relationship between the science-teaching self-efficacy beliefs of prospective science teachers and their teaching practices. It was conducted with…

  2. Scientific Integrity in Washington: Politics Trumps Science?

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence

    2005-04-01

    Numerous documented examples exist in which the current administration has either censored or distorted the recommendations and/or the results of government scientific advisory panels and agencies, or has interfered with the makeup of scientific advisory panels for apparently political purposes. These instances seem more broad ranging than any recent administration, republican or democrat, and have continued despite various public outcries. I will describe several examples from the physical sciences, and the biological sciences, and then discuss what we might do as a community to encourage the administration in its second term to work to ensure that politics does not trump science.

  3. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    ERIC Educational Resources Information Center

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  4. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    ERIC Educational Resources Information Center

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  5. Teaching Ethical Issues in Science.

    ERIC Educational Resources Information Center

    Levinson, Ralph

    This paper presents a study that investigates the teaching and learning aspects of controversial issues in science education. Teaching ethical issues is mandatory for science teachers in England; however, teachers may experience difficulties in exploring contemporary issues in science due to rapid and unpredictable changes. The study carries an…

  6. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  7. Science, politics, and rationality in a partisan era

    NASA Astrophysics Data System (ADS)

    Kirchner, James W.

    2017-05-01

    Science plays an essential role in public policy by outlining the factual foundations of policy debates. As a result, science often becomes a political football, with partisans dismissing or misrepresenting scientific findings that conflict with their political views. Here I argue that scientists can most effectively speak out, not as activists supporting particular political causes, but instead as advocates for a fundamentally rational public discourse, one that starts from the facts—not from whatever one might choose to believe—and then explores how society should respond to the challenges that they pose.

  8. Towards a Science of Science Teaching

    ERIC Educational Resources Information Center

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  9. Political diversity will improve social psychological science.

    PubMed

    Duarte, José L; Crawford, Jarret T; Stern, Charlotta; Haidt, Jonathan; Jussim, Lee; Tetlock, Philip E

    2015-01-01

    Psychologists have demonstrated the value of diversity--particularly diversity of viewpoints--for enhancing creativity, discovery, and problem solving. But one key type of viewpoint diversity is lacking in academic psychology in general and social psychology in particular: political diversity. This article reviews the available evidence and finds support for four claims: (1) Academic psychology once had considerable political diversity, but has lost nearly all of it in the last 50 years. (2) This lack of political diversity can undermine the validity of social psychological science via mechanisms such as the embedding of liberal values into research questions and methods, steering researchers away from important but politically unpalatable research topics, and producing conclusions that mischaracterize liberals and conservatives alike. (3) Increased political diversity would improve social psychological science by reducing the impact of bias mechanisms such as confirmation bias, and by empowering dissenting minorities to improve the quality of the majority's thinking. (4) The underrepresentation of non-liberals in social psychology is most likely due to a combination of self-selection, hostile climate, and discrimination. We close with recommendations for increasing political diversity in social psychology.

  10. Evolving political science. Biological adaptation, rational action, and symbolism.

    PubMed

    Tingley, Dustin

    2006-01-01

    Political science, as a discipline, has been reluctant to adopt theories and methodologies developed in fields studying human behavior from an evolutionary standpoint. I ask whether evolutionary concepts are reconcilable with standard political-science theories and whether those concepts help solve puzzles to which these theories classically are applied. I find that evolutionary concepts readily and simultaneously accommodate theories of rational choice, symbolism, interpretation, and acculturation. Moreover, phenomena perennially hard to explain in standard political science become clearer when human interactions are understood in light of natural selection and evolutionary psychology. These phenomena include the political and economic effects of emotion, status, personal attractiveness, and variations in information-processing and decision-making under uncertainty; exemplary is the use of "focal points" in multiple-equilibrium games. I conclude with an overview of recent research by, and ongoing debates among, scholars analyzing politics in evolutionarily sophisticated terms.

  11. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  12. Politics and the life sciences: an unfinished revolution.

    PubMed

    Johnson, Gary R

    2011-01-01

    Politics and the life sciences--also referred to as biopolitics--is a field of study that seeks to advance knowledge of politics and promote better policymaking through multidisciplinary analysis that draws on the life sciences. While the intellectual origins of the field may be traced at least into the 1960s, a broadly organized movement appeared only with the founding of the Association for Politics and the Life Sciences (APLS) in 1980 and the establishment of its journal, Politics and the Life Sciences ( PLS ), in 1982. This essay--contributed by a past journal editor and association executive director--concludes a celebration of the association's thirtieth anniversary. It reviews the founding of the field and the association, as well as the contributions of the founders. It also discusses the nature of the empirical work that will advance the field, makes recommendations regarding the identity and future of the association, and assesses the status of the revolution of which the association is a part. It argues that there is progress to celebrate, but that this revolution--the last of three great scientific revolutions--is still in its early stages. The revolution is well-started, but remains unfinished.

  13. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  14. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    ERIC Educational Resources Information Center

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  15. Does Studying Political Science Affect Civic Attitudes?: A Panel Comparison of Students of Politics, Law, and Mass Communication

    ERIC Educational Resources Information Center

    Esaiasson, Peter; Persson, Mikael

    2014-01-01

    The article evaluates the civic implications of studying political science. Previous research has argued that learning rational choice models of political behavior could be detrimental to civic outcomes. However, results from our two panel surveys of students at Swedish universities show the opposite: studying political science has positive…

  16. Politics of prevention: The emergence of prevention science.

    PubMed

    Roumeliotis, Filip

    2015-08-01

    This article critically examines the political dimension of prevention science by asking how it constructs the problems for which prevention is seen as the solution and how it enables the monitoring and control of these problems. It also seeks to examine how prevention science has established a sphere for legitimate political deliberation and which kinds of statements are accepted as legitimate within this sphere. The material consists of 14 publications describing and discussing the goals, concepts, promises and problems of prevention science. The analysis covers the period from 1993 to 2012. The analysis shows that prevention science has established a narrow definition of "prevention", including only interventions aimed at the reduction of risks for clinical disorders. In publications from the U.S. National Institute of Drug Abuse, the principles of prevention science have enabled a commitment to a zero-tolerance policy on drugs. The drug using subject has been constructed as a rational choice actor lacking in skills in exerting self-control in regard to drug use. Prevention science has also enabled the monitoring and control of expertise, risk groups and individuals through specific forms of data gathering. Through the juxtaposition of the concepts of "objectivity" and "morality", prevention science has constituted a principle of delineation, disqualifying statements not adhering to the principles of prevention science from the political field, rendering ethical and conflictual dimensions of problem representations invisible. The valorisation of scientific accounts of drugs has acted to naturalise specific political ideals. It simultaneously marginalises the public from the public policy process, giving precedence to experts who are able to provide information that policy-makers are demanding. Alternative accounts, such as those based on marginalisation, poverty or discrimination are silenced within prevention science. Copyright © 2015 Elsevier B.V. All rights

  17. Integrating Statistical Visualization Research into the Political Science Classroom

    ERIC Educational Resources Information Center

    Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.

    2011-01-01

    The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…

  18. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  19. Experiencing Citizenship: Concepts and Models for Service-Learning in Political Science. AAHE's Series on Service-Learning in the Disciplines.

    ERIC Educational Resources Information Center

    Battistoni, Richard M., Ed.; Hudson, William E., Ed.

    This volume is part of a series of 18 monographs service learning and the academic disciplines. This collection of essays focuses on the use of service learning as an approach to teaching and learning in political science. Following an Introduction by Richard M. Battistoni and William E. Hudson, the four essays in Part 1, "Service-Learning as…

  20. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to

  1. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    ERIC Educational Resources Information Center

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  2. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    NASA Astrophysics Data System (ADS)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  3. What Does Political Education Research Tell Us about How to Teach Citizenship?

    ERIC Educational Resources Information Center

    Ehman, Lee H.

    This paper presents six generalizations based on political education research and discusses their implications for teaching citizenship in the public schools. In drawing the implications, it was assumed that citizenship education is designed to promote higher political knowledge, interest, trust, tolerance of dissent, and intellectual and…

  4. Teaching Science through Research.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  5. Collegiality and Better Science Teaching

    ERIC Educational Resources Information Center

    Weiser, Brenda

    2012-01-01

    For the past five years, teachers from four Houston-area school districts have joined together in a professional learning community (PLC) to improve their science teaching. Through the University of Houston-Clear Lake (UHCL) Regional Collaborative for Excellence in Science and Mathematics Teaching, the teachers strengthen content knowledge and…

  6. Political Science in America. Oral Histories of a Discipline.

    ERIC Educational Resources Information Center

    Baer, Michael A., Ed.; And Others

    This book contains interviews with 15 major figures in the academic discipline of political science. Contributors discuss the intellectual and institutional roots of political science and trace its evolution and development. Those interviewed describe what it was like to be a part of the earliest Ph.D programs, and what it was like to work with…

  7. On the Advantage and Disadvantage of History for Teaching Political Theory to Undergraduates

    ERIC Educational Resources Information Center

    Johnson, Jeffrey Alan

    2008-01-01

    This paper argues that the standard approach to teaching the history of political thought does not serve the ultimate goals of political theory education, and that alternative approaches are needed to make the history of thought appropriate for undergraduates. A history of political thought for life ought to enhance a person's capacity to act as a…

  8. From learning science to teaching science: What transfers?

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  9. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  10. Provocative Opinion: Fads in Science Teaching

    ERIC Educational Resources Information Center

    Parry, R. W.

    1975-01-01

    Criticizes the post-Sputnik wave of multi-disciplinary science curricula aimed at teaching the students about social problems and how science can help solve these problems. Suggests that science teaching should concentrate more on the basics of a given discipline and should be taught be specialists rather than generalists. (MLH)

  11. Teaching the Human Dimension of Science

    ERIC Educational Resources Information Center

    Farland-Smith, Donna; McComas, William

    2009-01-01

    Teachers have the important responsibility of providing students with accurate and engaging science content while also helping them establish authentic views of scientists. Though there are numerous curriculum materials to assist in the teaching of science content, the authors have found that methods and materials to teach science as a human…

  12. Analyzing Tax Policy: A Resource Guide. Economics-Political Science Series.

    ERIC Educational Resources Information Center

    Swartz, Thomas R.

    Part of a series which offers educational resources and teaching techniques related to major social issues to high school social studies classroom teachers, the guide focuses on political and economic aspects of tax policy in the United States. The document is presented in three major chapters. Chapter I explores how economic and political science…

  13. The Rise of Political Interference in Science Policy

    NASA Astrophysics Data System (ADS)

    Carter, J. M.; Goldman, G. T.; Barry, J.

    2017-12-01

    The United States federal government has long relied on independent science to inform policy decisions that impact public health and safety, and the environment. Yet, losses of scientific integrity in federal decisionmaking have persisted, politicizing science and undermining science-based public health protections the government is charged with overseeing. However, politicization of science has accelerated in recent months. Focusing on a series of recent case studies, we investigated different tactics used by political actors to undermine the use of independent science in the policy making process. In this talk, we will highlight and discuss many of these tactics used in the current political era including the delay of science-based decisions, disbanding scientific advisory boards, and the dismissal of scientific evidence. Additionally, this talk will be followed by a discussion of what we might expect for federal scientific integrity in the next few years.

  14. What U.S. Political History Reveals for Social Studies Education.

    ERIC Educational Resources Information Center

    Mills, Randy K.

    1996-01-01

    Endorses U.S. political history as a colorful and interesting resource for teaching important historical and social science concepts: order and change, elitism and pluralism, creating structures, the Constitution, and the formation of political parties. Discusses these concepts and gives examples of each. (MJP)

  15. Peer Assessment of Elementary Science Teaching Skills

    ERIC Educational Resources Information Center

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  16. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Westerback, Mary E.

    These studies examined attitude toward teaching science (ATTS) using an adaptation of the Bratt Attitude Test (M-BAT); anxiety about teaching science (ANX-TS), as measured by the State-Trait Anxiety Inventory (STAI A-State); and selected demographic variables in preservice elementary teachers for the 1977-1978 and 1978-1979 academic years and a follow-up of those students who completed their student teaching in May 1979. The M-BAT and STAI were administered in September at the beginning of Science 6 (earth science and biology course), in December on the next to last day of Science 6, in May on the next to the last day of Science 5 (physical science), and in May 1979 after student teaching. In the two academic years, both ATTS and ANX-TS became more positive during the sequence Science 6-5. Both changes in ATTS and ANX-TS continued to change in a positive direction after completion of Science 6-5, after student teaching. There were differences in the times that the greatest changes in ATTS and ANX-TS occurred. In both studies, the greatest change in ATTS took place between September and December, during Science 6. The greatest change in ANX-TS, however, took place during Science 5 between December and May in the 1977-1978 study. In the 1978-1979 study, the greatest changes in ANX-TS occurred in Science 6, between September and December. The delayed reduction of ANX-TS in the 1977-1978 study may be explained by differences in teaching patterns. In 1977-1978, two teachers taught only their academic specialty, biology or earth science, to students who switched teachers midsemester. In 1978-1979, the same two instructors taught both biology and earth science to the same students. Correlation coefficients for successive and corresponding administrations of both the M-BAT and STAI suggest these variables are related. Students with more positive ATTS tended to have reduced ANX-TS. Neither the number of high school or college science and math courses completed nor the level

  17. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  18. Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  19. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  20. Analyzing Inflation and Its Control: A Resource Guide. Economics-Political Science Series.

    ERIC Educational Resources Information Center

    Salemi, Michael K.; Leak, Sarah

    Background information for teachers on inflation and self-contained learning activities to help students view inflation from both economic and political perspectives are provided. The introduction contains economics and political science frameworks for analyzing policy issues. How to integrate economics and political science is also discussed.…

  1. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    ERIC Educational Resources Information Center

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  2. Professional development in college science teaching

    NASA Astrophysics Data System (ADS)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  3. A Study on the Necessity and Basic Mode of Implementing Cooperative Teaching in the Ideological and Political Theory Courses

    ERIC Educational Resources Information Center

    Zhang, Xiaoxia

    2012-01-01

    This paper explores the necessity and basic mode of the implementation of cooperative teaching in the ideological and political theory courses. The practice of cooperative teaching in the Ideological and political theory courses is helpful for overcoming the deficiency of the traditional large-class teaching mode, and realizing complementary…

  4. Team Teaching Political Communication: The 2000 Campus U.S. Presidential Campaign.

    ERIC Educational Resources Information Center

    Hardeman, Keith T.; Jefferson, Kurt W.

    The closeness of the 2000 presidential election clearly demonstrated that the country was divided philosophically and politically. The authors of this paper, a speech communication professor and a political science professor at Westminster College in Missouri, capitalized on that division based upon their diametrically opposed political views by…

  5. Science Teaching in Rhodesia

    ERIC Educational Resources Information Center

    Smith, A. L.

    1975-01-01

    Describes science teaching in Rhodesia as beset with limitations in the quality of students, in student motivation, in the number and quality of teachers, in the Rhodesian environment, and in the science syllabuses themselves. (Author/GS)

  6. My Career as a Teacher and a Political Scientist: If I Knew Then What I Know Now

    ERIC Educational Resources Information Center

    Richards, Erin

    2018-01-01

    This article addresses my professional development as a teacher and political scientist throughout the span of a 15-year career in political science. Also included are reflections on graduate education and the compatibility and necessary dual focus on both political science and teaching in the academy today as it relates to my present-day…

  7. Looking into the Teaching Crystal: Graduate Teaching and the Future of Political Science

    ERIC Educational Resources Information Center

    Buehler, Melissa J.; Marcum, Anthony S.

    2007-01-01

    Few studies address what graduate students actually learn in teacher training courses, or how graduate instructors implement their knowledge of teaching in their classrooms. Our research addresses the apparent divergence among advocacy, training, and actual practice through a comparative analysis of graduate instructor teaching philosophies and…

  8. Pedagogy of Science Teaching Tests: Formative Assessments of Science Teaching Orientations

    ERIC Educational Resources Information Center

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Mugaloglu, Ebru Zeynep; Bentz, Amy; Sparks, Kelly

    2014-01-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies.…

  9. Teaching about Teaching Science: Aims, Strategies, and Backgrounds of Science Teacher Educators

    ERIC Educational Resources Information Center

    Berry, Amanda; Van Driel, Jan H.

    2013-01-01

    Despite pressing concerns about the need to prepare high-quality teachers and the central role of teacher educators (TEs) in this process, little is known about how TEs teach about teaching specific subject matter, and how they develop their expertise. This empirical study focuses on the specific expertise that science TEs bring into teacher…

  10. Emotions in teaching environmental science

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  11. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    NASA Astrophysics Data System (ADS)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  12. The science of human security: a response from political science.

    PubMed

    Roberts, David

    2008-01-01

    The concept of human security has developed in significance in the last decade to the point that its meaning and validity is hotly contested in the field of international relations, security, and development studies. A key consideration relates to its ambiguity at best and its amorphousness at worst. Medical scholarship proposes approaches that may render more meaningful the concept. However, collaboration and co-operation between political scientists and medical practitioners offers even greater potential to this vital programme. The latter offer the technical and methodological skills and approaches lacking in political science, whilst the former develop political frameworks to shift the causal focus towards human, institutional and structural agency in mass avoidable global civilian mortality.

  13. Developing Interpretive Power in Science Teaching

    ERIC Educational Resources Information Center

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  14. Life at a Teaching University

    ERIC Educational Resources Information Center

    Marineau, Josiah F.

    2018-01-01

    Many new political science faculty at teaching universities are recent PhD recipients, and are coming to these institutions from research-oriented universities. There are considerable differences between the training for graduate students received at research universities and the expectations for faculty at teaching universities. This essay…

  15. Contributions of Science Principles to Teaching: How Science Principles Can Be Used

    ERIC Educational Resources Information Center

    Henson, Kenneth T.

    1974-01-01

    Describes the steps involved in using the "principles" approach in teaching science, illustrates the process of using science principles with an example relating to rock formation, and discusses the relevance of this approach to contemporary trends in science teaching. (JR)

  16. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  17. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  18. Science and Politics in the Philosophy of Science of Popper, Polanyi, and Kuhn

    NASA Astrophysics Data System (ADS)

    Nye, Mary Jo

    2006-05-01

    The names of Karl Popper, Michael Polanyi, and Thomas Kuhn are well-known among scientists and among historians and philosophers of science. Around 1960 they published books that excited considerable discussion because of their independent rejection of the philosophical tradition that uses simple empiricism or positivism to differentiate science from religion, metaphysics, ideology, or pseudo-science. Popper's original field of expertise was scientific education and psychology. Polanyi had a distinguished career in physical chemistry and chemical physics, while Kuhn worked briefly in solid-state physics before turning to the philosophy of science. Their descriptions of scientific practices and values have roots not only in their scientific educations and experiences, but also in the political questions of their time. This paper focuses on political dimensions in the philosophical work of these three twentieth-century figures.

  19. Preservice Science Teachers' Uses of Inscriptions in Science Teaching

    ERIC Educational Resources Information Center

    Tanis Ozcelik, Arzu; McDonald, Scott P.

    2013-01-01

    This study investigated preservice science teachers' uses of inscriptions in their peer teaching activities and was guided by the following research questions: (1) What kinds of inscriptions and inscriptional practices do preservice science teachers use in their peer teaching activity? and (2) How and for what purposes do preservice science…

  20. Newly qualified teachers' visions of science learning and teaching

    NASA Astrophysics Data System (ADS)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  1. Inside versus outside the Science Classroom: Examining the Positionality of Two Female Science Teachers at the Boundaries of Science Education

    ERIC Educational Resources Information Center

    Teo, Tang Wee

    2015-01-01

    The third wave feminist studies in science education take the stance that science teaching is political and that social change is possible through interrogating power inequalities and decentering science to balance out power. For science educators, this means developing an awareness of "positionality," which I define here as a…

  2. Science, politics and ethics in the low dose debate.

    PubMed

    Baverstock, Keith

    2005-01-01

    The roles of science, ethics and politics are identified in respect of the risks of exposure to low-dose radiation. Two case studies, the epidemiology of the United Kingdom nuclear test veterans and the risks to civilians associated with the military use of depleted uranium, are considered in the context of their ethical framing, scientific evaluation and political resolution. Two important issues for the present and future, the safe management of U.K. radioactive waste and the future of nuclear power, in which the science of low dose effects will be crucial and where the ethical issues are much more complex, are introduced. Specific consideration is given to the potential hereditary effects of ionising radiation in relation to the current state of radiobiological knowledge. It is concluded that for science to be useful in public health policy making there needs to be some reform from within the profession and the political imperative for freely independent scientific institutions.

  3. Research, Teaching, and Publication Productivity: Mutuality Versus Competition in Academia.

    ERIC Educational Resources Information Center

    Fox, Mary Frank

    1992-01-01

    Addresses the relationship between research and teaching in the social sciences. Explains that the study examined academic work from economics, political science, psychology, and sociology departments to determine work attitudes and practices. Concludes that teaching and research are not complementary roles but different conflicting dimensions.…

  4. The politics of Piketty: what political science can learn from, and contribute to, the debate on Capital in the twenty-first century.

    PubMed

    Hopkin, Jonathan

    2014-12-01

    Thomas Piketty's imposing volume has brought serious economics firmly into the mainstream of public debate on inequality, yet political science has been mostly absent from this debate. This article argues that political science has an essential contribution to make to this debate, and that Piketty's important and powerful book lacks a clear political theory. It develops this argument by first assessing and critiquing the changing nature of political science and its account of contemporary capitalism, and then suggesting how Piketty's thesis can be complemented, extended and challenged by focusing on the ways in which politics and collective action shape the economy and the distribution of income and wealth. Although Capital's principal message is that 'capital is back' and that without political interventions active political interventions will continue to grow, a political economy perspective would suggest another rather more fundamental critique: the very economic forces Piketty describes are embedded in institutional arrangements which can only be properly understood as political phenomena. In a sense capital itself - the central concept of the book - is almost meaningless without proper consideration of its political foundations. Even if the fact of capital accumulation may respond to an economic logic, the process is embedded in a very political logic. The examples of housing policy and the regulation, and failure to regulate, financial markets are used to illustrate these points. © London School of Economics and Political Science 2014.

  5. Frankenstein's Validity Monster: The Value of Keeping Politics and Science Separated

    ERIC Educational Resources Information Center

    Borsboom, Denny; Wijsen, Lisa D.

    2016-01-01

    The distinction between facts and moral values is highly desirable: science and politics should keep to their own territories. Traditionally speaking, science can be seen as an ivory tower, which attempts to do its job in isolation of external influences. Politics does not mandate methods of scientific research or standards of justification;…

  6. Determinants of Political Science Faculty Salaries at the University of California

    ERIC Educational Resources Information Center

    Grofman, Bernard

    2009-01-01

    Combining salary data for permanent non-emeritus faculty at seven departments of political science within the University of California system with lifetime citation counts and other individual-level data from the Masuoka, Grofman, and Feld (2007a) study of faculty at Ph.D.-granting political science departments in the United States, I analyze…

  7. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  8. Science diplomacy: Investigating the perspective of scholars on politics-science collaboration in international affairs.

    PubMed

    Fähnrich, Birte

    2017-08-01

    Science diplomacy is a widely practiced area of international affairs, but academic research is rather sparse. The role of academia within this field of politics-science interaction has hardly been considered. This article analyzes this scholarly perspective: Based on a literature review, a case study of a German science diplomacy program is used to explore objectives, benefits, and constraints of science diplomacy for participating scholars. While political approaches suggest an ideal world where both sides profit from the collaboration, the findings of the case study point to another conclusion which shows that the interaction of scholars and officials in science diplomacy is far more complex. Thus, the contribution is regarded as both a useful starting point for further research and for a critical reflection of academics and politicians in science diplomacy practice to gauge what can be expected from the collaboration and what cannot.

  9. Teaching science in museums

    NASA Astrophysics Data System (ADS)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  10. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  11. What's Politics Got to Do with It? "Power" as a "Threshold" Concept for Undergraduate Business Students

    ERIC Educational Resources Information Center

    Williams, Paul D.

    2014-01-01

    Politics courses embedded in business and commerce degree programs have soared in number in recent years. Yet how business students, often compulsorily enrolled in politics courses, learn key politics concepts is an under-researched area. The purpose of this article is to determine where the teaching and learning of political science and business…

  12. How to Justify Teaching False Science

    ERIC Educational Resources Information Center

    Slater, Matthew H.

    2008-01-01

    We often knowingly teach false science. Such a practice conflicts with a prima facie pedagogical value placed on teaching only what is true. I argue that only a partial dissolution of the conflict is possible: the proper aim of instruction in science is not to provide an armory of facts about what things the world contains, how they interact, and…

  13. Safety and Science Teaching.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Sciences and Elementary Administration.

    This 10-chapter handbook (designed for science teachers and school administrators) describes known hazards associated with science teaching and provides information to develop a framework for local safety programs specifically designed to avoid or neutralize the effects of such hazards. Major areas addressed in the chapters include: (1) the nature…

  14. The art and science of political advocacy.

    PubMed

    Kosiorowski, Donna

    2014-01-01

    School nurses throughout the nation, individually and collectively, work to bring about change for the school nursing profession and to safeguard the health of children and the public. School nurses practice amidst education reform, health care reform, changes in society, and medical and technological advancements. School nurses must be active in decisions that affect their daily practice by involvement in the local, state, and federal political process. School nurses must craft the art and develop the science of political advocacy.

  15. Exploring the Place of Exemplary Science Teaching. This Year in School Science 1993.

    ERIC Educational Resources Information Center

    Haley-Oliphant, Ann E., Ed.

    Exemplary science teaching is an experience that fosters wonder, excitement, and risk-taking. This book presents essays which attempt to describe the culture of classrooms of exemplary science teachers. Chapter titles are: "Exploring the Place of Exemplary Science Teaching" (Ann E. Haley-Oliphant); "The Voices of Exemplary Science Teachers" (Ann…

  16. Teaching Context in Information Security

    ERIC Educational Resources Information Center

    Bishop, Matt

    2006-01-01

    This article investigates teaching the application of technical ideas by non-technical means, especially by using puzzles to engage students. After discussing the need to teach students to evaluate contexts in which decisions about computer security must be made, we suggest questions and scenarios drawn from political science, history, as well as…

  17. Teaching and Learning Science for Transformative, Aesthetic Experience

    NASA Astrophysics Data System (ADS)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  18. Innovations in College Science Teaching.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Dunkhase, John A., Ed.

    Fifteen innovative college science programs based on survey results about perceptions of excellence in college science teaching are presented. The goals, program origins, special features of the programs, evaluations, and conclusions are described for each. Discussed are the commonalities among this collection of 15 college science programs and…

  19. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  20. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  1. A Physics-Inspired Introduction to Political Science

    ERIC Educational Resources Information Center

    Taagepera, Rein

    1976-01-01

    This paper analyzes what is involved in patterning part of an introduction to politics along the lines of physical sciences, and it presents contents and results of a course in which the author did this. (Author/ND)

  2. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  3. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  4. Teaching Science through Physical Education.

    ERIC Educational Resources Information Center

    Kumar, David; Whitehurst, Michael

    1997-01-01

    Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)

  5. Teaching Science to the Gifted.

    ERIC Educational Resources Information Center

    Scher, Joyce L.

    Science teaching practices at the Long Island School for the Gifted emphasize hands-on experiments where children do the work and the teacher assists learning. This approach bypasses the reading/writing barrier that prevents some children from learning science. Many science experiments are described, including a first-grade lesson on using…

  6. Women's Advancement in Political Science. A Report on the APSA Workshop on the Advancement of Women in Academic Political Science in the United States (Washington, DC, March 4-5, 2004)

    ERIC Educational Resources Information Center

    American Political Science Association (NJ1), 2005

    2005-01-01

    In March 2004, the National Science Foundation funded a two-day workshop by the American Political Science Association (APSA) on the advancement of women in academic political science in the United States. The workshop was prompted by an alarming stall in the number of women entering the discipline and persisting through early years of faculty…

  7. Preservice Elementary Teachers' Beliefs about Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz-Tuzun, Ozgul

    2008-01-01

    In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers' self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US…

  8. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  9. Geopolitics and "The Courage to Teach": Identity, Integrity and the Subject of Political Geography

    ERIC Educational Resources Information Center

    Flint, Colin

    2002-01-01

    Previous literature discussing and exemplifying the teaching of political geography has emphasized the material to be disseminated. Building upon those contributions, this paper offers a means of connecting student, teacher, and subject matter. Using the perspective of Parker Palmer, as illustrated in his book "The Courage to Teach," it is…

  10. Political Science Careers at Comprehensive Universities: Building Balanced Careers at "Greedy" Institutions

    ERIC Educational Resources Information Center

    Hendrickson, Ryan C.; Mueller, Melinda A.; Strand, Jonathan R.

    2011-01-01

    A considerable amount of research exists about political science careers at community colleges and liberal arts institutions, as well as about training and hiring practices across different types of institutions. However, there is virtually no commentary available on political science careers at comprehensive institutions, where a significant…

  11. Teaching Science through Story

    ERIC Educational Resources Information Center

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  12. The Political Science of Information. Pratt Portfolio No. 2.

    ERIC Educational Resources Information Center

    Breivik, Patricia Senn, Ed.

    This collection of essays focuses on group social and political action as it relates to libraries and their environments. The introduction discusses the group-concept approach to studying library and information science. The essays are case studies of interest group politics, including: (1) the imprisonment of a librarian who refused to give…

  13. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  14. Teaching professionalism in science courses: anatomy to zoology.

    PubMed

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  15. Three Kinds of Political Engagement for Philosophy of Science

    ERIC Educational Resources Information Center

    Reisch, George

    2009-01-01

    In responding to critics and reviewers of my book, "How the Cold War Transformed Philosophy of Science," I attempt to identify some misleading conventional wisdom about the place of values in philosophy of science and then offer three distinct ways in which philosophers of science can engage their work with ongoing social and political currents.

  16. Hot Topics in Science Teaching

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  17. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  18. Assessing the Discipline: Aligning Curricular Structures and Student Learning with Disciplinary Goals in Political Science

    ERIC Educational Resources Information Center

    Desmond, Katie

    2010-01-01

    Four identifiable disciplinary goals can be discerned from the development of political science as a discipline. These goals indicate that political science students will (1) attain knowledge about political systems (national and international); (2) gain an understanding of how politics works; (3) develop critical thinking skills; and, (4) learn…

  19. Pre-service elementary science teaching self-efficacy and teaching practices: A mixed-methods, dual-phase, embedded case study

    NASA Astrophysics Data System (ADS)

    Sangueza, Cheryl Ramirez

    This mixed-method, dual-phase, embedded-case study employed the Social Cognitive Theory and the construct of self-efficacy to examine the contributors to science teaching self-efficacy and science teaching practices across different levels of efficacy in six pre-service elementary teachers during their science methods course and student teaching experiences. Data sources included the Science Teaching Efficacy Belief Instrument (STEBI-B) for pre-service teachers, questionnaires, journals, reflections, student teaching lesson observations, and lesson debriefing notes. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. The ANOVA analysis of the STEBI-B revealed a statistically significant increase in level of efficacy during methods course, student teaching, and from the beginning of the study to the end. Of interest in this study was the examination of the participants' science teaching practices across different levels of efficacy. Results of this analysis revealed how the pre-service elementary teachers in this study contextualized their experiences in learning to teach science and its influences on their science teaching practices. Key implications involves the value in exploring how pre-service teachers interpret their learning to teach experiences and how their interpretations influence the development of their science teaching practices.

  20. Fostering Scholarly Discussion and Critical Thinking in the Political Science Classroom

    ERIC Educational Resources Information Center

    Marks, Michael P.

    2008-01-01

    This article suggests strategies for promoting scholarly discussion and critical thinking in political science classes. When scholars study politics they are engaged in an investigation into the dynamics of governance, not a debate over personal political beliefs. The problem with a politicized classroom is that it gives students a false…

  1. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS

  2. Florida and Puerto Rico Secondary Science Teachers' Knowledge and Teaching of Climate Change Science

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Feldman, Allan; Vernaza-Hernandez, Vanessa

    2017-01-01

    Misconceptions about climate change science are pervasive among the US public. This study investigated the possibility that these misconceptions may be reflective of science teachers' knowledge and teaching of climate change science. Florida and Puerto Rico secondary science teachers who claim to teach extensively about climate change were…

  3. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  4. Higher Social-Science Education in the U.S.S.R.

    ERIC Educational Resources Information Center

    Volkov, F. M.

    1979-01-01

    Examines social science teaching in the Soviet Union and explains how it is related to technological advancement. Topics discussed include social progress, developments within the social sciences, political influences, teaching methods, and teacher characteristics. Journal availability: see SO 507 303. (DB)

  5. Using Concept Maps in Political Science

    ERIC Educational Resources Information Center

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  6. Blogging in the Political Science Classroom

    ERIC Educational Resources Information Center

    Lawrence, Christopher N.; Dion, Michelle L.

    2010-01-01

    Weblogs (or blogs), as a form of communication on the Internet, have recently risen in prominence but may be poorly understood by both faculty and students. This article explains how blogs differ from other online communication tools and how political science faculty can make use of blogs in their classes. The focus is on using blogs as part of…

  7. Participation as Post-Fordist Politics: Demos, New Labour, and Science Policy

    PubMed Central

    2010-01-01

    In recent years, British science policy has seen a significant shift ‘from deficit to dialogue’ in conceptualizing the relationship between science and the public. Academics in the interdisciplinary field of Science and Technology Studies (STS) have been influential as advocates of the new public engagement agenda. However, this participatory agenda has deeper roots in the political ideology of the Third Way. A framing of participation as a politics suited to post-Fordist conditions was put forward in the magazine Marxism Today in the late 1980s, developed in the Demos thinktank in the 1990s, and influenced policy of the New Labour government. The encouragement of public participation and deliberation in relation to science and technology has been part of a broader implementation of participatory mechanisms under New Labour. This participatory program has been explicitly oriented toward producing forms of social consciousness and activity seen as essential to a viable knowledge economy and consumer society. STS arguments for public engagement in science have gained influence insofar as they have intersected with the Third Way politics of post-Fordism. PMID:21258426

  8. Turkish Preservice Elementary Science Teachers' Conceptions of Learning Science and Science Teaching Efficacy Beliefs: Is There a Relationship?

    ERIC Educational Resources Information Center

    Bahcivan, Eralp; Kapucu, Serkan

    2014-01-01

    This study has been conducted to investigate conceptions of learning science (COLS) and personal science teaching efficacy belief (PSTE) of Turkish preservice elementary science teachers (PSTs) and to explore the relationship between these variables. Two instruments COLS questionnaire and PSTE subscale of Science Teaching Efficacy Beliefs…

  9. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    NASA Astrophysics Data System (ADS)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  10. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  11. Hidden Treasures for Science Teaching: United States Patents.

    ERIC Educational Resources Information Center

    Anderson, Norman D.

    United States patents are a source of historical information with many implications for science teaching. Using patents as science teaching devices has been largely ignored by science educators. Some of these devices can be easily modified for use in today's classrooms; in addition, patents serve as great examples of how our knowledge of science…

  12. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  13. Why and How Political Science Can Contribute to Public Health? Proposals for Collaborative Research Avenues

    PubMed Central

    Gagnon, France; Bergeron, Pierre; Clavier, Carole; Fafard, Patrick; Martin, Elisabeth; Blouin, Chantal

    2017-01-01

    Written by a group of political science researchers, this commentary focuses on the contributions of political science to public health and proposes research avenues to increase those contributions. Despite progress, the links between researchers from these two fields develop only slowly. Divergences between the approach of political science to public policy and the expectations that public health can have about the role of political science, are often seen as an obstacle to collaboration between experts in these two areas. Thus, promising and practical research avenues are proposed along with strategies to strengthen and develop them. Considering the interdisciplinary and intersectoral nature of population health, it is important to create a critical mass of researchers interested in the health of populations and in healthy public policy that can thrive working at the junction of political science and public health. PMID:28949461

  14. Biology, politics, and the emerging science of human nature.

    PubMed

    Fowler, James H; Schreiber, Darren

    2008-11-07

    In the past 50 years, biologists have learned a tremendous amount about human brain function and its genetic basis. At the same time, political scientists have been intensively studying the effect of the social and institutional environment on mass political attitudes and behaviors. However, these separate fields of inquiry are subject to inherent limitations that may only be resolved through collaboration across disciplines. We describe recent advances and argue that biologists and political scientists must work together to advance a new science of human nature.

  15. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    NASA Astrophysics Data System (ADS)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  16. Teaching Science Fiction to Science and Technology Majors.

    ERIC Educational Resources Information Center

    Diaconoff, Ted

    This paper describes the content and implementation of a course designed to teach science and technology majors about science fiction. Although many students had expressed little interest in the imaginative world of literature, the scientific content of the texts used attracted their attention and legitimized their involvement in something outside…

  17. Pre-Service Science Teachers' Epistemological Beliefs and Teaching Reforms in Tanzania

    ERIC Educational Resources Information Center

    Tarmo, Albert

    2016-01-01

    In an effort to understand why recent initiatives to promote learner-centred pedagogy in science teaching made a little change in the actual teaching practices of science teachers, this study explored pre-service science teachers' beliefs about science knowledge and their teaching practices. Six pre-service science teachers were interviewed to…

  18. Political demography: Powerful trends under-attended by demographic science.

    PubMed

    Teitelbaum, Michael S

    2015-01-01

    The interconnections between politics and the dramatic demographic changes under way around the world have been neglected by the two research disciplines that could contribute most to their understanding: demography and political science. Instead, this area of 'political demography' has largely been ceded to political activists, pundits, and journalists, leading often to exaggerated or garbled interpretation. The terrain includes some of the most politically sensitive and contested issues: alleged demographically determined shifts in the international balance of power; low fertility, population decline, and demographic ageing; international migration; change in national identity; and compositional shifts in politically sensitive social categories and human rights. Meanwhile many governments and non-governmental actors have actively pursued varieties of 'strategic demography', deploying fertility, mortality, or migration as instruments of domestic or international policy. Political scientists and demographers could and should use their knowledge and analytic techniques to improve understanding and to moderate excessive claims and fears on these topics.

  19. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    NASA Astrophysics Data System (ADS)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  20. Innovating Science Teaching by Participatory Action Research--Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    ERIC Educational Resources Information Center

    Feierabend, Timo; Eilks, Ingo

    2011-01-01

    This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics). The teaching itself explicitly aimed at general educational objectives,…

  1. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    ERIC Educational Resources Information Center

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  2. Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers

    ERIC Educational Resources Information Center

    Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel

    2008-01-01

    The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…

  3. Early childhood teachers' self-efficacy toward teaching science: Outcomes of professional development

    NASA Astrophysics Data System (ADS)

    Clark, Sarah

    The teaching of science in the early childhood classrooms has slowly been decreasing. As the years have passed, the subject of science has been put on the backburner while mathematics and language arts have taken center stage in the educational system. Early childhood teachers need to find ways to integrate science with other subjects in order to ensure children are receiving a well-rounded and full education. The purpose of this study was to determine the effectiveness of professional development on teachers' efficacy in teaching science. Volunteer teachers completed the Weisgram and Bigler scale (TWBS) pre and post training, in order to determine their self-efficacy toward teaching science, they also completed pre- and post- concept maps about their knowledge of teaching science, and a demographic questionnaire. Findings indicate the training provided was effective in increasing teachers' knowledge of teaching science. Teachers who had an increase in science teaching knowledge were also found to feel more efficacious about teaching science after completing the training and an academic year of implementing science lessons in their classrooms. There was not a relationship between teacher demographics and their science-teaching efficacy. This means that the demographics of participants in this study were not influential on teachers' efficacy, but professional development workshops enabled teachers to gain more knowledge about teaching as well as increase their efficacy about teaching science.

  4. Teaching the process of science: faculty perceptions and an effective methodology.

    PubMed

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  5. Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    PubMed Central

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699

  6. The politics of learning to teach: The juxtaposition of reform, risk-taking, and survival for a prospective science teacher

    NASA Astrophysics Data System (ADS)

    McLoughlin, Andrea Sabatini

    1998-12-01

    It has proven difficult for teachers to enact and sustain the changes to thinking and pedagogy called for in science education reforms. It may be especially difficult for prospective teachers to create coherent professional identities as they learn to teach in the borderland between educational change and the existing context of education. Field experiences remain a pivotal point in teacher education, as prospective teachers mature from the perspective they have lived as students to the vantage point they are constructing as developing teachers. This qualitative, naturalistic case study examined a reform-oriented preservice science teacher's beliefs and actions during a year of field practica, including student teaching. Interviews, observations, and written documents were collected to examine the extent to which the prospective teacher's thoughts and actions continued to reflect reform ideals across that time. Inductive data analysis indicated that tacit beliefs held by the participant interacted with significant events of the field experiences to direct her learning to teach process in non-educative ways. Implications include: (a) deeper examination of the beliefs and experiences of prospective teachers would allow teacher educators the ability to understand and guide professional development in deeper and more productive ways, (b) the establishment of an atmosphere of experimentation/inquiry and a more cohesive, collaborative approach to teacher education are needed, especially during field experiences, if teacher education programs are to foster the productive and educative experiences supportive of reform ideals, (c) the preparation of prospective teachers who intend to implement reform ideals should include developing understandings of the dynamics of the change process, and (d) the exploration/confrontation of the power structures inherent in the existing educational system is essential if they are to be prevented from undermining reform efforts. As science

  7. The intersection of behavioral genetics and political science: introduction to the special issue.

    PubMed

    Hatemi, Peter K

    2012-02-01

    The collection of papers in this special edition of Twin Research and Human Genetics represents a major land-mark at the intersection of behavioral genetics and political science. This issue is the fruit of 20 political scientists attending the Behavioral Genetics Association Methods Workshop in Boulder and a hands-on training practicum at the Virginia Institute for Psychiatric and Behavioral Genetics, and includes results from the first wave of political science twin surveys.

  8. Toward making the invisible visible: Studying science teaching self-efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Perkins, Catherine J.

    This dissertation consists of two articles to be submitted for publication. The first, a literature review, makes visible common influences on science teaching self-efficacy beliefs and also points to potentially invisible validation concerns regarding the instrument used. The second investigates the participants' invisible science teaching self-efficacy beliefs and, through the use of a more focused interview, makes those beliefs visible. Science teaching self-efficacy beliefs are science teachers' perceptions of their abilities to teach science effectively. The construct "teaching self-efficacy" originated in social cognitive theory (Bandura, 1977). The first article reviews the mixed results from teaching self-efficacy research in science contexts. The review focuses upon factors that facilitate or inhibit the development of self-efficacy beliefs among science teachers across stages of their careers. Although many studies of science teaching self-efficacy beliefs have utilized the Science Teaching Efficacy Belief Instrument - STEBI (Enochs & Riggs, 1990; Riggs & Enochs, 1990), this review also includes non-STEBI studies in order to represent diverse lines of research methodology. The review's findings indicate that antecedent factors such as science activities in and out of school, teacher preparation, science teaching experiences and supportive job contexts are significant influences on the development of science teaching self-efficacy beliefs. The review also indicates that the majority of these studies are short term and rely on a single STEBI administration with the collection of antecedent/demographic and/or interview data. The second article documents a study that responded to the above literature review findings. This study utilized multiple STEBI administrations during the preservice and beginning year of teaching for two science teachers. Rather than general questions, these participants were asked item specific, yet open-ended, questions to determine

  9. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    ERIC Educational Resources Information Center

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  10. The ontology of science teaching in the neoliberal era

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  11. Physics teaching in developing countries

    NASA Astrophysics Data System (ADS)

    Talisayon, V. M.

    1984-05-01

    The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.

  12. Teaching and learning: Novice teachers' descriptions of their confidence to teach science content

    NASA Astrophysics Data System (ADS)

    Ford, Barbara Ann

    Statement of the problem. The problem being studied in this research is the relationship between a specific series of integrated science courses in a science teacher preparation program and the actual needs of the science teacher during the first years of teaching practice. Teachers often report that there is a disconnect between the coursework they have taken in college as pre-service teachers and the reality of their classroom practice during their first years of teaching. The intent of this study was to record the descriptions of three teachers who were members of a cohort and took a series of integrated science courses (NSCI series) during their teacher preparation program as it related to the influence of these courses on their teaching practice. The focus of inquiry is guided by a single question: How do former participants in the series of science courses who are currently novice teachers describe their confidence in their ability to teach science content to their middle school students? The theoretical framework was based on Shulman's (1987) pedagogical content knowledge (PCK). PCK involves the teacher understanding the content of science so thoroughly that ways are identified of representing and formulating the subject matter to make it understandable to others. The teacher who has a strong PCK uses powerful analogies, illustrations, examples, explanations and demonstrations that promote personally meaningful student understandings. Novice teachers' reflections on their confidence to teach science content to their middle school students were observed through the lens of PCK. All three novice teachers reported a high confidence level to teach middle school science and attributed their confidence level to a great degree to the integrated science series of courses (NSCI). Method. A qualitative design, specifically a case study, was used for this study. Multiple forms of data collection were employed including a semi structured interview and a focus group

  13. Political Science Theory for Public Health Practice

    ERIC Educational Resources Information Center

    Watson, Tyler

    2014-01-01

    Community health educators are well versed in the behavior sciences, including intervention theories. However, most public health professionals are not familiar with the policy theories related to political advocacy. Because health educators are engaging in policy advocacy more frequently, and as a result of the profession including policy…

  14. Similar or Different?: A Comparative Analysis of Higher Education Research in Political Science and International Relations between the United States of America and the United Kingdom

    ERIC Educational Resources Information Center

    Blair, Alasdair

    2015-01-01

    This article focuses on the nature of the writing in 73 articles published in six U.S. and U.K. political science and international relations journals that focus on teaching and learning. A comparative analysis is made of the articles through a review of the characteristics of the authors, the themes researched, the analytical focus, the research…

  15. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  16. Best Practices in Civic Education: Lessons from the "Journal of Political Science Education"

    ERIC Educational Resources Information Center

    Bennion, Elizabeth A.; Laughlin, Xander E.

    2018-01-01

    The "Journal of Political Science Education (JPSE)" provides over a decade of research on political science pedagogy, featuring empirical research documenting best practices in the field. This article provides an overview of "JPSE"-published research on the topics of civic education and engagement. It summarizes the number and…

  17. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    NASA Astrophysics Data System (ADS)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  18. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    NASA Astrophysics Data System (ADS)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  19. Teaching Triple Science: GCSE Chemistry

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…

  20. Teaching Triple Science: GCSE Biology

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Biology. It highlights…

  1. Teaching Citizenship in Science Classes at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    Science classes for non-science majors present unique opportunities to create lifelong science aficionados and teach citizenship skills. Because no specific content is needed for future courses, subject matter can be selected to maximize interest and assignments can be focused on life skills such as science literacy instead of discipline-specific content mastery. Dinosaurs! is a very successful non-major science class with a minimum enrollment of 150 that is intended for sophomores. One of the goals of this class is to increase students' awareness of social issues, the political process, and opportunities for keeping up with science later in life. The main theme of this class is evolution. The bird-dinosaur link is the perfect vehicle for illustrating the process of science because the lines of evidence are many, convincing, and based on discoveries made throughout the last half-century and continuing to the present day. The course is also about evolution the social issue. The second writing assignment is an in-class affective writing based on a newspaper article about the Dover, PA court case. The primary purpose of this assignment is to create a comfort zone for those students with strong ideological biases against evolution by allowing them to express their views without being judged, and to instill tolerance and understanding in students at the other end of the spectrum. Another homework uses thomas.loc.gov, the government's public website providing information about all legislation introduced since the 93rd Congress and much more. The assignment highlights the difficulty of passing legislation and the factors that contribute to a given bill's legislative success or failure using the Paleontological Resources Preservation Act, S320. Details of these assignments and others designed to achieve the goals stated above will be presented. A very different undergraduate program, Marine Discovery, offers science majors the opportunity to earn upper division science

  2. Teaching Introduction to American Government/Politics: What We Learn from the Visual Images in Textbooks

    ERIC Educational Resources Information Center

    Allen, Marcus D.; Wallace, Sherri L.

    2010-01-01

    Political science students learn the fundamental principles and values about the American political system from American government/politics textbooks. Most of the major textbooks used in these courses utilize the traditional institutional and behavioral approaches to the study of American government and politics, which examines institutions and…

  3. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  4. Reflective Pathways: Analysis of an Urban Science Teaching Field Experience on Noyce Scholar-Science Education Awardees' Decisions to Teach Science in a High-Need New York City School

    ERIC Educational Resources Information Center

    Bischoff, Paul; French, Paul; Schaumloffel, John

    2014-01-01

    Awardees of the National Science Foundation's Noyce Scholars funds are required to teach science in high-need urban or rural school districts upon graduation. The purpose of this research was to analyze the reflective considerations that distinguish preservice Noyce Scholar science education majors committed to teaching in high-need New York City…

  5. Public health policy research: making the case for a political science approach.

    PubMed

    Bernier, Nicole F; Clavier, Carole

    2011-03-01

    The past few years have seen the emergence of claims that the political determinants of health do not get due consideration and a growing demand for better insights into public policy analysis in the health research field. Several public health and health promotion researchers are calling for better training and a stronger research culture in health policy. The development of these studies tends to be more advanced in health promotion than in other areas of public health research, but researchers are still commonly caught in a naïve, idealistic and narrow view of public policy. This article argues that the political science discipline has developed a specific approach to public policy analysis that can help to open up unexplored levers of influence for public health research and practice and that can contribute to a better understanding of public policy as a determinant of health. It describes and critiques the public health model of policy analysis, analyzes political science's specific approach to public policy analysis, and discusses how the politics of research provides opportunities and barriers to the integration of political science's distinctive contributions to policy analysis in health promotion.

  6. Teaching Evolution & the Nature of Science.

    ERIC Educational Resources Information Center

    Farber, Paul

    2003-01-01

    The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)

  7. Preparing perservice teachers to teach elementary school science

    NASA Astrophysics Data System (ADS)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  8. Teaching Life Sciences to Blind and Visually Impaired Learners

    ERIC Educational Resources Information Center

    Fraser, William John; Maguvhe, Mbulaheni Obert

    2008-01-01

    This study reports on the teaching of life sciences (biology) to blind and visually impaired learners in South Africa at 11 special schools with specific reference to the development of science process skills in outcomes-based classrooms. Individual structured interviews were conducted with nine science educators teaching at the different special…

  9. Innovative Technologies in Science Teaching

    ERIC Educational Resources Information Center

    Guerra, Cecilia; Pombo, Lucia; Moreira, Antonio

    2011-01-01

    Technology plays a crucial role in pupils' and primary teachers' lives nowadays and its use can facilitate change towards an innovative school environment. The internet, for example, can act as a platform to foster science teaching and offers a variety of opportunities for effective science learning and engaging and motivating children. But…

  10. Teaching with Moodle in Soil Science

    NASA Astrophysics Data System (ADS)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  11. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    ERIC Educational Resources Information Center

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  12. Science Teaching and Learning Activities and Students' Engagement in Science

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  13. Collaboration patterns in the German political science co-authorship network.

    PubMed

    Leifeld, Philip; Wankmüller, Sandra; Berger, Valentin T Z; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as "invisible colleges" or "groups of collaborators" as well as academic "stars" that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups.

  14. Creating Simulations for Political Science Education

    ERIC Educational Resources Information Center

    Asal, Victor; Blake, Elizabeth L.

    2006-01-01

    Simulations, particularly human-to-human interactions, offer social science students the opportunity to learn from firsthand experience, and can be an important and useful addition to an educator's teaching repertoire. However, it can be difficult for an instructor to know how to structure a simulation environment to meet specific educational…

  15. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  16. Taking a Closer Look at Science Teaching Orientations

    ERIC Educational Resources Information Center

    Friedrichsen, Patrica; Van Driel, Jan H.; Abell, Sandra K.

    2011-01-01

    In this position paper, we examine the science teaching orientation component of the S. Magnusson, J. Krajcik, and H. Borko (1999) pedagogical content knowledge (PCK) model for science teaching. We trace the origin of the construct in the literature, identifying multiple definitions that have lead to ambiguity. After examining published studies…

  17. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  18. Podcast Lectures as a Primary Teaching Technology: Results of a One-Year Trial

    ERIC Educational Resources Information Center

    Taylor, Mark Zachary

    2009-01-01

    How useful are podcasts in the political science classroom? Some educators argue that podcasts will revolutionize education; others are less convinced. However, to date, the evidence on podcasts has been slim. This article reports the results of a year-long trial using podcasts to aid in teaching political science to undergraduates at a research…

  19. Engaging with the political imaginaries of science: Near misses and future targets.

    PubMed

    Nowotny, Helga

    2014-01-01

    The current economic and financial crisis is also a political crisis that requires a rethinking of public engagement with science. In the past, the dominant focus of science, technology and society (STS) has led to a blind spot: political understanding and engagement of policy-makers and politicians with science, which is an integral part of any public engagement. Arguably, it is bound to and emerges from what Ezrahi calls collective political imaginaries. These are necessary fictions, which are causative and performative. In crude form, they manifest themselves in short-term impact measurements of every unit of scientific activity with citizens as the fictitious ultimate beneficiaries. In the future, STS can gain from coming up with a workable definition of the public interest with a focus on the public value of science. It can investigate collective imaginaries as they emerge from interactions with new media. As necessary fictions they may hold answers we never imagined them to hold.

  20. The integration of creative drama into science teaching

    NASA Astrophysics Data System (ADS)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  1. Environment in the science curriculum: the politics of change in the Pan-Canadian science curriculum development process

    NASA Astrophysics Data System (ADS)

    Hart, Paul

    2002-11-01

    This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.

  2. Why and How Political Science Can Contribute to Public Health? Proposals for Collaborative Research Avenues.

    PubMed

    Gagnon, France; Bergeron, Pierre; Clavier, Carole; Fafard, Patrick; Martin, Elisabeth; Blouin, Chantal

    2017-04-05

    Written by a group of political science researchers, this commentary focuses on the contributions of political science to public health and proposes research avenues to increase those contributions. Despite progress, the links between researchers from these two fields develop only slowly. Divergences between the approach of political science to public policy and the expectations that public health can have about the role of political science, are often seen as an obstacle to collaboration between experts in these two areas. Thus, promising and practical research avenues are proposed along with strategies to strengthen and develop them. Considering the interdisciplinary and intersectoral nature of population health, it is important to create a critical mass of researchers interested in the health of populations and in healthy public policy that can thrive working at the junction of political science and public health. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  3. How Constructivist-Based Teaching Influences Students Learning Science

    ERIC Educational Resources Information Center

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  4. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  5. [Political psychology].

    PubMed

    Resch, Mária; Bella, Tamás

    2013-04-21

    In Hungary one can mostly find references to the psychological processes of politics in the writings of publicists, public opinion pollsters, philosophers, social psychologists, and political analysts. It would be still important if not only legal scientists focusing on political institutions or sociologist-politologists concentrating on social structures could analyse the psychological aspects of political processes; but one could also do so through the application of the methods of political psychology. The authors review the history of political psychology, its position vis-à-vis other fields of science and the essential interfaces through which this field of science, which is still to be discovered in Hungary, connects to other social sciences. As far as its methodology comprising psycho-biographical analyses, questionnaire-based queries, cognitive mapping of interviews and statements are concerned, it is identical with the psychiatric tools of medical sciences. In the next part of this paper, the focus is shifted to the essence and contents of political psychology. Group dynamics properties, voters' attitudes, leaders' personalities and the behavioural patterns demonstrated by them in different political situations, authoritativeness, games, and charisma are all essential components of political psychology, which mostly analyses psychological-psychiatric processes and also involves medical sciences by relying on cognitive and behavioural sciences. This paper describes political psychology, which is basically part of social sciences, still, being an interdisciplinary science, has several ties to medical sciences through psychological and psychiatric aspects.

  6. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    ERIC Educational Resources Information Center

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  7. Teaching Science Using Stories: The Storyline Approach

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.

    2007-01-01

    Storytelling is an age-old and powerful means of communication that can be used as an effective teaching strategy in the science classroom. This article describes the authors' experiences implementing the Storyline Approach, an inquiry-based teaching method first introduced by Kieran Egan (1986), in the context of teaching the concept of air…

  8. Does Social Background Influence Political Science Grades?

    ERIC Educational Resources Information Center

    Tiruneh, Gizachew

    2013-01-01

    This paper tests a hypothesized linear relationship between social background and final grades in several political science courses that I taught at the University of Central Arkansas. I employ a cross-sectional research design and ordinary least square (OLS) estimators to test the foregoing hypothesis. Relying on a sample of up to 204…

  9. Emotional Issues in Teaching Science: A Case Study of a Teacher's Views

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    2004-08-01

    Science teaching environments are social environments, and teachers emotions interact with their science teaching in powerful ways. To value the teacher is to value the whole person, not just the intellect. In this paper, a theorization of teacher emotion in science teaching is developed which illustrates the role of emotion in establishing and maintaining self-esteem in science teaching situations. From the standpoint of social-constructionist theory of emotion, it is argued that emotion is a social construction within social relationships. Arising from this view, are the emotions of intellectual excitement, frustration and shame that play a key role in the development of self-esteem. The dynamics of these emotions, in the context of experiences of success and failure, may dispose teachers to act positively or negatively towards science teaching. The theorisation developed is illustrated in the emotional experiences of an elementary school teacher in an early childhood science classroom. These experiences indicate that emotion is constitutive of teaching, and merits greater consideration in science teaching.

  10. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    NASA Astrophysics Data System (ADS)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  11. The effect of alternative clinical teaching experience on preservice science teachers' self-efficacy

    NASA Astrophysics Data System (ADS)

    Klett, Mitchell Dean

    The purpose of this study was to compare different methods of alternative clinical experience; family science nights and Saturday science (authentic teaching) against micro-teaching (peer teaching) in terms of self-efficacy in science teaching and teaching self-efficacy. The independent variable, or cause, is teaching experiences (clinical vs. peer teaching); the dependent variable, or effect, is two levels of self-efficacy. This study was conducted at the University of Idaho's main campus in Moscow and extension campus in Coeur d'Alene. Four sections of science methods were exposed to the same science methods curriculum and will have opportunities to teach. However, each of the four sections were exposed to different levels or types of clinical experience. One section of preservice teachers worked with students in a Saturday science program. Another section worked with students during family science nights. The third worked with children at both the Saturday science program and family science nights. The last section did not have a clinical experience with children, instead they taught in their peer groups and acted as a control group. A pre-test was given at the beginning of the semester to measure their content knowledge, teaching self-efficacy and self-efficacy in science teaching. A post-test was given at the end of the semester to see if there was any change in self-efficacy or science teaching self-efficacy. Throughout the semester participants kept journals about their experiences and were interviewed after their alternative clinical teaching experiences. These responses were categorized into three groups; gains in efficacy, no change in efficacy, and drop in efficacy. There was a rise in teaching efficacy for all groups. The mean scores for personal teaching efficacy dropped for the Monday-Wednesday and Tuesday-Thursday group while the both Coeur D'Alene groups remained nearly unchanged. There was no significant change in the overall means for science

  12. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  13. Teacher Training for Political Science PhD Students in Europe Determinants of a Tool for Enhanced Teaching in Higher Education

    ERIC Educational Resources Information Center

    Pleschova, Gabriela; Simon, Eszter

    2009-01-01

    In this paper we examine the state of teacher training for political science PhD candidates in the European Union and make a comparison with the situation in the United States. We investigate the determinants of supply and demand of teacher training. On the supply side, we suggest that research orientation and quality assurance are factors that…

  14. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  15. The influence of political ideology on trust in science

    NASA Astrophysics Data System (ADS)

    McCright, Aaron M.; Dentzman, Katherine; Charters, Meghan; Dietz, Thomas

    2013-12-01

    In recent years, some scholars, journalists, and science advocates have promoted broad claims that ‘conservatives distrust science’ or ‘conservatives oppose science’. We argue that such claims may oversimplify in ways that lead to empirical inaccuracies. The Anti-Reflexivity Thesis suggests a more nuanced examination of how political ideology influences views about science. The Anti-Reflexivity Thesis hypothesizes that some sectors of society mobilize to defend the industrial capitalist order from the claims of environmentalists and some environmental scientists that the current economic system causes serious ecological and public health problems. The Anti-Reflexivity Thesis expects that conservatives will report significantly less trust in, and support for, science that identifies environmental and public health impacts of economic production (i.e., impact science) than liberals. It also expects that conservatives will report a similar or greater level of trust in, and support for, science that provides new inventions or innovations for economic production (i.e., production science) than liberals. Analyzing data from a recent survey experiment with 798 adults recruited from the US general public, our results confirm the expectations of the Anti-Reflexivity Thesis. Conservatives report less trust in impact scientists but greater trust in production scientists than their liberal counterparts. We argue that further work that increases the accuracy and depth of our understanding of the relationship between political ideology and views about science is likely crucial for addressing the politicized science-based issues of our age.

  16. Co-Teaching as an Approach to Enhance Science Learning and Teaching in Primary Schools

    ERIC Educational Resources Information Center

    Murphy, Colette; Beggs, Jim

    2006-01-01

    In this article, we explore some of the experiences of student teachers, classroom teachers, science teacher educators, and children in co-teaching contexts in primary schools. The model of co-teaching adopted enabled student teachers (science specialist), classroom teachers, and university tutors to share expertise and work as equals, without…

  17. Science teaching self-efficacy in a primary school: A case study

    NASA Astrophysics Data System (ADS)

    de Laat, Jenny; Watters, James J.

    1995-12-01

    Bandura's theory of self-efficacy predicts that teachers with high, self-efficacy should persist longer, provide a greater academic focus in child-centred classrooms and exhibit different types of feedback than teachers who have lower self-efficacy. This paper reports on the science teaching self-efficacy in a group of teachers at a state primary school. The research was conducted in two stages using firstly the Science Teaching Efficacy Beliefs Instrument (STEBI-A) to identify cases, and secondly, a semistructured interview coupled with classroom observations. Thirty seven teaching staff were surveyed with the STEBI-A instrument. The five highest and five lowest scoring teachers on the personal science teaching self-efficacy subscale of the STEBI-A were interviewed. The analysis of interviews and observations indicated that teachers with high personal science teaching self-efficacy have had a long interest in science and a relatively strong background of formal science studies with opportunities for exploring out of school activities. Although they may have experienced negative science experiences in their own schooling other ameliorating factors existed which maintained their interest. Their instructional strategies in science lessons were more child-centred than those reported by teachers with lower personal science teaching self-efficacy. The implications of the results for the inservice training of teachers are discussed.

  18. Teaching animal science: education or indoctrination?

    PubMed

    Schillo, K K

    1997-04-01

    Traditional animal science curricula ignore sociological aspects of scientific research and therefore portray scientific knowledge as value-free. This view gives rise to a teaching method that involves imparting lists of scientific facts that are to be accepted by students without critical evaluation. This amounts to little more than indoctrination and misrepresents science as a system of knowledge. An alternative approach is based on the view that science is a creative human activity that reflects the values and biases of its practitioners. The goal of this approach is to teach students to think analytically and to make independent judgments about scientific claims. This requires a scientific literacy: an understanding of principal scientific theories, the nature of scientific research, and the relationship between science and society. To achieve this goal, a teacher must become less of an authority figure, whose role is to simply pass on information, and more of a facilitator, whose role is to promote questioning, exploration, and synthesis. This requires a learning community in which students feel comfortable taking risks and develop the courage to make and defend judgments. This teaching approach enhances the intellectual and ethical development of students, allowing them to serve themselves and society in responsible ways.

  19. Science, politics, and the GM debate in Europe.

    PubMed

    Tencalla, Francesca

    2006-02-01

    Europe today stands at a crossroad, facing challenges but also opportunities. In its intent to make Europe a leading technology-based economy by 2010, the European Commission has identified biotechnology and genomics as fields for future growth, crucial for supporting the agricultural and food processing industry. Since first commercialization in 1996, GM crop areas have grown at double-digit rates, making this one of the most rapidly adopted technologies in agriculture. However, in contrast to other world areas and despite European Commission support, Europe has found itself 'bogged-down' in a polemic between opponents and supporters of plant biotechnology. As a result, planted areas have remained small. This stalemate is due to a lack of political leadership, especially at the Member State level, all the more surprising in light of European early development and competitive advantage with crop biotechnology. This situation proves once again that, for cutting-edge innovations, a solid science base alone is not sufficient. Acceptance or rejection of new technologies depends on interlinked political, economic, and societal factors that create a favorable or unfavorable situation at a given time. This article will look at GM crops in Europe and the role science and politics have played in the introduction of crop biotechnology.

  20. Embedding Nature of Science in Teaching about Astronomy and Space

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2012-01-01

    Science teachers need an adequate understanding of nature of science (NOS) and the ability to embed NOS in their teaching. This collective case study aims to explore in-service science teachers' conceptions of NOS and the embeddedness of NOS in their teaching about astronomy and space. Three science teachers participated in this study. All…

  1. Science teachers teaching socioscientific issues (SSI): Four case studies

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju

    Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they

  2. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    NASA Astrophysics Data System (ADS)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was

  3. Transformative Science Teaching in Higher Education

    ERIC Educational Resources Information Center

    Fraser, Sharon P.

    2015-01-01

    University science teaching remains fairly traditional in its approach, incorporating teacher-centred and lecture-based methodologies and utilizing cook book laboratory experiences. Innovative science lecturers, however, have transformed their understanding and practice as teachers, placing their students at the heart of their actions and engaging…

  4. Collaboration patterns in the German political science co-authorship network

    PubMed Central

    Wankmüller, Sandra; Berger, Valentin T. Z.; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as “invisible colleges” or “groups of collaborators” as well as academic “stars” that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups. PMID:28388621

  5. "Kindergarten, can I have your eyes and ears?" politeness and teacher directive choices in inquiry-based science classrooms

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom Wanderlei

    2009-12-01

    This study explores elementary teachers' social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants' inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers' increased pragmatic awareness, teacher-student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher-student interaction in the context of inquiry-based science classroom discourse.

  6. Peking Man to Socialist Man: The Teaching of Human Evolution in China.

    ERIC Educational Resources Information Center

    Swetz, Frank J.

    1986-01-01

    Examines the content and methodology of the teaching of human evolution in the schools of the People's Republic of China. Reviews the aims and goals of science teaching and their effects on the teaching of evolution. Emphasizes evolution, compatibility with China's political doctrines, and includes illustrations of instructional materials. (ML)

  7. Science Teaching Methods: A Rationale for Practices

    ERIC Educational Resources Information Center

    Osborne, Jonathan

    2011-01-01

    This article is a version of the talk given by Jonathan Osborne as the Association for Science Education (ASE) invited lecturer at the National Science Teachers' Association Annual Convention in San Francisco, USA, in April 2011. The article provides an explanatory justification for teaching about the practices of science in school science that…

  8. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    ERIC Educational Resources Information Center

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  9. Chairman Fred Hampton Way: An Autoethnographic Inquiry into Politically Relevant Teaching

    ERIC Educational Resources Information Center

    LaRaviere, Troy

    2008-01-01

    I begin this article at the site of the murder of Black Panther Party Leader Fred Hampton. I then visit the school where I teach and I recall elements of my life history that explain how I became aware of the political repression and murder of Fred Hampton. I then focus on how I brought a discussion of Hampton's work into the classroom and how…

  10. The Social and Political Context of English Teaching in Australia--An Exploration.

    ERIC Educational Resources Information Center

    MacLennan, Gary; Henry, Miriam

    An analysis of the social and political context of English teaching in Australia is presented in this paper. The paper emphasizes that the leading theorists from England such as James Britton, Harold Rosen, Nancy Martin, and Douglas Barnes, are providing theories that either ignore or misinterpret the social reality in which teachers and pupils…

  11. Trends in Funding for Dissertation Field Research: Why Do Political Science and Sociology Students Win so Few Awards?

    ERIC Educational Resources Information Center

    Agarwala, Rina; Teitelbaum, Emmanuel

    2010-01-01

    Despite the size and growth of political science and sociology relative to other disciplines, political science and sociology graduate students have received a declining share of funding for dissertation field research in recent years. Specifically, political science and sociology students are losing out to competitive applicants from…

  12. The influence of field experiences on stages of concern and attitudes of preservice teachers toward science and science teaching

    NASA Astrophysics Data System (ADS)

    Strawitz, Barbara M.; Malone, Mark R.

    The purpose of the study was to determine whether the field experience component of an undergraduate science methods course influenced teachers' concerns and attitudes toward science and science teaching. Age, grade-point average, openmindedness, and school assignment were examined as factors which might explain some of the variance in the dependent measures. A one-group pretest-posttest design was used. Students were administered the Teacher Concerns Questionnaire, the Science Teaching Attitude Scales, and the Rokeach Dogmatism Scale approximately eight weeks after the pretest. Results indicated that field experiences did not significantly change student concerns about teaching science but significantly improved student attitudes toward science and science teaching. Students differing in age, grade-point average, and openmindedness did not difer significantly in changes in concerns and changes in attitude toward science and science teaching. Students assigned to different schools differed significantly in changes in attitude toward science.

  13. Deep Knowledge: Learning to Teach Science for Understanding and Equity. Teaching for Social Justice

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2013-01-01

    "Deep Knowledge" is a book about how people's ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories,…

  14. Teacher Beliefs toward Using Alternative Teaching Approaches in Science and Mathematics Classes Related to Experience in Teaching

    ERIC Educational Resources Information Center

    Isiksal-Bostan, Mine; Sahin, Elvan; Ertepinar, Hamide

    2015-01-01

    The purpose of this study was to examine the relationships among Turkish classroom, science and mathematics teachers' beliefs toward using inquiry-based approaches, traditional teaching approaches, and technology in their mathematics and science classrooms; their efficacy beliefs in teaching those subjects; and years of experience in teaching in…

  15. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    ERIC Educational Resources Information Center

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  16. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    ERIC Educational Resources Information Center

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  17. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    NASA Astrophysics Data System (ADS)

    Taştan Kırık, Özgecan

    2013-12-01

    This study explores the science teaching efficacy beliefs of pr-service elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management beliefs and science teaching attitudes. Science education majors ( n = 71) and elementary education majors ( n = 262) were compared with respect to these variables. Finally, the predictors of two constructs of science teaching efficacy beliefs, personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE), were examined by multiple linear regression analysis. According to the results, participation in extracurricular activities has a significant but low correlation with science concept knowledge, science teaching attitudes, PSTE and STOE. In addition, there is a small but significant correlation between science concept knowledge and outcome expectancy, which leads the idea that preservice elementary teachers' conceptual understanding in science contributes to their science teaching self-efficacy. This study reveals a moderate correlation between science teaching attitudes and STOE and a high correlation between science teaching attitudes and PSTE. Additionally, although the correlation coefficient is low, the number of methodology courses was found to be one of the correlates of science teaching attitudes. Furthermore, students of both majors generally had positive self-efficacy beliefs on both the STOE and PSTE. Specifically, science education majors had higher science teaching self-efficacy than elementary education majors. Regression results showed that science teaching attitude is the major factor in predicting both PSTE and STOE for both groups.

  18. Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science

    NASA Astrophysics Data System (ADS)

    Shelton, Mythianne

    This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity

  19. Analysing Exemplary Science Teaching

    ERIC Educational Resources Information Center

    Alsop, Steve, Ed.; Bencze, Larry, Ed.; Pedretti, Erminia, Ed.

    2004-01-01

    How might exemplary practice be represented by teachers' narratives? How might such representations be analyzed? How might theory and practice be related? "Analyzing Exemplary Science Teaching" is a text that seeks to combine educational theory and practice through analysis of a series of teachers' descriptions of "exemplary"…

  20. The impact of socio-political environment on the perception of science - a comparative study of German and Israeli approaches to science education

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Rabinowitz, D.

    2017-12-01

    At the interface of environmental anthropology, social science, education research, and Earth Sciences, this presentation will look at Earth science education in school and out-of-school settings in Germany and Israel. We will focus on divergent cultural concepts of nature and science within the four-columned societal system in Israel: the secular Israeli community, which is oriented on western standards and concepts, the orthodox community with a stronger focus on merging scientific and religious approaches to understanding the Earth system, the Arabian community in Israel, which is strongly influenced by the Arabian science tradition as well as by confined monetary resources, and the ultra-orthodox community where science education seems to be totally abandoned in favor of Thora-studies. These environments, alongside a more homogeneous Germany educational system, resample an experimental setting with differences in a manageable number of parameters. We will analyze educational material used by the different communities in terms of the presented functions and services of the Earth sciences as well as in respect to the image of Earth sciences constructed by educational material of the observed communities. The aim of this project is to look for evidence that allows to attribute significant differences in education concepts to formal socio-political settings in the observed communities. The term Socio-political environment as used in this project proposal describes the context that is predetermined by cultural, political, and religious traditions. It described the pre-conditions in which communication takes place. Within this presentation, we will discuss the concept of socio-political environments. One of our hypothesis is, that the intensity of differences in Earth science community will be associated with differences in the socio-political environment. Influences of cultural, political, and religious boundary conditions will provide an insight into alterations

  1. Teachers' Ways of Talking about Nature of Science and Its Teaching

    ERIC Educational Resources Information Center

    Leden, Lotta; Hansson, Lena; Redfors, Andreas; Ideland, Malin

    2015-01-01

    Nature of science (NOS) has for a long time been regarded as a key component in science teaching. Much research has focused on students' and teachers' views of NOS, while less attention has been paid to teachers' perspectives on NOS teaching. This article focuses on in-service science teachers' ways of talking about NOS and NOS teaching, e.g. what…

  2. On teaching the nature of science: perspectives and resources

    NASA Astrophysics Data System (ADS)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  3. Investigating Your School's Science Teaching and Learning Culture

    ERIC Educational Resources Information Center

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  4. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    ERIC Educational Resources Information Center

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  5. Audience, Purpose, and Civic Engagement: A Reassessment of Writing Instruction in Political Science

    ERIC Educational Resources Information Center

    Anson, Ian G.

    2017-01-01

    In the present study I examine meaning-making as an integral aspect of successful writing assignments in political science. Results of a semester-long quasi-experimental pilot study show that meaning-making writing tasks help students in Introduction to American Politics courses become more politically engaged through the inculcation of civic…

  6. Tools and Traits for Highly Effective Science Teaching, K-8

    ERIC Educational Resources Information Center

    Vasquez, Jo Anne

    2007-01-01

    Even if the reader has little formal training or background knowledge in science, "Tools & Traits for Highly Effective Science Teaching, K-8" pulls together cognitive and educational research to present an indispensable framework for science in the elementary and middle grades. Readers will discover teaching that increases students' engagement and…

  7. Lesbians, Gays, Bisexuals, and the Transgendered in Political Science: Report on a Discipline-Wide Survey

    ERIC Educational Resources Information Center

    Novkov, Julie; Barclay, Scott

    2010-01-01

    This article reviews the results of a discipline-wide survey concerning lesbians, gays, bisexuals, and the transgendered in the discipline. We find that both research and teaching on LGBT topics have made some headway into the discipline, and that political scientists largely accept that LGBT issues can be fundamentally political and are worth…

  8. Teaching Primary Science: How Research Helps

    ERIC Educational Resources Information Center

    Harlen, Wynne

    2010-01-01

    The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…

  9. Exploring Political Alternatives

    ERIC Educational Resources Information Center

    Denhardt, Robert B.

    1975-01-01

    The author distinguishes between the concepts of political socialization and political education. He argues that political socialization has come to dominate both our thinking and our teaching in the area of civic education. Suggestions for promoting political education are included. (DE)

  10. Practicing Science: The Investigative Approach in College Science Teaching. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    Cusick, Judy, Ed.

    This document presents a collection of articles selected from the Journal of College Science Teaching. The selected articles represent how college science teaching should be practiced and include modifications in classrooms and laboratories to allow for the development of inquiry skills. Articles include: (1) "What Should Students Learn about the…

  11. Science Teachers' Utilisation of Innovative Strategies for Teaching Senior School Science in Ilorin, Nigeria

    ERIC Educational Resources Information Center

    Oyelekan, Oloyede Solomon; Igbokwe, Emoyoke Faith; Olorundare, Adekunle Solomon

    2017-01-01

    Efforts have been made to improve science teaching in secondary schools in Nigeria, yet, students continue to perform poorly in science subjects. Many innovative teaching strategies have been developed by educators and found to impact significantly on students' academic performance when utilised. Hence, this study was aimed at examining science…

  12. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    ERIC Educational Resources Information Center

    Lohwasser, Karin

    2013-01-01

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the…

  13. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  14. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    NASA Astrophysics Data System (ADS)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  15. Taking Science to School: Learning and Teaching Science in Grades K-8

    ERIC Educational Resources Information Center

    Duschl, Richard A., Ed.; Schweingruber, Heidi A., Ed.; Shouse, Andrew W., Ed.

    2007-01-01

    What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, "Taking Science to School" provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of…

  16. ASAS Centennial Paper: animal science teaching: a century of excellence.

    PubMed

    Buchanan, D S

    2008-12-01

    Teaching has a long and varied history in the life of departments of animal science and the American Society of Animal Science. Some of the earliest reports from meetings of the society have strong indication that planning the curriculum was a prominent feature of the meetings. Teaching symposia were also included almost from the beginning. The society went through a lengthy period from the 1940s through most of the 1960s when teaching was not a prominent focus, but a symposium in 1968 appeared to be a catalyst for change, and, since that date, teaching has again been an important part of the meetings. In recent years, outstanding symposia and contributed papers have made the teaching section a vibrant entry. Departments of animal science have changed considerably since the early days in which "men taught boys" and the primary goal was to produce farmers. More female students, more urban students, interest in a wide variety of animals, and greatly diversified career goals have been emerging during the last few decades. Departments of animal science and the American Society of Animal Science are positioning to be able to respond to change and face the challenge of providing excellence in teaching during the next century.

  17. Common Interest, Common Visions? Chinese Science Teacher Educators' Views about the Values of Teaching Nature of Science to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Yung, Benny Hin Wai

    2011-01-01

    Teaching nature of science (NOS) is beginning to take root in science education in China. This exploratory study interviewed 24 science teacher educators from economically developed parts of China about their conceptions of teaching NOS to prospective science teachers. Five key dimensions emerged from the data. This paper focuses on the dimension…

  18. Interacting with Elementary Interns about Their Perceptions of Science Teaching.

    ERIC Educational Resources Information Center

    Carnes, G. Nathan; Shull, Tiffany A.; Brown, Shanise N.; Munn, Wesley G.

    This research investigated three elementary preservice teachers' perceptions of elementary science teachers. Three questions guided this investigation. What images did elementary Masters of Arts in Teaching (M.A.T.) interns have of science teaching at the beginning and end of science methods courses? What changes, if any, did they make in their…

  19. The Glory and the Burden: Teaching a Course on Politics and the Media

    ERIC Educational Resources Information Center

    Paletz, David L.

    1977-01-01

    In an innovative college level political science course, politics is related to mass media communication. Objectives include helping students understand (1) how the media depicts authority systems in particular ways and (2) how public officials try to use the mass media to enhance their authority. For journal availability, see SO 505 820.…

  20. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Teaching Science in a Multicultural World.

    ERIC Educational Resources Information Center

    Offutt, Elizabeth Rhodes

    This book is designed to be a source of ideas and motivation to encourage curiosity in children, provide opportunities to develop scientific processing skills, find out about cultures around the world, and explore science concepts. This resource incorporates multicultural literature and approaches into the teaching of science concepts in the…

  2. Graduate performance of science education department in implementing conservation-based science teaching

    NASA Astrophysics Data System (ADS)

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  3. An exploration of equitable science teaching practices for students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  4. Teaching Iranian Elementary EFL Learners to Say "No" Politely: An Interlanguage Pragmatic Study

    ERIC Educational Resources Information Center

    Sa'd, Seyyed Hatam Tamimi; Gholami, Javad

    2017-01-01

    This quasi-experimental study adopted a pretest/posttest design to investigate the effect of instructional intervention in teaching polite refusal strategies explicitly on Iranian EFL learners' performance of the speech act of refusing. The participants, consisting of 24 male elementary EFL learners aged 12-18, responded to a discourse completion…

  5. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    NASA Astrophysics Data System (ADS)

    Hong, Ji; Greene, Barbara

    2011-10-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for science teaching and the experiences that help to shape their possible selves. Employed were qualitative methods, which included open-ended surveys and face-to-face interviews. Eleven preservice teachers who enrolled in a secondary science teacher preparation program participated. Findings showed six categories of future selves with the most frequent category being for effective/ineffective science teaching. When their hoped-for and feared selves were not balanced, participants articulated more fears. Regarding the primary influence in shaping their hopes and fears, diverse past experiences related to teaching and learning appeared to be more salient factors than science teacher education program. Given the enriched understanding of the science preservice teachers' perceptions, we provided suggestions for science teacher educators.

  6. Teaching and Learning Science for Transformative, Aesthetic Experience

    ERIC Educational Resources Information Center

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  7. Interesting Science and Mathematics Graduate Students in Secondary Teaching

    ERIC Educational Resources Information Center

    Latterell, Carmen M.

    2009-01-01

    State and national initiatives attempt to increase the quantity and quality of secondary mathematics and science teachers. Research suggests that if one could appeal to something inside of people or about the process of teaching and learning itself, then one might draw current mathematics and science graduate students into secondary teaching. This…

  8. On Teaching the Nature of Science: Perspectives and Resources

    ERIC Educational Resources Information Center

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  9. Interactive Whiteboards for Teaching and Learning Science: Ascertaining Research

    ERIC Educational Resources Information Center

    Mata, Liliana; Lazar, Gabriel; Lazar, Iuliana

    2016-01-01

    The purpose of this paper is to analyze of latest research focused on the investigation of interactive whiteboards used in teaching and learning Science. In the theoretical framework the main objectives are: a) the identification of specific research regarding the integration of interactive whiteboards in teaching and learning Science and b) the…

  10. Preparing Elementary Mathematics-Science Teaching Specialists.

    ERIC Educational Resources Information Center

    Miller, L. Diane

    1992-01-01

    Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…

  11. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  12. Using the tools of science to teach science

    NASA Astrophysics Data System (ADS)

    Wieman, C.

    2005-12-01

    Much of the rapid progress of modern science comes from its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately, scientists usually abandon these powerful tools in their approach to the teaching of science and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive simulations to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress. Work supported by NSF and the Kavli Operating Institute

  13. Developing a Constructivist Proposal for Primary Teachers to Teach Science Process Skills: "Extended" Simple Science Experiments (ESSE)

    ERIC Educational Resources Information Center

    Hirça, Necati

    2015-01-01

    Although science experiments are the basis of teaching science process skills (SPS), it has been observed that a large number of prospective primary teachers (PPTs), by virtue of their background, feel anxious about doing science experiments. To overcome this problem, a proposal was suggested for primary school teachers (PSTs) to teach science and…

  14. Emotions and elementary school science teaching: Postmodernism in practice

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  15. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    ERIC Educational Resources Information Center

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  16. Science is Elementary, A Science Teaching Resource Publication, 1992-1993.

    ERIC Educational Resources Information Center

    Science is Elementary, 1993

    1993-01-01

    These resource magazines for K-6 educators are published to promote the teaching of science, mathematics, and technology through participatory, inquiry-based methods. Each issue provides resources and hands-on activities for educators that focus on one theme. Issues in volume 5 cover the themes of geology, math and science integration, tropical…

  17. Learning to teach science in urban schools

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  18. Teaching Environmental Ethics from a Theological Perspective.

    ERIC Educational Resources Information Center

    Bratton, Susan P.

    1990-01-01

    Proposes teaching students skills for integrating theological inquiry with scientific, economic, and political issues concerning the environment. Suggests classroom exercises designed to bridge the gap between theology and environmental science. Discusses classroom texts drawn from theological, philosophical, and biological sources. Elucidates…

  19. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    ERIC Educational Resources Information Center

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  20. Bioinformatics and the Politics of Innovation in the Life Sciences

    PubMed Central

    Zhou, Yinhua; Datta, Saheli; Salter, Charlotte

    2016-01-01

    The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation. PMID:27546935

  1. ``Political'' Science

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, Laura

    2013-03-01

    Politics and policy affect all of us, both as scientists and as citizens, and issues ranging from laboratory budgets to arms control treaties clearly require research problem-solving skills and technical expertise. There is a critical role for scientists in each aspect of the political system, and in fact, we as a society need more scientists to take part in politics. Furthermore, the research we pursue has important societal applications and is fascinating! We have a right and a responsibility to share our scientific knowledge not only with each other, but with the general public as well. So, why are we as a community of scientists reticent in the public arena, hesitant to enter politics, and even at times unsupportive of our peers who transition into governmental roles? In this time of fiscal constraint, when difficult research funding (and de-funding) choices are regularly being made, we as scientists must step up to the plate, reach across the aisle, and explain why what we do is fascinating, inspiring, and important, not just to us, but to society as a whole. A range of policy-relevant roles exists inside and outside the laboratory, such as Congressional Fellowships. Each year the Congressional Fellowships program brings together approximately thirty scientists at all stages of their careers to serve as scientific advisors in a variety of offices in the U.S. Senate and House of Representatives. Although the jump from lab to lobbying meetings can be frustrating, the transition can also be intriguing. Firsthand experience with the ``how'' and ``why'' (or lack thereof) of politics and policy is invaluable and provides a unique opportunity to expand and broaden one's background. The opportunity to work on Capitol Hill is unparalleled, particularly because our nation has a definite need for scientists with the inclination and interest to inform and develop policy. But, whatever role you decide to take, from contributing scientific news to local publications to

  2. Teaching Computer Science Courses in Distance Learning

    ERIC Educational Resources Information Center

    Huan, Xiaoli; Shehane, Ronald; Ali, Adel

    2011-01-01

    As the success of distance learning (DL) has driven universities to increase the courses offered online, certain challenges arise when teaching computer science (CS) courses to students who are not physically co-located and have individual learning schedules. Teaching CS courses involves high level demonstrations and interactivity between the…

  3. TEACHING SCIENCE AT THE SECONDARY STAGE, A HANDBOOK ON THE TEACHING OF SCIENCE TO THE AVERAGE PUPIL.

    ERIC Educational Resources Information Center

    KNOCK, H.E.; AND OTHERS

    THIS ENGLISH PUBLICATION IS DESIGNED TO PROVIDE DIRECTION FOR PROSPECTIVE OR PRACTICING TEACHERS IN THE TEACHING OF GENERAL EDUCATION SCIENCE TO SECONDARY SCHOOL STUDENTS. IT IS BASED ON THE ASSUMPTION THAT SCIENCE SHOULD BE RECOGNIZED, AND TAUGHT, AS A HUMAN ACTIVITY WHICH EXPLORES THE REALM OF HUMAN EXPERIENCE, MAPS IT METHODICALLY BUT…

  4. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    NASA Astrophysics Data System (ADS)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  5. The Philosophy of Science and Technology in China: Political and Ideological Influences

    ERIC Educational Resources Information Center

    Guo, Yuanlin

    2014-01-01

    In China, the philosophy of science and technology (PST) is derived from "Dialectics of Nature" (DN), which is based on Engels' unfinished book "Dialektik der Natur." DN as a political ideology provides political guidance for scientists and engineers. Therefore, since 1981, "Introduction to Dialectics of Nature" (IDN)…

  6. Developing Civic Engagement in General Education Political Science

    ERIC Educational Resources Information Center

    Huerta, Juan Carlos; Jozwiak, Joseph

    2008-01-01

    How can we promote student and civic engagement amongst our students? At Texas A&M University-Corpus Christi, the political science courses in the First Year Learning Communities Program have been using the "New York Times" as a supplemental reader to increase student engagement both inside and outside the classroom. The paper will examine the…

  7. Urban Elementary Teachers' Perspectives on Teaching Science to English Language Learners

    ERIC Educational Resources Information Center

    Lee, Okhee; Maerten-Rivera, Jaime; Buxton, Cory; Penfield, Randall; Secada, Walter G.

    2009-01-01

    This descriptive study examined urban elementary school teachers' perceptions of their science content knowledge, science teaching practices, and support for language development of English language learners. Also examined were teachers' perceptions of organizational supports and barriers associated with teaching science to nonmainstream students.…

  8. The Effect of an Integrated Science and Mathematics Content-Based Course on Science and Mathematics Teaching Efficacy of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Moseley, Christine; Utley, Juliana

    2006-01-01

    The purpose of this study was to determine the effect of an earth systems science course (integrated mathematics and science content) on preservice elementary teachers' mathematics and science teaching efficacy. Paired t-tests revealed that the personal mathematics and science teaching efficacy and science teaching outcome expectancy significantly…

  9. Effective Supervision: Supporting the Art and Science of Teaching

    ERIC Educational Resources Information Center

    Marzano, Robert; Livingston, David; Frontier, Tony

    2011-01-01

    It's true that even modest improvements in teacher effectiveness can lead to impressive gains in student achievement. But what hasn't been clear is what exactly district leaders should do to encourage and support teachers in practicing the art and science of great teaching ... until now. Like in his landmark book "The Art and Science of Teaching",…

  10. Promoting Scientific Literacy by Using ICT in Science Teaching

    ERIC Educational Resources Information Center

    Al-Rsa'i, Mohammed Salameh

    2013-01-01

    This study aims to identify the way upon which ICT can be employed in science teaching to develop scientific literacy level. The study has conclude to design a triple learning model (PEA) based on ICT and constructive learning strategy in teaching science through a context which cares for building positive trends of searching for knowledge and…

  11. The Philosophy of Science and Technology in China: Political and Ideological Influences

    NASA Astrophysics Data System (ADS)

    Guo, Yuanlin

    2014-09-01

    In China, the philosophy of science and technology (PST) is derived from "Dialectics of Nature" (DN), which is based on Engels' unfinished book Dialektik der Natur. DN as a political ideology provides political guidance for scientists and engineers. Therefore, since 1981, "Introduction to Dialectics of Nature" (IDN) has been an obligatory course for master's degree students who study natural science or technology. In 1987, DN was renamed PST by the Chinese government in order to communicate and do research. The IDN teachers constitute most of the scholars who research PST. Nowadays, in China, PST includes philosophy of nature, philosophy of science, philosophy of technology, sociology of science, sociology of technology, "science, technology and society," history of science, history of technology, management of science, and management of technology due to having too many IDN teachers. In fact, it is neither a branch of philosophy, nor a subject. The number of the IDN teachers has been increasing since 1981, which makes PST a miscellaneous collection of many branches or subjects. Finally, PST is facing two new challenges: the reduction of IDN and academic corruption.

  12. Observation of Reform Teaching in Undergraduate Level Mathematics and Science Courses

    ERIC Educational Resources Information Center

    Wainwright, Camille; Flick, Larry; Morrell, Patricia D.; Schepige, Adele

    2004-01-01

    This paper reports on initial results from an ongoing evaluation study of a National Science Foundation project to implement reform-oriented teaching practices in college science and mathematics courses. The purpose of this study was to determine what elements of reform teaching are being utilized by college faculty members teaching undergraduate…

  13. Measuring the Teaching Self-Efficacy of Science, Technology, Engineering, and Math Graduate Teaching Assistants

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Enochs, Larry

    2010-01-01

    An instrument to measure the teaching self-efficacy of science, technology, engineering, and mathematics (STEM) GTAs is adapted from a general college teaching instrument (Prieto Navarro, 2005) for the specific teaching environment of the STEM GTAs. The construct and content validity and reliability of the final instrument are indicated. The final…

  14. Development of interest in science and interest in teaching elementary science: Influence of informal, school, and inquiry methods course experiences

    NASA Astrophysics Data System (ADS)

    Bulunuz, Mizrap

    Inquiry-based science instruction is a major goal of science education reform. However, there is little research examining how preservice elementary teachers might be motivated to teach through inquiry. This quantitative study was designed to examine the role of background experiences and an inquiry science methods course on interest in science and interest in teaching science. The course included many activities and assignments at varying levels of inquiry, designed to teach content and inquiry methods and to model effective teaching. The study involved analyses of surveys completed by students in the course on their experiences with science before, during, and at the end of the course. The following questions guided the design of this study and analysis of the data: (1) What science background experiences (school, home, and informal education) do participants have and how do those experiences affect initial interest in science? (2) Among the hands-on activities in the methods course, is there a relationship between level of inquiry of the activity and the motivational quality (interesting, fun, and learning) of the activity? (3) Does the course affect participants' interest and attitude toward science? (4) What aspects of the course contribute to participants' interest in teaching science and choice to teach science? Descriptive and inferential analysis of a background survey revealed that participants with high and low initial interest in science differed significantly on remembering about elementary school science and involvement in science related activities in childhood/youth. Analysis of daily ratings of each hands-on activity on motivational qualities (fun, interest, and learning) indicated that there were significant differences in motivational quality of the activities by level of inquiry with higher levels of inquiry rated more positively. Pre/post surveys indicated that participants increased in interest in science and a number of variables reflecting

  15. Cosmopolitics: towards a new articulation of politics, science and critique.

    PubMed

    Saito, Hiro

    2015-09-01

    This paper explores how Ulrich Beck's world-risk-society theory (WRST) and Bruno Latour's Actor-Network Theory (ANT) can be combined to advance a theory of cosmopolitics. On the one hand, WRST helps to examine 'cosmopolitan politics', how actors try to inject cosmopolitanism into existing political practices and institutions anchored in the logic of nationalism. On the other hand, ANT sheds light on 'cosmological politics', how scientists participate in the construction of reality as a reference point for political struggles. By combining the WRST and ANT perspectives, it becomes possible to achieve a more comprehensive understanding of cosmopolitics that takes into account both political and ontological dimensions. The proposed synthesis of WRST and ANT also calls for a renewal of critical theory by making social scientists aware of their performative involvement in cosmopolitics. This renewal prompts social scientists to explore how they can pragmatically support certain ideals of cosmopolitics through continuous dialogues with their objects of study, actors who inhabit different nations and different cosmoses. © London School of Economics and Political Science 2015.

  16. A Professional Development Teaching Course for Science Graduate Students

    ERIC Educational Resources Information Center

    Baumgartner, Erin

    2007-01-01

    Although the majority of the teaching faculty at U.S. universities is composed of people who are scientific experts, research has found that most scientists do not have information about effective teaching methods (DeHaan 2005). Traditional lecture-style college science teaching does not reflect knowledge about best teaching practices based upon…

  17. The Politics of Science Funding: Is the Fault in Our Stars?

    NASA Astrophysics Data System (ADS)

    Goldston, David

    2018-01-01

    Future levels of funding for the astronomical and other sciences seem more uncertain than ever. What factors are responsible and which can scientists do something about? The story is much more complicated -- and fluid -- than the simple narrative about an "anti-science" political atmosphere that scientists sometimes settle on.

  18. Health technology assessment in four countries: response from political science.

    PubMed

    Chinitz, David

    2004-01-01

    Four studies, each on health technology assessment (HTA) in a different country, are presented in this volume. Conveying differing levels of sensitivity to political aspects of HTA, their storylines are similar in terms of the importance of the institutional structures that produce HTA and mediate its influence on health policy decision making. Regarding the internal politics of HTA, the latter appears to have developed in a relatively depoliticized environment, supported by a dense and varied web of institutional sites for funding, production, and consumption of HTA, buffered from the capricious impacts of electoral politics. Regarding external politics, HTA in all the countries began with relatively politically innocuous studies of technologies recognized to be of major import to national health systems or researcher-initiated studies. However, with increased focus in health systems on explicit determination of health benefits baskets, the role of HTA has become more high profile. This means that political accountability for the entire HTA process will increase. The implication is that future management of HTA programs will require self-conscious attention to the building of institutions capable of handling the delicate process of integrating science and politics in health policy.

  19. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    NASA Astrophysics Data System (ADS)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  20. Caring Enough to Teach Science. Helping Pre-service Teachers View Science Instruction as an Ethical Responsibility

    NASA Astrophysics Data System (ADS)

    Grinell, Smith; Rabin, Colette

    2017-11-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service teachers in science methods courses explored connections between science and ethics, specifically around issues of ecological sustainability, and grappled with their ethical responsibilities as teachers to provide science instruction. Survey responses, student "quick-writes," interview transcripts, and field notes were analyzed. Findings suggest that helping pre-service teachers see these connections may shape their beliefs and dispositions in ways that may motivate them to embark on the long road toward improving their science pedagogical content knowledge and ultimately to teach science to their students more often and better than they otherwise might. The approach may also offer a way for teachers to attend to the moral work of teaching.

  1. Feminist Science Education. Athene Series.

    ERIC Educational Resources Information Center

    Barton, Angela Calabrese

    This volume presents a case for science education from a feminist perspective. Feminist science teaching is concerned with questions that emerge from the intersections of the pedagogical, the disciplinary, and the personal with the political, social, and historical dimensions of each of these. It is also concerned with how knowledge of the ways in…

  2. Teaching with Visuals in the Science Classroom

    ERIC Educational Resources Information Center

    Cook, Michelle

    2012-01-01

    Visuals play an important role in the teaching and learning of science and should be embedded within and supportive of authentic science inquiry. Both researchers and teachers believe that visuals have a great deal of potential to help students understand science, but in practice, these visuals do not always live up to their promise. Teachers need…

  3. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  4. College student perceptions of science teachers and the effect on science teaching as a career path

    NASA Astrophysics Data System (ADS)

    Cost, Michael George

    2000-10-01

    Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of

  5. An examination of the relationship among science teaching actions, beliefs, and knowledge of the nature of science

    NASA Astrophysics Data System (ADS)

    Chun, Sajin

    Scholars in science education advocate curriculum and instruction practices that reflect an understanding of the nature of science. This aspect of school science is an important component of scientific literacy, a primary goal of science education. Considering teaching as a thoughtful profession, there has been a growing research interest on the issue of the consistency between teacher beliefs and actions. Yet, the self-evident assumption that teachers' beliefs about the nature of science will impact on their classroom teaching actions has not been justified. The purpose of this study was to examine the relationship between science teaching actions and beliefs about the nature of science. Defining teacher beliefs as a broad construct, the researcher tried to examine not only teacher's cognitive understanding about the nature of science but also teachers' affect as well as actions with regard to the nature of science. Guiding research questions were as follows: (a) what are the teachers' beliefs about the nature of science; (b) how do the teachers, pedagogical actions reflect their beliefs about the nature of science; and (c) what are the other referent beliefs that mediate the teachers, pedagogical actions within a local school culture. The methodology of this study was an interpretive, qualitative approach that included multiple sources of data, interviews, classroom observations, and instructional materials. Six science teachers from a secondary school located in a rural area of the southeastern US were chosen by convenience. The cross-case study and the grounded theory study designs were adopted as the data analysis process. The constant comparative analysis method was used to generate the emerging themes for this study. This study revealed a gap between these teachers' personal beliefs of the nature of science and the concepts of the nature of science suggested by many researchers. These teachers' personal beliefs about the nature of science have been

  6. How Do Five American Political Science Textbooks Deal with the Economic Dimension?

    ERIC Educational Resources Information Center

    Madsen, Poul Thois

    2011-01-01

    Politics and economics interact. As a consequence, political science textbooks must often relate to the economic dimension--implicitly or explicitly. But we know very little about how these textbooks relate to economics. Are they merely unreflective customers of neoclassical economics or do they strive for a cross-disciplinary approach? An…

  7. The consequences of political dictatorship for Russian science.

    PubMed

    Soyfer, V N

    2001-09-01

    The Soviet communist regime had devastating consequences on the state of Russian twentieth century science. Country Communist leaders promoted Trofim Lysenko--an agronomist and keen supporter of the inheritance of acquired characters--and the Soviet government imposed a complete ban on the practice and teaching of genetics, which it condemned as a "bourgeois perversion". Russian science, which had previously flourished, rapidly declined, and many valuable scientific discoveries made by leading Russian geneticists were forgotten.

  8. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  9. Teaching the "Broker" Theory in Social Studies.

    ERIC Educational Resources Information Center

    Hausmann, John W.

    1979-01-01

    Discusses the need to introduce pluralist theory in addition to teaching the formal institutional arrangements of government in high school political science courses. An awareness of cultural pluralism allows students to examine the powerful role of interest or pressure groups. (Author/KC)

  10. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    ERIC Educational Resources Information Center

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  11. Exploring Science Teaching Efficacy of CASE Curriculum Teachers: A Post-Then-Pre Assessment

    ERIC Educational Resources Information Center

    Ulmer, Jonathan D.; Velez, Jonathan J.; Lambert, Misty D.; Thompson, Greg W.; Burris, Scott; Witt, Phillip A.

    2013-01-01

    This descriptive-correlational study sought to investigate teachers' levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included all teachers completing a CASE Institute training session during summer 2010. Assessments…

  12. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  13. Analyzing Crime and Crime Control: A Resource Guide. Economics-Political Science Series.

    ERIC Educational Resources Information Center

    Butterfield, Ruth I.; And Others

    This document, the fourth in a series of resource guides emphasizing economic-political analysis of contemporary public policies and issues, focuses on crime control. Designed as a three-week unit for secondary school students, the guide is presented in three sections. The introduction presents an economic and a political science framework for…

  14. Neoliberalism: A Useful Tool for Teaching Critical Topics in Political Science

    ERIC Educational Resources Information Center

    Hartmann-Mahmud, Lori

    2009-01-01

    Neoliberalism is one of the most pervasive and contested concepts of our contemporary era. Thus, it is essential for students to gain an understanding of its history, meaning, assumptions, and policy prescriptions. In addition to recognizing the importance of neoliberalism in the current political discourse, I argue that the polarized responses to…

  15. Developing Research and Teaching Resources for the Study of Organizational Communication in Political Settings.

    ERIC Educational Resources Information Center

    Graber, Doris A.

    It is unfortunate that the field of organizational communication has neglected communication in political settings, because the bulk of students enrolled in social science curricula are likely to work in public or semipublic institutions. Problems unique to the political setting stem from the fact that most public agencies must tailor their…

  16. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    ERIC Educational Resources Information Center

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  17. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  18. Experimental Comparison of Inquiry and Direct Instruction in Science

    ERIC Educational Resources Information Center

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  19. Book Review: "The Honest Broker: Making Sense of Science in Policy and Politics"

    EPA Science Inventory

    The Honest Broker is a must-read for any scientist with even a modest interest in environmental policy or politics, and I recommend it especially to scientists unfamiliar with the continuing controversy over how scientists misuse science in environmental policy and politics. The ...

  20. (The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.

    PubMed

    Kabasenche, William P

    2014-12-01

    I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  1. The Science of Human Interaction and Teaching

    ERIC Educational Resources Information Center

    Yano, Kazuo

    2013-01-01

    There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…

  2. 'Science in action': The politics of hands-on display at the New York Museum of Science and Industry.

    PubMed

    Sastre-Juan, Jaume

    2018-06-01

    This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

  3. The science knowledge, conceptions of the nature of science, attitudes about teaching science, and science instructional strategies of bilingual and English-only elementary teachers

    NASA Astrophysics Data System (ADS)

    Alegria, Adelina Victoria

    The goal of this study was to explore bilingual and English-only elementary teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and their self-reported science instructional skills. In this study, a bilingual teacher was defined as a teacher who provides instruction in Spanish and English in core academic subjects and has completed and/or is completing a bilingual certification program. An English-only teacher was defined as a monolingual teacher that only speaks and instructs in English. The principal questions guiding this dissertation investigation were the following: How do bilingual elementary teachers differ from English-only elementary teachers in (a) their science knowledge, (b) their conceptions of the nature of science, (c) their attitude about teaching science, and (d) their self-reported science instructional skills? This dissertation study is a component of a three-year long Eisenhower Project granted to Hueneme School District and the University of California, Santa Barbara Southcoast Science Project. While the Project will last three years (1997--2000), this dissertation study was developed to answer only a subset of questions of the entire project and data was collected in 1998. The research design for this study consisted of a self-administered questionnaire that was given to Hueneme School District elementary teachers that teach science and was developed by reviewing the relevant literature about teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and the instructional strategies that support science learning. The findings showed that both the bilingual and the English-only respondents demonstrated a similar science knowledge base, which is suggested, by this researcher, to be limited. That both bilingual and English-only teacher respondents demonstrated similar positive attitudes about teaching science and both reported making

  4. Teaching students ideas-about-science: Five dimensions of effective practice

    NASA Astrophysics Data System (ADS)

    Bartholomew, Hannah; Osborne, Jonathan; Ratcliffe, Mary

    2004-09-01

    In this paper, we report work undertaken with a group of 11 UK teachers over a period of a year to teach aspects of the nature of science, its process, and its practices. The teachers, who taught science in a mix of elementary, junior high, and high schools, were asked to teach a set of ideas-about-scienc for which consensual support had been established using a Delphi study in the first phase of the project. Data were collected through field notes, videos of the teachers' lessons, teachers' reflective diaries, and instruments that measured their understanding of the nature of science and their views on the role and value of discussion in the classroom. In this paper, drawing on a sample of the data we explore the factors that afforded or inhibited the teachers' pedagogic performance in this domain. Using these data, we argue that there are five critical dimensions that distinguish and determine a teacher's ability to teach effectively about science. Whilst these dimensions are neither mutually independent nor equally important, they serve as a valuable analytical tool for evaluating and explaining the success, or otherwise, that individual teachers of science have when confronted with teaching aspects about science. In addition, we argue that they are an important means of identifying salient aspects of pedagogy for initial and in-service training of science teachers for curricula that incorporate elements of ideas-about-science

  5. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  6. Constructive Controversy as a Means of Teaching Citizens How to Engage in Political Discourse

    ERIC Educational Resources Information Center

    Johnson, David W.; Johnson, Roger T.

    2014-01-01

    Positive political discourse is the heart of democracy. The purposes of political discourse include making an effective decision about the course the society should take and building a moral bond among all members of the society. A responsibility of social sciences within a democratic society is to provide the theory, research, and normative…

  7. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    NASA Astrophysics Data System (ADS)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  8. Evaluation of Pre-Service Teachers' Images of Science Teaching in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Hulya; Turkmen, Hakan; Pedersen, Jon E.; Huyuguzel Cavas, Pinar

    2007-01-01

    The purpose of this study is to investigate elementary pre-service teachers' image of science teaching, analyze the gender differences in image of science teaching, and evaluate restructured 2004 education reform by using a Draw-A-Science-Teacher-Test Checklist (DASTT-C). Two hundred thirteen (213) pre-service elementary teachers from three…

  9. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  10. Resilience of Science Teaching Philosophies and Practice in Early Career Primary Teaching Graduates

    ERIC Educational Resources Information Center

    Bartholomew, Rex; Anderson, Dayle; Moeed, Azra

    2012-01-01

    There has been recent concern over the variable quality of science teaching in New Zealand primary schools. One reason suggested has been the relatively low levels of science education components in initial teacher education (ITE) programmes. This paper follows a cohort of recent teacher graduates from a science education course in their ITE…

  11. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  12. The investigation of science teachers’ experience in integrating digital technology into science teaching

    NASA Astrophysics Data System (ADS)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  13. Wishful science: the persistence of T. D. Lysenko's agrobiology in the politics of science.

    PubMed

    Roll-Hansen, Nils

    2008-01-01

    The suppression of genetics in Soviet Russia was the big scandal of twentieth-century science. It was also a test case for the role of scientists in a liberal democracy. The intellectual's perennial dilemma between scientific truthfulness and political loyalty was sharpened by acute ideological conflicts. The central topic of this essay is how the conflict was played out in Soviet agricultural and biological science in the 1930s and 1940s. The account is focused on the role of the then current Soviet science policy and its basic epistemic principles, the "unity of theory and practice" and the "practice criterion of truth".

  14. "Look at what I am saying": Multimodal science teaching

    NASA Astrophysics Data System (ADS)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  15. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  16. An analysis of elementary teachers' perceptions of teaching science as inquiry

    NASA Astrophysics Data System (ADS)

    Domjan, Heather Nicole

    The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding

  17. An Investigation of Science Teaching Practices in Indonesian Rural Secondary Schools

    NASA Astrophysics Data System (ADS)

    Wahyudi; Treagust, David F.

    2004-08-01

    This study reports on teaching practices in science classrooms of Indonesian lower secondary schools in rural areas. Using six schools from three districts in the province of Kalimantan Selatan as the sample, this study found that most teaching practices in science classrooms in rural schools were teacher-centred with students copying notes. However, the study also found unique teaching practices of an exemplary science teacher whose teaching style can be described as both student-centred and teacher-centred, with students encouraged to be active learners. Four features of exemplary teaching practices were identified: The teacher managed the classroom effectively; used a variety of questioning techniques; employed various teaching approaches instead of traditional methods; and created a favourable learning environment. Data from classroom observations, interviews with teachers, and students responses to a questionnaire were used to compare the exemplary teacher and his colleagues. This study identified internal factors that may affect teaching practices such as a teachers content knowledge and beliefs about teaching. Compared to the other teachers, the exemplary teacher possessed more content knowledge and had a relatively stronger belief in his ability to teach.

  18. Pre- and In-Service Preschool Teachers' Science Teaching Efficacy Beliefs

    ERIC Educational Resources Information Center

    Aslan, Durmus; Tas, Isil; Ogul, Irem Gürgah

    2016-01-01

    In this study, pre- and in-service preschool teachers' science teaching efficacy beliefs were investigated. The sample included 100 pre-service (50 first grades and 50 last grades) and 73 in-service preschool teachers. As a data collection tool "Science Teaching Efficacy Belief Instrument" was used. Findings indicated that in-service…

  19. [Legacy and promises from the teaching of Social Sciences in the Health field].

    PubMed

    Minayo, Maria Cecília de Souza

    2012-12-01

    The article analyzes the teaching and learning of social sciences in health sciences courses from the perspective of the curriculum and learning generated by research groups and thesis supervision activities. The author conducts a rereading of the classics and main contemporary scientists, based on the subarea's scientific output and her own personal experience as professor, researcher, and thesis supervisor. The article focuses on the tradition and teaching of the classics in social sciences, the main contemporary social theories, social sciences in health with an emphasis on teaching, and observations on the interface between teaching in social sciences and life sciences. The author concludes by highlighting the importance of work by social scientists in the health field and identifies the following problematic points: difficulties in dealing with mediations between the biological and the social; frequent subordination of foundations to techniques; and ideological and common-sense issues in the teaching and appropriation of Social Sciences in Health.

  20. Evaluating Science Education Reform via Fourth-Grade Students' Image of Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz, Hulya; Turkmen, Hakan; Pedersen, Jon E.

    2008-01-01

    The purpose of this study was to investigate fourth-grade students image of current science teaching by using a Draw-A-Science-Teacher-Test Checklist (DASTT-C), and give a glance whether the new restructured science education reform in Turkey is implemented successfully or not. Fifty-five (34 girls and 21 boys) fourth-grade students from three…

  1. Creative Science Teaching Labs: New Dimensions in CPD

    ERIC Educational Resources Information Center

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  2. Use Root Cause Analysis Teaching Strategy to Train Primary Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Lu, Chow-chin; Tsai, Chun-wei; Hong, Jon-chao

    2008-01-01

    This study examined the Root Cause Analysis (RCA) teaching strategy on pre-service primary science teachers and instinct pre-service teachers to apply RCA teaching strategy to science curriculums. RCA Teaching Strategy is to coordinates 5 Why Method and Fishbone Diagram. The participants included 18 pre-service primary science teachers and the…

  3. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  4. Practice and Reflection on Interactive Three-Dimensional Teaching System in Agricultural and Forestry Colleges

    ERIC Educational Resources Information Center

    Lei, Zhimin

    2013-01-01

    Ever since the new curriculum was implemented, Sichuan Agricultural University that is characterized by agricultural science has conducted ideological and political teaching reform, explored a basic route to integrate scientific outlook on development into theoretical teaching and initially formed a human-oriented interactive three-dimensional…

  5. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    ERIC Educational Resources Information Center

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  6. The Learning Cycle and College Science Teaching.

    ERIC Educational Resources Information Center

    Barman, Charles R.; Allard, David W.

    Originally developed in an elementary science program called the Science Curriculum Improvement Study, the learning cycle (LC) teaching approach involves students in an active learning process modeled on four elements of Jean Piaget's theory of cognitive development: physical experience, referring to the biological growth of the central nervous…

  7. Teaching Science from Cultural Points of Intersection

    ERIC Educational Resources Information Center

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  8. Design of Knowledge Models for Teaching Experimental Sciences at University

    ERIC Educational Resources Information Center

    Pérez de Villarreal, Maider

    2018-01-01

    Teaching Experimental Sciences is a compulsory subject in the Bachelor's Degree in Primary Education (BDPE). It belongs to the discipline of Education and to the field of "Knowledge of the social and natural environment", and consists of a total of 24 ECTS, of which 6 ECTS correspond to "Teaching Natural Sciences" (TNS). This…

  9. NSTA Positions on Critical Issues Confronting the Science Teaching Profession

    ERIC Educational Resources Information Center

    Sci Teacher, 1970

    1970-01-01

    Presents National Science Teachers Association (NSTA) policy statements of 1968 and 1969 with respect to the (1) use of natural resources for teaching purposes, (2) use of live animals, (3) teaching of human reproduction and sexuality, (4) functions of science fairs, (5) teacher liability for laboratory safety and field trips, (6) national…

  10. Towards a Competency Model for Teaching Computer Science

    ERIC Educational Resources Information Center

    Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid

    2015-01-01

    To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…

  11. The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science

    ERIC Educational Resources Information Center

    Wieman, Carl; Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the…

  12. Learning Political Science with Prediction Markets: An Experimental Study

    ERIC Educational Resources Information Center

    Ellis, Cali Mortenson; Sami, Rahul

    2012-01-01

    Prediction markets are designed to aggregate the information of many individuals to forecast future events. These markets provide participants with an incentive to seek information and a forum for interaction, making markets a promising tool to motivate student learning. We carried out a quasi-experiment in an introductory political science class…

  13. Wired to freedom: Life science, public politics, and the case of Cochlear Implantation.

    PubMed

    Jepsen, Kim Sune; Bertilsson, T Margareta

    2017-02-01

    Cochlear Implantation is now regarded as the most successful medical technology. It carries promises to provide deaf/hearing impaired individuals with a technological sense of hearing and an access to participate on a more equal level in social life. In this article, we explore the adoption of cochlear implantations among Danish users in order to shed more light on their social and political implications. We situate cochlear implantation in a framework of new life science advances, politics, and user experiences. Analytically, we draw upon the notion of social imaginary and explore the social dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being "wired to freedom" that involves new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as "wired to freedom," we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear Implantation. As our empirical observations are largely based in the Scandinavian countries (notably Denmark), we also provide some reflections on the character of the technology-friendly Scandinavian welfare states and the unintended consequences that may follow in the wake of rapid technology implementation of life science in society.

  14. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    ERIC Educational Resources Information Center

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  15. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    ERIC Educational Resources Information Center

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  16. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    NASA Astrophysics Data System (ADS)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  17. The relationship between school environment, preservice science teachers' science teaching self-efficacy, and their use of instructional strategies at teachers' colleges in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alshalaan, Nasser A.

    Studies indicate that many teachers have negative beliefs about science, which translates into low teacher efficacy, resulting in avoidance of science teaching or in ineffective science teaching behaviors. Highly efficacious teachers have been found to be more likely to use inquiry and student-centered teaching strategies, while teachers with a low sense of science-teaching efficacy are more likely to use teacher-directed strategies, such as didactic lectures and reading from the textbook (Czemiak, 1990). The purpose of this study was to investigate preservice science teachers' science-teaching self-efficacy changes and their correlation to teaching environment factors during the student teaching semester. Moreover, it explains how teaching environment factors and preservice teachers' science-teaching self-efficacy beliefs may relate to their use of teaching strategies in the science classroom during their student teacher training at teachers' colleges in Saudi Arabia. The population of this study is consisted of 184 middle and elementary preservice science teachers who were doing their student teaching at nine teachers' colleges (i.e., teachers' colleges of Riyadh, Dammam, Alrras, Almadinah, Alihsa, Jeddah, Makah, Altaief, and Abha) in Saudi Arabia during the spring semester of 2005. Three instruments were used to collect data for this study: (1) to measure science teaching self-efficacy, the researcher adapted the Science Teaching Efficacy Belief Instrument form B designed specifically for preservice teachers (STEBI-B); (2) to measure the school environment, the researcher adapted the Organizational Health Inventory (OHI), developed by Hoy, Tarter & Kottkamp (1991); and (3) to measure the type and frequency of instructional strategies that preservice science teachers use in the classroom, the researcher adapted the teaching practice subscale from The Local Systemic Change through Teacher Enhancement Science K-8 Teacher Questionnaire (Horizon Research, Inc., 2000

  18. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    NASA Astrophysics Data System (ADS)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase

  19. "I Didn't Always Perceive Myself as a "Science Person"": Examining Efficacy for Primary Science Teaching

    ERIC Educational Resources Information Center

    Mansfield, Caroline F.; Woods-McConney, Amanda

    2012-01-01

    Teacher efficacy has become an important field of research especially in subjects teachers may find challenging, such as science. This study investigates the sources of teachers' efficacy for teaching science in primary schools in the context of authentic teaching situations with a view to better understanding sources of teachers' efficacy…

  20. A Graduate Teaching Assistant Workshop in a Faculty of Science

    ERIC Educational Resources Information Center

    Harris, Dik; McEwen, Laura April

    2009-01-01

    This article describes the design and implementation of a workshop on teaching and learning for graduate teaching assistants (GTAs) in a Faculty of Science at a major Canadian research-intensive university. The approach borrows heavily from an existing successful workshop for faculty but is tailored specifically to the needs of GTAs in science in…

  1. Pre-Service Science Teachers' Views about Teaching Theories and Methods

    ERIC Educational Resources Information Center

    Gürbüz, Fatih; Töman, Ufuk; Aksoy, Gökhan; Çimer, Sabiha Odabasi

    2013-01-01

    The purpose of this study is to explore the secondary school pre-service science teachers' views about teaching theories and methods. Qualitative research method and purposeful sampling were used in the study. The participants of the study were the five students in the final year of their studies in Science Teaching Department of Bayburt Education…

  2. "You Have to Give Them Some Science Facts": Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses about Science Teaching and about Primary Teaching

    ERIC Educational Resources Information Center

    Danielsson, Anna T.; Warwick, Paul

    2014-01-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on…

  3. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    PubMed

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    NASA Astrophysics Data System (ADS)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  5. THE SCIENCE OF SCIENCE (NAUKOZNAWSTWO) IN POLAND: THE CHANGING THEORETICAL PERSPECTIVES AND POLITICAL CONTEXTS--A HISTORICAL SKETCH FROM THE 1910S TO 1993.

    PubMed

    Kokowski, Michał

    2015-01-01

    The article sketches the history of naukoznawstwo (literally meaning the science connoisseurship or the science of science or science studies) in Poland from the 1910s to the end of the Cold War (1991), and the recovery of full political independence in 1993. It outlines the changing research perspectives of this interdisciplinary field of knowledge in Poland against a background of changing political conditions caused by the reconfigurations of the political order. The first part of the article concerns the period from the 1910s, when Poland was occupied by Russia, Prussia, and Austria, through the regaining of independence by Poland in 1918, the reconstruction of the state in 1918-1939; the second part--World War II; the third part--the period from the initial period of Soviet dominance (1944-1954) in Poland and simultaneously the beginnings of the Cold War (1947-1954), the period 1955-1956 (when the Polish state was liberated from Sovietization), through the different political crises in October 1956, March 1968, December 1970, and June 1976, to the emergence of the Independent Self-governing Trade Union Solidarity in September 1980, the end of the Cold War (1991), and the recovery of full political independence in 1993. The article outlines the fundamental achievements of prominent Polish scholars (among others K. Twardowski, M. Ossowska, S. Ossowski, T. Kotarbiński, K. Ajdukiewicz, S. Michalski, F. Znaniecki, B. Suchodolski, L. Fleck, M. Choynowski, Z. Modzelewski, S. Amsterdamski), politicians (among others B. Bierut, E. Krasowska), politicians and scholars (H. Jabłoński, S. Kulczyński), as well as committees (among others the Academic Section of the Józef Mianowski Fund, The Science of Science Committee of the Polish Academy of Sciences), schools of thought (among others the Lvov-Warsaw School of Philosophy), and academic units (among others the Science of Science Seminar in Kraków, the Department for the History of Science and Technology of the Polish

  6. Developing a Tool to Evaluate Differences in Beliefs about Science Teaching and Learning among Freshman Science Student Teachers from Different Science Teaching Domains: A Case Study

    ERIC Educational Resources Information Center

    Markic, Silvija; Eilks, Ingo; Valanides, Nicos

    2008-01-01

    This paper presents a pilot case study on developing a qualitative tool to evaluate science student teachers' beliefs concerning science teaching and learning. The study is based on student teachers' drawings of themselves in a typical classroom situation and four open questions. Data was collected from 104 freshman science student teachers, and…

  7. What Science Teaching Looks Like: An International Perspective

    ERIC Educational Resources Information Center

    Roth, Kathleen; Garnier, Helen

    2007-01-01

    Using the Trends in International Mathematics and Science (TIMSS) video study, the authors compare science teaching practices in the United States and in four other countries that outperformed the United States: Australia, the Czech Republic, Japan, and the Netherlands. Their observations of videotapes from 100 8th-grade science lessons in each…

  8. Comparative Research: An Approach to Teaching Research Methods in Political Science and Public Administration

    ERIC Educational Resources Information Center

    Engbers, Trent A

    2016-01-01

    The teaching of research methods has been at the core of public administration education for almost 30 years. But since 1990, this journal has published only two articles on the teaching of research methods. Given the increasing emphasis on data driven decision-making, greater insight is needed into the best practices for teaching public…

  9. Three-Dimensional Instruction: Using a New Type of Teaching in the Science Classroom

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2015-01-01

    Science teaching and learning in the United States are at a pivotal point. "A Framework for K-12 Science Education" (NRC 2012b) and the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013) shift science educators' focus from simply teaching science ideas to helping students figure out phenomena and…

  10. Community Laboratory in Political Science. Profiles of Promise 8.

    ERIC Educational Resources Information Center

    Bilek, Robert; Haley, Frances

    The Community Laboratory in Political Science (CLIPS) is a unique combination of American government and exploratory work experience. Each semester 16 seniors from four high schools in Salinas work in community agencies and receive credit for both government and work experience. The major objective of the program is to provide students with…

  11. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    NASA Astrophysics Data System (ADS)

    Henke, Andreas; Höttecke, Dietmar

    2015-05-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers' decisions towards implementing its practices and ideas. We therefore investigate the perceptions of 8 HPS-experienced German middle school physics teachers within and beyond an HPS implementation project. Within focused interviews these teachers describe and evaluate the challenges of planning and conducting HPS-based physics lessons using collaboratively developed HPS teaching materials. The teachers highlight a number of obstacles to the implementation of HPS specific to this approach: finding and adapting HPS teaching material, knowing and using instructional design principles for HPS lessons, presenting history in a motivating way, dealing with students' problematic ideas about the history of science, conducting open-ended historical classroom investigations in the light of known historical outcomes, using historical investigations to teach modern science concepts, designing assessments to target HPS-specific learning outcomes, and justifying the HPS-approach against curriculum and colleagues. Teachers' perceived demands point out critical aspects of pedagogical content knowledge necessary for confident, comfortable and effective teaching of HPS-based science. They also indicate how HPS teacher education and the design of curricular materials can be improved to make implementing HPS into everyday teaching less demanding.

  12. Perceptions and Practices of Culturally Relevant Science Teaching in American Indian Classrooms

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Roehrig, Gillian; Kern, Anne; Reynolds, Bree

    2013-01-01

    This study explores the perceptions of culturally relevant science teaching of 35 teachers of American Indian students. These teachers participated in professional development designed to help them better understand climate change science content and teaching climate change using both Western science and traditional and cultural knowledge. Teacher…

  13. Using Science Fiction To Teach Mainstream Literature.

    ERIC Educational Resources Information Center

    Fife, Ernelle

    This paper illustrates several examples of visual science fiction use in teaching literary classics, and is based on the philosophy that students share a visual cultural literacy through movies and television, types of representation with which they are more familiar than with literary texts. It claims that visual science fiction can be utilized…

  14. Recent Research in Science Teaching and Learning

    ERIC Educational Resources Information Center

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  15. In Brief: Science teaching certificate

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  16. A Qualitative Assessment of the Learning Outcomes of Teaching Introductory American Politics in Comparative Perspective

    ERIC Educational Resources Information Center

    Gelbman, Shamira M.

    2011-01-01

    This article discusses the findings of an ethnographic content analysis of students' written reflections as a means for assessing the learning outcomes of teaching introductory American politics in comparative perspective. It focuses especially on determining whether and how this approach enhanced students' understanding and retention of knowledge…

  17. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    PubMed

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  18. Educational Sciences, Morality and Politics: International Educational Congresses in the Early Twentieth Century

    ERIC Educational Resources Information Center

    Fuchs, Eckhardt

    2004-01-01

    Internationalism became one of the keywords in the international intellectual and political debates at the end of the nineteenth century. As a political, cultural and social movement it also included science and education. The desire for international cooperation and global understanding was caused by the growing economic interdependence in the…

  19. Meanings teachers make of teaching science outdoors as they explore citizen science

    NASA Astrophysics Data System (ADS)

    Benavides, Aerin Benavides

    This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.

  20. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    ERIC Educational Resources Information Center

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  1. Five male preservice elementary teachers: Their understandings, beliefs and practice regarding science teaching

    NASA Astrophysics Data System (ADS)

    Hoover, Barbara Grambo

    Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as

  2. Science Teaching and Argumentation: One-sided versus dialectical argumentation in Chilean middle-school science lessons

    NASA Astrophysics Data System (ADS)

    Larrain, Antonia; Freire, Paulina; Howe, Christine

    2014-04-01

    Since the late 1990s, there has been consensus among educational researchers that argumentation should play a central role in science education. Although there has been extensive relevant research, it is not clear enough how oral argumentation spontaneously occurs in science teaching. This is particularly important with regard to the empirical evidence suggesting the effect of discussion of contradictory views on scientific learning. In order to contribute to the research on argumentation in science teaching, we conducted a study that aims to sketch a panoramic view of the uses of oral argumentation in Chilean middle-school science teaching. A total of 153 videotaped science lessons were observed, involving students aged 10-11 and 12-13. Whole-class argumentative discourse was analysed as a function of thematic episodes and teachers' and students' utterances. Results suggest that argumentative discourse in which contradictory points of view are discussed is scarce but when it occurs it does so predominantly within discourse among students. On the contrary, argumentation aimed at justifying points of view is widely used, even more so when students are older.

  3. Reflection after teaching a lesson: Experiences of secondary school science teachers

    NASA Astrophysics Data System (ADS)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  4. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    NASA Astrophysics Data System (ADS)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  5. Budgeting for Exploration: the History and Political Economy of Planetary Science

    NASA Astrophysics Data System (ADS)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  6. Teaching Building Science with Simulations

    ERIC Educational Resources Information Center

    Hatherly, Amanda

    2017-01-01

    Teaching building science to community college students can be challenging given both the macro (houses change subject to varying seasons) and the micro (heat transfer, moisture movement) level of the topics taught. Simulations and games can provide a way of learning material that can otherwise be difficult for students to understand. In this…

  7. On the Teaching of Science, Technology and International Affairs

    ERIC Educational Resources Information Center

    Weiss, Charles

    2012-01-01

    Despite the ubiquity and critical importance of science and technology in international affairs, their role receives insufficient attention in traditional international relations curricula. There is little literature on how the relations between science, technology, economics, politics, law and culture should be taught in an international context.…

  8. Co-teaching Perspectives from Secondary Science Co-teachers and Their Students with Disabilities

    NASA Astrophysics Data System (ADS)

    King-Sears, Margaret E.; Brawand, Anne Eichorn; Jenkins, Melissa C.; Preston-Smith, Shantha

    2014-10-01

    An in-depth case study of one team of co-teachers' practice from multiple perspectives is described. A high school science co-teaching team and their students with disabilities completed surveys about their perceptions of co-teaching. Additionally, observations of the two co-teachers occurred to determine roles and types of interactions for each co-teacher during science instruction. Observational data revealed effective teaching behaviors demonstrated by each co-teacher. Detailed descriptions of the co-teachers' instruction are provided. The science educator was observed interacting with the large group twice as often as the special educator. The science educator also presented new content nearly three times as often as the special educator. The co-teacher surveys were consistent with the observational data. Both educators disagreed that the special educator was primarily the lead for instruction. Both educators strongly agreed they had an effective co-teaching relationship, although the science educator indicated stronger agreement for parity in roles and responsibilities than the special educator noted. Forty-three percent of the students identified the science educator as in charge of lessons, while 43% identified both educators. Most students thought teaching was divided in half, and all students enjoyed having two teachers in science. Eighty-six percent of the students indicated team teaching was the most frequently used co-teaching model, and 14% indicated one teach, one drift. Implications for co-teachers' reflections on their collaboration, including the relevance of student perceptions (i.e., Who is the "real" teacher?), and the extent to which educators are prepared at preservice and inservice levels for co-teaching are discussed.

  9. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    NASA Astrophysics Data System (ADS)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  10. Elementary teachers' acquisition of science knowledge: Case-studies and implications for teaching preparation

    NASA Astrophysics Data System (ADS)

    Stein, Morton

    Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some

  11. Artful Teaching and Science Investigations: A Perfect Match

    ERIC Educational Resources Information Center

    McGee, Christy

    2018-01-01

    Tomlinson's explanation of Artful Teaching and her 2017 expansion of this concept The Five Key Elements of Differentiation provide the theoretical framework of this examination of the need for science investigations in elementary schools. The Artful Teaching framework uses an equilateral triangle with vertices labeled The Teacher, The Student, and…

  12. Influencing Science Teaching Self-Efficacy Beliefs of Primary School Teachers: A Longitudinal Case Study

    ERIC Educational Resources Information Center

    McKinnon, Merryn; Lamberts, Rod

    2014-01-01

    The science teaching self-efficacy beliefs of primary school teachers influence teaching practice. The purpose of this research was to determine if informal education institutions, such as science centres, could provide professional development that influences the science teaching self-efficacy beliefs of pre-service and in-service primary school…

  13. Taking a Scientific Approach to Science Teaching

    NASA Astrophysics Data System (ADS)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  14. Should Science Teaching Involve the History of Science? An Assessment of Kuhn's View

    ERIC Educational Resources Information Center

    Kindi, Vasso

    2005-01-01

    Thomas Kuhn draws the distinction between textbook history of science and history of science proper. The question addressed in the paper is whether Kuhn recommends the inclusion of distortive textbook history in science education. It is argued, pace Fuller, that Kuhn does not make normative suggestions. He does not urge the teaching of bad history…

  15. Political implications of science popularisation strategies: Frontiers of S cience.

    PubMed

    Burns, Maureen

    2016-07-01

    This examination of the mediation strategies of a very popular factual science comic strip series from the 1960s and 1970s illustrates, in this case by highlighting the ways in which women were targeted as an audience, that science popularisations are always political. For that reason, they should not be evaluated merely in terms of scientific accuracy. I demonstrate tensions between the dissemination model of communication used in the distribution of science popularisations, on the one hand, with the advocacy of a dialogue model in their content, on the other. © The Author(s) 2015.

  16. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  17. The Role of Research on Science Teaching and Learning

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  18. The Teaching Challenge: Science, Engineering and the Knowledge Economy.

    ERIC Educational Resources Information Center

    Dowling, Patrick

    2001-01-01

    Presents the presidential address delivered to the Association for Science Education (ASE) at its annual meeting held at the University of Surrey, January 2001. Consists of three sections: (1) science and engineering and the knowledge economy; (2) teaching challenge and the role of science teachers; and (3) partnerships to support science,…

  19. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    ERIC Educational Resources Information Center

    Henke, Andreas; Höttecke, Dietmar

    2015-01-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers'…

  20. Teacher Training and Pre-Service Primary Teachers' Self-Efficacy for Science Teaching

    ERIC Educational Resources Information Center

    Velthuis, Chantal; Fisser, Petra; Pieters, Jules

    2014-01-01

    This study focuses on the improvement of pre-service teachers' self-efficacy for teaching science by including science courses within the teacher training program. Knowing how efficacy beliefs change over time and what factors influence the development by pre-service primary teachers of positive science teaching efficacy beliefs may be useful for…

  1. Mind the Gap: Political Science Education in Community Colleges

    ERIC Educational Resources Information Center

    Yanus, Alixandra B.; O'Connor, Karen; Weakley, Jon L.

    2012-01-01

    Community colleges occupy a growing role in the American education system. Their unique cross-section of students poses a challenge for teachers of political science. This paper uses information from a survey completed by over 2,000 students at 20 colleges and universities across the United States to shed light on some of the most significant…

  2. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    ERIC Educational Resources Information Center

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  3. Changing Science Teaching Practice in Early Career Secondary Teaching Graduates

    ERIC Educational Resources Information Center

    Bartholomew, Rex; Moeed, Azra; Anderson, Dayle

    2011-01-01

    Initial teacher education (ITE) is being challenged internationally to prepare teachers with the understandings needed to teach an increasingly diverse student population. Science teachers need to prepare students with both conceptual and procedural understanding. The challenge is to prioritise a balance in ITE courses between theoretical…

  4. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    NASA Astrophysics Data System (ADS)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  5. Making Politics "Click": The Costs and Benefits of Using Clickers in an Introductory Political Science Course

    ERIC Educational Resources Information Center

    Evans, Heather K.

    2012-01-01

    In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…

  6. Teaching-Focused Science Academics Supervising Research Students in Science Education: What's the Problem?

    ERIC Educational Resources Information Center

    Rowland, Susan

    2012-01-01

    Academics who specialise in improving the teaching of "hard" sciences like chemistry, biology, maths and physics are increasing in number and influence at Australian universities. Those in academia who have channelled their energies into teaching are delighted with this development. It means that many committed tertiary teachers can now look…

  7. Prospective faculty developing understanding of teaching and learning processes in science

    NASA Astrophysics Data System (ADS)

    Pareja, Jose I.

    Historically, teaching has been considered a burden by many academics at institutions of higher education, particularly research scientists. Furthermore, university faculty and prospective faculty often have limited exposure to issues associated with effective teaching and learning. As a result, a series of ineffective teaching and learning strategies are pervasive in university classrooms. This exploratory case study focuses on four biology graduate teaching fellows (BGF) who participated in a National Science Foundation (NSF) GK-12 Program. Such programs were introduced by NSF to enhance the preparation of prospective faculty for their future professional responsibilities. In this particular program, BGF were paired with high school biology teachers (pedagogical mentors) for at least one year. During this yearlong partnership, BGF were involved in a series of activities related to teaching and learning ranging from classroom teaching, tutoring, lesson planning, grading, to participating in professional development conferences and reflecting upon their practices. The purpose of this study was to examine the changes in BGF understanding of teaching and learning processes in science as a function of their pedagogical content knowledge (PCK). In addition, the potential transfer of this knowledge between high school and higher education contexts was investigated. The findings of this study suggest that understanding of teaching and learning processes in science by the BGF changed. Specific aspects of the BGF involvement in the program (such as classroom observations, practice teaching, communicating with mentors, and reflecting upon one's practice) contributed to PCK development. In fact, there is evidence to suggest that constant reflection is critical in the process of change. Concurrently, BGFs enhanced understanding of science teaching and learning processes may be transferable from the high school context to the university context. Future research studies should

  8. Children's Questions and Science Teaching: An Alternative Approach. [and] Floating and Sinking: Some Teaching Suggestions. Learning in Science Project (Primary). Working Paper No. 117 [February 1984 and November 1983 Versions].

    ERIC Educational Resources Information Center

    Biddulph, Fred; Osborne, Roger

    Two booklets were developed by the Learning in Science Project (Primary)--LISP(P)--to help teachers adopt an approach to primary science teaching which would enhance children's understanding of floating and sinking. Both booklets were designed to enable teachers to reconceptualize their teaching task from activity-driven, didactic teaching to…

  9. Fostering nature of science teaching in elementary pre-service teachers through developing reflection on teaching and learning

    NASA Astrophysics Data System (ADS)

    Pongsanon, Khemmawadee

    Although teacher educators have successfully helped K-12 teachers' develop adequate views of NOS, their views have not been transferred to their students. It is evident that K-12 students' understanding of NOS still does not align with the recommendation of the reforms document, indicating that holding an adequate view of NOS is insufficient for teaching NOS effectively. Instead, to teach NOS, teachers must develop the knowledge for translating their understanding of NOS into the forms accessible to students. The current study investigated the influence of four contexts of reflective practice on prospective elementary teachers' learning of how and intention to teach NOS. The participants were 18 pre-service teachers enrolled in a science methods course that was tied to a field experience course. To understand the development of the participants' intentions, knowledge of instructional strategies, and knowledge of assessment for teaching NOS, multiple data were collected throughout the science methods course and the field experience. Data sources included different versions of participants' lesson plans, video recordings of their teaching and teaching debriefings, online weekly teaching reflections, final semester reflection and other artifacts from the methods course. Content analysis was conducted with all data. The data revealed that the participants' knowledge of how and intentions to teach NOS were developed throughout the science methods course. Toward the conclusion of the semester, the participants showed intention to include NOS in their science instruction. With regard to strategies, participants planned to apply explicit reflective NOS instruction in the context of inquiry-based activities and stories from children's literature. They also planned to use age-appropriate language to refer to the targeted NOS aspects. In terms of assessment, by the conclusion of the semester the participants tended to use more formal assessment strategies. They reported

  10. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  11. Bipartisan politics and practical knowledge: advertising of public science in two London newspapers, 1695-1720.

    PubMed

    Wigelsworth, Jeffrey R

    2008-12-01

    This article explores the enticement of consumers for natural philosophy (buyers of books, audiences at public lectures and purchasers of instruments) in London between 1695 and 1720 through advertisements placed in two political newspapers. This twenty-five-year period witnessed both the birth of public science and the rage of party politics. A consideration of public science adverts within the Whig-leaning Post Man and the Tory-leaning Post Boy reveals that members of both the Whig and Tory parties were equally targeted and that natural philosophy was sold to London's reading population in bipartisan fashion. In the process of integrating natural philosophy into the wider culture through commercial sales, political allegiances were not imprinted on the advertising process. This conclusion raises questions regarding the historiographical assertion of Whig-supported public science and Tory opposition to it at the level of consumers.

  12. Is Teaching Neoclassical Economics as "the" Science of Economics Moral?

    ERIC Educational Resources Information Center

    Parvin, Manoucher

    1992-01-01

    Discusses the morality of teaching neoclassical theory as the only science of economics. Argues that the teaching of neoclassical theory violates moral principles unless each and every attribute of neoclassical theory is proven superior to corresponding attributes of competing theories. Criticizes neoclassical economics for teaching what rather…

  13. Teaching Creativity through Inquiry Science

    ERIC Educational Resources Information Center

    Thompson, Taylor

    2017-01-01

    The experience that students gain through creative thinking contributes to their readiness for the 21st century. For this and other reasons, educators have always considered creative thinking as a desirable part of any curriculum. The focus of this article is on teaching creative thinking in K-12 science as a way to serve all students and,…

  14. Teaching Science: A Picture Perfect Process.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Explains how teachers can use graphs and graphing concepts when teaching art, language arts, history, social studies, and science. Students can graph the lifespans of the Ninja Turtles' Renaissance namesakes (Donatello, Michelangelo, Raphael, and Leonardo da Vinci) or world population growth. (MDM)

  15. Determination of Factors Affecting Preschool Teacher Candidates' Attitudes towards Science Teaching

    ERIC Educational Resources Information Center

    Timur, Betul

    2012-01-01

    The purpose of this study was to determine preschool teacher candidates' attitudes towards science teaching and to examine the reasons behind their attitudes in depth. In this study, mixed methods were used including quantitative and qualitative data. Quantitative data gained by attitudes towards science teaching scale, qualitative data gained by…

  16. Primary teachers conducting inquiry projects: effects on attitudes towards teaching science and conducting inquiry

    NASA Astrophysics Data System (ADS)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious about teaching science and felt less dependent on contextual factors compared to the control group. With regard to attitude towards conducting inquiry, teachers felt less anxious and more able to conduct an inquiry project. There were no effects on other attitude components, such as self-efficacy beliefs or relevance beliefs, or on self-reported science teaching behaviour. These results indicate that practitioner research may have a partially positive effect on teachers' attitudes, but that it may not be sufficient to fully change primary teachers' attitudes and their actual science teaching behaviour. In comparison, a previous study showed that attitude-focused professional development in science education has a more profound impact on primary teachers' attitudes and science teaching behaviour. In our view, future interventions aiming to stimulate science teaching should combine both approaches, an explicit focus on attitude change together with familiarisation with inquiry, in order to improve primary teachers' attitudes and classroom practices.

  17. A Thai pre-service teacher's understanding of nature of science in biology teaching

    NASA Astrophysics Data System (ADS)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  18. Practicing Politics: Female Political Scientists as Candidates for Elective Office

    ERIC Educational Resources Information Center

    Burrell, Barbara

    2012-01-01

    In 2007, University of Oklahoma political science professor Cindy Simon Rosenthal was elected mayor of Norman, Oklahoma, after having served as a member of its city council. Was her activity unique within the political science profession among female political scientists? Her election stimulated the curiosity of some of us in the…

  19. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    ERIC Educational Resources Information Center

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  20. Politics and the Erosion of Federal Scientific Capacity: Restoring Scientific Integrity to Public Health Science

    PubMed Central

    Rest, Kathleen M.; Halpern, Michael H.

    2007-01-01

    Our nation’s health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today’s most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking. PMID:17901422

  1. Politics and the erosion of federal scientific capacity: restoring scientific integrity to public health science.

    PubMed

    Rest, Kathleen M; Halpern, Michael H

    2007-11-01

    Our nation's health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today's most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking.

  2. Analysing Science Teaching for Non-Academic Students in Secondary School.

    ERIC Educational Resources Information Center

    McCarthy, Margaret E.

    This is a qualitative study of science teaching for non-academic students in secondary school. Evidence from earlier studies suggested that few variations in teaching strategies are being used for non-academic students. This investigator categorizes certain pertinent teaching features which, if emphasized, have the potential to enhance the…

  3. Teacher Candidates in an Online Post-Baccalaureate Science Methods Course: Implications for Teaching Science Inquiry with Technology

    ERIC Educational Resources Information Center

    Colon, Erica L.

    2010-01-01

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods…

  4. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    NASA Astrophysics Data System (ADS)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  5. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  6. When in Rome, Do as Jon Stewart Does: Using "America--The Book" as a Textbook for Introductory-Level Classes in American Politics

    ERIC Educational Resources Information Center

    Teten, Ryan Lee

    2010-01-01

    This article draws from different experiences in teaching Introduction to American Politics classes over a six-year period. It examines the value of using nontraditional texts in introductory political science classes that may also fulfill general education requirements, in order to engage as many students as possible in the subject matter. It…

  7. The Art of Teaching Science in Secondary Schools: A Meta Analysis

    ERIC Educational Resources Information Center

    Hassan, Sharifah Sariah Syed; Ibrahim, Ahmad Abdullahi

    2018-01-01

    This study attempted to highlight the trend of research in science related subjects specifically in schools. Articles and journals were retrieved from Google scholar under peer reviewed with the aim to highlight the trend of research methods, findings and teaching strategies. The themes were based on pedagogical approaches of teaching science,…

  8. An Investigation of Science Teaching Practices in Indonesian Rural Secondary Schools

    ERIC Educational Resources Information Center

    Wahyudi; Treagust, David F.

    2004-01-01

    This study reports on teaching practices in science classrooms of Indonesian lower secondary schools in rural areas. Using six schools from three districts in the province of Kalimantan Selatan as the sample, this study found that most teaching practices in science classrooms in rural schools were teacher-centred with students copying notes.…

  9. School Innovation in Science: Improving Science Teaching and Learning in Australian Schools

    ERIC Educational Resources Information Center

    Tytler, Russell

    2009-01-01

    School Innovation in Science is a major Victorian Government initiative that developed and validated a model whereby schools can improve their science teaching and learning. The initiative was developed and rolled out to more than 400 schools over the period 2000-2004. A research team worked with 200+ primary and secondary schools over three…

  10. Models in Science Education: Applications of Models in Learning and Teaching Science

    ERIC Educational Resources Information Center

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  11. Applied Developmental Science, Social Justice, and Socio-Political Well-Being

    ERIC Educational Resources Information Center

    Fisher, Celia B.; Busch-Rossnagel, Nancy A.; Jopp, Daniela S.; Brown, Joshua L.

    2012-01-01

    In this article we present a vision of applied developmental science (ADS) as a means of promoting social justice and socio-political well-being. This vision draws upon the field's significant accomplishments in identifying and strengthening developmental assets in marginalized youth communities, understanding the effects of poverty and racial…

  12. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    NASA Astrophysics Data System (ADS)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  13. Engaging pre-service teachers to teach science contextually with scientific approach instructional video

    NASA Astrophysics Data System (ADS)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning (CTL) present new concepts in real experiences and situations, where students can find out the meaningful relationship between abstract ideas and practical applications. Implementation of CTL using scientific approach fosters teachers to find constructive ways of delivering and organizing science contents in science classroom settings. An instructional video for modelling by using a scientific approach in CTL was then developed. Questionnaires with open-ended questions were used to, asking whether modelling through instructional video could help them to teach science contextually with a scientific approach or not. Data for pre-service teachers’ views were analyzed descriptively. The aims of this research are to engage pre-service teachers in learning how to teach CTL and to show how their responses to learning and how to teach CTL using the video. The study showed that ten pre-service teachers in science department were involved, all observed through videos that demonstrated a combined material of CTL and scientific approach and completed worksheets to analyze the video contents. The results show that pre-service teachers could learn to teach contextual teaching and make use of scientific approach in science classroom settings with the help of model in the video.

  14. Teaching Writing in the Social Sciences: A Comparison and Critique of Three Models

    ERIC Educational Resources Information Center

    Hansen, Kristine; Adams, Joyce

    2010-01-01

    This article describes and evaluates three approaches to teaching writing in the social sciences, particularly psychology: an English department-based course for all social science majors; a team-teaching model that embeds writing in core courses in psychology; and a stand-alone course dedicated to teaching writing in psychology, often taken…

  15. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  16. Beyond Polls: Using Science and Student Data to Stimulate Learning

    ERIC Educational Resources Information Center

    Loepp, Eric D.

    2018-01-01

    In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…

  17. Problems with German Science Education

    NASA Astrophysics Data System (ADS)

    Riess, Falk

    The main problems of science (especially physics) teaching in Germany are students'' lack of interest and motivation in the subject, their poor understanding of scientific concepts, ideas, methods,and results, and their lack of comprehension of the social, political, and epistemological role of science. These circumstances result in a growing `scientific illiteracy'' of the population and adecline in democratic quality concerning decision making processes about scientific and technological projects. One means of improving this situation lies in the use of history and philosophy of science in science teaching. School science curricula and textbooks neglect almost completely the importance of history and philosophy of science. In this paper, the main empirical results concerning motivation and knowledge are given. Some examples from science curricula and textbooks are presented, and some of the few reform projects in Germany are listed. As a consequence a compensatory program is proposed in order to create the prerequisites for raising science education in Germany to an international standard.

  18. The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science

    PubMed Central

    Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. PMID:25185237

  19. STENCIL: Science Teaching European Network for Creativity and Innovation in Learning

    NASA Astrophysics Data System (ADS)

    Cattadori, M.; Magrefi, F.

    2013-12-01

    STENCIL is an european educational project funded with support of the European Commission within the framework of LLP7 (Lifelong Learning Programme) for a period of 3 years (2011 - 2013). STENCIL includes 21 members from 9 European countries (Bulgaria, Germany, Greece, France, Italy, Malta, Portugal, Slovenia, Turkey.) working together to contribute to the general objective of improving science teaching, by promoting innovative methodologies and creative solutions. Among the innovative methods adept a particolar interest is a joint partnership between a wide spectrum of type of institutions such as schools, school authorities, research centres, universities, science museums, and other organizations, representing differing perspectives on science education. STENCIL offers to practitioners in science education from all over Europe, a platform; the web portal - www.stencil-science.eu - that provides high visibility to schools and institutions involved in Comenius and other similar European funded projects in science education. STENCIL takes advantage of the positive results achieved by the former European projects STELLA - Science Teaching in a Lifelong Learning Approach (2007 - 2009) and GRID - Growing interest in the development of teaching science (2004-2006). The specific objectives of the project are : 1) to identify and promote innovative practices in science teaching through the publication of Annual Reports on Science Education; 2) to bring together science education practitioners to share different experiences and learn from each other through the organisation of periodical study visits and workshops; 3) to disseminate materials and outcomes coming from previous EU funded projects and from isolated science education initiatives through the STENCIL web portal, as well as through international conferences and national events. This contribution aims at explaining the main features of the project together with the achieved results during the project's 3 year

  20. New Pathways for Teaching Chemistry: Reflective Judgment in Science.

    ERIC Educational Resources Information Center

    Finster, David C.

    1992-01-01

    The reflective judgment model offers a rich context for analysis of science and science teaching. It provides deeper understanding of the scientific process and its critical thinking and reveals fundamental connections between science and the other liberal arts. Classroom techniques from a college chemistry course illustrate the utility of the…