Sample records for teaching quantum physics

  1. Designing Learning Environments to Teach Interactive Quantum Physics

    ERIC Educational Resources Information Center

    Puente, Sonia M. Gomez; Swagten, Henk J. M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…

  2. Designing learning environments to teach interactive Quantum Physics

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; Swagten, Henk J. M.

    2012-10-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

  3. Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics

    ERIC Educational Resources Information Center

    Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan

    2017-01-01

    The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…

  4. TEACHING PHYSICS: The quantum understanding of pre-university physics students

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2000-01-01

    Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.

  5. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  6. Quantum Physics for Beginners.

    ERIC Educational Resources Information Center

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  7. Representing the Quantum Object through Fiction in Teaching: The Ontological Contribution of Gamow's Narrative as Part of an Introduction to Quantum Physics

    ERIC Educational Resources Information Center

    Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues

    2017-01-01

    Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing…

  8. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  9. Quantum Information in Non-physics Departments at Liberal Arts Colleges

    NASA Astrophysics Data System (ADS)

    Westmoreland, Michael

    2012-02-01

    Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.

  10. Insights into teaching quantum mechanics in secondary and lower undergraduate education

    NASA Astrophysics Data System (ADS)

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-06-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.

  11. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    ERIC Educational Resources Information Center

    Dür, Wolfgang; Heusler, Stefan

    2016-01-01

    Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…

  12. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    NASA Astrophysics Data System (ADS)

    Malgieri, M.; Onorato, P.; De Ambrosis, A.

    2014-09-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

  13. Contrasting grading approaches in introductory physics and quantum mechanics: The case of graduate teaching assistants

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-06-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics and quantum mechanics using different criteria and if so, why they may be inclined to do so. To investigate possible discrepancies in TAs' grading approaches in courses at different levels, we implemented a sequence of instructional activities in a TA professional development course that asked TAs to grade student solutions of introductory physics and upper-level quantum mechanics problems and explain why, if at all, their grading approaches were different or similar in the two contexts. We analyzed the differences in TAs' grading approaches in the two contexts and discuss the reasons they provided for the differences in their grading approaches in introductory physics and quantum mechanics in individual interviews, class discussions, and written responses. We find that a majority of the TAs graded solutions to quantum mechanics problems differently than solutions to introductory physics problems. In quantum mechanics, the TAs focused more on physics concepts and reasoning and penalized students for not showing evidence of understanding. The findings of the study have implications for TA professional development programs, e.g., the importance of helping TAs think about the difficulty of a problem from an introductory students' perspective and reflecting on the benefits of formative assessment.

  14. Quantum Talk: How Small-Group Discussions May Enhance Students' Understanding in Quantum Physics

    ERIC Educational Resources Information Center

    Bungum, Berit; Bøe, Maria Vetleseter; Henriksen, Ellen Karoline

    2018-01-01

    Quantum physics challenges our views of the physical world and describes phenomena that cannot be directly observed. The use of language is hence essential in the teaching of quantum physics. With a sociocultural view of learning, we investigate characteristics of preuniversity students' small-group discussions and their potential for enhancing…

  15. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  16. Imagery, Intuition and Imagination in Quantum Physics Education

    ERIC Educational Resources Information Center

    Stapleton, Andrew J.

    2018-01-01

    In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area…

  17. Teaching Quantum Physics in Upper Secondary School in France:

    ERIC Educational Resources Information Center

    Lautesse, Philippe; Vila Valls, Adrien; Ferlin, Fabrice; Héraud, Jean-Loup; Chabot, Hugues

    2015-01-01

    One of the main problems in trying to understand quantum physics is the nature of the referent of quantum theory. This point is addressed in the official French curriculum in upper secondary school. Starting in 2012, after about 20 years of absence, quantum physics has returned to the national program. On the basis of the historical construction…

  18. Philosophy and Quantum Mechanics in Science Teaching

    NASA Astrophysics Data System (ADS)

    Pospiech, Gesche

    Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers - from the Antique, the Enlightenment and a quantum philosopher - discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.

  19. Imagery, intuition and imagination in quantum physics education

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.

    2018-03-01

    In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area of contemporary physics—special relativity—I highlight concepts that require an ontological change, namely a shift beyond the reality of everyday Newtonian experience such as time dilation and length contraction, as being troublesome concepts that can present barriers to learning with students often asking "is it real?". Similarly, the domain of quantum physics requires students to move beyond "common sense" perception as it brings into sharp focus the difference between what is experienced via the sense perceptions and the mental abstraction of phenomena. And it's this issue that highlights the important role imagery and creativity have both in quantum physics and in the evolution of physics more generally, and lies in stark contrast to the apparent mathematical focus and lack of opportunity for students to explore ontological issues evident in the authors' research. By reflecting on the authors' observations of a focus on mathematical formalisms and problem solving at the expense of alternative approaches, I explore the dialectic between Heisenberg's highly mathematical approach and Schrödinger's mechanical wave view of the atom, together with its conceptual imagery, at the heart of the evolution of quantum mechanics. In turn, I highlight the significance of imagery, imagination and intuition in quantum physics, together with the importance of adopting an epistemological pluralism—multiple ways of knowing and thinking—in physics education. Again drawing parallels with the authors' work and my own, I identify the role thought experiments have in both quantum physics education and in physics more generally. By

  20. Representing the Quantum Object Through Fiction in Teaching. The Ontological Contribution of Gamow's Narrative as Part of an Introduction to Quantum Physics

    NASA Astrophysics Data System (ADS)

    Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues

    2017-05-01

    Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing possible alternative worlds to address the issue. These possible worlds are based on the counterfactual logic developed in the work of D. Lewis. We will show that the narratives written by G. Gamow describe such possible worlds. Some parts of these narratives are found in textbooks in France. These worlds are governed by laws similar to but importantly different from those in our real world. They allow us to materialize properties inaccessible to everyday experience. In this sense, these fiction stories make ontological propositions concerning the nature and structure of the fundamental elements of our physical universe.

  1. Pre-Service Physics Teachers' Comprehension of Quantum Mechanical Concepts

    ERIC Educational Resources Information Center

    Didis, Nilufer; Eryilmaz, Ali; Erkoc, Sakir

    2010-01-01

    When quantum theory caused a paradigm shift in physics, it introduced difficulties in both learning and teaching of physics. Because of its abstract, counter-intuitive and mathematical structure, students have difficulty in learning this theory, and instructors have difficulty in teaching the concepts of the theory. This case study investigates…

  2. Insights into Teaching Quantum Mechanics in Secondary and Lower Undergraduate Education

    ERIC Educational Resources Information Center

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and…

  3. Visualization of the Invisible: The Qubit as Key to Quantum Physics

    ERIC Educational Resources Information Center

    Dür, Wolfgang; Heusler, Stefan

    2014-01-01

    Quantum mechanics is one of the pillars of modern physics, however rather difficult to teach at the introductory level due to the conceptual difficulties and the required advanced mathematics. Nevertheless, attempts to identify relevant features of quantum mechanics and to put forward concepts of how to teach it have been proposed. Here we present…

  4. Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.

    2017-08-01

    At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course "Quantum Optics and Nano-Optics Laboratory" (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell's inequalities, (2) single-photon interference (Young's double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants' reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced

  5. Teaching Physics and Feeling Good about It.

    ERIC Educational Resources Information Center

    Prokop, Charles F.

    1988-01-01

    Describes a high school physics teaching sequence including more modern topics. The first quarter covers cosmology, astronomy, optics, wave mechanics, relativity, gravity, and quantum theory. The second quarter covers classical mechanics. The third quarter covers electromagnetism and electronics. The fourth quarter consists of thermodynamics and…

  6. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…

  7. Teaching Physics Using Virtual Reality

    NASA Astrophysics Data System (ADS)

    Savage, C.; McGrath, D.; McIntyre, T.; Wegener, M.; Williamson, M.

    2010-07-01

    We present an investigation of game-like simulations for physics teaching. We report on the effectiveness of the interactive simulation "Real Time Relativity" for learning special relativity. We argue that the simulation not only enhances traditional learning, but also enables new types of learning that challenge the traditional curriculum. The lessons drawn from this work are being applied to the development of a simulation for enhancing the learning of quantum mechanics.

  8. Visualization of the Invisible: The Qubit as Key to Quantum Physics

    NASA Astrophysics Data System (ADS)

    Dür, Wolfgang; Heusler, Stefan

    2014-11-01

    Quantum mechanics is one of the pillars of modern physics, however rather difficult to teach at the introductory level due to the conceptual difficulties and the required advanced mathematics. Nevertheless, attempts to identify relevant features of quantum mechanics and to put forward concepts of how to teach it have been proposed.1-8 Here we present an approach to quantum physics based on the simplest quantum mechanical system—the quantum bit (qubit).1 Like its classical counterpart—the bit—a qubit corresponds to a two-level system, i.e., some system with a physical property that can admit two possible values. While typically a physical system has more than just one property or the property can admit more than just two values, in many situations most degrees of freedom can be considered to be fixed or frozen. Hence a variety of systems can be effectively described as a qubit. For instance, one may consider the spin of an electron or atom, with spin up and spin down as two possible values, and where other properties of the particle such as its mass or its position are fixed. Further examples include the polarization degree of freedom of a photon (horizontal and vertical polarization), two electronic degrees of freedom (i.e., two energy levels) of an atom, or the position of an atom in a double well potential (atom in left or right well). In all cases, only two states are relevant to describe the system.

  9. Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha; Zhu, Guangtian

    2009-11-01

    We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.

  10. Teaching ``The Physics of Energy'' at MIT

    NASA Astrophysics Data System (ADS)

    Jaffe, Robert

    2009-05-01

    New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.

  11. Teaching of transcendence in physics

    NASA Astrophysics Data System (ADS)

    Jaki, Stanley L.

    1987-10-01

    Efforts aimed at showing that modern physics points to a truly transcendental factor as the explanation of the universe should be welcomed by those who have urged the teaching of physics in a broad cultural context. Those efforts may profit from the following guidelines: avoid the antiontological basis of the Copenhagen interpretation of quantum mechanics; make much of the reality of the universe and its enormous degree of specificity as revealed by general relativity and the cosmic background radiation; exploit Gödel's incompleteness theorems against any grand unified theory proposed as if it were true a priori and necessarily; and realize that the design argument always presupposes the validity of the cosmological argument.

  12. Quantum optics. Gravity meets quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  13. Quantum Physics in School.

    ERIC Educational Resources Information Center

    Lawrence, I.

    1996-01-01

    Discusses a teaching strategy for introducing quantum ideas into the school classroom using modern devices. Develops the concepts of quantization, wave-particle duality, nonlocality, and tunneling. (JRH)

  14. Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria

    2014-11-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.

  15. The Place of Learning Quantum Theory in Physics Teacher Education: Motivational Elements Arising from the Context

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis

    2015-01-01

    Quantum theory is one of the most successful theories in physics. Because of its abstract, mathematical, and counter-intuitive nature, many students have problems learning the theory, just as teachers experience difficulty in teaching it. Pedagogical research on quantum theory has mainly focused on cognitive issues. However, affective issues about…

  16. Investigating the applicability of activity-based quantum mechanics in a few high school physics classrooms

    NASA Astrophysics Data System (ADS)

    Escalada, Lawrence Todd

    Quantum physics is not traditionally introduced in high school physics courses because of the level of abstraction and mathematical formalism associated with the subject. As part of the Visual Quantum Mechanics project, activity-based instructional units have been developed that introduce quantum principles to students who have limited backgrounds in physics and mathematics. This study investigates the applicability of one unit, Solids & Light, that introduces quantum principles within the context of learning about light emitting diodes. An observation protocol, attitude surveys, and questionnaires were used to examine the implementation of materials and student-teacher interactions in various secondary physics classrooms. Aspects of Solids & Light including the use of hands-on activities, interactive computer programs, inexpensive materials, and the focus on conceptual understanding were very applicable in the various physics classrooms observed. Both teachers and students gave these instructional strategies favorable ratings in motivating students to make observations and to learn. These ratings were not significantly affected by gender or students, attitudes towards physics or computers. Solid's & Light was applicable in terms of content and teaching style for some teachers. However, a mismatch of teaching styles between some instructors and the unit posed some problems in determining applicability. Observations indicated that some instructors were not able to utilize the exploratory instructional strategy of Solid's & Light. Thus, Solids & Light must include additional support necessary to make the instructor comfortable with the subject matter and pedagogical style. With these revisions, Solids & Light, will have all the key components to make its implementation in a high school physics classroom a successful one.

  17. Quantum physics meets biology

    PubMed Central

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806

  18. Quantum physics meets biology.

    PubMed

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  19. Teaching Einsteinian physics at schools: part 1, models and analogies for relativity

    NASA Astrophysics Data System (ADS)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the Einstein-First curriculum is the development of appropriate models and analogies. This paper is the first part of a three-paper series. It presents the conceptual foundation of our approach, based on simple physical models and analogies, followed by a detailed description of the models and analogies used to teach concepts of general and special relativity. Two accompanying papers address the teaching of quantum physics (Part 2) and research outcomes (Part 3).

  20. "Shut up and calculate": the available discursive positions in quantum physics courses

    NASA Astrophysics Data System (ADS)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2018-03-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.

  1. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  2. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  3. Teaching Quantum Physics without Paradoxes

    ERIC Educational Resources Information Center

    Hobson, Art

    2007-01-01

    Although the resolution to the wave-particle paradox has been known for 80 years, it is seldom presented. Briefly, the resolution is that material particles and photons are the quanta of extended spatially continuous but energetically quantized fields. But because the resolution resides in quantum field theory and is not usually spelled out in…

  4. H-theorem in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  5. H-theorem in quantum physics

    DOE PAGES

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  6. The Quantum Atomic Model "Electronium": A Successful Teaching Tool.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)

  7. Is physics worth teaching?

    NASA Astrophysics Data System (ADS)

    Machold, Dolf K.

    1992-09-01

    The paper points out that many students and adults are accustomed to solving problems in physics on the basis of everyday concepts; believing that these concepts are very successful, those students are not interested in concepts offered by science teaching. Furthermore, the teaching physics in terms of mathematical descriptions of problems is too early — students don't see the original problem, so they are not interested in solutions. One way to avoid these difficulties is M. Wagenschein's proposal of the ‘Exemplary-genetic Method’. This method and its principles are presented and illustrated with examples taken from history. On the basis of this method educational and pedagogical functions of teaching physics are developed. P.S.: Martin Wagenschein (1896 1989), Professor of physics education at the University of Tübingen, was concerned with finding new methods for successfully teaching science.

  8. Test on the Effectiveness of the Sum over Paths Approach in Favoring the Construction of an Integrated Knowledge of Quantum Physics in High School

    ERIC Educational Resources Information Center

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-01-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…

  9. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  10. Methods of teaching the physics of climate change in undergraduate physics courses

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  11. Contrasting Grading Approaches in Introductory Physics and Quantum Mechanics: The Case of Graduate Teaching Assistants

    ERIC Educational Resources Information Center

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-01-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics…

  12. Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.

    PubMed

    Selesnick, S A; Rawling, J P; Piccinini, Gualtiero

    2017-09-01

    Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.

  13. Examining Physics Graduate Teaching Assistants' Pedagogical Content Knowledge for Teaching a New Physics Curriculum

    ERIC Educational Resources Information Center

    Seung, Eulsun; Bryan, Lynn A.; Haugan, Mark P.

    2012-01-01

    In this study, we investigated the pedagogical content knowledge (PCK) that physics graduate teaching assistants (TAs) developed in the context of teaching a new introductory physics curriculum, "Matter and Interactions" ("M&I"). "M&I" is an innovative introductory physics course that emphasizes a unified framework for understanding the world and…

  14. Teachers' approaches to teaching physics

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Benjamin Franklin said, "Tell me, and I forget. Teach me, and I remember. Involve me, and I learn." He would not be surprised to learn that research in physics pedagogy has consistently shown that the traditional lecture is the least effective teaching method for teaching physics. We asked high school physics teachers which teaching activities they used in their classrooms. While almost all teachers still lecture sometimes, two-thirds use something other than lecture most of the time. The five most often-used activities are shown in the table below. In the January issue, we will look at the 2013 Nationwide Survey of High School Physics teachers. Susan White is Research Manager in the Statistical Research Center at the American Institute of Physics; she directs the Nationwide Survey of High School Physics Teachers. If you have any questions, please contact Susan at swhite@aip.org.

  15. Relativity, Quantum Physics and Philosophy in the Upper Secondary Curriculum: Challenges, Opportunities and Proposed Approaches

    ERIC Educational Resources Information Center

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Catherine W.; Frågåt, Thomas; Bøe, Maria Vetleseter

    2014-01-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for…

  16. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  17. Quantum Metric of Classic Physics

    NASA Astrophysics Data System (ADS)

    Machusky, Eugene

    2017-09-01

    By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.

  18. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel

    The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less

  19. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  20. Teaching Reform and Practice of the Provincial-Level Quality Course: Quantum Mechanics

    ERIC Educational Resources Information Center

    Wang, Hongmei

    2010-01-01

    According to the actuality of Dezhou University, some useful reforms in teaching content, teaching method, and teaching measure are introduced, combining with the characteristics of the course of quantum mechanism in this article.

  1. Teaching Quantum Uncertainty

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…

  2. Transnational Quantum: Quantum Physics in India through the Lens of Satyendranath Bose

    NASA Astrophysics Data System (ADS)

    Banerjee, Somaditya

    2016-08-01

    This paper traces the social and cultural dimensions of quantum physics in colonial India where Satyendranath Bose worked. By focusing on Bose's approach towards the quantum and his collaboration with Albert Einstein, I argue that his physics displayed both the localities of doing science in early twentieth century India as well as a cosmopolitan dimension. He transformed the fundamental new concept of the light quantum developed by Einstein in 1905 within the social and political context of colonial India. This cross-pollination of the local with the global is termed here as the locally rooted cosmopolitan nature of Bose's science. The production of new knowledge through quantum statistics by Bose show the co-constructed nature of physics and the transnational nature of the quantum.

  3. A full quantum analysis of the Stern-Gerlach experiment using the evolution operator method: analyzing current issues in teaching quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benítez Rodríguez, E.; Arévalo Aguilar, L. M.; Piceno Martínez, E.

    2017-03-01

    To the quantum mechanics specialists community it is a well-known fact that the famous original Stern-Gerlach experiment (SGE) produces entanglement between the external degrees of freedom (position) and the internal degree of freedom (spin) of silver atoms. Despite this fact, almost all textbooks on quantum mechanics explain this experiment using a semiclassical approach, where the external degrees of freedom are considered classical variables, the internal degree is treated as a quantum variable, and Newton's second law is used to describe the dynamics. In the literature there are some works that analyze this experiment in its full quantum mechanical form. However, astonishingly, to the best of our knowledge the original experiment, where the initial states of the spin degree of freedom are randomly oriented coming from the oven, has not been analyzed yet in the available textbooks using the Schrödinger equation (to the best of our knowledge there is only one paper that treats this case: Hsu et al (2011 Phys. Rev. A 83 012109)). Therefore, in this contribution we use the time-evolution operator to give a full quantum mechanics analysis of the SGE when the initial state of the internal degree of freedom is completely random, i.e. when it is a statistical mixture. Additionally, as the SGE and the development of quantum mechanics are heavily intermingled, we analyze some features and drawbacks in the current teaching of quantum mechanics. We focus on textbooks that use the SGE as a starting point, based on the fact that most physicist do not use results from physics education research, and comment on traditional pedagogical attitudes in the physics community.

  4. Quantum chaos in nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  5. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  6. Views about Physics Held by Physics Teachers with Differing Approaches to Teaching Physics

    ERIC Educational Resources Information Center

    Mulhall, Pamela; Gunstone, Richard

    2008-01-01

    Physics teachers' approaches to teaching physics are generally considered to be linked to their views about physics. In this qualitative study, the views about physics held by a group of physics teachers whose teaching practice was traditional were explored and compared with the views held by physics teachers who used conceptual change approaches.…

  7. Physics Teachers' Future Teaching Plans

    ERIC Educational Resources Information Center

    Physics Teacher, 2012

    2012-01-01

    There are two sides of the physics teacher turnover equation: teachers leaving and teachers entering. This month we will focus on teachers' future teaching plans. As seen in the figure, about 5% of the 27,000 teachers who taught physics in U.S. high schools in 2008-09 were in their first year of teaching physics (but not necessarily their first…

  8. Designing quantum information processing via structural physical approximation.

    PubMed

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  9. Designing quantum information processing via structural physical approximation

    NASA Astrophysics Data System (ADS)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  10. Association of Quality Physical Education Teaching with Students’ Physical Fitness

    PubMed Central

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Hammond-Bennett, Austin

    2016-01-01

    This study examined the extent to which four essential dimensions of quality physical education teaching (QPET) were associated with healthy levels of physical fitness in elementary school students. Participants were nine elementary PE teachers and 1, 201 fourth- and fifth-grade students who were enrolled in nine elementary schools. The students’ physical fitness were assessed using four FITNESSGRAM tests. The PE teachers’ levels of QPET were assessed using the Assessing Quality Teaching Rubrics (AQTR). The AQTR consisted of four essential dimensions including Task Design, Task Presentation, Class Management, and Instructional Guidance. Codes were confirmed through inter-rater reliability (82.4% and 84.5%). Data were analyzed through descriptive statistics, multiple R-squared regression models, and independent sample t-tests. The four essential teaching dimensions of QPET were significantly associated with the students’ cardiovascular endurance, muscular strength and endurance, and flexibility. However, they accounted for relatively low percentage of the total variance in PACER test, followed by Curl-up test, while explaining very low portions of the total variance in Push-up and Trunk Lift tests. This study indicated that the students who had experienced high level of QPET were more physically fit than their peers who did not have this experience in PACER and Curl-up tests, but not in Push-up and Trunk lift tests. In addition, the significant contribution of the four essential teaching dimensions to physical fitness components was gender-specific. It was concluded that the four teaching dimensions of QPET were significantly associated with students’ health-enhancing physical fitness. Key points Although Task Design, Task Presentation, Class Management, and Instructional Guidance has its unique and critical teaching components, each essential teaching dimensions is intertwined and immersed in teaching practices. Four essential teaching dimensions all

  11. Localization and Entanglement in Relativistic Quantum Physics

    NASA Astrophysics Data System (ADS)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  12. Refined Characterization of Student Perspectives on Quantum Physics

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…

  13. On the physical realizability of quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank

    Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.

  14. How surgical mentors teach: a classification of in vivo teaching behaviors part 2: physical teaching guidance.

    PubMed

    Sutkin, Gary; Littleton, Eliza B; Kanter, Steven L

    2015-01-01

    To study surgical teaching captured on film and analyze it at a fine level of detail to categorize physical teaching behaviors. We describe live, filmed, intraoperative nonverbal exchanges between surgical attending physicians and their trainees (residents and fellows). From the films, we chose key teaching moments and transcribed participants' utterances, actions, and gestures. In follow-up interviews, attending physicians and trainees watched videos of their teaching case and answered open-ended questions about their teaching methods. Using a grounded theory approach, we examined the videos and interviews for what might be construed as a teaching behavior and refined the physical teaching categories through constant comparison. We filmed 5 cases in the operating suite of a university teaching hospital that provides gynecologic surgical care. We included 5 attending gynecologic surgeons, 3 fellows, and 5 residents for this study. More than 6 hours of film and 3 hours of interviews were transcribed, and more than 250 physical teaching motions were captured. Attending surgeons relied on actions and gestures, sometimes wordlessly, to achieve pedagogical and surgical goals simultaneously. Physical teaching included attending physician-initiated actions that required immediate corollary actions from the trainee, gestures to illustrate a step or indicate which instrument to be used next, supporting or retracting tissues, repositioning the trainee's instruments, and placement of the attending physicians' hands on the trainees' hands to guide them. Attending physicians often voiced surprise at the range of their own teaching behaviors captured on film. Interrater reliability was high using the Cohen κ, which was 0.76 for the physical categories. Physical guidance is essential in educating a surgical trainee, may be tacit, and is not always accompanied by speech. Awareness of teaching behaviors may encourage deliberate teaching and reflection on how to innovate pedagogy

  15. Physics teachers' future teaching plans

    NASA Astrophysics Data System (ADS)

    2012-03-01

    There are two sides of the physics teacher turnover equation: teachers leaving and teachers entering. This month we will focus on teachers' future teaching plans. As seen in the figure, about 5% of the 27,000 teachers who taught physics in U.S. high schools in 2008-09 were in their first year of teaching physics (but not necessarily their first year of leaching at the high school level). Of those, about 9% planned to quit teaching; less than 3.5% of the experienced teachers planned to quit at the end of the current school year. The higher attrition rate among first-year teachers is common across all high school teachers—and other careers—as people enter new fields and then leave quickly for various reasons.

  16. Physics teaching in developing countries

    NASA Astrophysics Data System (ADS)

    Talisayon, V. M.

    1984-05-01

    The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.

  17. Teaching Elementary Particle Physics: Part I1

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2011-01-01

    I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.

  18. Replicating effective pedagogical approaches from introductory physics to improve student learning of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan Thomas

    Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM

  19. WHY TEACH PHYSICS.

    ERIC Educational Resources Information Center

    BROWN, SANBORN C.; AND OTHERS

    THIS BOOK CONTAINS A SURVEY OF THE PROCEEDINGS OF THE CONFERENCE ON PHYSICS IN GENERAL EDUCATION, HELD IN RIO DE JANEIRO IN JULY 1963. THIS WAS THE SECOND CONFERENCE OF THE INTERNATIONAL UNION OF PURE AND APPLIED PHYSICS. CONFERENCE ADDRESSES, CONSTITUTING THE MAJOR PORTION OF THE TEXT, CONSIDER THE TEACHING OF SECONDARY SCHOOL GENERAL EDUCATION…

  20. Unifying Quantum Physics with Biology

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2014-09-01

    We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.

  1. Views about Learning Physics Held by Physics Teachers with Differing Approaches to Teaching Physics

    ERIC Educational Resources Information Center

    Mulhall, Pamela; Gunstone, Richard

    2012-01-01

    Research into teacher thinking offers potential insights into ways of promoting better teaching. A recent qualitative study explored the views about physics, and learning and teaching physics of a group of teachers whose classroom practice was "traditional" and a group who used conceptual change teaching approaches. This paper focuses on the views…

  2. Physics Teaching in a Rural School.

    ERIC Educational Resources Information Center

    Wilhite, Lora

    1979-01-01

    The author describes, in a highly personal manner, physics teaching in a rural school. Topics detailed include: program descriptions, teaching methods, textbook selection and adoption procedures, teaching load, and the problems associated with teaching in a school district with limited funds. (BT)

  3. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  4. Physical approach to quantum networks with massive particles

    NASA Astrophysics Data System (ADS)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These

  5. Advanced Level Physics Students' Conceptions of Quantum Physics.

    ERIC Educational Resources Information Center

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  6. Development of a Physical Education Teaching Efficacy Scale

    ERIC Educational Resources Information Center

    Humphries, Charlotte A.; Hebert, Edward; Daigle, Kay; Martin, Jeffrey

    2012-01-01

    Relationships have been found between teacher efficacy and many teaching and learning variables, but few researchers have examined teaching efficacy in physical education. The instrument reported here, the Physical Education Teaching Efficacy Scale, was developed based on the teaching efficacy literature, existing scales, and National Association…

  7. Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.

    ERIC Educational Resources Information Center

    Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten

    2002-01-01

    Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)

  8. Feminist Teaching in University Physical Education Programs.

    ERIC Educational Resources Information Center

    Bain, Linda L.; And Others

    1991-01-01

    Examines feminist teaching in university physical education. Three articles describe the personal experiences of physical educators who try to teach in ways that promote equality. The articles focus on social diversity and justice and feminist pedagogy in the sport sciences and physical education. (SM)

  9. Quantum Algorithms Based on Physical Processes

    DTIC Science & Technology

    2013-12-03

    quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of

  10. Quantum Algorithms Based on Physical Processes

    DTIC Science & Technology

    2013-12-02

    quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of

  11. Pre-Service Physics Teachers' Opinions about the Difficulties in Understanding Introductory Quantum Physics Topics

    ERIC Educational Resources Information Center

    Kizilcik, Hasan Sahin; Yavas, Pervin Ünlü

    2017-01-01

    The aim of this study is to identify the opinions of pre-service physics teachers about the difficulties in introductory quantum physics topics. In this study conducted with twenty-five pre-service physics teachers, the case study method was used. The participants were interviewed about introductory quantum physics topics. The interviews were…

  12. Physical realizability of continuous-time quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.

    2018-05-01

    Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.

  13. The Analysis of Analogy Use in the Teaching of Introductory Quantum Theory

    ERIC Educational Resources Information Center

    Didis, Nilufer

    2015-01-01

    This study analyzes the analogies used in the teaching of introductory quantum theory concepts. Over twelve weeks, the researcher observed each class for a semester and conducted interviews with the students and the instructor. In the interviews, students answered questions about quantum theory concepts, which the instructor had taught them using…

  14. On the physical Hilbert space of loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noui, Karim; Perez, Alejandro; Vandersloot, Kevin

    2005-02-15

    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.

  15. Teaching Introductory Quantum Physics and Chemistry: Caveats from the History of Science and Science Teaching to the Training of Modern Chemists

    ERIC Educational Resources Information Center

    Greca, Ileana M.; Freire, Olival, Jr.

    2014-01-01

    Finding the best ways to introduce quantum physics to undergraduate students in all scientific areas, in particular for chemistry students, is a pressing, but hardly a simple task. In this paper, we discuss the relevance of taking into account lessons from the history of the discipline and the ongoing controversy over its interpretations and…

  16. Deep learning for teaching university physics to computers

    NASA Astrophysics Data System (ADS)

    Davis, Jackson P.; Price, Watt A.

    2017-04-01

    Attempts to improve physics instruction suggest that there is a fundamental barrier to the human learning of physics. We argue that the new capabilities of artificial intelligence justify a reconsideration not of how we teach physics but to whom we teach physics.

  17. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Zeeshan; et al.

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  18. Eight Hundred Years of Physics Teaching.

    ERIC Educational Resources Information Center

    Bishop, George

    This book uses a biographical pattern to trace the history of physics teaching. Whenever possible the story of an influential person or institution is used to tell the story of that period. The book begins with the contributions of the Greeks, the Romans, and the Arabs to physics and its teaching. Chapters include: (1) "The First Beginnings of…

  19. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  20. Physics Teaching in Times of Change

    NASA Astrophysics Data System (ADS)

    Dykstra, Dewey

    2006-05-01

    Powerful political forces have been at play in building a mandate to change the schools. The latest, on-going manifestation is in the No Child Left Behind Act, but the mandate for change was being formulated in the early 1980s in the A Nation at Risk report. As physicists we may feel somewhat removed from such goings on, but our children attend school and their teachers come through our classrooms. Physics education research offers extensive, carefully collected data on the consequences of standard physics teaching. The data challenges conventional beliefs about physics learning. It is said that times of crisis represent both opportunity and danger. Because the mandates to change are up to the individual states, each of us in our own state has the opportunity to shift the focus in physics/science teaching toward something better. We also face the danger that existing physics/science teaching will be even more deeply entrenched than it already is.

  1. Teaching Quantum Mechanics with qCraft: Outreach and Video Games

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Chatwin-Davies, Aidan; Michalakis, Spyridon

    Why is quantum mechanics considered a hard and inaccessible subject? Part of the difficulty is due to the nature of the subject itself. However, no small part of the difficulty is its pedagogy, which often relies on out-of-date historical motivation and experimental evidence that is disconnected from day-to-day experiences. In this first talk, we explore ways in which video games are well-suited to teaching quantum mechanics, in particular with regards to building intuition, as well as some of their limitations. We then illustrate these considerations through qCraft, an extension for Minecraft that incorporates aspects of quantum mechanics into the game.

  2. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  3. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  4. PREFACE: International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11)

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Tanaka, Hidekazu; Nakamura, Takashi; Nakamura, Masaaki

    2011-07-01

    Quantum physics has developed modern views of nature for more than a century. In addition to this traditional role, quantum physics has acquired new significance in the 21st century as the field responsible for driving and supporting nanoscience research, which will have even greater importance in the future because nanoscience will be the academic foundation for new technologies. The Department of Physics, Tokyo Institute of Technology, are now conducting a "Nanoscience and Quantum Physics" project (Physics G-COE project) supported by the Global Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) in order to promote research and education in these important academic fields. The International Symposium on Nanoscience and Quantum Physics, held in Tokyo, Japan, 26-28 January 2011 (nanoPHYS'11) was organized by the Physics G-COE project of the Tokyo Institute of Technology to provide an international forum for the open exchange of topical information and for stimulating discussion on novel concepts and future prospects of nanoscience and quantum physics. There were a total of 118 papers including 34 invited papers. This nanoPHYS'11 is the fourth symposium of this kind organized by the Tokyo Institute of Technology. Topics focused on in the symposium included: Category 1: Novel nanostructure (Nanowires, Nanotubes, Spin-related structure, etc) Category 2: Novel transport and electronic properties (Graphene, Topological insulators, Coherent control, etc) Category 3: Electronic and optical properties of nanostructure Category 4: Fundamental physics and new concept in quantum physics Category 5: Quantum Physics - Quantum information Category 6: Quantum Physics - Nuclear and Hadron Physics Category 7: Quantum Physics - Astrophysics, etc All the papers submitted to this issue have been reviewed under a stringent refereeing process, according to the normal rules of this Journal. The editors are grateful to all the

  5. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  6. Decision theory and information propagation in quantum physics

    NASA Astrophysics Data System (ADS)

    Forrester, Alan

    In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.

  7. A Model for Bilingual Physics Teaching: "The Feynman Lectures "

    NASA Astrophysics Data System (ADS)

    Metzner, Heqing W.

    2006-12-01

    Feynman was not only a great physicist but also a remarkably effective educator. The Feynman Lectures on Physics originally published in 1963 were designed to be GUIDES for teachers and for gifted students. More than 40 years later, his peculiar teaching ideas have special application to bilingual physics teaching in China because: (1) Each individual lecture provides a self contained unit for bilingual teaching; (2)The lectures broaden the physics understanding of students; and (3)Feynman's original thought in English is experienced through the bilingual teaching of physics.

  8. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I.; Israelsson, U.; Lee, M.

    2001-01-01

    This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.

  9. Turkish Physics Teachers' Views about the 2007 Physics Teaching Program and its Implementation

    ERIC Educational Resources Information Center

    Mercan, Fatih Caglayan

    2013-01-01

    The renewal of the secondary school physics teaching program was initiated in 2008, however, there is limited research investigating physics teachers' enactment of the teaching program in their classes. The purpose of this study was to identify and describe teachers' views about the official teaching program and its implementation. The…

  10. Teaching medical physics to general audiences.

    PubMed Central

    Amador, S

    1994-01-01

    By judiciously selecting topics and reading materials, one can teach a full semester course on medical physics appropriate for college students not majoring in the natural sciences. This interdisciplinary field offers an opportunity to teach a great deal of basic physics at the freshman level in the context of explaining modern medical technologies such as ultrasound imaging, laser surgery, and positron emission tomography. This article describes one such course which combines lectures, outside visitors, varied readings, and laboratories to convey a select subset of physical principles and quantitative problem-solving skills. These resources are also valuable for enriching the standard freshman physics sequence for premedical students. PMID:8075355

  11. Educating Primary Teachers to Teach Physical Education

    ERIC Educational Resources Information Center

    Tsangaridou, Niki

    2012-01-01

    Research evidence suggests that, worldwide, physical education in early years is mainly taught by primary teachers (Graber et al., 2008; Hunter, 2006; Kirk, 2005). Descriptions of primary teachers' experiences of teaching physical education are particularly essential as an avenue for developing better-quality teacher training for teaching primary…

  12. Physics of frequency-modulated comb generation in quantum-well diode lasers

    NASA Astrophysics Data System (ADS)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  13. The BIG Bell Test: quantum physics experiments with direct public participation

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration

    The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.

  14. Applying the tools of physics to teaching physics

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2003-05-01

    The strengths of modern AMO physics are its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately AMO physicists usually abandon these powerful tools in their approach to the teaching of physics and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual AMO science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive applets to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress.

  15. Reflections on the information paradigm in quantum and gravitational physics

    NASA Astrophysics Data System (ADS)

    Andres Höhn, Philipp

    2017-08-01

    We reflect on the information paradigm in quantum and gravitational physics and on how it may assist us in approaching quantum gravity. We begin by arguing, using a reconstruction of its formalism, that quantum theory can be regarded as a universal framework governing an observer’s acquisition of information from physical systems taken as information carriers. We continue by observing that the structure of spacetime is encoded in the communication relations among observers and more generally the information flow in spacetime. Combining these insights with an information-theoretic Machian view, we argue that the quantum architecture of spacetime can operationally be viewed as a locally finite network of degrees of freedom exchanging information. An advantage - and simultaneous limitation - of an informational perspective is its quasi-universality, i.e. quasi-independence of the precise physical incarnation of the underlying degrees of freedom. This suggests to exploit these informational insights to develop a largely microphysics independent top-down approach to quantum gravity to complement extant bottom-up approaches by closing the scale gap between the unknown Planck scale physics and the familiar physics of quantum (field) theory and general relativity systematically from two sides. While some ideas have been pronounced before in similar guise and others are speculative, the way they are strung together and justified is new and supports approaches attempting to derive emergent spacetime structures from correlations of quantum degrees of freedom.

  16. Teaching for understanding and/or teaching for the examination in high school physics

    NASA Astrophysics Data System (ADS)

    Geelan, David R.; Wildy, Helen; Louden, William; Wallace, John

    2004-04-01

    Literature on the related notions of 'teaching for understanding' and 'exemplary teaching' tends to be interpreted as prescribing certain classroom approaches. These are usually the strategies often identified with constructivist teaching, which involve a redefinition of the teacher's role: rather than being seen as a source of knowledge and control, the teacher is described as the facilitator of a largely student-directed search for understanding. More 'transmissive', teacher-centred approaches are held to lead to poor student understanding, low cognitive engagement and rote learning. This paper reports a case study of physics teaching in a government high school in Perth, Western Australia. This case study is part of a larger project spanning 5 years and eight case investigations in Perth schools. While the pedagogical style of the teacher studied could be labelled as 'transmissive', we tentatively assert that his practice exemplified high-quality physics teaching and led to high-quality understanding on the part of the students. The study suggests that prescriptions for quality teaching must be sensitive to issues of context and content, and that further study in a variety of school contexts is required to expand our understanding of what constitutes good teaching and learning in physics.

  17. Teaching Physics with Basketball

    NASA Astrophysics Data System (ADS)

    Chanpichai, N.; Wattanakasiwich, P.

    2010-07-01

    Recently, technologies and computer takes important roles in learning and teaching, including physics. Advance in technologies can help us better relating physics taught in the classroom to the real world. In this study, we developed a module on teaching a projectile motion through shooting a basketball. Students learned about physics of projectile motion, and then they took videos of their classmates shooting a basketball by using the high speed camera. Then they analyzed videos by using Tracker, a video analysis and modeling tool. While working with Tracker, students learned about the relationships between three kinematics graphs. Moreover, they learned about a real projectile motion (with an air resistance) through modeling tools. Students' abilities to interpret kinematics graphs were investigated before and after the instruction by using the Test of Understanding Graphs in Kinematics (TUG-K). The maximum normalized gain or is 0.77, which indicated students' improvement in determining displacement from the velocity-time graph. The minimum is 0.20, which indicated that most students still have difficulties interpreting the change in velocity from the acceleration-time graph. Results from evaluation questionnaires revealed that students also satisfied with the instructions that related physics contents to shooting basketball.

  18. Quantum physics reimagined for the general public

    NASA Astrophysics Data System (ADS)

    Bobroff, Julien

    2015-03-01

    Quantum Physics has always been a challenging issue for outreach. It is invisible, non-intuitive and written in sophisticated mathematics. In our ``Physics Reimagined'' research group, we explore new ways to present that field to the general public. Our approach is to develop close collaborations between physicists and designers or graphic artists. By developing this new kind of dialogue, we seek to find new ways to present complex phenomena and recent research topics to the public at large. For example, we created with web-illustrators a series of 3D animations about basic quantum laws and research topics (graphene, Bose-Einstein condensation, decoherence, pump-probe techniques, ARPES...). We collaborated with designers to develop original setups, from quantum wave animated models or foldings to a superconducting circus with levitating animals. With illustrators, we produced exhibits, comic strips or postcards displaying the physicists in their labs, either famous ones or even our own colleagues in their daily life as researchers. With artists, we recently made a stop-motion picture to explain in an esthetic way the process of discovery and scientific publication. We will discuss how these new types of outreach projects allowed us to engage the public with modern physics both on a scientific and cultural level and how the concepts and process can easily be replicated and expanded by other physicists. We are at the precise time when creative tools, interfaces, and ways of sharing and learning are rapidly evolving (wikipedia, MOOCs, smartphones...). If scientists don't step forward to employ these tools and develop new resources, other people will, and the integrity of the science and underlying character of research risks being compromised. All our productions are free to use and can be downloaded at www.PhysicsReimagined.com (for 3D quantum videos, specific link: www.QuantumMadeSimple.com) This work benefited from the support of the Chair ``Physics Reimagined

  19. The Oxford Questions on the foundations of quantum physics.

    PubMed

    Briggs, G A D; Butterfield, J N; Zeilinger, A

    2013-09-08

    The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.

  20. Teaching physics as a service subject

    NASA Astrophysics Data System (ADS)

    Lowe, T. L.; Hayes, M.

    1986-07-01

    At South Glamorgan Institute of Higher Education physics is taught over a wide range of courses. In addition to the more conventional courses found in science, technology and education faculties there is a physics input into areas such as beauty therapy, applied biology, catering, chiropody, dental technology, environmental health, food technology, hairdressing, human-movement studies, industrial design, applied life sciences, marine technology, medical laboratory science, physiological measurement, nursing and speech therapy. Due to the fundamental differences in emphasis required when teaching physics as a 'minor' subject on these types of courses, and since the authors have no courses which lead to a 'major' physics qualification, it is necessary to develop a rational strategy for teaching physics as a 'service' subject. If this is not achieved then staff satisfaction and student interest are likely to suffer. They describe their strategy.

  1. Teaching Physical Geography with Toys, Household Items, and Food

    ERIC Educational Resources Information Center

    Carnahan, Laura; Pankratz, Mary Jo; Alberts, Heike

    2014-01-01

    While many college physical geography instructors already use a wide variety of creative teaching approaches in their classes, others have not yet been exposed to teaching with toys, household items, or food. The goal in this article is to present some ideas for teaching college-level physical geography (weather/climate and geomorphology) for…

  2. Generalized Bell states map physical systems’ quantum evolution into a grammar for quantum information processing

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.

  3. Physics: Frightful, but Fun. Pupils' and Teachers' Views of Physics and Physics Teaching

    ERIC Educational Resources Information Center

    Angell, Carl; Guttersrud, Oystein; Henriksen, Ellen K.; Isnes, Anders

    2004-01-01

    There is widespread concern for the situation of school physics regarding recruitment, contents, teaching methods, etc. In this study based on questionnaire and focus group data, we explore how upper secondary pupils and teachers perceive physics as a subject, how they experience physics instruction, and how physics compares to other subjects. Our…

  4. The Impact of Quantum Teaching Strategy on Student Academic Achievements and Self-Esteem in Inclusive Schools

    ERIC Educational Resources Information Center

    Gunarhadi; Kassim, Mustapa; Shaari, Abdull Sukor

    2014-01-01

    Purpose: This research was aimed at showing the impact of a teaching strategy called the Quantum Teaching Strategy on students' academic achievements in two school subjects, namely in Bahasa Indonesia and Science, in comparison to that experienced through classes using a conventional teaching strategy. This research also examined the role of…

  5. Physics graduate students' perceptions of the value of teaching

    NASA Astrophysics Data System (ADS)

    Verley, Jim D.

    An exploratory study was undertaken to examine the perceptions of physics graduate students regarding teaching and their institutional and departmental support for their teaching efforts. A Likert survey was developed and distributed to 249 physics graduate students at four Rocky Mountain institutions of higher education. The survey was distributed through individual physics department email lists to prevent spam and virus blockers from removing the survey email. Of those 249 receiving the survey 132 students responded (53%) and of those responding 50% gave written comments about their perceptions of the value of teaching. Two of the institutions surveyed have some level of formal teaching development and assistance programming available to the graduate students and two had no formal programs in place either departmentally or institutionally. Both quantitative and qualitative analysis was utilized to examine the survey questions, demographic information and an open-ended question regarding the students' personal perceptions of teaching. Results of the survey analysis indicate that this group of physics graduate students perceive and place a high value on the importance of teaching. The results of the study also indicate that while there was high awareness by the student population of formal programs to aid in their teaching efforts, it did not translate into a high value placed on teaching by the institutions or departments from the student perspective. Students at those institutions that maintain formal programs for teaching development and support, while aware of those programs, often perceive departmental support for their teaching efforts to be lacking and feel unable to accommodate a personal interest in teaching because of a departmental focus on research. The students attending the institution with no formal institutional or departmental programs for teaching had the highest perceived value on its departmental teaching and support for teaching compared to

  6. Teaching Physics with Music

    NASA Astrophysics Data System (ADS)

    Ramsey, Gordon P.

    2015-10-01

    The uniting of two seemingly disparate subjects in the classroom provides an interesting motivation for learning. Students are interested in how these subjects can possibly be integrated into related ideas. Such is the mixture of physics and music. Both are based upon mathematics, which becomes the interlocking theme. The connecting physical properties of sound and music are waves and harmonics. The introduction of instruments, including the voice, to the musical discussion allows the introduction of more advanced physical concepts such as energy, force, pressure, fluid dynamics, and properties of materials. Suggestions on how to teach physics concepts in the context of music at many levels are presented in this paper.

  7. The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    Srikanth, R.

    2006-11-01

    Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.

  8. Teaching the Physically Handicapped to Swim.

    ERIC Educational Resources Information Center

    Anderson, William

    First principles of teaching swimming to the handicapped are reviewed; attention is given to children with cerebral palsy or muscular dystrophy, physical handicaps, blindness, and deafness. Swimming strokes, suggested exercises, group teaching, and a typical sequence of lessons and exercises are considered. Some case histories and a plan for a…

  9. Atomtronics: Material and Device Physics of Quantum Gases

    DTIC Science & Technology

    matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials

  10. A Collection of Problems for Physics Teaching

    ERIC Educational Resources Information Center

    Grober, S.; Jodl, H. -J.

    2010-01-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching,…

  11. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  12. Undergraduate quantum mechanics: lost opportunities for engaging motivated students?

    NASA Astrophysics Data System (ADS)

    Johansson, Anders

    2018-03-01

    Quantum mechanics is widely recognised as an important and difficult subject, and many studies have been published focusing on students’ conceptual difficulties. However, the sociocultural aspects of studying such an emblematic subject have not been researched to any large extent. This study explores students’ experiences of undergraduate quantum mechanics using qualitative analysis of semi-structured interview data. The results inform discussions about the teaching of quantum mechanics by adding a sociocultural dimension. Students pictured quantum mechanics as an intriguing subject that inspired them to study physics. The study environment they encountered when taking their first quantum mechanics course was however not always as inspiring as expected. Quantum mechanics instruction has commonly focused on the mathematical framework of quantum mechanics, and this kind of teaching was also what the interviewees had experienced. Two ways of handling the encounter with a traditional quantum mechanics course were identified in the interviews; either students accept the practice of studying quantum mechanics in a mathematical, exercise-centred way or they distance themselves from these practices and the subject. The students who responded by distancing themselves experienced a crisis and disappointment, where their experiences did not match the way they imagined themselves engaging with quantum mechanics. The implications of these findings are discussed in relation to efforts to reform the teaching of undergraduate quantum mechanics.

  13. Quality Physical Education: A Commentary on Effective Physical Education Teaching

    ERIC Educational Resources Information Center

    Dyson, Ben

    2014-01-01

    In my commentary in response to the 3 articles (McKenzie & Lounsbery, 2013; Rink, 2013; Ward, 2013), I focus on 3 areas: (a) content knowledge, (b) a holistic approach to physical education, and (c) policy impact. I use the term "quality teaching" rather than "teacher effectiveness." Quality teaching is a term with the…

  14. Active Learning Strategies in Physics Teaching

    ERIC Educational Resources Information Center

    Karamustafaoglu, Orhan

    2009-01-01

    The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…

  15. Classical and Quantum Thermal Physics

    NASA Astrophysics Data System (ADS)

    Prasad, R.

    2016-11-01

    List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.

  16. The relationship between teaching styles and motivation to teach among physical education teachers.

    PubMed

    Hein, Vello; Ries, Francis; Pires, Francisco; Caune, Agnese; Heszteráné Ekler, Judit; Emeljanovas, Arunas; Valantiniene, Irena

    2012-01-01

    This study aims to investigate how teachers' motivation to teach is related to different teaching styles. A hundred and seventy six physical education teachers from five European countries participated in the study. Teachers' motivation was measured using an instrument developed by Roth et al., 2007 based on the Self-Determination Theory (Deci and Ryan, 1985) which was tested for suitability for use with physical education teachers. The use of teaching styles was assessed through teachers' self-reported data according to the description of teaching styles presented by Curtner-Smith et al., 2001. The revised confirmatory factor model of the teachers' motivation instrument, with three factors, met the criteria for satisfactory fit indices. The results showed that teachers were more intrinsically motivated to teach than externally. Cross-cultural comparison indicated that the Spanish teachers were more intrinsically motivated whilst Lithuanian teachers were more externally motivated than teachers from the other four countries. Teachers from all five countries reported a more frequent use of reproductive styles than productive styles. The results of the present study confirmed the hypotheses that teachers' autonomous motivation is related to the student-centered or productive teaching styles whilst non-autonomously motivated teachers adopt more teacher-centered or reproductive teaching styles. Intrinsic and introjected motivation was significantly higher among teachers who more frequently employed productive teaching styles than teachers who used them less frequently. Intrinsically motivated teachers using more productive teaching styles can contribute more to the promotion physical activity among students. PE teachers were more intrinsically motivated to teach than externally.Spanish PE teachers were more intrinsically motivated, whereas Lithuanian PE teachers were more externally motivated.Teachers from all five countries reported a more frequent use of reproductive

  17. The Relationship Between Teaching Styles and Motivation to Teach Among Physical Education Teachers

    PubMed Central

    Hein, Vello; Ries, Francis; Pires, Francisco; Caune, Agnese; Heszteráné Ekler, Judit; Emeljanovas, Arunas; Valantiniene, Irena

    2012-01-01

    This study aims to investigate how teachers' motivation to teach is related to different teaching styles. A hundred and seventy six physical education teachers from five European countries participated in the study. Teachers' motivation was measured using an instrument developed by Roth et al., 2007 based on the Self-Determination Theory (Deci and Ryan, 1985) which was tested for suitability for use with physical education teachers. The use of teaching styles was assessed through teachers' self-reported data according to the description of teaching styles presented by Curtner-Smith et al., 2001. The revised confirmatory factor model of the teachers' motivation instrument, with three factors, met the criteria for satisfactory fit indices. The results showed that teachers were more intrinsically motivated to teach than externally. Cross-cultural comparison indicated that the Spanish teachers were more intrinsically motivated whilst Lithuanian teachers were more externally motivated than teachers from the other four countries. Teachers from all five countries reported a more frequent use of reproductive styles than productive styles. The results of the present study confirmed the hypotheses that teachers' autonomous motivation is related to the student-centered or productive teaching styles whilst non-autonomously motivated teachers adopt more teacher-centered or reproductive teaching styles. Intrinsic and introjected motivation was significantly higher among teachers who more frequently employed productive teaching styles than teachers who used them less frequently. Intrinsically motivated teachers using more productive teaching styles can contribute more to the promotion physical activity among students. Key points PE teachers were more intrinsically motivated to teach than externally. Spanish PE teachers were more intrinsically motivated, whereas Lithuanian PE teachers were more externally motivated. Teachers from all five countries reported a more frequent use of

  18. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  19. Understanding Probabilistic Interpretations of Physical Systems: A Prerequisite to Learning Quantum Physics.

    ERIC Educational Resources Information Center

    Bao, Lei; Redish, Edward F.

    2002-01-01

    Explains the critical role of probability in making sense of quantum physics and addresses the difficulties science and engineering undergraduates experience in helping students build a model of how to think about probability in physical systems. (Contains 17 references.) (Author/YDS)

  20. Physics: Quantum problems solved through games

    NASA Astrophysics Data System (ADS)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  1. Puerto Rico: Race, Ethnicity, Culture, and Physics Teaching

    ERIC Educational Resources Information Center

    González-Espada, Wilson J.; Carrasquillo, Rose E.

    2017-01-01

    It was a pleasant surprise to see Gary White's call for papers on race and physics teaching. We definitely think that the physics teaching and learning of students from diverse and minority backgrounds is an important issue to discuss, especially given the fact that bias and discrimination are common experiences in the lives of many Latinx,…

  2. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  3. Teaching Physics Using PhET Simulations

    ERIC Educational Resources Information Center

    Wieman, C. E.; Adams, W. K.; Loeblein, P.; Perkins, K. K.

    2010-01-01

    PhET Interactive Simulations (sims) are now being widely used in teaching physics and chemistry. Sims can be used in many different educational settings, including lecture, individual or small group inquiry activities, homework, and lab. Here we will highlight a few ways to use them in teaching, based on our research and experiences using them in…

  4. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  5. TH-E-201-03: A Radiology Resident’s Perspectives of Physics Teaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, A.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  6. Interprofessional Peer Teaching of Pharmacy and Physical Therapy Students.

    PubMed

    Sadowski, Cheryl A; Li, Johnson Ching-hong; Pasay, Darren; Jones, C Allyson

    2015-12-25

    To evaluate an interprofessional peer-teaching activity during which physical therapy students instructed undergraduate pharmacy students on 3 ambulatory devices (canes, crutches, walkers). The pre/post evaluation of 2 pharmacy undergraduate classes included 220 students, 110 per year. After pharmacy students completed a 10-point, knowledge-based pretest, they participated in a hands-on activity with physical therapy students teaching them about sizing, use, and safety of canes, crutches, and walkers. A 10-point posttest was completed immediately afterward. The mean difference of pre/post scores was 3.5 (SD 1.9) for the peer-led teaching, and 3.8 (SD 2.2) for the peer learning group. Students had positive responses regarding the learning exercise and recommended further peer teaching. The peer-learning activity involving physical therapy students teaching pharmacy students was an effective method of improving knowledge and skills regarding basic ambulatory devices.

  7. Interprofessional Peer Teaching of Pharmacy and Physical Therapy Students

    PubMed Central

    Sadowski, Cheryl A.; Li, Johnson Ching-hong; Pasay, Darren

    2015-01-01

    Objective. To evaluate an interprofessional peer-teaching activity during which physical therapy students instructed undergraduate pharmacy students on 3 ambulatory devices (canes, crutches, walkers). Design. The pre/post evaluation of 2 pharmacy undergraduate classes included 220 students, 110 per year. After pharmacy students completed a 10-point, knowledge-based pretest, they participated in a hands-on activity with physical therapy students teaching them about sizing, use, and safety of canes, crutches, and walkers. A 10-point posttest was completed immediately afterward. Assessment. The mean difference of pre/post scores was 3.5 (SD 1.9) for the peer-led teaching, and 3.8 (SD 2.2) for the peer learning group. Students had positive responses regarding the learning exercise and recommended further peer teaching. Conclusion. The peer-learning activity involving physical therapy students teaching pharmacy students was an effective method of improving knowledge and skills regarding basic ambulatory devices. PMID:26889067

  8. Learning and Retention of Quantum Concepts with Different Teaching Methods

    ERIC Educational Resources Information Center

    Deslauriers, Louis; Wieman, Carl

    2011-01-01

    We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…

  9. Beyond quantum probability: another formalism shared by quantum physics and psychology.

    PubMed

    Dzhafarov, Ehtibar N; Kujala, Janne V

    2013-06-01

    There is another meeting place for quantum physics and psychology, both within and outside of cognitive modeling. In physics it is known as the issue of classical (probabilistic) determinism, and in psychology it is known as the issue of selective influences. The formalisms independently developed in the two areas for dealing with these issues turn out to be identical, opening ways for mutually beneficial interactions.

  10. Puerto Rico: Race, Ethnicity, Culture, and Physics Teaching

    NASA Astrophysics Data System (ADS)

    González-Espada, Wilson J.; Carrasquillo, Rosa E.

    2017-09-01

    It was a pleasant surprise to see Gary White's call for papers on race and physics teaching. We definitely think that the physics teaching and learning of students from diverse and minority backgrounds is an important issue to discuss, especially given the fact that bias and discrimination are common experiences in the lives of many Latinx, including school-age children and college students.

  11. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1978-01-01

    Describes a few apparatuses and demonstrations for teaching physics under the headings: demonstrating resonance of the inner ear, constructing a potential well-hill for overhead projectors, rubber tube vacuum pump, improvement on the simple homemade motor, air track to demonstrate sailing into the wind, and center of gravity and stability. (GA)

  12. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Minnix, Richard B.; Carpenter, D. Rae

    1985-01-01

    Describes these tools for physics teaching: (1) stick with calibrations for measuring student reaction time; (2) compact high-pressure sodium lamps used to demonstrate spectra; (3) air pumps for fish tanks providing simple inexpensive motors; (4) a rotating manometer for measuring centripetal force; and (5) an apparatus for checking conservation…

  13. Towards testing quantum physics in deep space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  14. Doubling the number of physics majors who teach

    NASA Astrophysics Data System (ADS)

    Marder, Michael

    2009-03-01

    The American Physical Society has adopted a doubling initiative to increase the number of physics majors. One of the main motivations is to increase the number of physics majors certified to teach secondary physics. I will review some of the possible strategies for reaching this goal, and discuss some of the steps we have taken with UTeach, the program for secondary science and mathematics teacher preparation at The University of Texas at Austin.I will discuss the roles of curriculum revision, financial support, and community support in convincing majors to teach. Finally, I will talk about the expansion of UTeach into engineering.

  15. Different Habitus: Different Strategies in Teaching Physics? Relationships between Teachers' Social, Economic and Cultural Capital and Strategies in Teaching Physics in Upper Secondary School

    ERIC Educational Resources Information Center

    Engström, Susanne; Carlhed, Carina

    2014-01-01

    With environmental awareness in the societies of today, political steering documents emphasize that all education should include sustainable development. But it seems to be others competing ideals for teaching physics, or why do the physics teachers teach as they do? Physics teachers in secondary school in Sweden have generally, been focused on…

  16. Teaching Science through Physical Education.

    ERIC Educational Resources Information Center

    Kumar, David; Whitehurst, Michael

    1997-01-01

    Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)

  17. A model teaching session for the hypothesis-driven physical examination.

    PubMed

    Nishigori, Hiroshi; Masuda, Kozo; Kikukawa, Makoto; Kawashima, Atsushi; Yudkowsky, Rachel; Bordage, Georges; Otaki, Junji

    2011-01-01

    The physical examination is an essential clinical competence for all physicians. Most medical schools have students who learn the physical examination maneuvers using a head-to-toe approach. However, this promotes a rote approach to the physical exam, and it is not uncommon for students later on to fail to appreciate the meaning of abnormal findings and their contribution to the diagnostic reasoning process. The purpose of the project was to develop a model teaching session for the hypothesis-driven physical examination (HDPE) approach in which students could practice the physical examination in the context of diagnostic reasoning. We used an action research methodology to create this HDPE model by developing a teaching session, implementing it over 100 times with approximately 700 students, conducting internal reflection and external evaluations, and making adjustments as needed. A model nine-step HDPE teaching session was developed, including: (1) orientation, (2) anticipation, (3) preparation, (4) role play, (5) discussion-1, (6) answers, (7) discussion-2, (8) demonstration and (9) reflection. A structured model HDPE teaching session and tutor guide were developed into a workable instructional intervention. Faculty members are invited to teach the physical examination using this model.

  18. Perspectives in quantum physics: Epistemological, ontological and pedagogical An investigation into student and expert perspectives on the physical interpretation of quantum mechanics, with implications for modern physics instruction

    NASA Astrophysics Data System (ADS)

    Baily, Charles Raymond

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.

  19. Different habitus: different strategies in teaching physics? Relationships between teachers' social, economic and cultural capital and strategies in teaching physics in upper secondary school

    NASA Astrophysics Data System (ADS)

    Engström, Susanne; Carlhed, Carina

    2014-09-01

    With environmental awareness in the societies of today, political steering documents emphasize that all education should include sustainable development. But it seems to be others competing ideals for teaching physics, or why do the physics teachers teach as they do? Physics teachers in secondary school in Sweden have generally, been focused on facts and a strong link with scientific theories and concepts. In general, the curriculum sway the teaching, a standard text book in physics is used, the teaching is organized according to the book and the teacher deals with and demonstrates typical tasks on the whiteboard and group work is common for special issues related to tasks from the textbook or elaborating. The aim with this study is to analyze why physics teachers in upper secondary school choose to teach energy as they do. Data emerging from a questionnaire focused on indicators of the teachers' cultural and economic assets, or capital, according to the work of Pierre Bourdieu's sociology. Especially his concept on life styles and habitus provide a tool for analysis. We focus on physics teachers' positions in the social space, dispositions and standpoints towards the ideal way to teach physics in upper secondary school (n = 268). Our response rate is 29 % and due to the low response rate a non response bias analysis was made. In our analysis we primarily sought for groups, with a cluster analysis based on the teaching practice, revealed common features for both what and how they teach and three different teaching types emerged. Then we reconstructed the group habitus of the teachers by analyzing dispositions and standpoints and related those to the specific polarization of sacred values, that is struggles about the natural order (doxa) in the social space of science education, which is a part of and has boundaries to dominating fields like the natural sciences and the political fields (curriculum etc.). Three teacher-groups' habituses are described and analyzed

  20. Probing University Students' Pre-Knowledge in Quantum Physics with QPCS Survey

    ERIC Educational Resources Information Center

    Asikainen, Mervi A.

    2017-01-01

    The study investigated the use of Quantum Physics Conceptual Survey (QPCS) in probing student understanding of quantum physics. Altogether 103 Finnish university students responded to QPCS. The mean scores of the student responses were calculated and the test was evaluated using common five indices: Item difficulty index, Item discrimination…

  1. Physical realization of the Glauber quantum oscillator.

    PubMed

    Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-11-02

    More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.

  2. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  3. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  4. Teaching Elementary Particle Physics: Part I

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…

  5. Superfluid helium quantum interference devices: physics and applications.

    PubMed

    Sato, Y; Packard, R E

    2012-01-01

    We present an overview of recent developments related to superfluid helium quantum interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid helium coupled together and describe the quantum oscillations that result from varying the coupling strength. We explain the principles behind SHeQUIDs that can be built based on these oscillations and review some techniques and applications.

  6. Teaching physics mysteries versus pseudoscience

    NASA Astrophysics Data System (ADS)

    Kuttner, Fred

    2007-04-01

    The interpretation of quantum mechanics (and the encounter with consciousness) is contentious and has been called ``physics' skeleton in the closet.'' The reluctance of physicists to share this enigma with students and with the larger public has left the discussion open to the wild claims of purveyors of pseudoscience. The movie ``What the Bleep'' is a recent example. Bringing the enigma into the open is the best way to combat pseudoscience and share the true, deep mysteries that physics has uncovered. I will discuss my own experience and that of colleagues with ways of presenting this material to physics majors, non-majors, and the public.

  7. Experimental quantum simulations of many-body physics with trapped ions.

    PubMed

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  8. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  9. Microcomputers! Applications to Physics Teaching.

    ERIC Educational Resources Information Center

    Tinker, Robert F.; Stringer, Gene A.

    1978-01-01

    Reviews the use of computers in various aspects of physics teaching. Introduces some basic hardware and software concepts and jargon. Illustrates these ideas using four vastly different microcomputers, with prices, to help in choosing the right educational computer system. (GA)

  10. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  11. The role of mathematics for physics teaching and understanding

    NASA Astrophysics Data System (ADS)

    Pospiech, Gesche; Eylon, BatSheva; Bagno, Esther; Lehavi, Yaron; Geyer, Marie-Annette

    2016-05-01

    -1That mathematics is the "language of physics" implies that both areas are deeply interconnected, such that often no separation between "pure" mathematics and "pure" physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers' background and experiences. The results fit well into the derived model of PCK.

  12. Quantum Hall physics: Hierarchies and conformal field theory techniques

    NASA Astrophysics Data System (ADS)

    Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F.

    2017-04-01

    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the 30 years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.

  13. Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Lambourne, Robert

    2007-05-01

    Developments in the laboratory-based teaching of physics and astronomy are resulting from the collaboration between conventional and distance teaching universities. The collaboration, piCETL, is one of the Centres for Excellence in Teaching and Learning established as a result of a broad initiative by the Higher Education Funding Council for England. The initiative, the piCETL collaboration and some of its work on laboratory-based teaching are all described.

  14. An appraisal of the literature on teaching physical examination skills.

    PubMed

    Easton, Graham; Stratford-Martin, James; Atherton, Helen

    2012-07-01

    To discover which models for teaching physical examination skills have been proposed, and to appraise the evidence for each. We conducted a narrative review of relevant literature from 1990-2010. We searched the databases MEDLINE, PsycINFO, and ERIC (The Education Resource Information Centre) for the terms: 'physical examination' AND 'teaching' as both MESH terms and keyword searches. We excluded web-based or video teaching, non-physical examination skills (e.g. communication skills), and articles about simulated patients or models. We identified five relevant articles. These five studies outlined several approaches to teaching physical examination skills, including Peyton's 4-step model, an adaptation of his model to a 6-step model; the silent run through; and collaborative discovery. There was little evidence to support one method over others. One controlled trial suggested that silent run-through could improve performance of complex motor tasks, and another suggested that collaborative discovery improves students' ability to recognise key findings in cardiac examinations. There are several models for teaching physical examinations, but few are designed specifically for that purpose and there is little evidence to back any one model over another. We propose an approach which adopts several key features of these models. Future research could usefully evaluate the effectiveness of the proposed models, or develop innovative practical models for teaching examination skills.

  15. Quantum photonic network and physical layer security

    NASA Astrophysics Data System (ADS)

    Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio

    2017-06-01

    Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel. This article is part of the themed issue 'Quantum technology for the 21st century'.

  16. Teaching Radiology Physics Interactively with Scientific Notebook Software.

    PubMed

    Richardson, Michael L; Amini, Behrang

    2018-06-01

    The goal of this study is to demonstrate how the teaching of radiology physics can be enhanced with the use of interactive scientific notebook software. We used the scientific notebook software known as Project Jupyter, which is free, open-source, and available for the Macintosh, Windows, and Linux operating systems. We have created a scientific notebook that demonstrates multiple interactive teaching modules we have written for our residents using the Jupyter notebook system. Scientific notebook software allows educators to create teaching modules in a form that combines text, graphics, images, data, interactive calculations, and image analysis within a single document. These notebooks can be used to build interactive teaching modules, which can help explain complex topics in imaging physics to residents. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Determinants of Teachers' Intentions To Teach Physically Active Physical Education Classes.

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.; Kulinna, Pamela Hodges; Eklund, Robert C.; Reed, Brett

    2001-01-01

    Investigated elementary and secondary teachers' intentions to teach physically active physical education classes, examining a model hypothesizing that teachers' intentions were determined by subjective norm, attitude, perceived behavioral control, and self-efficacy. Teacher surveys supported the theories of reasoned action and planned behavior.…

  18. Teaching Dance in Physical Education Using Exergames

    ERIC Educational Resources Information Center

    Gibbs, Béatrice; Quennerstedt, Mikael; Larsson, Håkan

    2017-01-01

    This article explores the different ways in which a dance exergame can be used to teach dance in upper secondary school physical education. Particular attention is paid to the learning processes that students are involved in when the dance game is used as a teaching resource. A socio-cultural perspective on learning constitutes the analytical…

  19. TOPICAL REVIEW: Knot theory and a physical state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Liko, Tomás; Kauffman, Louis H.

    2006-02-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.

  20. Making the Transition from Classical to Quantum Physics

    ERIC Educational Resources Information Center

    Dutt, Amit

    2011-01-01

    This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…

  1. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  2. Teaching School Physics. A UNESCO Source Book.

    ERIC Educational Resources Information Center

    Lewis, John L., Ed.

    This UNESCO source book on teaching physics in schools provides a synthesis of views and policies prevalent throughout the world with respect to physics education. The book's contents are contributed by educators from several nations who have been able to give an international outlook in the discussion of various aspects of physics education. The…

  3. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    NASA Astrophysics Data System (ADS)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  4. Teaching Physical Education in the Secondary Schools.

    ERIC Educational Resources Information Center

    Lindeburg, Franklin A.

    This book, based upon the unit plan of teaching, is designed as a guide for the physical education teacher who must teach an activity in an area in which (s)he is not expert. It is divided into three sections: the student-teacher relationship; the teacher-learner process; and the teacher-student classroom learning situation. Section One presents a…

  5. Randomness in quantum mechanics: philosophy, physics and technology.

    PubMed

    Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  6. Randomness in quantum mechanics: philosophy, physics and technology

    NASA Astrophysics Data System (ADS)

    Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  7. Quantum photonic network and physical layer security.

    PubMed

    Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio

    2017-08-06

    Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  8. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  9. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    NASA Astrophysics Data System (ADS)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-06-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  10. Quantum physics with non-Hermitian operators Quantum physics with non-Hermitian operators

    NASA Astrophysics Data System (ADS)

    Bender, Carl; Fring, Andreas; Günther, Uwe; Jones, Hugh

    2012-11-01

    The main motivation behind the call for this special issue was to gather recent results, developments and open problems in quantum physics with non-Hermitian operators. There have been previous special issues in this journal [1, 2] and elsewhere on this subject. The intention of this issue is to reflect the current state of this rapidly-developing field. It has therefore been open to all contributions containing new results on non-Hermitian theories that are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. In the last decade these types of systems have proved to be viable self-consistent physical theories with well defined unitary time-evolution and real spectra. As the large number of responses demonstrates, this is a rapidly evolving field of research. A consensus has been reached regarding most of the fundamental problems, and the general ideas and techniques are now readily being employed in many areas of physics. Nonetheless, this issue still contains some treatments of a more general nature regarding the spectral analysis of these models, in particular, the physics of the exceptional points, the breaking of the PT-symmetry, an interpretation of negative energies and the consistent implementation of the WKB analysis. This issue also contains a treatment of a scattering theory associated with these types of systems, weak measurements, coherent states, decoherence, unbounded metric operators and the inclusion of domain issues to obtain well defined self-adjoint theories. Contributions in the form of applications of the general ideas include: studies of classical shock-waves and tunnelling, supersymmetric models, spin chain models, models with ring structure, random matrix models, the Pauli equation, the nonlinear Schrödinger equation, quasi-exactly solvable models, integrable models such as the Calogero model, Bose-Einstein condensates, thermodynamics, nonlinear oligomers, quantum catastrophes, the Landau-Zener problem and pseudo

  11. Teaching and physics education research: bridging the gap.

    PubMed

    Fraser, James M; Timan, Anneke L; Miller, Kelly; Dowd, Jason E; Tucker, Laura; Mazur, Eric

    2014-03-01

    Physics faculty, experts in evidence-based research, often rely on anecdotal experience to guide their teaching practices. Adoption of research-based instructional strategies is surprisingly low, despite the large body of physics education research (PER) and strong dissemination effort of PER researchers and innovators. Evidence-based PER has validated specific non-traditional teaching practices, but many faculty raise valuable concerns toward their applicability. We address these concerns and identify future studies required to overcome the gap between research and practice.

  12. The Process of Physics Teaching Assistants' Pedagogical Content Knowledge Development

    ERIC Educational Resources Information Center

    Seung, Eulsun

    2013-01-01

    This study explored the process of physics teaching assistants' (TAs) PCK development in the context of teaching a new undergraduate introductory physics course. "Matter and Interactions" (M&I) has recently adopted a new introductory physics course that focuses on the application of a small number of fundamental physical…

  13. A qualitative study of the meaning of physical examination teaching for patients.

    PubMed

    Chretien, Katherine C; Goldman, Ellen F; Craven, Katherine E; Faselis, Charles J

    2010-08-01

    Physical examination teaching using actual patients is an important part of medical training. The patient experience undergoing this type of teaching is not well-understood. To understand the meaning of physical examination teaching for patients. Phenomenological qualitative study using semi-structured interviews. Patients who underwent a physical examination-based teaching session at an urban Veterans Affairs Medical Center. A purposive sampling strategy was used to include a diversity of patient teaching experiences. Multiple interviewers triangulated data collection. Interviews continued until new themes were no longer heard (total of 12 interviews). Interviews were recorded and transcribed verbatim. Coding was performed by two investigators and peer-checked. Themes were identified and meanings extracted from themes. Seven themes emerged from the data: positive impression of students; participation considered part of the program; expect students to do their job: hands-on learning; interaction with students is positive; some aspects of encounter unexpected; range of benefits to participation; improve convenience and interaction. Physical examination teaching had four possible meanings for patients: Tolerance, Helping, Social, and Learning. We found it possible for a patient to move from one meaning to another, based on the teaching session experience. Physical examination teaching can benefit patients. Patients have the potential to gain more value from the experience based on the group interaction.

  14. Measurement theory in local quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp

    In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less

  15. The distinction between key ideas in teaching school physics and key ideas in the discipline of physics

    NASA Astrophysics Data System (ADS)

    Deng, Zongyi

    2001-05-01

    The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.

  16. The Pendulum as a Vehicle for Transitioning from Classical to Quantum Physics: History, Quantum Concepts, and Educational Challenges

    ERIC Educational Resources Information Center

    Barnes, Marianne B.; Garner, James; Reid, David

    2004-01-01

    In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…

  17. The practice of problem-based investigative teaching reform in semiconductor physics course

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  18. Playing with Quantum Toys: Julian Schwinger's Measurement Algebra and the Material Culture of Quantum Mechanics Pedagogy at Harvard in the 1960s

    NASA Astrophysics Data System (ADS)

    Gauvin, Jean-François

    2018-03-01

    In the early 1960s, a PhD student in physics, Costas Papaliolios, designed a simple—and playful—system of Polaroid polarizer filters with a specific goal in mind: explaining the core principles behind Julian Schwinger's quantum mechanical measurement algebra, developed at Harvard in the late 1940s and based on the Stern-Gerlach experiment confirming the quantization of electron spin. Papaliolios dubbed his invention "quantum toys." This article looks at the origins and function of this amusing pedagogical device, which landed half a century later in the Collection of Historical Scientific Instruments at Harvard University. Rendering the abstract tangible was one of Papaliolios's demonstration tactics in reforming basic teaching of quantum mechanics. This article contends that Papaliolios's motivation in creating the quantum toys came from a renowned endeavor aimed, inter alia, at reforming high-school physics training in the United States: Harvard Project Physics. The pedagogical study of these quantum toys, finally, compels us to revisit the central role playful discovery performs in pedagogy, at all levels of training and in all fields of knowledge.

  19. Semantics in Teaching Introductory Physics.

    ERIC Educational Resources Information Center

    Williams, H. Thomas

    1999-01-01

    Contends that the large vocabulary used for precise purposes in physics contains many words that have related but potentially confusing meanings in everyday usage. Analyzes the treatment of Newton's Laws of Motion in several well-known introductory textbooks for evidence of inconsistent language use. Makes teaching suggestions. (Contains 11…

  20. Teaching physics to radiology residents.

    PubMed

    Hendee, William R

    2009-04-01

    The complexity of diagnostic imaging has expanded dramatically over the past two decades. Over the same period, the time and effort devoted to teaching physics (the science and technology of the discipline) have diminished. This paradox compromises the ability of future radiologists to master imaging technologies so that they are used in an efficient, safe, and cost-effective manner. This article addresses these issues. Efforts involving many professional organizations are under way to resolve the paradox of the expanding complexity of medical imaging contrasted with the declining emphasis on physics in radiology residency programs. These efforts should help to reestablish physics education as a core value in radiology residency programs.

  1. A Qualitative Study of the Meaning of Physical Examination Teaching for Patients

    PubMed Central

    Goldman, Ellen F.; Craven, Katherine E.; Faselis, Charles J.

    2010-01-01

    BACKGROUND Physical examination teaching using actual patients is an important part of medical training. The patient experience undergoing this type of teaching is not well-understood. OBJECTIVE To understand the meaning of physical examination teaching for patients. DESIGN Phenomenological qualitative study using semi-structured interviews. PARTICIPANTS Patients who underwent a physical examination-based teaching session at an urban Veterans Affairs Medical Center. APPROACH A purposive sampling strategy was used to include a diversity of patient teaching experiences. Multiple interviewers triangulated data collection. Interviews continued until new themes were no longer heard (total of 12 interviews). Interviews were recorded and transcribed verbatim. Coding was performed by two investigators and peer-checked. Themes were identified and meanings extracted from themes. KEY RESULTS Seven themes emerged from the data: positive impression of students; participation considered part of the program; expect students to do their job: hands-on learning; interaction with students is positive; some aspects of encounter unexpected; range of benefits to participation; improve convenience and interaction. Physical examination teaching had four possible meanings for patients: Tolerance, Helping, Social, and Learning. We found it possible for a patient to move from one meaning to another, based on the teaching session experience. CONCLUSIONS Physical examination teaching can benefit patients. Patients have the potential to gain more value from the experience based on the group interaction. PMID:20352363

  2. Teaching Triple Science: GCSE Physics

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Physics. It highlights some specific ideas that teachers can adopt and where to find further information. It also outlines issues for managing the change. This guide contains sevens sections: Section 1 presents the policy context;…

  3. Computer Graphics and Physics Teaching.

    ERIC Educational Resources Information Center

    Bork, Alfred M.; Ballard, Richard

    New, more versatile and inexpensive terminals will make computer graphics more feasible in science instruction than before. This paper describes the use of graphics in physics teaching at the University of California at Irvine. Commands and software are detailed in established programs, which include a lunar landing simulation and a program which…

  4. Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.

  5. The Oxford Questions on the foundations of quantum physics

    PubMed Central

    Briggs, G. A. D.; Butterfield, J. N.; Zeilinger, A.

    2013-01-01

    The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626

  6. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    ERIC Educational Resources Information Center

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…

  7. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    ERIC Educational Resources Information Center

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  8. A proposed physical analog for a quantum probability amplitude

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  9. The Complementary Teaching of Physics and Music Acoustics - The Science of Sound

    NASA Astrophysics Data System (ADS)

    Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.

    2007-04-01

    The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.

  10. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    ERIC Educational Resources Information Center

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  11. Teaching Quantum Nonlocality

    ERIC Educational Resources Information Center

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  12. Actual versus Implied Physics Students: How Students from Traditional Physics Classrooms Related to an Innovative Approach to Quantum Physics

    ERIC Educational Resources Information Center

    Bøe, Maria Vetleseter; Henriksen, Ellen Karoline; Angell, Carl

    2018-01-01

    Calls for renewal of physics education include more varied learning activities and increased focus on qualitative understanding and history and philosophy of science (HPS) aspects. We have studied an innovative approach implementing such features in quantum physics in traditional upper secondary physics classrooms in Norway. Data consists of 11…

  13. Interactive Methods of Teaching Physics at Technical Universities

    ERIC Educational Resources Information Center

    Krišták, L'uboš; Nemec, Miroslav; Danihelová, Zuzana

    2014-01-01

    The paper presents results of "non-traditional" teaching of the basic course of Physics in the first year of study at the Technical University in Zvolen, specifically teaching via interactive method enriched with problem tasks and experiments. This paper presents also research results of the use of the given method in conditions of…

  14. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    NASA Astrophysics Data System (ADS)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence

  15. The relation between the quantum discord and quantum teleportation: The physical interpretation of the transition point between different quantum discord decay regimes

    NASA Astrophysics Data System (ADS)

    Roszak, K.; Cywiński, Ł.

    2015-10-01

    We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.

  16. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  17. Subcycle quantum physics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, Alfred

    2017-02-01

    A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)

  18. Meaning of counterfactual statements in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1998-10-01

    David Mermin suggests that my recent proof pertaining to quantum nonlocality is undermined by an essential ambiguity pertaining to the meaning of counterfactual statements in quantum physics. The ambiguity he cites arises from his imposition of a certain criterion for the meaningfulness of such counterfactual statements. That criterion conflates the meaning of a counterfactual statement with the details of a proof of its validity in such a way as to make the meaning of such a statement dependent upon the context in which it occurs. That dependence violates the normal demand in logic that the meaning of a statement bemore » defined by the words in the statement itself, not by the context in which the statement occurs. My proof conforms to that normal requirement. I describe the context-independent meaning within my proof of the counterfactual statements in question. {copyright} {ital 1998 American Association of Physics Teachers.}« less

  19. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  20. Factors influencing pre-service physics teachers' skills of writing teaching materials

    NASA Astrophysics Data System (ADS)

    Sinaga, Parlindungan

    2016-02-01

    Writing teaching materials is one of the generic pedagogical skills. Teachers and pre-service teachers should be trained to have the skills of writing teaching materials. This study examines the factors that influence the skills of writing in the disciplines among pre-service physics teachers. This study in particular aims to contribute to the development of science writing in the disciplines and to the organization of workshops on writing teaching materials for pre-service teachers. The problems of this research are formulated in the question of what are the factors that influence the skills of pre-service physics teachers in writing teaching materials. The research adopted mixed methods with embedded experimental design. The research subjects were 18 students enrolled in the school physics course. The instruments used consisted of conceptual understanding tests, learning strategy questionnaire, tests of the multiple representation skills, and one-on-one semi- structured interview. Results of data analysis show that the ability and skills of writing physics teaching materials of the pre- service physics teachers are determined by the factors of conceptual understanding of the subject matter with a contribution of 20%, the skills of making multiple representations of concepts with a contribution of 9.8% and students' self-regulation and learning strategy with a contribution of 33.5%. There are other factors that have not been investigated in this study; therefore, it is recommended that future research conduct further investigation on other factors that influence pre-service teachers' skills in writing physics teaching materials.

  1. Teaching the Philosophical Interpretations of Quantum Mechanics and Quantum Chemistry through Controversies

    ERIC Educational Resources Information Center

    Garritz, Andoni

    2013-01-01

    This study has the key premise of teaching history and philosophy of physical sciences to illustrate how controversies and rivalries among scientists play a key role in the progress of science and why scientific development is not only founded on the accumulation of experimental data. The author is a defender of teachers who consider…

  2. Physics Teaching and Learning Methods: Comparison between the Developed and Developing Country Approach

    NASA Astrophysics Data System (ADS)

    Deb, Pradip

    2010-07-01

    As a fundamental basis of all natural science and technology, Physics is the key subject in many science teaching institutions around the world. Physics teaching and learning is the most important issue today—because of its complexity and fast growing applications in many new fields. The laws of Physics are global—but teaching and learning methods of Physics are very different among countries and cultures. When I first came in Australia for higher education about 11 years ago with an undergraduate and a graduate degree in Physics from a university of Bangladesh, I found the Physics education system in Australia is very different to what I have experienced in Bangladesh. After having two graduate degrees from two Australian universities and gaining few years experience in Physics teaching in Australian universities, I compare the two different types of Physics education experiences in this paper and tried to find the answer of the question—does it all depend on the resources or internal culture of the society or both. Undergraduate and graduate level Physics syllabi, resources and teaching methods, examination and assessment systems, teacher-student relationships, and research cultures are discussed and compared with those in Australia.

  3. Using the Case Study Method in Teaching College Physics

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2016-10-01

    The case study teaching method has a long history (starting at least with Socrates) and wide current use in business schools, medical schools, law schools, and a variety of other disciplines. However, relatively little use is made of it in the physical sciences, specifically in physics or astronomy. The case study method should be considered by physics faculty as part of the effort to transition the teaching of college physics from the traditional frontal-lecture format to other formats that enhance active student participation. In this paper we endeavor to interest physics instructors in the case study method, and hope that it would also serve as a call for more instructors to produce cases that they use in their own classes and that can also be adopted by other instructors.

  4. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate

  5. Does Teaching Experience Matter? The Beliefs and Practices of Beginning and Experienced Physics Teachers

    NASA Astrophysics Data System (ADS)

    Caleon, Imelda S.; Tan, Yuen Sze Michelle; Cho, Young Hoan

    2018-02-01

    This study utilized multiple data sources to examine the beliefs about learning and teaching physics and the instructional practices of five beginning teachers and seven experienced teachers from Singapore. Our study was implemented in the unique context of teachers teaching the topic of electricity to students grouped according to academic abilities. The topic of electricity is one of the most difficult physics topics for students to understand and for teachers to teach. It was found that the experienced teachers, compared to the beginning teachers, tended to have beliefs about teaching and learning physics that are closer to constructivist views. The majority of the teachers, particularly the beginning teachers, espoused beliefs about learning physics that were incongruent with their beliefs about teaching physics. Although transmission-oriented and teacher-directed practices dominated the classroom lessons of both groups of teachers, more elements of constructivist instruction were found in the classroom lessons of the experienced teachers. It was also found that the classroom practices of the teachers, especially those in their inductive years of teaching, were more aligned with their beliefs about learning physics than their beliefs about teaching physics.

  6. Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin R.

    Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey

  7. [The practice and discussion of the physical knowledge stepping into genetics teaching].

    PubMed

    Luo, Shen; Luo, Peigao

    2014-09-01

    Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.

  8. Parables of Physics and a Quantum Romance

    ERIC Educational Resources Information Center

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  9. Parables of physics and a quantum romance

    NASA Astrophysics Data System (ADS)

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  10. Ideas II. A Sharing of Teaching Practices by Secondary School Physical Education Practitioners.

    ERIC Educational Resources Information Center

    Carlson, Ronald P., Ed.

    This book describes physical education activity teaching ideas for the secondary school level. The first section describes curriculum ideas in such areas as adapted physical education, quality control, elective physical education, and advanced physical education. Section II describes instructional ideas involving peer teaching, skill improvement,…

  11. Quantum Mechanics for Everyone: Can it be done with Technology?

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2004-10-01

    The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.

  12. Project: "Teach 'n' Reach" Physically Handicapped: Physical and Health Impaired, Visually Impaired. (Book 4 out of 4.)

    ERIC Educational Resources Information Center

    Kagan, Arleen

    The final volume (the fifth in the series and the fourth curriculum guide) in Project Teach 'n' Reach, a program designed to teach nondisabled students about disabilities, focuses on physical disabilities. Information on goals, performance objectives, and activity procedures are presented for topics dealing with physical and health impairments,…

  13. Research on Teaching in Physical Education: Questions and Comments.

    ERIC Educational Resources Information Center

    Lee, Amelia M.

    1991-01-01

    Reinforces some of the points made in Stephen Silverman's research review on teaching in physical education, examining the process-product paradigm, the measurement of learning and teaching, and the significance of student mediation. The article identifies issues that merit further discussion and analysis. (SM)

  14. Using fiction in the teaching of physics

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2016-03-01

    Fiction has been used in teaching since Plato told the story of Atlantis. However, relatively little use is made of it in teaching physics. We have created short stories that form the basis of case studies. One short story tells the story of a possible radioactive contamination on Earth because of the detonation by terrorists of a dirty bomb in a densely populated urban area. The short story discusses in what many would find an engaging way both the physics of radioactivity and the health aspects of radiation exposure and radiation sickness. Another case tells the story of a hypothetical future crewed mission to the Moon. The astronauts encounter a giant solar flare that would inevitably give the crew lethal dose of radiation. The astronauts do not have enough time to either abort the mission, or land on the Moon and seek shelter. There is, however, something they can do, but they do not think of think of it until it is too late to do anything about it, and being saved beccomes a matter of chance. This case discusses the history and future of lunar and space exploration, solar wind and space weather, and elements of planetary science. We describe some examples of short stories, and how we incorporate them in the teaching of physics and allied disciplines.

  15. The Intuitive Physics of the Equilibrium of the Lever and of the Hydraulic Pressures: Implications for the Teaching of Elementary Physics

    ERIC Educational Resources Information Center

    Masin, Sergio Cesare; Crivellaro, Francesco; Varotto, Diego

    2014-01-01

    The research field of intuitive physics focuses on discrepancies between theoretical and intuitive physical knowledge. Consideration of these discrepancies can help in the teaching of elementary physics. However, evidence shows that theoretical and intuitive physical knowledge may also be congruent. Physics teaching could further benefit from…

  16. Tomonaga–Luttinger physics in electronic quantum circuits

    PubMed Central

    Jezouin, S.; Albert, M.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Safi, I.; Pierre, F.

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga–Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an impurity. PMID:23653214

  17. Tomonaga-Luttinger physics in electronic quantum circuits.

    PubMed

    Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

  18. Culturally Responsive Physics Teaching: Content or Conveyance?

    NASA Astrophysics Data System (ADS)

    Stewart, Taquan Seth

    2011-12-01

    This study, in response to the achievement gap in science and the lack of significant numbers of ethnic minorities in science fields, examined the effects of a Cultural Responsiveness Workshop and intervention on teacher practice, teacher discourse, and student perceptions and connectedness to physics. The sample was comprised of three high school physics teachers---2 teaching five 12th grade sections and one teaching five 9th grade sections of physics---in two separate urban schools in the same section of South Los Angeles. My research design was qualitative and examined eight culturally responsive indicators that, when applied, may increase student engagement and level of connectedness in urban high school physics classrooms: (1) proximity to students, (2) the ways in which they encouraged students, (3) positive reinforcement techniques, (4) modifications for individual learning types, (5) use of children's strengths, (6) scaffolding, (7) displaying an understanding of diverse cultures, and (8) displaying a personal regard for students of diverse cultures. When the study was completed and data was collected, I identified trends in the change in teacher discourse, behaviors, instructional practice, and perceptions of student engagement. My findings, discovered through classroom observations and focus groups, indicated a positive shift in each. Accompanying these shifts were positive shifts in level of student engagement and level of connectedness. There were also the unexpected findings of the need for teachers to receive feedback in a safe collaborative space and the use of culturally responsive teaching as a tool for behavioral management. My study found that there is a definite relationship between the use of the culturally responsive indicators observed, student engagement and student level of connectedness to physics when implemented in urban high school science classrooms.

  19. The Joy of Teaching and Writing Conceptual Physics

    NASA Astrophysics Data System (ADS)

    Hewitt, Paul G.

    2011-10-01

    When I began teaching at City College of San Francisco in 1964, I fell in love with a 1960 text-book that addressed non-science students, Physics for the Inquiring Mind, written by British-born physicist Eric M. Rogers, who taught physics at Princeton University and who later won the 1969 Oersted Medal of the American Association of Physics Teachers. His book was as inspirational as he was and remains a favorite of mine. My request to adopt that book for my physics class was rejected by my department chair, Art Austin, who claimed it was much too bulky and heavy for students to have to haul around. It weighed more than five pounds, with a trim size huge for that time—8 × 11 inches. To further justify its rejection, he also found topics considered important not covered in the book. I would have loved teaching from the Rogers book, but such was not to be.

  20. Encountering Productive Forms of Complexity in Learning Modern Physics

    ERIC Educational Resources Information Center

    Levrini, Olivia; Fantini, Paola

    2013-01-01

    This paper aims at supporting the claim that some forms of hyper-simplification, by making physics seem easy, are at risk of dangerously distorting the content as well as the process of learning physics. The paper presents examples of dangerous simplifications in the teaching of quantum physics. Then, examples of productive forms of complexity are…

  1. Quantum formalism as an optimisation procedure of information flows for physical and biological systems.

    PubMed

    Baladrón, Carlos; Khrennikov, Andrei

    2016-12-01

    The similarities between biological and physical systems as respectively defined in quantum information biology (QIB) and in a Darwinian approach to quantum mechanics (DAQM) have been analysed. In both theories the processing of information is a central feature characterising the systems. The analysis highlights a mutual support on the thesis contended by each theory. On the one hand, DAQM provides a physical basis that might explain the key role played by quantum information at the macroscopic level for bio-systems in QIB. On the other hand, QIB offers the possibility, acting as a macroscopic testing ground, to analyse the emergence of quantumness from classicality in the terms held by DAQM. As an added result of the comparison, a tentative definition of quantum information in terms of classical information flows has been proposed. The quantum formalism would appear from this comparative analysis between QIB and DAQM as an optimal information scheme that would maximise the stability of biological and physical systems at any scale. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2011-03-01

    The point of departure for this article is Werner Heisenberg's remark, made in 1929: "It is not surprising that our language [or conceptuality] should be incapable of describing processes occurring within atoms, for … it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. … Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme—the quantum theory [quantum mechanics]—which seems entirely adequate for the treatment of atomic processes." The cost of this discovery, at least in Heisenberg's and related interpretations of quantum mechanics (such as that of Niels Bohr), is that, in contrast to classical mechanics, the mathematical scheme in question no longer offers a description, even an idealized one, of quantum objects and processes. This scheme only enables predictions, in general, probabilistic in character, of the outcomes of quantum experiments. As a result, a new type of the relationships between mathematics and physics is established, which, in the language of Eugene Wigner adopted in my title, indeed makes the effectiveness of mathematics unreasonable in quantum but, as I shall explain, not in classical physics. The article discusses these new relationships between mathematics and physics in quantum theory and their implications for theoretical physics—past, present, and future.

  3. Incorporating Poeticality into the Teaching of Physics

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Ravanis, Konstantinos; Valakas, Kostas; Vitoratos, Evangelos

    2014-03-01

    This study examines how focusing on the notion of `poeticality' (poetical forms) can provide functional insights with respect to the narrativeness of physics teaching. From this perspective, through both a meaning-making and aesthetic approach, this article explores how vehicles such as verse and rhetorical figures—metaphor, irony, litotes, hyperbole, antithesis and paradox—can create written and oral texts for the teaching of physics, using a language with poetic significance. This standpoint exists in parallel with an increasingly acknowledged fact in the field of science education, i.e., that the context and particularly the modes of representation potentially affect students' comprehension. In this way, science education is allowed to escape the dominance of the cognitive paradigm and to concentrate on the study of students' conceptualisations in relation to the modalities used to shape meanings.

  4. Epistemology, Sociology, and Learning and Teaching in Physics

    ERIC Educational Resources Information Center

    Sin, Cristina

    2014-01-01

    This paper explores the relationship between epistemology, sociology, and learning and teaching in physics based on an examination of literature from research in science studies, history and philosophy of science, and physics pedagogic research. It reveals a mismatch between the positivist epistemological foundation which seems to underpin the…

  5. Promoting Character Development through Teaching Wrestling in Physical Education

    ERIC Educational Resources Information Center

    Destani, Fitni; Hannon, James C.; Podlog, Leslie; Brusseau, Timothy A.

    2014-01-01

    Character development has become an important component of physical education that contributes directly to the affective learning domain. However, teaching character development can be challenging. The purpose of this article is to suggest that character development be promoted through the teaching of wrestling, due to the unique moral development…

  6. BOOK REVIEW: Quantum Physics in One Dimension

    NASA Astrophysics Data System (ADS)

    Logan, David

    2004-05-01

    To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly

  7. Non-Separability and Synchronicity: Pauli, Jung and a New Historical, Philosophical Perspective on Quantum Physics

    NASA Astrophysics Data System (ADS)

    Giannetto, E. A.; Pozzi, F.

    We would like to discuss the historical emergence of quantum physics and quantum non-separability, by analysing Pauli's point of view in relation to Jung's ideas. Recent inquiries on EPR shows that quantum non-separability indicates an a-causal connection of the "quantum reality" for space-like intervals ("simultaneity region ") of world (measurement) events: this non-causal connection is the physical counterpart of what Jung called "synchronicity " with an assessment given also by Pauli. This does not imply any violation of mechanical causality by any introduction of action-at-a-distance. From a physical point of view a-causal connections can be interpreted as implying a particular quantum topology of space-time, which leads to a non-mechanistic conception of nature and which could be related to a holistic quantum dynamical reality of the world like Bohm's "holomovement" or "light". This kind of non-mechanistic conception of nature as well as the idea of non-separability of the world and of synchronicity, as stated by Jung itself, was developed by Leibnitz: from this point of view, we can look at quantum physics (as well as for relativity it was shown) as related to a new emergence of concepts belonging to the Leibnitzian (anti-Newtonian) tradition.

  8. Learning, Teaching and Assessing Dance in Physical Education

    ERIC Educational Resources Information Center

    El-Sherif, Jennifer L.

    2016-01-01

    Many physical educators have limited dance experience and may lack the skills, knowledge and confidence to teach dance in their school programs. Yet, including dance units in physical education curriculums can provide positive experiences for students who may not enjoy traditional instruction. This article provides step-by-step instructions for…

  9. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  10. Learning style and teaching method preferences of Saudi students of physical therapy

    PubMed Central

    Al Maghraby, Mohamed A.; Alshami, Ali M.

    2013-01-01

    Context: To the researchers’ knowledge, there are no published studies that have investigated the learning styles and preferred teaching methods of physical therapy students in Saudi Arabia. Aim: The study was conducted to determine the learning styles and preferred teaching methods of Saudi physical therapy students. Settings and Design: A cross-sectional study design. Materials and Methods: Fifty-three Saudis studying physical therapy (21 males and 32 females) participated in the study. The principal researcher gave an introductory lecture to explain the different learning styles and common teaching methods. Upon completion of the lecture, questionnaires were distributed, and were collected on completion. Statistical Analysis Used: Percentages were calculated for the learning styles and teaching methods. Pearson’s correlations were performed to investigate the relationship between them. Results: More than 45 (85%) of the students rated hands-on training as the most preferred teaching method. Approximately 30 (57%) students rated the following teaching methods as the most preferred methods: “Advanced organizers,” “demonstrations,” and “multimedia activities.” Although 31 (59%) students rated the concrete-sequential learning style the most preferred, these students demonstrated mixed styles on the other style dimensions: Abstract-sequential, abstract-random, and concrete-random. Conclusions: The predominant concrete-sequential learning style is consistent with the most preferred teaching method (hands-on training). The high percentage of physical therapy students whose responses were indicative of mixed learning styles suggests that they can accommodate multiple teaching methods. It is recommended that educators consider the diverse learning styles of the students and utilize a variety of teaching methods in order to promote an optimal learning environment for the students. PMID:24672278

  11. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  12. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    ERIC Educational Resources Information Center

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  13. Teaching introductory undergraduate physics using commercial video games

    NASA Astrophysics Data System (ADS)

    Mohanty, Soumya D.; Cantu, Sergio

    2011-09-01

    Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate physics. The examples are selected from a course taught predominantly through the medium of commercial video games.

  14. Quantum information is physical

    NASA Astrophysics Data System (ADS)

    DiVincenzo, D. P.; Loss, D.

    1998-03-01

    We discuss a few current developments in the use of quantum mechanically coherent systems for information processing. In each of these developments, Rolf Landauer has played a crucial role in nudging us, and other workers in the field, into asking the right questions, some of which we have been lucky enough to answer. A general overview of the key ideas of quantum error correction is given. We discuss how quantum entanglement is the key to protecting quantum states from decoherence in a manner which, in a theoretical sense, is as effective as the protection of digital data from bit noise. We also discuss five general criteria which must be satisfied to implement a quantum computer in the laboratory, and we illustrate the application of these criteria by discussing our ideas for creating a quantum computer out of the spin states of coupled quantum dots.

  15. Using Comic Books to Teach Physics

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2003-03-01

    Whether done deliberately to appear "educational" or simply as a habit of the writers who used to work for science fiction pulp magazines, superhero comic books from the 1960's to today often get their science right more often than one would expect. I will describe physics lessons I've employed in a Freshman Seminar at the University of Minnesota entitled: "Science in Comic Books", where all of the illustrative examples come from the four-color pages of comic books. For example: How much force is required to leap a tall building in a single bound, and what does this imply about the gravity on Krypton? If Spider-Man's webbing is as strong as real spider's silk, can it support his weight as he swings between buildings? If you could run at super speeds like the Flash, could you run up the sides of buildings or across the ocean and more importantly, how frequently would you need to eat? Certain superhero comic book stories feature correct descriptions of basic physical principles for a wide range of topics, from Classical Mechanics, to Electricity and Magnetism to even Quantum Physics - recent results on entangled quantum states (Phys. Rev. Lett., 80, 3891 (1998)) served as a plot point in a popular comic book that same year. Once I explain the science underlying the comic book stories, real world applications of the physics principles are then presented. The students in this class are so busy enjoying their superhero ice cream sundae that they don't notice that I am sneakily getting them to eat their spinach at the same time!

  16. The Importance of Indirect Teaching Behaviour and Its Educational Effects in Physical Education

    ERIC Educational Resources Information Center

    Jung, Hyunwoo; Choi, Euichang

    2016-01-01

    Background: Physical education teacher behaviour has been a subject of study in physical education including physical education teacher education for 30 years. However, the research on teacher behaviour has tended to focus on direct teaching behaviour (DTB) to demonstrate the benefits of effective teaching, centred on a technical understanding of…

  17. Physics teaching in the medical schools of Taiwan.

    PubMed

    Hsu, Jiann-wien; Hsu, Roy

    2012-02-01

    We describe and analyze the statistics of general physics and laboratory courses in the medical schools of Taiwan. We explore the development of the general physics curriculum for medical students of Taiwan. Also, an approach to designing a general physics course in combination with its application to medical sciences is proposed. We hope this preliminary study can provide a useful reference for physics colleagues in the medical schools of Taiwan to revolutionize the dynamics of teaching physics to the medical students of Taiwan. Copyright © 2011. Published by Elsevier B.V.

  18. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  19. Multiculturalism in Teaching Physical Education: A Review of U.S. Based Literature

    ERIC Educational Resources Information Center

    Choi, Wonseok; Chepyator-Thomson, Rose

    2011-01-01

    The purpose of this paper was to review extant literature on multicultural education in the context of teaching physical education. More specifically, the article was designed to review the literature on physical education teachers' knowledge and skills related to teaching culturally diverse students. The findings revealed teachers' knowledge and…

  20. Visual Basic Applications to Physics Teaching

    ERIC Educational Resources Information Center

    Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena

    2011-01-01

    Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…

  1. Tactile Teaching: Exploring Protein Structure/Function Using Physical Models

    ERIC Educational Resources Information Center

    Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.

    2006-01-01

    The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…

  2. An Investigation into Physics Teaching in Senior High Schools

    ERIC Educational Resources Information Center

    Buabeng, Isaac; Ossei-Anto, Theophilus Aquinas; Ampiah, Joseph Ghartey

    2014-01-01

    This study sought to examine the activities that go on in physics classrooms in Senior High Schools in Ghana. Specifically, the study sought to investigate the pattern of interaction and instructional methods used for teaching physics and level of coverage of physics syllabus. The survey design was employed for the study in which questionnaire was…

  3. From Teaching Physics to Teaching Children: Beginning Teachers Learning from Pupils

    ERIC Educational Resources Information Center

    Findlay, Morag; Bryce, Tom G. K.

    2012-01-01

    This article discusses the development of beginning physics teachers' pedagogical content knowledge (PCK) in the context of teaching basic electricity during a one-year Professional Graduate Diploma in Education (PGDE) course and beyond. This longitudinal study used repeated semi-structured interviews over a period of four-and-a-half years. The…

  4. Teaching Quantum Mechanics through Project-based Learning

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras; Ward, Kristina

    2014-03-01

    Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton University, which was taught using PBL pedagogy with no in-class lectures. Course time was primarily spent on lecture tutorials and projects, which included alpha decay of Uranium, neutrino oscillations, and FTIR spectroscopy of HCl. This talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring exercises, 2. the effect of the PBL curriculum on student attitudes, motivation, and students' epistemologies, and 3. the use of explicit written reflections within a physics course to probe student understanding.

  5. Can different quantum state vectors correspond to the same physical state? An experimental test

    NASA Astrophysics Data System (ADS)

    Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan

    2016-01-01

    A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.

  6. An Evaluation of Student Team Teaching in Sophomore Physics Classes. Final Report.

    ERIC Educational Resources Information Center

    Thrasher, Paul H.

    In the present document the effectiveness of a student team teaching technique is evaluated in comparison with the lecture method. The team teaching technique, previously used for upper division and graduate physics courses, was, for this study, used in a sophomore physics, electricity and magnetism course for engineers, mathematicians, chemists,…

  7. The Joy of Teaching and Writing Conceptual Physics

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2011-01-01

    When I began teaching at City College of San Francisco in 1964, I fell in love with a 1960 text-book that addressed non-science students, "Physics for the Inquiring Mind," written by British-born physicist Eric M. Rogers, who taught physics at Princeton University and who later won the 1969 Oersted Medal of the American Association of…

  8. (Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    2002-10-25

    The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less

  9. Physics and the Art of Teaching.

    ERIC Educational Resources Information Center

    Wise, Alice

    The science of physics teaches the world to look beyond what is known and to be creative about visions of the future. Educators, like scientists, are responsible for pointing forward, for looking around and beyond the realm of what is known, to the realm of what could be. Yet, most institutions are restrained by traditional frameworks. Education…

  10. Reviews Book: How to Teach Quantum Physics to Your Dog Equipment: LEGO Renewable Energy Add-on Set 9688 Book: The Rough Guide to the Future Book: Seven Tales of the Pendulum Equipment: Genecon DUE Equipment: Manual Electrostatic Generator Book: Quantify! A Crash Course in Smart Thinking Book: Fads and Fallacies in the Name of Science Book: The Strangest Man Book: The Ultimate Quotable Einstein Web Watch

    NASA Astrophysics Data System (ADS)

    2011-05-01

    WE RECOMMEND How to Teach Quantum Physics to Your Dog The key theories of quantum physics explained using canine behaviour LEGO Renewable Energy Add-on Set 9688 Set builds a hand generator, solar station, wind turbine, hydro turbine, boat pulley, solar vehicle, and much more The Rough Guide to the Future Book explores the insights that science can contribute to predicting the future Seven Tales of the Pendulum This book deals with the significance of the pendulum in science, history and culture Genecon DUE Equipment demonstrates generation of electricity Fads and Fallacies in the Name of Science Book investigates the nature of human gullibility The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius Biography charts the life of Paul Dirac WORTH A LOOK Manual Electrostatic Generator Kit acts as a miniature Van de Graaff Quantify! A Crash Course in Smart Thinking Various topics illustrate the application of basic physical laws The Ultimate Quotable Einstein A compilation of Einstein's famous quotes WEB WATCH Open Source Physics simulations are worth a look

  11. A new method for teaching physical examination to junior medical students.

    PubMed

    Sayma, Meelad; Williams, Hywel Rhys

    2016-01-01

    Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.

  12. A collection of problems for physics teaching

    NASA Astrophysics Data System (ADS)

    Gröber, S.; Jodl, H.-J.

    2010-07-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching, project-oriented learning and the use of remote labs/web experiments. We focus on Rutherford's scattering experiment, electron diffraction, Millikan's experiment and the use of pendulums to measure the dependence of gravitational acceleration on latitude. The collection contains about 50 problems with 160 subtasks and solutions, altogether 100 pages. Structure, content, range and the added value of the problems are described. The whole collection can be downloaded for free from http://rcl.physik.uni-kl.de.

  13. Being qua becoming: Aristotle's "Metaphysics", quantum physics, and Process Philosophy

    NASA Astrophysics Data System (ADS)

    Johnson, David Kelley

    In Aristotle's First Philosophy, science and philosophy were partners, but with the rise of empiricism, went their separate ways. Metaphysics combined the rational and irrational (i.e. final cause/unmoved mover) elements of existence to equate being with substance, postulating prime matter as pure potential that was actuated by form to create everything. Modern science reveres pure reason and postulates its theory of being by a rigorous scientific methodology. The Standard Model defines matter as energy formed into fundamental particles via forces contained in fields. Science has proved Aristotle's universe wrong in many ways, but as physics delves deeper into the quantum world, empiricism is reaching its limits concerning fundamental questions of existence. To achieve its avowed mission of explaining existence completely, physics must reunite with philosophy in a metascience modeled on the First Philosophy of Aristotle. One theory of being that integrates quantum physics and metaphysics is Process Philosophy.

  14. Teaching Quantum Mechanics through Project-based Learning

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras

    2013-04-01

    Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton, which was taught using PBL pedagogy with no in-class lectures. The talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring and reflective exercises and 2. the effect of the PBL curriculum on student attitudes students’ epistemologies.

  15. Teaching the physical examination: a longitudinal strategy for tomorrow's physicians.

    PubMed

    Uchida, Toshiko; Farnan, Jeanne M; Schwartz, Jennifer E; Heiman, Heather L

    2014-03-01

    The physical examination is an essential clinical skill. The traditional approach to teaching the physical exam has involved a comprehensive "head-to-toe" checklist, which is often used to assess students before they begin their clinical clerkships. This method has been criticized for its lack of clinical context and for promoting rote memorization without critical thinking. In response to these concerns, Gowda and colleagues surveyed a national sample of clinical skills educators in order to develop a consensus "core" physical exam, which they report in this issue. The core physical exam is intended to be performed for every patient admitted by students during their medicine clerkships and to be supplemented by symptom-driven "clusters" of additional history and physical exam maneuvers.In this commentary, the authors review the strengths and limitations of this Core + Clusters technique as well as the head-to-toe approach. They propose that the head-to-toe still has a place in medical education, particularly for beginning students with little knowledge of pathophysiology and for patients with vague or multiple symptoms. The authors suggest that the ideal curriculum would include teaching both the head-to-toe and the Core + Clusters exams in sequence. This iterative approach to physical exam teaching would allow a student to assess a patient in a comprehensive manner while incorporating more clinical reasoning as further medical knowledge is acquired.

  16. An Industrialist's View of University Physics Teaching

    ERIC Educational Resources Information Center

    Hillier, K. W.

    1975-01-01

    Suggests that university physics teaching maintains rigorous depth but does not place enough emphasis on communication skills with nonphysicists. Discusses the problem of recruiting university graduates into service industries which have predominately awarded managerial positions to personnel with work experience rather than formal education. (MLH)

  17. Barriers to Teaching Introductory Physical Geography Online

    ERIC Educational Resources Information Center

    Ritter, Michael E.

    2012-01-01

    Learning geography online is becoming an option for more students but not without controversy. Issues of faculty resources, logistics, professional recognition, and pedagogical concerns are cited as barriers to teaching online. Offering introductory physical geography online presents special challenges. As a general education course, an…

  18. Physics of Quantum Structures in Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  19. Preparing prospective physics teachers to teach integrated science in junior high school

    NASA Astrophysics Data System (ADS)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  20. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  1. Teaching thermal physics in the paradigms project

    NASA Astrophysics Data System (ADS)

    Roundy, David

    2011-10-01

    Thermal physics is probably the most disliked course in the physics major curriculum, with students feeling that they are being led through a mathematical maze, leading to an unsatisfactory conclusion. Classical thermodynamics involves scary derivatives, while statistical mechanics leads to lengthy summations and is difficult to apply to interacting systems. It is unsurprising that students find themselves failing to see the physics for the math. In this talk, I will discuss my experiences teaching the Energy and Entropy paradigm, and will introduce materials we have developed to aide student understanding of partial derivatives and their relationship to experimental observables.

  2. Teaching Physics for the First Time

    ERIC Educational Resources Information Center

    Mader, Jan; Winn, Mary

    2008-01-01

    This book is designed to be a quick and easy resource for anyone teaching physics for the first time. Written after extensive research, this book is filled with reliable labs, demos and activities that work well in the classroom. Also included are lesson plans, diagrams, and teacher notes for every activity. The book is not the end--it is just a…

  3. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  4. Quantum Stress: Density Functional Theory Formulation and Physical Manifestation

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Liu, Feng

    2012-02-01

    The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.

  5. How Computer-Assisted Teaching in Physics Can Enhance Student Learning

    ERIC Educational Resources Information Center

    Karamustafaoglu, O.

    2012-01-01

    Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…

  6. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  7. Recommendations for Teaching Physical Education to Students with EBDs

    ERIC Educational Resources Information Center

    Young, Shawna

    2012-01-01

    A college professor who trains preservice physical education teachers was asked to design, develop, and implement a pilot physical education program at a nonpublic school primarily serving students with emotional and behavioral disorders (EBDs). The teacher/researcher conducted an action research study to maximize the effectiveness of teaching and…

  8. Pedagogical Principles of Learning to Teach Meaningful Physical Education

    ERIC Educational Resources Information Center

    Ní Chróinín, Déirdre; Fletcher, Tim; O'Sullivan, Mary

    2018-01-01

    Background: Concerns that current forms of physical education teacher education (PETE) are not adequately providing teachers with the tools necessary for working with the realities and challenges of teaching physical education in contemporary schools has led some scholars to advocate for an approach that prioritises meaningfulness in physical…

  9. Promoting Reflective Physics Teaching Through the Use of Collaborative Learning Annotation System

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina

    2018-05-01

    Effective physics teaching requires extensive knowledge of physics, relevant pedagogies, and modern educational technologies that can support student learning. Acquiring this knowledge is a challenging task, considering how fast modern technologies and expectations of student learning outcomes and of teaching practices are changing Therefore 21st-century physics teachers should be supported in developing a different way of thinking about technology-enhanced physics teaching and learning. We call it Deliberate Pedagogical Thinking with Technology, and base it on the original Pedagogical Content Knowledge and Technological Pedagogical Content Knowledge frameworks. However, unlike the two aforementioned frameworks, the Deliberate Pedagogical Thinking with Technology emphasizes not only teachers' knowledge, but also their attitudes and dispositions about using digital tools in order to support student learning. This paper examines how an online system that allows an ongoing discussion of videos uploaded on it by the students can support reflection in physics teacher education. Examples of using such a system in physics teacher education and teacher-candidates' feedback on their experiences with it are also discussed.

  10. Predicting the valley physics of silicon quantum dots directly from a device layout

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  11. Incorporating Poeticality into the Teaching of Physics

    ERIC Educational Resources Information Center

    Pantidos, Panagiotis; Ravanis, Konstantinos; Valakas, Kostas; Vitoratos, Evangelos

    2014-01-01

    This study examines how focusing on the notion of "poeticality" (poetical forms) can provide functional insights with respect to the narrativeness of physics teaching. From this perspective, through both a meaning-making and aesthetic approach, this article explores how vehicles such as verse and rhetorical figures--metaphor, irony,…

  12. A new method for teaching physical examination to junior medical students

    PubMed Central

    Sayma, Meelad; Williams, Hywel Rhys

    2016-01-01

    Introduction Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using “core clinical cases”, overcoming the need for “rote” learning. Methods This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. Results and discussion A model core clinical case developed in this project is described, with gout as the basis for a “foot and ankle” examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in “content overload”. Conclusion This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems. PMID:26937208

  13. News Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

    NASA Astrophysics Data System (ADS)

    2012-05-01

    Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

  14. Teaching Personal and Social Responsibility to Juniors through Physical Education

    ERIC Educational Resources Information Center

    Severinsen, Graeme

    2014-01-01

    The teaching personal and social responsibility (TPSR) in physical education (PE) has a research base dating back some years. There is significant literature pertaining to senior students, the underserved, problem youth in America, teaching responsibility in gym settings, and through PE and in special projects. At the fore-front of this literature…

  15. Meaning of counterfactual statements in quantum physics

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    1998-10-01

    David Mermin suggests that my recent proof pertaining to quantum nonlocality is undermined by an essential ambiguity pertaining to the meaning of counterfactual statements in quantum physics. The ambiguity he cites arises from his imposition of a certain criterion for the meaningfulness of such counterfactual statements. That criterion conflates the meaning of a counterfactual statement with the details of a proof of its validity in such a way as to make the meaning of such a statement dependent upon the context in which it occurs. That dependence violates the normal demand in logic that the meaning of a statement be defined by the words in the statement itself, not by the context in which the statement occurs. My proof conforms to that normal requirement. I describe the context-independent meaning within my proof of the counterfactual statements in question.

  16. A few ideas for teaching environmental physics

    NASA Astrophysics Data System (ADS)

    Forinash, Kyle

    2016-11-01

    Unlike a typical university physics course there is no standardised syllabus for environmental physics. The topics covered also range beyond what is normally part of the physics curriculum, requiring the instructor to become knowledgeable about fields outside of physics. Some of these issues are complex and, unlike the laws of physics, change rapidly over time. This paper, based on 15 years experience teaching undergraduate environmental physics courses, both for non-science students and for students with strong backgrounds in the sciences, attempts to present a reasonable range of concepts and educational resources which could be included in an environmental physics course or added to an existing physics course as motivation for learning traditional physics concepts. An additional goal is to warn the reader of pitfalls they may encounter in trying to include material with which they may not be familiar. The approach is different from environmental courses taught in the social sciences in that the focus of an environmental physics course is on physical constraints to environmental solutions rather than limitations imposed by culture or politics.

  17. Physical theories, eternal inflation, and the quantum universe

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori

    2011-11-01

    Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is "gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness

  18. Low-Cost Educational Robotics Applied to Physics Teaching in Brazil

    ERIC Educational Resources Information Center

    Souza, Marcos A. M.; Duarte, José R. R.

    2015-01-01

    In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching…

  19. Teaching-Learning Patterns of Expert and Novice Adapted Physical Educators

    ERIC Educational Resources Information Center

    Everhart, Brett; Everhart, Kim; McHugh, Heather; Newman, Chelsea Dimon; Hershey, Kacie; Lorenzi, David

    2013-01-01

    This study was intended to provide a description of teaching and learning patterns seen in the lessons taught by experts and novices in Adapted Physical Education. Two experts who had won previous state teaching awards and served in leadership positions in state associations were filmed and their lessons were analyzed first to develop a systematic…

  20. Quantum computer games: quantum minesweeper

    NASA Astrophysics Data System (ADS)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  1. Enhancing Transfer of Knowledge in Physics through Effective Teaching Strategies

    ERIC Educational Resources Information Center

    Akinbobola, Akinyemi Olufunminiyi

    2015-01-01

    The study assessed the enhancement of transfer of knowledge in physics through the use of effective teaching strategies in Nigerian senior secondary schools. Non-randomized pretest-posttest control group design was adopted for the study. A total of 278 physics students took part in the study. Transfer of Knowledge Test in Physics (TKTP) with the…

  2. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…

  3. Physical Concepts and Mathematical Symbols

    NASA Astrophysics Data System (ADS)

    Grelland, Hans Herlof

    2007-12-01

    According to traditional empiricist philosophy of science, concepts and meaning grow out of sense experience, and the mathematical structure of a physical theory is nothing but a formalisation of a given meaning-content. This view seems to work well in classical mechanics. But it breaks down in quantum physics, where we have a self-supported mathematical structure which resists any conceptual or pictorial interpretation in the traditional sense. Thus, traditional empiricism is flawed. Quantum physics teaches us that mathematics is a language in itself which extends beyond ordinary language. To understand the meaning of this extended language, we have to explore how new concepts and intuitions grow out of mathematics, not the other way around. The symbolic structure is prior to its meaning. This point of view is called linguistic empiricism, to stress that the connection with experience is still crucial. As cases, I compare the concept of stiffness in classical mechanics and the concept of electron density in quantum mechanics. The last case demonstrates that the wave function has a richer interpretation than the probabilistic one concerning measurement of position.

  4. Quantum Physics Principles and Communication in the Acute Healthcare Setting: A Pilot Study.

    PubMed

    Helgeson, Heidi L; Peyerl, Colleen Kraft; Solheim-Witt, Marit

    This pilot study explores whether clinician awareness of quantum physics principles could facilitate open communication between patients and providers. In the spirit of action research, this study was conceptualized with a holistic view of human health, using a mixed method design of grounded theory as an emergent method. Instrumentation includes surveys and a focus group discussion with twelve registered nurses working in an acute care hospital setting. Findings document that the preliminary core phenomenon, energy as information, influences communication in the healthcare environment. Key emergent themes include awareness, language, validation, open communication, strategies, coherence, incoherence and power. Research participants indicate that quantum physics principles provide a language and conceptual framework for improving their awareness of communication and interactions in the healthcare environment. Implications of this pilot study support the feasibility of future research and education on awareness of quantum physics principles in other clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Analog Computer as a Teaching Tool in Physics

    ERIC Educational Resources Information Center

    Wylen, H. E.; Schwarz, W. M.

    1973-01-01

    Discusses use of two EAI semi-expanded TR-20 units to display solutions to differential equations for harmonic oscillators, quantum-mechanical particles, trajectories, radioactive decay series, and hysteresis curves. Suggests practical applications for both undergraduate physics laboratories and classroom demonstrations. (CC)

  6. Teaching Responsibility through Physical Activity. Second Edition.

    ERIC Educational Resources Information Center

    Hellison, Don

    This book guides teachers in using physical activity to foster personal and social responsibility. Focusing on teaching in school settings, the book features comments from real students to motivate teachers to apply the concept; take-aways that summarize each chapter and help teachers consider their own situations; new chapters on the lesson plan…

  7. Are Grades 10-12 Physical Sciences Teachers Equipped to Teach Physics?

    ERIC Educational Resources Information Center

    Basson, Ilsa; Kriek, Jeanne

    2012-01-01

    South African schools have been confronted with educational reform since the mid-nineties and the process is still continuing. The concomitant changes put a very high demand on physical sciences teachers and also have an impact on teacher behaviour. The purpose of this study was to probe whether teachers could be considered equipped to teach the…

  8. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  9. Teaching Nuclear Physics in a General Education Curriculum

    NASA Astrophysics Data System (ADS)

    Lesher, Shelly R.

    2017-01-01

    The general public is unaware how physics shapes the world. This is especially true for nuclear physics, where many people are scared of the words ``nuclear'' and ``radiation''. To combat these perceptions, the Physics Department at the University of Wisconsin - La Crosse teaches a general education class on nuclear weapons, energy, and policy in society. This includes the social, economic, cultural, and political aspects surrounding the development of nuclear weapons and their place in the world, especially in current events. This talk will discuss the course, how it has grown, and sample student responses.

  10. Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas

    2017-01-01

    We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.

  11. Quantum electronic stress: density-functional-theory formulation and physical manifestation.

    PubMed

    Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-03

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  12. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  13. PlayPhysics: An Emotional Games Learning Environment for Teaching Physics

    NASA Astrophysics Data System (ADS)

    Muñoz, Karla; Kevitt, Paul Mc; Lunney, Tom; Noguez, Julieta; Neri, Luis

    To ensure learning, game-based learning environments must incorporate assessment mechanisms, e.g. Intelligent Tutoring Systems (ITSs). ITSs are focused on recognising and influencing the learner's emotional or motivational states. This research focuses on designing and implementing an affective student model for intelligent gaming, which reasons about the learner's emotional state from cognitive and motivational variables using observable behaviour. A Probabilistic Relational Models (PRMs) approach is employed to derive Dynamic Bayesian Networks (DBNs). The model uses the Control-Value theory of 'achievement emotions' as a basis. A preliminary test was conducted to recognise the students' prospective-outcome emotions with results presented and discussed. PlayPhysics is an emotional games learning environment for teaching Physics. Once the affective student model proves effective it will be incorporated into PlayPhysics' architecture. The design, evaluation and postevaluation of PlayPhysics are also discussed. Future work will focus on evaluating the affective student model with a larger population of students, and on providing affective feedback.

  14. Quantum Physics and Mental Health Counseling: The Time Is...!

    ERIC Educational Resources Information Center

    Gerstein, Lawrence H.; Bennett, Matt

    1999-01-01

    Introduces a new framework of mental health counseling based on quantum physics. The framework stresses systemic thinking and intervention, interdependence, and the importance of adopting a novel perspective about time, space, reality, and change. This framework has the potential of modifying mental health counseling practice and training. Offers…

  15. Ensembles of physical states and random quantum circuits on graphs

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-11-01

    In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).

  16. Teaching Physical Education to Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Menear, Kristi Sayers; Smith, Shannon C.

    2011-01-01

    The U.S. Centers for Disease Control and Prevention (2007) estimates that one in every 110 children is affected by an autism spectrum disorder (ASD). The prevalence of ASDs makes it very likely that every physical education teacher is teaching at least one student with an ASD. This article will provide physical educators with a brief overview of…

  17. Using the Case Study Method in Teaching College Physics

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2016-01-01

    The case study teaching method has a long history (starting at least with Socrates) and wide current use in business schools, medical schools, law schools, and a variety of other disciplines. However, relatively little use is made of it in the physical sciences, specifically in physics or astronomy. The case study method should be considered by…

  18. Prospective High School Physics Teachers' Beliefs about Teaching Practices: From Traditionalist to Constructivist

    ERIC Educational Resources Information Center

    Demirci, Neset

    2015-01-01

    The main aim of this study was to determine the teaching practices of prospective high school physics teachers with respect to their preference for teaching as a traditionalist or as a constructivist. To study the beliefs of prospective high school physics teachers on this subject, firstly, the Teacher Belief Survey was administered to 135…

  19. Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2005-12-01

    During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible

  20. Cognitive and Behavioral Components of Expertise in Teaching Physical Education.

    ERIC Educational Resources Information Center

    Dodds, Patt

    1994-01-01

    Synthesizes research on teaching expertise from physical education and other fields, offering two examples of expertise-related topics in physical education (the importance of personal performance skills and observational skills). The paper discusses cognitive, behavioral, and mixed indicators of expertise. Methodological problems in undertaking…

  1. Emergent mechanics, quantum and un-quantum

    NASA Astrophysics Data System (ADS)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  2. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  3. Quantum Tic-Tac-Toe as Metaphor for Quantum Physics

    NASA Astrophysics Data System (ADS)

    Goff, Allan; Lehmann, Dale; Siegel, Joel

    2004-02-01

    Quantum Tic-Tac-Toe is presented as an abstract quantum system derived from the rules of Classical Tic-Tac-Toe. Abstract quantum systems can be constructed from classical systems by the addition of three types of rules; rules of Superposition, rules of Entanglement, and rules of Collapse. This is formally done for Quantum Tic-Tac-Toe. As a part of this construction it is shown that abstract quantum systems can be viewed as an ensemble of classical systems. That is, the state of a quantum game implies a set of simultaneous classical games. The number and evolution of the ensemble of classical games is driven by the superposition, entanglement, and collapse rules. Various aspects and play situations provide excellent metaphors for standard features of quantum mechanics. Several of the more significant metaphors are discussed, including a measurement mechanism, the correspondence principle, Everett's Many Worlds Hypothesis, an ascertainity principle, and spooky action at a distance. Abstract quantum systems also show the consistency of backwards-in-time causality, and the influence on the present of both pasts and futures that never happened. The strongest logical argument against faster-than-light (FTL) phenomena is that since FTL implies backwards-in-time causality, temporal paradox is an unavoidable consequence of FTL; hence FTL is impossible. Since abstract quantum systems support backwards-in-time causality but avoid temporal paradox through pruning of the classical ensemble, it may be that quantum based FTL schemes are possible allowing backwards-in-time causality, but prohibiting temporal paradox.

  4. PREFACE Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery

    NASA Astrophysics Data System (ADS)

    Weigert, Stefan

    2010-11-01

    me? and why is my world so classical?'. Tony was a teacher of the old school. His lectures were inspiring and fun. He believed that the personal element is central to understanding and inspiration, shown by his whole-hearted commitment to small group teaching. Tony's experience of teaching quantum physics to mathematicians is reflected in his widely known text on quantum mechanics for mathematicians entitled Quantum Mechanics and the Particles of Nature (Cambridge 1986). In 1994, Tony succeeded John Fountain as Head of Department. The 1990s had been a difficult decade for universities in Britain but John had managed to keep the Department on a sound footing, providing foundations which enabled Tony to develop a growth strategy and realise new opportunities when they arose. Despite these challenges Tony was not to be distracted from his scientific work but started to make his significant contributions to quantum information science. Tony's interests extend beyond mathematics, physics and philosophy: to science fiction, music (both classical and jazz) and theatre - he exercised his thespian talents in his lectures and as a member of the York Shakespeare Project. And his lively mind is matched by a lively body: Tony still plays a mean game of squash and of tennis, and his enthusiastic and acrobatic dancing is most remarkable - it would be no surprise if he were to appear on the popular British TV show 'Strictly Come Dancing'. A man of many parts... On behalf of all contributors to the Festschrift it remains for us to wish Tony many productive and happy years to come in this new phase of his life that he himself characterises with the word 'freedom' (and that surely doesn't match the definition of 'retirement'). There is no doubt that he will utilise this newly-gained freedom to continue to inspire and challenge his fellow scientists with his inquisitive mind and cheerful spirit. York, October 2010 Paul Busch, Maurice Dodson and Atsushi Higuchi Stefan Weigert (editor)

  5. Competency based teaching of college physics: The philosophy and the practice

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-12-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  6. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  7. Using Outdoor Adventure Settings to Teach Physics

    ERIC Educational Resources Information Center

    Aspinall, Claire

    2016-01-01

    A key challenge when teaching physics is to equip students with the ability to apply the concepts to real-life situations. Students do not learn by information alone; they are affected by their environment, their social setting, how their body and mind feel and the interactions between these different aspects. This may explain why wild places and…

  8. The role of philosophy in the conceptual development of quantum physics

    NASA Astrophysics Data System (ADS)

    Diamond, Ethel

    Making a distinction between the context of discovery and the context of justification, I examine the relationship between philosophy and the discovery of quantum physics. I do this by focusing on four of the most important contributors to quantum theory: Albert Einstein, Werner Heisenberg, Erwin Schrodinger and Niels Bohr. Looking to the period immediately preceding the era in which quantum physics was developed, I first explore the scientific writings of Hermann von Helmholtz, Ernst Mach, Heinrich Hertz and Ludwig Boltzmann. In doing so, I uncover the integral role classic philosophy played in the scientific investigations of nineteenth-century German and Austrian physicists. After establishing the cultural link between scientific writing and philosophic training at that time and place in history, I investigate the formative philosophic influences on Einstein, Heisenberg, Schrodinger and Bohr. By a close examination of some of their most important scientific papers, this dissertation reveals the way in which these early twentieth-century scientists continued an important nineteenth-century European tradition of integrating philosophic thought in their scientific creative thinking.

  9. Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics

    ERIC Educational Resources Information Center

    Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim

    2018-01-01

    Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…

  10. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    ERIC Educational Resources Information Center

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  11. Teaching physical activities to students with significant disabilities using video modeling.

    PubMed

    Cannella-Malone, Helen I; Mizrachi, Sharona V; Sabielny, Linsey M; Jimenez, Eliseo D

    2013-06-01

    The objective of this study was to examine the effectiveness of video modeling on teaching physical activities to three adolescents with significant disabilities. The study implemented a multiple baseline across six physical activities (three per student): jumping rope, scooter board with cones, ladder drill (i.e., feet going in and out), ladder design (i.e., multiple steps), shuttle run, and disc ride. Additional prompt procedures (i.e., verbal, gestural, visual cues, and modeling) were implemented within the study. After the students mastered the physical activities, we tested to see if they would link the skills together (i.e., complete an obstacle course). All three students made progress learning the physical activities, but only one learned them with video modeling alone (i.e., without error correction). Video modeling can be an effective tool for teaching students with significant disabilities various physical activities, though additional prompting procedures may be needed.

  12. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    ERIC Educational Resources Information Center

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  13. Theories of Matter, Space and Time, Volume 2; Quantum theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  14. Quantum physics and the beam splitter mystery

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2015-09-01

    Optical lossless beam splitters are frequently encountered in fundamental physics experiments regarding the nature of light, including "which-way" determination or the EPR paradox and their measurement apparatus. Although they look as common optical components at first glance, their behaviour remains somewhat mysterious since they apparently exhibit stand-alone particle-like features, and then wave-like characteristics when inserted into a Mach-Zehnder interferometer. In this communication are examined and discussed some basic properties of these beamssplitters, both from a classical optics and quantum physics point of view. Herein the most evident convergences and contradictions are highlighted, and the results of a few emblematic experiments demonstrating photon existence are discussed. Alternative empirical models are also proposed in order to shed light on some remaining issues.

  15. Online Physics Lab Exercises--A Binational Study on the Transfer of Teaching Resources

    ERIC Educational Resources Information Center

    Theyßen, Heike; Struzyna, Sarah; Mylott, Elliot; Widenhorn, Ralf

    2016-01-01

    In this paper, we present the design and the results of a comparative study that evaluated the success of a transfer of an online-teaching resource between two universities, one in Germany and one in the USA. The teaching resource is an online physics lab that has been used in the physics education of medical students in Germany since 2003. The…

  16. Condensed Matter Physics: Does Quantum Mechanics Matter?

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    Herman Feshbach, the organizer of this Symposium in honor of Niels Bohr, asked me, in his original invitation, for a review of the present state of condensed matter physics, with emphasis on major unsolved problems and comments on any overlap with Bohr's ideas regarding the fundamentals of quantum mechanics. That is surely a difficult assignment and, indeed, goes well beyond what is attempted here; nevertheless, I will take the liberty of raising one issue of a philosophical or metaphysical flavor.

  17. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  18. Teaching a Hypothesis-driven Physical Diagnosis Curriculum to Pulmonary Fellows Improves Performance of First-Year Medical Students.

    PubMed

    Staitieh, Bashar S; Saghafi, Ramin; Kempker, Jordan A; Schulman, David A

    2016-04-01

    Hypothesis-driven physical examination emphasizes the role of bedside examination in the refinement of differential diagnoses and improves diagnostic acumen. This approach has not yet been investigated as a tool to improve the ability of higher-level trainees to teach medical students. To assess the effect of teaching hypothesis-driven physical diagnosis to pulmonary fellows on their ability to improve the pulmonary examination skills of first-year medical students. Fellows and students were assessed on teaching and diagnostic skills by self-rating on a Likert scale. One group of fellows received the hypothesis-driven teaching curriculum (the "intervention" group) and another received instruction on head-to-toe examination. Both groups subsequently taught physical diagnosis to a group of first-year medical students. An oral examination was administered to all students after completion of the course. Fellows were comfortable teaching physical diagnosis to students. Students in both groups reported a lack of comfort with the pulmonary examination at the beginning of the course and improvement in their comfort by the end. Students trained by intervention group fellows outperformed students trained by control group fellows in the interpretation of physical findings (P < 0.05). Teaching hypothesis-driven physical examination to higher-level trainees who teach medical students improves the ability of students to interpret physical findings. This benefit should be confirmed using validated testing tools.

  19. Teaching physics and understanding infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  20. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous

  1. Large numbers hypothesis. IV - The cosmological constant and quantum physics

    NASA Technical Reports Server (NTRS)

    Adams, P. J.

    1983-01-01

    In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.

  2. The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization

    PubMed Central

    Poccia, Nicola; Bianconi, Antonio

    2011-01-01

    Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the “Quantum Physics of Living Matter”. PMID:26791661

  3. Framework for understanding the patterns of student difficulties in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  4. Teaching College Physics at the Local Elementary School

    NASA Astrophysics Data System (ADS)

    Hagedorn, Eric A.

    2006-12-01

    For several years physics faculty at the University of Texas at El Paso (UTEP) have taught physics to pre-service elementary and middle school teachers in an unusual location: the local elementary school! The participating pre-service elementary and middle school teachers are typically in their last semester and are fully immersed in their internships (called "student teaching" elsewhere. See Fig. 1). Rather than bringing the students back to campus for class during four of their field semesters, UTEP sends education, mathematics, and physics faculty out to the schools as part of what is referred to as the "field-based program" (FBP) even though some of this program occurs on campus.

  5. Teaching a Hypothesis-driven Physical Diagnosis Curriculum to Pulmonary Fellows Improves Performance of First-Year Medical Students

    PubMed Central

    Saghafi, Ramin; Kempker, Jordan A.; Schulman, David A.

    2016-01-01

    Rationale: Hypothesis-driven physical examination emphasizes the role of bedside examination in the refinement of differential diagnoses and improves diagnostic acumen. This approach has not yet been investigated as a tool to improve the ability of higher-level trainees to teach medical students. Objectives: To assess the effect of teaching hypothesis-driven physical diagnosis to pulmonary fellows on their ability to improve the pulmonary examination skills of first-year medical students. Methods: Fellows and students were assessed on teaching and diagnostic skills by self-rating on a Likert scale. One group of fellows received the hypothesis-driven teaching curriculum (the “intervention” group) and another received instruction on head-to-toe examination. Both groups subsequently taught physical diagnosis to a group of first-year medical students. An oral examination was administered to all students after completion of the course. Measurements and Main Results: Fellows were comfortable teaching physical diagnosis to students. Students in both groups reported a lack of comfort with the pulmonary examination at the beginning of the course and improvement in their comfort by the end. Students trained by intervention group fellows outperformed students trained by control group fellows in the interpretation of physical findings (P < 0.05). Conclusions: Teaching hypothesis-driven physical examination to higher-level trainees who teach medical students improves the ability of students to interpret physical findings. This benefit should be confirmed using validated testing tools. PMID:26730644

  6. Processing Motion: Using Code to Teach Newtonian Physics

    NASA Astrophysics Data System (ADS)

    Massey, M. Ryan

    Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.

  7. The Physical Tourist. A European Study Course

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd; Westfall, Catherine

    2010-03-01

    We organized and led a European study course for American undergraduate university students to explore the early history of relativity and quantum theory. We were inspired by The Physical Tourist articles published in this journal on Munich, Bern, Berlin, Copenhagen, and Göttingen. We describe this adventure both for others wishing to teach such a course and for anyone wishing to walk in the footsteps of the physicists who revolutionized physics in the early decades of the twentieth century.

  8. QuVis interactive simulations: tools to support quantum mechanics instruction

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  9. Teaching Optics Topics in College Physics Laboratory*

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Y.

    2006-12-01

    We propose a list of designed experiments that could be presented at the laboratory class in the second semester of College and University Physics courses to study properties of light. The study of light can be organized into three domains: geometric optics, wave optics and quantum optics. These domains are not strictly disjoint. In the sets of experiments for the first domain students study the laws of reflection and refraction of light by measuring the dependence of the angles of reflection and refraction on the angle of incident, spherical mirrors and lenses, geometric optics of human eye. In the sets of experiments for the second domain students study the wave properties of light: dispersion, interference, diffraction and polarization. Experiments designed to verify the Malus's law and measure the Brewster's angle, determine the wavelength of laser light and study the interference on a transmission and reflection diffraction grating, diffraction on the different size slits and wires. The purposes of experiments for the third domain are to study the spectral lines of different gases, determine the Rydberg's constant from the spectrum of hydrogen atom, and verify the laws of the photoelectric effect and Einstein's quantum idea. The objectives of all experiments are to show the real action of physics laws, help students better understand and visualize the subject of the lecture. *Supported by US Department of Education grant P120A060052

  10. Examining the impact of the Guided Constructivist teaching method on students' misconceptions about concepts of Newtonian physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hyatt Abdelhaleem

    The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and

  11. xyZET: A Simulation Program for Physics Teaching.

    ERIC Educational Resources Information Center

    Hartel, Hermann

    2000-01-01

    Discusses xyZET, a simulation program that allows 3D-space in numerous experiments in basic mechanics and electricity and was developed to support physics teaching. Tests course material for 11th grade at German high schools under classroom conditions and reports on their stability and effectiveness. (Contains 15 references.) (Author/YDS)

  12. Teaching Physiology of Exercise to Reluctant Physical Educators

    ERIC Educational Resources Information Center

    Strawbridge, Marilyn

    2012-01-01

    Exercise physiology seems to be a course that students love or hate. Many physical education students and others involved in the related areas of health, teaching, recreation, dance, athletic training, fitness, and motor learning and development find this course a requirement at some point in their curriculum. Inquiry-based learning is an…

  13. The Audio Description as a Physics Teaching Tool

    ERIC Educational Resources Information Center

    Cozendey, Sabrina; Costa, Maria da Piedade

    2016-01-01

    This study analyses the use of audio description in teaching physics concepts, aiming to determine the variables that influence the understanding of the concept. One education resource was audio described. For make the audio description the screen was freezing. The video with and without audio description should be presented to students, so that…

  14. Development of the teaching of physics in the Czech Lands

    NASA Astrophysics Data System (ADS)

    Kroupová, Bohumila

    2017-01-01

    The important milestone in the history of education in our country is the "Imperial law" also called "Hasner Education Act." By publishing this law we start to talk about organized education. The law introduced compulsory school attendance, defined types of schools, subjects which will be taught and also established teacher-training institutes. One of the subjects taught on general and town schools was also natural history which included Physics and Chemistry. Gradually the curriculum for the teaching of natural history was defined, the new methods how to teach were prepared and the books were written. An important part of teaching practice were conferences, which were held regularly and were compulsory for the teachers The article will describe the development of teaching practice and principles, methodologies, curricula and textbooks until 1918.

  15. The Combination of Just-in-Time Teaching and Wikispaces in Physics Classrooms

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini E.

    2013-01-01

    The general student population enrolled in today's physics classrooms is diverse. They come from a variety of different educational backgrounds. Some demonstrate a good knowledge of natural laws of physics with a better understanding of mathematical concepts, while others show a fair knowledge in fundamentals of physics with a minimum knowledge in mathematics. There are few who have not been exposed to physics or mathematics in their high schools (or at least they claim it to be the case). In addition, now we have "nontraditional" students: working part-time students, older students, commuting students, and, occasionally, military veterans. Regardless of the background, the majority of the students show little or no interest in physics and exhibit anxiety toward learning the subject. In order to address such a diverse and often unmotivated student population, and excite them about physics in a timely manner, we should deviate from conventional teaching techniques. Just-in-Time Teaching (JiTT) combined with wikis is an excellent way to accomplish this goal.

  16. Is Knowledge of Physical Reality Still Kantian? Some Remarks About the Transcendental Character of Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Laino, Luigi

    2018-06-01

    In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant's aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing how the elementary ontological and epistemological assumptions of experience result to be changed within them, he will also show the further modifications occurred in the development of the loop quantum gravity. He will particularly focus on the tough problem of the relationship space-matter, in order to settle the decisive question about the possibility of keeping a transcendental approach in the light of quantum gravity. He will positively answer by recalling Cassirer's theory of the invariants of experience, although he will also add some problematic issues arising from the new physical context.

  17. Low-cost educational robotics applied to physics teaching in Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcos A. M.; Duarte, José R. R.

    2015-07-01

    In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching in public schools, the dissemination of science, and the formation of new scientists and researchers. By means of workshops, banners and the prototyping of robotics, we were able to create a connection between the study areas and their surroundings, making learning meaningful and accessible for the students involved and contributing to their cognitive development.

  18. Can Quantum-Mechanical Description of Physical Reality Be Considered Correct?

    NASA Astrophysics Data System (ADS)

    Brassard, Gilles; Méthot, André Allan

    2010-04-01

    In an earlier paper written in loving memory of Asher Peres, we gave a critical analysis of the celebrated 1935 paper in which Einstein, Podolsky and Rosen (EPR) challenged the completeness of quantum mechanics. There, we had pointed out logical shortcomings in the EPR paper. Now, we raise additional questions concerning their suggested program to find a theory that would “provide a complete description of the physical reality”. In particular, we investigate the extent to which the EPR argumentation could have lead to the more dramatic conclusion that quantum mechanics is in fact incorrect. With this in mind, we propose a speculation, made necessary by a logical shortcoming in the EPR paper caused by the lack of a necessary condition for “elements of reality”, and surmise that an eventually complete theory would either be inconsistent with quantum mechanics, or would at least violate Heisenberg’s Uncertainty Principle.

  19. Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2012-09-01

    From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.

  20. Modal Interpretation of Quantum Mechanics and Classical Physical Theories

    NASA Astrophysics Data System (ADS)

    Ingarden, R. S.

    In 1990, Bas C. van Fraassen defined the modal interpretation of quantum mechanics as the consideration of it as ``a pure theory of the possible, with testable, empirical implications for what actually happens". This is a narrow, traditional understanding of modality, only in the sense of the concept of possibility (usually denoted in logic by the C. I. Lewis's symbol 3) and the concept of necessity 2 defined by means of 3. In modern logic, however, modality is understood in a much wider sense as any intensional functor (i.e. non-extensional or determined not only by the truth value of a sentence). In the recent (independent of van Fraassen) publications of the author (1997), an attempt was made to apply this wider understanding of modality to interpretation of classical and quantum physics. In the present lecture, these problems are discussed on the background of a brief review of the logical approch to quantum mechanics in the recent 7 decades. In this discussion, the new concepts of sub-modality and super-modality of many orders are used.

  1. An intelligent tutoring system for teaching fundamental physics concepts

    NASA Astrophysics Data System (ADS)

    Albacete, Patricia Lucia

    1999-12-01

    Students in traditional elementary mechanics classes can master problem solving of a quantitative nature but not those of a qualitative type. Moreover, students' naive conceptions of physics remain unchanged after completing their class. A few approaches have been implemented to improve this situation however none have met with great success. Since elementary mechanics is the foundation for all of physics and it is a required course for most science majors there is a clear need to improve the instruction of the subject. To address this problem I developed a intelligent tutoring system, called the Conceptual Helper, which coaches students during homework problem solving. The tutor uses a unique cognitive based approach to teaching physics, which presents innovations in three areas. (1) The teaching strategy, which focuses on teaching those links among the concepts of the domain that are essential for conceptual understanding yet are seldom learned by the students. (2) The manner in which the knowledge is taught, which is based on a combination of effective human tutoring techniques (e.g., hinting), effective pedagogical methods (e.g., a microscopic view of matter), and less cognitively demanding approaches (e.g., anthropomorphism). (3) The way in which misconceptions are handled which uses the underlying scientific correct line of reasoning to describe to the student the phenomenon that is the basis for the misconception. From a technological point of view the Conceptual Helper was implemented as a model-tracing tutor which intervenes when students make errors and after completion of each problem, at which time the tutor scaffolds the students on post-problem reflection. The remediation is guided by probabilistic assessment of mastery and the interventions are adapted to the errors. The thesis also presents the results of the evaluation of the system which revealed that the gain scores of the experimental group were statistically significantly higher than those of

  2. Identifying content knowledge for teaching energy: Examples from high school physics

    NASA Astrophysics Data System (ADS)

    Robertson, Amy D.; Scherr, Rachel E.; Goodhew, Lisa M.; Daane, Abigail R.; Gray, Kara E.; Aker, Leanna B.

    2017-06-01

    "Content knowledge for teaching" is the specialized content knowledge that teachers use in practice—the content knowledge that serves them for tasks of teaching such as revoicing students' ideas, choosing an instructional activity to address a student misunderstanding, and evaluating student statements. We describe a methodology for selecting and analyzing classroom episodes showing content knowledge for teaching about energy (CKT-E), and illustrate this methodology with examples from high school physics instruction. Our work has implications for research on teacher knowledge and for professional development that enhances teacher CKT-E.

  3. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  4. Selecting, Teaching and Assessing Physical Education Dance Experiences

    ERIC Educational Resources Information Center

    Little, Stephanie; Hall, Tina

    2017-01-01

    Dance is a form of physical activity that can be enjoyed for a lifetime. Students at the elementary level benefit greatly from successful experiences in dance that lead to competency in various dance forms as well as an appreciation of personal expression through dance. Teaching dance, however, may not be comfortable or easy for beginning…

  5. "Electronium": A Quantum Atomic Teaching Model.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  6. Examining the development of knowledge for teaching a novel introductory physics curriculum

    NASA Astrophysics Data System (ADS)

    Seung, Eulsun

    The purpose of this study was to investigate how graduate physics teaching assistants (TAs) develop professional knowledge for teaching a new undergraduate introductory physics curriculum, Matter and Interactions (M&I ). M&I has recently been adopted as a novel introductory physics course that focuses on the application of a small number of fundamental physical principles on the atomic and molecular nature of matter. In this study, I examined the process of five TAs' development of knowledge for implementing the M&I course---from the time they engaged in an M&I content and methods workshop through their first semester as TAs for the course. Through a qualitative, multiple case study research design, data was collected from multiple sources: non-participant observations, digitally recorded video, semi-structured interviews, TAs' written reflections, and field notes. The data were analyzed using the constant comparative method. The TAs' knowledge for teaching M&I was identified in three domains: pedagogical content knowledge, pedagogical knowledge, and subject matter knowledge. First, the three components of TAs' pedagogical content knowledge were identified: knowledge of the goals of M&I, knowledge of instructional strategies, and knowledge of students' learning. Second, pedagogical knowledge that the TAs demonstrated during the study fell predominantly into the category of classroom management and organization. The knowledge of classroom management and organization was categorized into two components: time management skills and group composition. Last, the TAs' subject matter knowledge that they developed through their M&I teaching experience was described in terms of the conceptual structure of the M&I curriculum, the new approach of the M&I curriculum, and specific topic knowledge. The TAs' knowledge for teaching developed from propositional knowledge to personal practical knowledge, and the process of knowledge development consisted of three phases: accepting

  7. Relationship of Physical Attractiveness to Students' Ratings of Teaching Effectiveness.

    ERIC Educational Resources Information Center

    O'Reilly, Maria T.

    1987-01-01

    A study found that the physical attractiveness of a dental school teacher affected the student's opinion of teaching effectiveness, regardless of the student's sex, with effectiveness ratings correlating with pleasing appearance. (MSE)

  8. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  9. The Use of Computer Competencies of Students in the Departments of Physical Education and Sport Teaching, and School Teaching

    ERIC Educational Resources Information Center

    Okan, Ilyas

    2016-01-01

    This study aims to reveal the levels of the use of computer, which is nowadays one of the most important technologies, of teacher candidate studying in the departments of Physical Education and Sport Teaching, and School teaching; also aims to research whether there is differences according to various criteria or not. In research, data were…

  10. Role Playing in Physical Education to Teach in the Affective Domain

    ERIC Educational Resources Information Center

    Samalot-Rivera, Amaury

    2014-01-01

    Using role playing during physical education provides limitless opportunities for intervention and for the demonstration of personal and social qualities. The purpose of this article is to provide easy steps for implementing role playing as a strategy to teach social skills to students in the physical education setting.

  11. African American Teacher Candidates' Experiences in Teaching Secondary Physical Education

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel Russell

    2017-01-01

    The purpose of this study was to describe and explain the teaching experiences of African American physical education teacher candidates in secondary physical education programs at urban schools. The research design was explanatory multiple-case study situated in positioning theory (Harré & van Langenhove, 1999). The participants were seven…

  12. Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Cámara, M. E.; Arranz, F. J.

    2009-04-01

    In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.

  13. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  14. Learning Introductory Quantum Physics: Sensori-Motor Experiences and Mental Models

    ERIC Educational Resources Information Center

    Ke, Jiun-Liang; Monk, Martin; Duschl, Richard

    2005-01-01

    This paper reports a cross-sectional study of Taiwanese physics students' understanding of subatomic phenomena that are explained by quantum mechanics. The study uses students' explanations of their answers to items in a questionnaire as a proxy for students' thinking. The variation in students' explanations is discussed as is the development in…

  15. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    NASA Astrophysics Data System (ADS)

    Henke, Andreas; Höttecke, Dietmar

    2015-05-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers' decisions towards implementing its practices and ideas. We therefore investigate the perceptions of 8 HPS-experienced German middle school physics teachers within and beyond an HPS implementation project. Within focused interviews these teachers describe and evaluate the challenges of planning and conducting HPS-based physics lessons using collaboratively developed HPS teaching materials. The teachers highlight a number of obstacles to the implementation of HPS specific to this approach: finding and adapting HPS teaching material, knowing and using instructional design principles for HPS lessons, presenting history in a motivating way, dealing with students' problematic ideas about the history of science, conducting open-ended historical classroom investigations in the light of known historical outcomes, using historical investigations to teach modern science concepts, designing assessments to target HPS-specific learning outcomes, and justifying the HPS-approach against curriculum and colleagues. Teachers' perceived demands point out critical aspects of pedagogical content knowledge necessary for confident, comfortable and effective teaching of HPS-based science. They also indicate how HPS teacher education and the design of curricular materials can be improved to make implementing HPS into everyday teaching less demanding.

  16. Finnish Physical Education Teachers' Self-Reported Use and Perceptions of Mosston and Ashworth's Teaching Styles

    ERIC Educational Resources Information Center

    Jaakkola, Timo; Watt, Anthony

    2011-01-01

    The main purpose of the study was to analyze teaching styles used in Finnish physical education. Another aim was to investigate the relationships between background characteristics of teachers and use of teaching styles. The participants of the study were 294 (185 females and 109 males) Finnish physical education teachers. The teachers responded…

  17. The Influences on Teaching Perspectives of Australian Physical Education Teacher Education Students: The First-Year Influences on Teaching Perspectives Exploratory (FIT-PE) Study

    ERIC Educational Resources Information Center

    Hyndman, Brendon P.; Pill, Shane

    2016-01-01

    There has been a paucity of literature investigating the teaching beliefs and intentions of Australian physical education teacher education (PETE) students that enter teacher training. The First-year Influences on Teaching Perspectives Exploratory (FIT-PE) study explores the teaching perspectives of first year PETE students; including teaching…

  18. A Bit of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  19. Many-Body Physics in Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui

    Ultracold atomic and molecular systems provide a useful platform for understanding quantum many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting long-range interactions, opening a window for exploring the interplay between long-range interactions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium dynamics in systems where such interplay is crucial. I first focus on a system of KRb molecules, where dipolar interactions and fast chemical reactions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I also study the case where molecules are loaded into an optical lattice, and show that the strong dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis requires including multiple bands to explain recent experimental measurements, and can be used to determine the molecular filling fraction. I also investigate a system of radiating atoms, which experience long-range elastic and dissipative interactions. I explore the collective behavior of atoms and the role of atomic motion. The model is validated by comparison with a recent light scattering experiment using Sr atoms. I also show that incoherently pumped dipoles can undergo a dynamical phase transition to synchronization, and study its signature in the quantum regime.

  20. The Effectiveness of Scaffolding Design in Training Writing Skills Physics Teaching Materials

    ERIC Educational Resources Information Center

    Sinaga, Parlindungan; Suhandi, Andi; Liliasari

    2015-01-01

    Result of field studies showed low writing skill of teachers in teaching material. The root of the problem lies in their inability on translating description of teaching material into writing. This research focused on the effectiveness of scaffolding design. The scaffolding design was tested in the selected topics of physics courses for…

  1. Quantum energy teleportation in a quantum Hall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  2. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  3. Brazilian Physical Education Teachers' Beliefs about Teaching Students with Disabilities

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Haegele, Justin; Gutierres Filho, Paulo; Rizzi Lopes, Gleides

    2018-01-01

    The purpose of this study was to analyse Brazilian physical education teachers' beliefs about their experiences teaching students with disabilities. Participants were six physical education teachers from schools located in the city of Brasília, Brazil. The research paradigm was descriptive-qualitative situated in the theory of planned behaviour.…

  4. Physical Education Undergraduate Students' Colorblind Racial Ideology and Multicultural Teaching Competence

    ERIC Educational Resources Information Center

    Burden, Joe W., Jr.; Hodge, Samuel R.; Harrison, Louis, Jr.

    2015-01-01

    The purpose of this study was to analyze links between racial ideology and multicultural teaching competencies as perceived by undergraduate students in physical education teacher education (PETE) programs. Data were collected from physical education students (N = 239) across five PETE programs in the Northeastern region of the United States via a…

  5. Earth Science Contexts for Teaching Physics. Part 2: Contexts Relating to the Teaching of Energy, Earth and Beyond and Radioactivity.

    ERIC Educational Resources Information Center

    King, Chris; Kennett, Peter

    2002-01-01

    Explains how physics teaching can be more relevant for elementary and secondary students by integrating physics and earth science content that students can relate to and understand. Identifies and explains Earth contexts that can be appropriately implemented into the physics curriculum such as energy resources and radioactivity. (Author/YDS)

  6. Quantum Entanglement in Random Physical States

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-07-01

    Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.

  7. Second teaching: An exploration of cognitive factors in small group physics learning

    NASA Astrophysics Data System (ADS)

    Novemsky, Lisa Forman

    This inquiry was focused on an exploration of introductory physics teaching. Alan Van Heuvelen's Overview Case Study (OCS) physics was the pedagogical approach involving guided small group problem solving and stressing concepts first, before mathematics. Second teaching is a new pedagogical construct based on Vygotsky's ideas. Structured small group activity follows traditional instruction facilitating learning for non-traditional students. It is a model of structured small group activity designed to follow traditional instruction to facilitate the learning process for students who find a physics optic (way of seeing) and physics language foreign. In informal small group settins students describe, explain, elaborate, test, and defend ideas in their own familiar vernacular as they collaborate in solving problems. Collective wisdom of a collaborative group, somewhat beyond the level for each individual member, is created then recreated through self-correction. Students improved significantly in physics knowledge. In a classroom setting, small groups of non-traditional physics students engaged in second teaching were observed. Written explanations to conceptual physics questions were analyzed. Development of language usage in relationship to introductory physics concept learning was studied. Overall physics learning correlated positively with gains in language clarity thus confirming the hypothesis that language development can be linked with gains in physics knowledge. Males and females were found to be significantly different in this respect. Male gains in language clarity were closely coupled with physics learning whereas female gains in the two measures were not coupled. Physics discourse, particularly in relationship to force and motion, seems to resonate with natural developmentally acquired sex-typical male but not female discourse. Thus, for males but not for females, physics learning proceeds in a seamless fashion wherein knowledge gains are coupled with

  8. Teaching and Assessing Content Knowledge in Preservice Physical Education

    ERIC Educational Resources Information Center

    Ayvazo, Shiri; Ward, Phillip; Stuhr, Paul T.

    2010-01-01

    Most content knowledge (CK) courses in physical education teacher education focus mostly on knowledge of rules, etiquette, techniques, tactics, and performance of the activity. Much less emphasis is placed on error detection and instructional tasks. This article therefore presents teaching and assessment strategies that facilitate the acquisition…

  9. Courses and Resources to Teach Space Physics to Standards

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2008-12-01

    We have created four courses for teachers, and inquiry-based materials to go with them, that embed space physics concepts while teaching Space Physics to National and State standards. The state of Texas recently adopted a "4x4" standard, which makes the "recommended" graduation requirement for high school students to include four science and four math courses. Space Physics is not specifically listed as a topic, but falls naturally as part of three of the Texas High School courses: "Physics", "Astronomy" and "Earth and Space Science", a new course whose syllabus is being decided now. The national standards which are most relevant at the high school level are "Change, Constancy and Measurement", "Motions and Forces", "Interactions of Energy and Matter" and "Natural and Human-induced hazards" [National Science Ed Standards, 1996]. The "Texas Essential Knowledge and Skills" includes circuits, electricity and magnetism, and waves in their Physics course syllabus, and include "describe the Sun's effects on the Earth" in the Astronomy class. In the new Earth and Space Science class we expect that additional heliospheric concepts will be included. At Rice we have four Astronomy courses (and four Earth Science courses) for teachers, two of which involve a substantial space physics content. By taking those eight courses, plus a research project and another content or education elective, the teachers can earn a "Masters of Science Teaching" degree. In "Teaching Earth and Space Science" (ASTR 402) we dedicate about 4 weeks on the Sun and the Earth and its environment. The "Physics of Ham Radio" course (PHYS 401) has an even more relevant focus. That class introduces electricity and magnetism, with hands-on activities on circuits and electromagnetic waves. The students earn their "Technician" class amateur license by making at least 75 per cent on the first quiz, which allows them VHF and UHF broadcast privileges. The second half of the course covers more space weather topics

  10. Study and practice in the construction of open physical experiments teaching system

    NASA Astrophysics Data System (ADS)

    Xu, Yan

    2017-09-01

    Based on open physical experiments teaching system put forward by Ministry of Education, HHU(Hohai University) has carried out the construction of open experimental manage system, which includes course selecting system, teaching system, manage system and information desk. The innovation is in order to mobilize the students’ learning autonomy, cultivate the students’ creative ability and improve teaching quality. Besides, it achieves direct management from school to college to the laboratory and traced manage to the working device regardless of distance and time.

  11. The Play's the Thing...Some thoughts on Introductory Physics Teaching

    NASA Astrophysics Data System (ADS)

    Montemayor, Victor J.

    1999-09-01

    Teaching science in general, and physics and astronomy in particular, is difficult in an era of decreasing attention spans and increasing extracurricular activities and responsibilities among students. but engaging and involving them is certainly not impossible.

  12. The Problem Solving Method in Teaching Physics in Elementary School

    NASA Astrophysics Data System (ADS)

    Jandrić, Gordana Hajduković; Obadović, Dušanka Ž.; Stojanović, Maja

    2010-01-01

    The most of the teachers ask if there is a "best" known way to teach. The most effective teaching method depends on the specific goals of the course and the needs of the students. An investigation has been carried out to compare the effect of teaching selected physics topics using problem-solving method on the overall achievements of the acquired knowledge and teaching the same material by traditional teaching method. The investigation was performed as a pedagogical experiment of the type of parallel groups with randomly chosen sample of students attending grades eight. The control and experimental groups were equalized in the relevant pedagogical parameters. The obtained results were treated statistically. The comparison showed a significant difference in respect of the speed of acquiring knowledge, the problem-solving teaching being advantageous over traditional methodDo not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  13. Building up explanations in physics teaching

    NASA Astrophysics Data System (ADS)

    Pessoa de Carvalho, Anna Maria; Paulo, Sao

    2004-02-01

    The purpose of this research project was to study how students in the first years of elementary school (children from 7 to 10 years of age) are initiated into the construction of explanations of physical phenomena in the teaching of science. With this purpose in mind, we organized classes based on the proposition of investigative problems, where children, working in groups, could solve problems by raising and testing their own hypotheses. They would then attempt, by means of general discussion organized by the teacher, to discuss how each problem was solved and why it worked. We videotaped a series of classes in which the students solved 15 different investigative problems. We also analysed the teacher/student interactions that took place (in this paper, we present data on two of these classes). Based on our data we found that students construct their own causal explanations by following a sequence of stages that includes the appearance of novelties. We also discuss how our data relate to the teacher's role in the classroom and to the organization of science teaching at this level.

  14. Introduction to Semiconductor Physics in Secondary Education: Evaluation of a Teaching Sequence

    ERIC Educational Resources Information Center

    Garcia-Carmona, Antonio; Criado, Ana Maria

    2009-01-01

    The present article presents a didactic proposal oriented to teaching notions of semiconductor physics in secondary education. The methods and the results of a pilot study designed to analyse the effectiveness of a teaching sequence on the topic are also described. The subjects were 60 students, aged 14-15 years, of a secondary school in Seville,…

  15. Humanizing the Teaching of Physics through Storytelling: The Case of Current Electricity

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis

    2006-01-01

    The main purpose of this article is to discuss the potential role of storytelling in the teaching and learning of physics. I first present the main historical events concerning the discovery of current electricity by focusing on the Galvani-Volta controversy and the work of Michael Faraday. Then I outline a planning framework for teaching through…

  16. An Appraoch to the Teaching of the Matriculation Physics Core

    ERIC Educational Resources Information Center

    Roberts , D. B.

    1972-01-01

    From an organizational point of view, a new high school physics program was developed. The teaching load was divided between two teachers. Benefits of the program were more preparation time for teachers and better student motivation. (PS)

  17. Physics Teachers' Perceptions of the Difficulty of Teaching Electricity

    ERIC Educational Resources Information Center

    Gunstone, Richard; Mulhall, Pamela; McKittrick, Brian

    2009-01-01

    As part of a project concerned with developing a better understanding of the detail of appropriate teaching of direct current (DC) electricity concepts, extensive individual interviews were conducted with a number of experienced senior high school physics teachers. These interviews explored teachers' perceptions of difficulties in student learning…

  18. Strategies for Teaching Children with Autism in Physical Education

    ERIC Educational Resources Information Center

    Groft-Jones, Melissa; Block, Martin E.

    2006-01-01

    The purpose of this article is to summarize information presented in the prior articles into practical strategies physical educators can use when teaching children with autism. The authors divided the article into three areas: (1) structuring the environment; (2) accommodating communication challenges; and (3) preventing challenging behaviors.…

  19. Primary Student Teachers' Ideas about Teaching a Physics Topic

    ERIC Educational Resources Information Center

    Ahtee, Maija; Johnston, Jane

    2006-01-01

    This study examines Finnish and English primary student teachers' ideas when planning to teach a physics topic during their science education studies. Many primary student teachers lack sufficient subject knowledge, which prevents them from constructing the scientific pedagogical content knowledge that enables them to concentrate on pupils'…

  20. Teaching Games for Understanding to In-Service Physical Education Teachers: Rewards and Barriers regarding the Changing Model of Teaching Sport

    ERIC Educational Resources Information Center

    Diaz-Cueto, Mario; Hernandez-Alvarez, Juan Luis; Castejon, Francisco Javier

    2010-01-01

    The purpose of this study was to understand the perceptions of in-service Physical Education (PE) teachers when using Teaching Games for Understanding (TGfU) in teaching sports. Data were gathered from interviews, work group meetings, and participants' diaries. The results show the difficulties PE teachers had in the planning and implementation of…

  1. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  2. Challenging situations when teaching children with autism spectrum disorders in general physical education.

    PubMed

    Obrusnikova, Iva; Dillon, Suzanna R

    2011-04-01

    As the first step of an instrument development, teaching challenges that occur when students with autism spectrum disorders are educated in general physical education were elicited using Goldfried and D'Zurilla's (1969) behavioral-analytic model. Data were collected from a convenience sample of 43 certified physical educators (29 women and 14 men) using a demographic questionnaire and an elicitation questionnaire. Participants listed 225 teaching challenges, 46% related to cooperative, 31% to competitive, and 24% to individualistic learning situations. Teaching challenges were categorized into nine themes: inattentive and hyperactive behaviors, social impairment, emotional regulation difficulties, difficulties understanding and performing tasks, narrow focus and inflexible adherence to routines and structure, isolation by classmates, negative effects on classmates' learning, and need for support.

  3. Teaching Newton's Laws with the iPod Touch in Conceptual Physics

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2011-04-01

    One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion…" and "For every action…"), but they rarely demonstrate a working knowledge of how to apply them to observable phenomena. As a firm believer in inquiry-based teaching methods, I like to develop activities where students can experiment and construct understandings based on relevant personal experiences. Consequently, I am always looking for exciting new technologies that can readily demonstrate how physics affects everyday things. In a conceptual physics class designed for ninth-graders, I created a structured activity where students applied Newton's laws to a series of free applications downloaded on iPod Touches. The laws had been introduced during the prior class session with textual descriptions and graphical representations. The course is offered as part of the Enlace Latino Collegiate Society, a weekend enrichment program for middle and high school students in the Bronx. The majority of students had limited or no prior exposure to physics concepts, and many attended high schools where physics was not offered at all.

  4. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  5. Using the History of Physics to Enrich Your Teaching.

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2014-03-01

    As students most of us probably acquired the impression that the brilliant theories and experiments described in our texts sprang essentially fully-formed from the minds of their developers. As my own teaching career progressed, I began to explore the details of how what I was teaching - particularly in the area of modern physics - had come about. I learned that the real history was often a much more muddled and uncertain business than the polished narratives presented in texts; indeed, leading physicists themselves were often in a state of confusion not unlike that of a student encountering complex ideas for the first time. Exploring the history of our science also naturally leads to learning about the personalities and lives of its developers. In this talk, which is intended for a non-specialist audience, I will relate a few examples of how my own appreciation and teaching of physics has been enriched by exploring its roots. I will also relate some human-interest episodes from of the lives of famous physicists from the time of Kepler through the twentieth century. Some of these vignettes are tragic, some are funny, and some are inspiring, but all serve as reminders that even great physicists are subject to the usual whims of human nature and the sometimes cruel circumstances of their times.

  6. Resources Used to Teach the Physical Exam to Preclerkship Medical Students: Results of a National Survey.

    PubMed

    Uchida, Toshiko; Achike, Francis I; Blood, Angela D; Boyle, Mary; Farnan, Jeanne M; Gowda, Deepthiman; Hojsak, Joanne; Ovitsh, Robin K; Park, Yoon Soo; Silvestri, Ronald

    2018-05-01

    To examine resources used in teaching the physical exam to preclerkship students at U.S. medical schools. The Directors of Clinical Skills Courses developed a 49-question survey addressing resources and pedagogical methods employed in preclerkship physical exam curricula. The survey was sent to all 141 Liaison Committee on Medical Education-accredited medical schools in October 2015. Results were averaged across schools, and data were weighted by class size. Results from 106 medical schools (75% response rate) identified a median of 59 hours devoted to teaching the physical exam. Thirty-eight percent of time spent teaching the physical exam involved the use of standardized patients, 30% used peer-to-peer practice, and 25% involved examining actual patients. Approximately half of practice time with actual patients was observed by faculty. At 48% of schools (51), less than 15% of practice time was with actual patients, and at 20% of schools (21) faculty never observed students practicing with actual patients. Forty-eight percent of schools (51) did not provide compensation for their outpatient clinical preceptors. There is wide variation in the resources used to teach the physical examination to preclerkship medical students. At some schools, the amount of faculty observation of students examining actual patients may not be enough for students to achieve competency. A significant percentage of faculty teaching the physical exam remain uncompensated for their effort. Improving faculty compensation and increasing use of senior students as teachers might allow for greater observation and feedback and improved physical exam skills among students.

  7. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, J.; Gandolfi, S.; Pederiva, F.; ...

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  8. Studying Gender Bias in Physics Grading: The role of teaching experience and country

    NASA Astrophysics Data System (ADS)

    Hofer, Sarah I.

    2015-11-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2 × 2 between-subjects design, with years of teaching experience included as moderating variable, physics teachers (N = 780) from Switzerland, Austria, and Germany graded a fictive student's answer to a physics test question. While the answer was exactly the same for each teacher, only the student's gender and specialization in languages vs. science were manipulated. Specialization was included to gauge the relative strength of potential gender bias effects. Multiple group regression analyses, with the grade that was awarded as the dependent variable, revealed only partial cross-border generalizability of the effect pattern. While the overall results in fact indicated the existence of a consistent and clear gender bias against girls in the first part of physics teachers' careers that disappeared with increasing teaching experience for Swiss teachers, Austrian teachers, and German female teachers, German male teachers showed no gender bias effects at all. The results are discussed regarding their relevance for educational practice and research.

  9. PhET: Interactive Simulations for Teaching and Learning Physics

    NASA Astrophysics Data System (ADS)

    Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron

    2006-01-01

    The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.

  10. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  11. QIPS: quantum information and quantum physics in space

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  12. The limits of predictability: Indeterminism and undecidability in classical and quantum physics

    NASA Astrophysics Data System (ADS)

    Korolev, Alexandre V.

    This thesis is a collection of three case studies, investigating various sources of indeterminism and undecidability as they bear upon in principle unpredictability of the behaviour of mechanistic systems in both classical and quantum physics. I begin by examining the sources of indeterminism and acausality in classical physics. Here I discuss the physical significance of an often overlooked and yet important Lipschitz condition, the violation of which underlies the existence of anomalous non-trivial solutions in the Norton-type indeterministic systems. I argue that the singularity arising from the violation of the Lipschitz condition in the systems considered appears to be so fragile as to be easily destroyed by slightly relaxing certain (infinite) idealizations required by these models. In particular, I show that the idealization of an absolutely nondeformable, or infinitely rigid, dome appears to be an essential assumption for anomalous motion to begin; any slightest elastic deformations of the dome due to finite rigidity of the dome destroy the shape of the dome required for indeterminism to obtain. I also consider several modifications of the original Norton's example and show that indeterminism in these cases, too, critically depends on the nature of certain idealizations pertaining to elastic properties of the bodies in these models. As a result, I argue that indeterminism of the Norton-type Lipschitz-indeterministic systems should rather be viewed as an artefact of certain (infinite) idealizations essential for the models, depriving the examples of much of their intended metaphysical import, as, for example, in Norton's antifundamentalist programme. Second, I examine the predictive computational limitations of a classical Laplace's demon. I demonstrate that in situations of self-fulfilling prognoses the class of undecidable propositions about certain future events, in general, is not empty; any Laplace's demon having all the information about the world now

  13. Teaching Einsteinian Physics at Schools: Part 3, Review of Research Outcomes

    ERIC Educational Resources Information Center

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-01-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics…

  14. Rethinking Sport Teaching in Physical Education: A Case Study of Research Based Innovation in Teacher Education

    ERIC Educational Resources Information Center

    Pill, Shane; Penney, Dawn; Swabey, Karen

    2012-01-01

    This paper focuses on the significance of physical education teacher education (PETE) in the diffusion of "new" thinking about sport teaching in physical education. It explores issues arising from a case study investigation that sought to respond to the critical commentary about the form and substance of sport teaching in physical…

  15. Freedom and the psychoanalytic ontology of quantum physics.

    PubMed

    Gullatz, Stefan; Gildersleeve, Matthew

    2018-02-01

    Jung's paper 'Synchronicity - an acausal connecting principle', defining the phenomenon as a 'meaningful' coincidence depending on archetypal activation, was published in 1952, together with a conceptually related piece by physicist and Nobel Laureate Wolfgang Pauli entitled, 'The influence of archetypal ideas on the scientific theories of Kepler'. Slavoj Žižek, in The Indivisible Remainder: On Schelling and Related Matters, suggests that, in contrast to any notion of a 'pre-modern Jungian harmony', the main lesson of quantum physics was that not only was the psychoanalytic, empty subject of the signifier constitutively out-of-joint with respect to the world, but that the Real in itself was already incomplete, out-of-joint, 'not-all'. Yet while Žižek frequently tries to separate Jung from his own ontology, this paper shows that his ontology is not as different as he suggests. Consistent with our earlier publications on Jung and Zizek, a closer investigation reveals an underlying congruence of both of their approaches. In this paper we show that this affinity lies in the rejection by both Jung and Žižek of the ideology of reductive materialism, a rejection that demonstrably draws on quantum physics in similar ways. While Jung posits an inherently meaningful universe, Žižek attempts to salvage the freedom of human subjectivity by opposing his Lacanian 'dialectical materialism' to reductive materialism. © 2018, The Society of Analytical Psychology.

  16. Zielstrebiger Einsatz von Unterrichtsmitteln und Ausbau des Fachunterrichtsraumsystems (Goal-oriented Introduction of Teaching Aids and Development of Physical Area for Language Teaching)

    ERIC Educational Resources Information Center

    Hoffmann, Werner

    1974-01-01

    Contains remarks concerning lesson orientation in the use of the obligatory instructional aids and of reserves of teaching materials, also in relation to minimal requirements in the development of the physical teaching area for foreign language instruction. (Text is in German.) (IFS/WGA)

  17. Physical realization of quantum teleportation for a nonmaximal entangled state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

    2010-08-15

    Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equalmore » to half the number of photons into the beam splitter, our model has high fidelity.« less

  18. Can violations of Bell's inequalities be considered as a final proof of quantum physics?

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2013-10-01

    Nowadays, it is commonly admitted that the experimental violation of Bell's inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the whole microscopic world and beyond. But the historical and scientific story may not be envisioned so clearly: it starts with the original paper of Einstein, Podolsky and Rosen (EPR) aiming at demonstrating that the formalism of quantum theory is incomplete. It then goes through the works of D. Bohm, to finally proceed to the famous John Bell's relationships providing an experimental setup to solve the EPR paradox. In this communication is proposed an alternative reading of this history, showing that modern experiments based on correlations between light polarizations significantly deviate from the original spirit of the EPR paper. It is concluded that current experimental violations of Bell's inequalities cannot be considered as an ultimate proof of the completeness of quantum physics models.

  19. Perceived Social-Ecological Barriers of Generalist Pre-Service Teachers towards Teaching Physical Education: Findings from the GET-PE Study

    ERIC Educational Resources Information Center

    Hyndman, Brendon P.

    2017-01-01

    Identifying and understanding the perceptions of pre-service teachers (PSTs) is vital to informing teaching practices. The purpose of the "Generalist Entry into Teaching Physical Education" (GET-PE) study was to investigate Australian generalist PSTs' perceptions of the barriers to teaching physical education (PE) classes. A…

  20. A review of progress in the physics of open quantum systems: theory and experiment.

    PubMed

    Rotter, I; Bird, J P

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In

  1. Consciousness and Quantum Physics: Empirical Research on the Subjective Reduction of the Statevector

    NASA Astrophysics Data System (ADS)

    Bierman, Dick J.; Whitmarsh, Stephen

    There are two major theoretical perspectives on the relation between quantum physics and consciousness. The first one is the proposal by Hameroff and Penrose CHEXX[16] that consciousness arises from the collapse of the statevector describing nonconscious brainstates. The second perspective is the proposition that consciousness acts as the ultimate measurement device, i. e. a measurement is defined as the collapse of the statevector describing the external physical system, due to interaction with a conscious observer. The latter (dualistic) proposition has resulted in the thought experiment with Schrodinger's cat and is generally considered as extremely unlikely. However, that proposition is, under certain assumptions, open to empirical verification. This was originally done by Hall et al. CHEXX[15]. A refined experiment to test the "subjective" reduction' interpretation of the measurement problem in quantum physics was reported by Bierman CHEXX[3]. In the latter experiment, auditory evoked potentials (AEPs) of subjects observing (previously unobserved) radioactive decay were recorded. These were compared with AEPs from events that were already observed and thus supposedly already collapsed into a singular state. Significant differences in brain signals of the observer were found. In this chapter we report a further replication that is improved upon the previous experiments by adding a nonquantum event as control. Differential effects of preobservation were expected not to appear in this classical condition since the quantum character of the event is presumed crucial. No differential effects were found in either condition, however. Marginal differences were found between the quantum and classical conditions. Possible explanations for the inability to replicate the previous findings are given as well as suggestions for further research.

  2. Generative Role of Experiments in Physics and in Teaching Physics: A Suggestion for Epistemological Reconstruction

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Mantyla, Terhi

    2006-01-01

    In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…

  3. Application of Teaching Strategies for Improving Students' Situational Motivation in Physical Education

    ERIC Educational Resources Information Center

    Almolda-Tomas, Francisco J.; Sevil-Serrano, Javier; Julian-Clemente, Jose A.; Abarca-Sos, Alberto; Aibar-Solana, Alberto; Garcia-Gonzalez, Luis

    2014-01-01

    Introduction: Physical Education (PE) is a way of promoting sports in adolescents, and teachers can encourage this sport adherence by generating motivation in students through their teaching intervention. The aim of the study was to develop and implement teaching intervention strategies to generate an optimal motivational climate and assess their…

  4. Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country

    ERIC Educational Resources Information Center

    Hofer, Sarah I.

    2015-01-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…

  5. Teaching and testing physical examination skills without the use of patients.

    PubMed

    Karnath, Bernard; Thornton, William; Frye, Ann W

    2002-07-01

    To design a cardiopulmonary physical exam curriculum that does not involve the use of patients. Bedside teaching is becoming a lost art, and the use of alternative methods of instruction such as simulation has become increasingly important. Simulators have been shown to enhance physical examination skills of students and physicians in training.(1) In 1995, a program was started to improve cardiopulmonary physical diagnosis and the teaching of auscultation at the University of Texas Medical Branch at Galveston (UTMB). The teaching manikin "Harvey" played a vital role in the development of the new curriculum. In 1997, UTMB adopted an organ-based approach to the basic science curriculum. The cardiopulmonary module in the basic science curriculum was a ten-week course taught in the second year of medical school. The physical diagnosis section of that course involved six instructional hours; four of the six hours were dedicated to cardiac auscultation and two hours to pulmonary auscultation. Only simulators and CD-ROMs were used for instruction. The 184 second-year medical students at UTMB were formed into small groups for instruction and practice. Although "Harvey" was an effective teaching tool, other simulators had to be developed for testing students' skills after instruction. It would be very difficult to administer a skills OSCE for 184 students without the development of several smaller transportable simulators. A commercially available blood pressure simulator from the Medical Plastics Laboratory, Inc., Gatesville, TX, was used to test the accuracy of students' blood pressure readings. Small auscultation transducers combined with a palpable pulse simulator, developed by one of the authors (WT) in collaboration with Andries Acoustics, Spicewood, TX, were used to efficiently test students' proficiency in cardiopulmonary auscultation. Digital simulated cardiopulmonary sounds were recorded onto a standard CD-ROM mini-disc and transmitted to the small transducers

  6. How Things Work: Teaching Physics in the Context of Everyday Objects

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2015-03-01

    How Things Work is an unconventional introduction to physics, a course that starts with whole objects and looks inside them to see what makes them work. Effectively ``case-study physics,'' it is designed primarily for non-science students who are unsure of the role of physics in the world and are looking for relevance in their studies. How Things Work is essentially the generalization of context-based introductory courses (Physics of the Human Body, Physics of the Automobile, and Physics of Music) and demonstrates that when physics is taught in the context of ordinary objects, these students are enthusiastic about it, look forward to classes, ask insightful questions, experiment on their own, and find themselves explaining to friends and family how things in their world work. In this talk, I will discuss the concept and structure of a How Things Work course and look briefly at how to teach its objects and assess what students learn from it. Although this course focuses on concepts rather than on calculations, it is rich in physics and requires that students think hard about the world around them. It also teaches problem solving and logical thinking skills, and demands that students face their misconceptions and failures of intuition. Lastly, it is actually quantitative in many respects, though its results are usually more words than numbers: your weight, the battery's voltage, or the acceleration due to gravity.

  7. Improving Physics Teaching Materials on Sound for Visually Impaired Students in High School

    ERIC Educational Resources Information Center

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry

    2017-01-01

    When visually impaired students attend regular high school, additional materials are necessary to help them understand physics concepts. The time for teachers to develop teaching materials for such students is scarce. Visually impaired students in regular high school physics classes often use a braille version of the physics textbook. Previously,…

  8. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse

  9. Andreev reflections and the quantum physics of black holes

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreenath K.; Jordan, Andrew N.

    2017-12-01

    We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.

  10. Validation of a Teachers' Achievement Goal Instrument for Teaching Physical Education

    ERIC Educational Resources Information Center

    Wang, Jian; Shen, Bo; Luo, Xiaobin; Hu, Qingshan; Garn, Alex C.

    2018-01-01

    Purpose: Using Butler's teacher achievement goal orientation as a conceptual framework, we developed this study to validate a teachers' achievement goal instrument for teaching physical education. Methods: A sample of 322 Chinese physical education teachers participated in this study and completed measures of achievement goal orientations and job…

  11. Report on using TIPS (Teaching Information Processing System) in teaching physics and astronomy

    NASA Astrophysics Data System (ADS)

    Folland, Nathan O.; Marchini, Robert R.; Rhyner, Charles R.; Zeilik, Michael

    1983-05-01

    A computer-managed instruction system, TIPS, has been used for over a decade in the teaching of diverse disciplines. This paper describes the recent use of TIPS in physics and astronomy courses at Kansas State University, Memphis State University, University of New Mexico, and University of Wisconsin-Green Bay. Student reactions to TIPS were largely positive, but the degree of success in improving student performance reported in many articles has not been observed.

  12. An Examination of Greek Physical Educators' Implementation and Perceptions of Spectrum Teaching Styles

    ERIC Educational Resources Information Center

    Syrmpas, Ioannis; Digelidis, Nikolaos; Watt, Anthony

    2016-01-01

    The main purpose of the present study was to examine Greek physical education (PE) teachers' self-reported use of the Spectrum of teaching styles and their perceptions of the benefits of adopting these styles for their students. An additional goal was to explore the teachers' perceived ability to implement these teaching approaches. The…

  13. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    NASA Astrophysics Data System (ADS)

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-06-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  14. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  15. The Relationship between Alienation Levels of Physical Education Teacher Candidates and Their Attitudes towards the Teaching Profession

    ERIC Educational Resources Information Center

    Erbas, Mustafa Kayihan

    2014-01-01

    This study aimed to determine the alienation levels and attitudes of physical education teacher candidates towards the teaching profession and identify the relationship between their alienation levels and their attitudes towards teaching. The study group consisted of 695 teacher candidates studying in physical education and sports teaching…

  16. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    ERIC Educational Resources Information Center

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  17. Formal and physical equivalence in two cases in contemporary quantum physics

    NASA Astrophysics Data System (ADS)

    Fraser, Doreen

    2017-08-01

    The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation-a mathematical transformation that takes the time variable t to negative imaginary time-it-was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a "translation manual" between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in

  18. Resources and approaches for teaching physics to pre-health and life science majors

    NASA Astrophysics Data System (ADS)

    Widenhorn, Ralf

    2014-03-01

    As science is advancing, the skill set for a physician or medical researcher today and in the future is very different than it has been in the past. As an example, the American Association of Medical Colleges revised the Medical College Admissions Test (MCAT) to reflect this dynamic environment. Because of these changes, the needs of students entering into these professions are often not met by a traditional physics course. Developing curriculum for an introductory physics course that helps to prepare life science and pre-health students can be challenging for many physics instructors who lack a strong foundation in biology or medicine. This presentation will address various approaches that physics instructors without a background in life sciences can use to successfully teach an introductory physics course for life science and pre-heath students. For these courses, an online resource may be a useful tool. Online resources already exist today, but their utility relies on active engagement and sharing of teaching material by physics instructors possessing a background in both physics and the life sciences. This talk will address ways for the biomedical physics community to contribute to this effort.

  19. Physics Teachers' Views on Teaching the Concept of Energy

    ERIC Educational Resources Information Center

    Bezen, Sevim; Bayrak, Celal; Aykutlu, Isil

    2016-01-01

    Problem Statement: With the advancement of technology, energy as a concept has become part of the every aspects of life, and it becomes more and more important day by day. Since 2013, the concept of energy has become part of the updated physics education program in Turkey. Teaching the concept of energy is a significant undertaking; most students…

  20. An Annotated Bibliography of Research into the Teaching and Learning of the Physical Sciences at the Higher Education Level.

    ERIC Educational Resources Information Center

    Palmer, David

    This document contains an annotated bibliography aimed at the teaching of the physical sciences at the tertiary level to those who wish to become more informed about teaching related research evidence and undertake science education research. The bibliography offers an overview of teaching and learning in the physical sciences and key references…

  1. Special issue on quantum physics with non-Hermitian operators Special issue on quantum physics with non-Hermitian operators

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.

    2012-01-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the

  2. Special issue on quantum physics with non-Hermitian operators Special issue on quantum physics with non-Hermitian operators

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.

    2012-01-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the

  3. The quantum universe

    NASA Astrophysics Data System (ADS)

    Hey, Anthony J. G.; Walters, Patrick

    This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.

  4. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema

    Giddings, Steve

    2018-02-02

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  5. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema

    Giddings, Steve

    2018-05-23

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  6. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema

    Giddings, Steven

    2018-02-09

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  7. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steve

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  8. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steven

    2010-09-07

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  9. Effects of Subject-Matter Knowledge in the Teaching of Biology and Physics.

    ERIC Educational Resources Information Center

    Hashweh, Maher Z.

    An analysis of science teacher's knowledge of specific biology and physics topics and the effects of this knowledge on their planning for instruction and on simulated teaching are discussed in this report. Six experienced secondary school teachers participated in the study. Each teacher's knowledge of a biology topic and a physics topic was…

  10. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the

  11. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.

    PubMed

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert

    2013-06-14

    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  12. Analysing the Problems of Science Teachers That They Encounter While Teaching Physics Education

    ERIC Educational Resources Information Center

    Demir, Cihat; Sincar, Burhan; Çelik, Ridvan

    2015-01-01

    Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters…

  13. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.

    PubMed

    Tarlacı, Sultan; Pregnolato, Massimo

    2016-05-01

    The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and

  14. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    ERIC Educational Resources Information Center

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  15. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    ERIC Educational Resources Information Center

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  16. The Second Law and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    2008-08-01

    In this talk, I discuss the mystery of the second law and its relation to quantum information. There are many explanations of the second law, mostly satisfactory and not mutually exclusive. Here, I advocate quantum mechanics and quantum information as something that, through entanglement, helps resolve the paradox or the puzzle of the origin of the second law. I will discuss the interpretation called quantum Darwinism and how it helps explain why our world seems so classical, and what it has to say about the permanence or transience of information. And I will discuss a simple model illustrating why systems away from thermal equilibrium tend to be more complicated.

  17. Majorana Fermions in Particle Physics, Solid State and Quantum Information

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.

    This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.

  18. Teaching Physics at a Business College: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Finberg, Sharon

    2003-10-01

    Most physicists are familiar with the challenge of teaching physics to non-science students. At Bentley College, a premier business university, we have unique challenges and opportunities. Newsweek magazine (Sept. 1, 2003) named Bentley College among the 12 "Hot Schools" for 2004 and the most "career-focused." Undergraduates intent on business majors often perceive physics as unbearable and opt for courses in other science disciplines to fulfill requirements. Within a relatively short period of time, I have successfully applied various strategies to attract these business-minded students to our one-semester "Basic Physics" course, such changing to a highly experiential course and including examples from many consumer products. Innovative one-semester elective courses aimed at specific interests such as energy, sports, music and the visual arts meet the challenge of enticing students to physics courses to complete their math/science elective requirement.

  19. Effect of a Physical Examination Teaching Program on the Behavior of Medical Residents

    PubMed Central

    McMahon, Graham T; Marina, Ovidiu; Kritek, Patricia A; Katz, Joel T

    2005-01-01

    Context The reliance on physical examination as a diagnostic aid is in decline. Objective To determine whether an educational program can increase the use of physical examination by medical residents. Design and Participants A series of educational workshops were provided to 47 second- and third-year medical residents at a large academic teaching hospital. Measurements Interns and students reported the frequency and depth of clinical examination performance on morning rounds by their residents before and up to six months after the workshops. Behavior before and after the workshops was compared using a mixed model. Results A total of 374 reports were returned (77% response). After adjusting for the type of service and observer, there was a statistically significant 23% increase (P=.02) in the performance of physical examination among residents who attended the course. Residents significantly increased the fraction of patients they examined on rounds (absolute increase 11%, P=.002) but did not increase the depth of their examination. The change was greatest on general medical teams, among whom the performance of physical examination had been least frequent. Teaching and feedback events on medicine teams by residents to their interns (2.8 and 1.1 events per 2 weeks, respectively) and medical students (5.9 and 2.8 events per 2 weeks, respectively) remained infrequent. Conclusions A skills improvement program can significantly increase the frequency of physical examination, but teaching and feedback events remain sporadic and infrequent. PMID:16050879

  20. Japanese Physical Education Teachers' Beliefs about Teaching Students with Disabilities

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel R.; Murata, Nathan M.; Maeda, Julienne K.

    2007-01-01

    The purpose of this study was to describe Japanese physical education (PE) teachers' beliefs about teaching students with disabilities in integrated classes. Participants were five Japanese PE teachers (one women and four men). The research was descriptive and qualitative, using an interviewing method. Data were gathered in interviews, analysed…

  1. Using a Dual Safeguard Web-Based Interactive Teaching Approach in an Introductory Physics Class

    ERIC Educational Resources Information Center

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-01-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities…

  2. Teaching Perspectives of Chinese Teachers: Compatibility with the Goals of the Physical Education Curriculum

    ERIC Educational Resources Information Center

    Wang, Lijuan; Ha, Amy Sau-ching; Wen, Xu

    2014-01-01

    This research primarily aimed to examine the compatibility of teaching perspectives of teachers with the Physical Education (PE) curriculum in China. The Teaching Perspective Inventory (Pratt, 1998) was used to collect data from 272 PE teachers. Descriptive statistics, MANOVAs, and correlational procedures were used for quantitative data analysis.…

  3. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of

  4. Does Teaching Experience Matter? The Beliefs and Practices of Beginning and Experienced Physics Teachers

    ERIC Educational Resources Information Center

    Caleon, Imelda S.; Tan, Yuen Sze Michelle; Cho, Young Hoan

    2018-01-01

    This study utilized multiple data sources to examine the beliefs about learning and teaching physics and the instructional practices of five beginning teachers and seven experienced teachers from Singapore. Our study was implemented in the unique context of teachers teaching the topic of electricity to students grouped according to academic…

  5. Student views on the effective teaching of physical examination skills: a qualitative study.

    PubMed

    Martens, Merel J C; Duvivier, Robbert J; van Dalen, Jan; Verwijnen, G Maarten; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2009-02-01

    The lack of published studies into effective skills teaching in clinical skills centres inspired this study of student views of the teaching behaviours of skills teachers. We organised focus group discussions with students from Years 1-3 of a 6-year undergraduate medical curriculum. A total of 30 randomly selected students, divided into three groups, took part in two sessions. They discussed what teaching skills helped them to acquire physical examination skills. Students' opinions related to didactic skills, interpersonal and communication skills and preconditions. Students appreciated didactic skills that stimulate deep and active learning. Another significant set of findings referred to teachers' attitudes towards students. Students wanted teachers to be considerate and to take them seriously. This was reflected in student descriptions of positive behaviours, such as: 'responding to students' questions'; 'not exposing students' weaknesses in front of the group', and '[not] putting students in an embarrassing position in skill demonstrations'. They also appreciated enthusiasm in teachers. Important preconditions included: the integration of skills training with basic science teaching; linking of skills training to clinical practice; the presence of clear goals and well-structured sessions; good time management; consistency of teaching, and the appropriate personal appearance of teachers and students. The teaching skills and behaviours that most facilitate student acquisition of physical examination skills are interpersonal and communication skills, followed by a number of didactic interventions, embedded in several preconditions. Findings related to interpersonal and communication skills are comparable with findings pertaining to the teaching roles of tutors and clinical teachers; however, the didactic skills merit separate attention as teaching skills for use in skills laboratories. The results of this study should be complemented by a study performed in a

  6. High School Physical Education Teachers' Beliefs about Teaching Students with Mild to Severe Disabilities

    ERIC Educational Resources Information Center

    Casebolt, Kevin M.; Hodge, Samuel R.

    2010-01-01

    The purpose of this study was to analyze high school physical education teachers' beliefs about teaching students with disabilities in inclusive physical education. The participants (3 men, 2 women) were certified physical education teachers at four suburban high schools. The research method was descriptive-qualitative using a case study approach…

  7. Preparing Adapted Physical Educators to Teach Students with Autism: Current Practices and Future Directions

    ERIC Educational Resources Information Center

    Healy, Sean; Judge, Joann P.; Block, Martin E.; Kwon, Eun Hye

    2016-01-01

    For many students with autism spectrum disorder, physical education is the responsibility of an adapted physical education specialist. In this study, we examined the training focused on teaching students with autism spectrum disorder received by a sample of 106 adapted physical education specialists. Competencies necessary on a course to train…

  8. Physics Teaching in the Search for Its Self: From Physics as a Discipline to Physics as a Discipline-Culture

    NASA Astrophysics Data System (ADS)

    Tseitlin, Michael; Galili, Igal

    The crisis in physics education necessitates searching for new relevant meanings of physics knowledge. This paper advocates regarding physics as the dialogue among discipline-cultures, rather than as a cluster of disciplines to be an appropriate subject of science education. In a discipline-culture one can distinguish elements of knowledge as belonging to either (1) central principles and paradigms - nucleus, (2) normal disciplinary area - body of knowledge or (3) rival knowledge of the subject - periphery. It appears that Physics cannot be represented as a simple dynamic wholeness, that is, cannot be arranged in a single tripartite (triadic) structure (this result presents a deconstruction), but incorporates several discipline-cultures. Bound together by family similarity, they maintain a conceptual discourse. Teaching physics as a culture is performed in polyphonic space of different worldviews; in other words, it is performed in a Kontrapunkt. Implications of the tripartite code are suggested with regard to representation of scientific revolutions, individual conceptual change, physics curricula and the typology of students learning science.

  9. Quality in university physics teaching: is it being achieved?

    NASA Astrophysics Data System (ADS)

    1998-11-01

    This was the title of a Physics Discipline Workshop held at the University of Leeds on 10 and 11 September 1998. Organizer Ashley Clarke of the university's Physics and Astronomy Department collected together an interesting variety of speakers polygonically targeting the topic, although as workshops go the audience didn't have to do much work except listen. There were representatives from 27 university physics departments who must have gone away with a lot to think about and possibly some new academic year resolutions to keep. But as a non-university no-longer teacher of (school) physics I was impressed with the general commitment to the idea that if you get the right quality of learning the teaching must be OK. I also learned (but have since forgotten) a lot of new acronyms. The keynote talk was by Gillian Hayes, Associate Director of the Quality Assurance Agency for Higher Education (QAA). She explained the role and implementation of the Subject Reviews that QAA is making for all subjects in all institutions of higher education on a five- to seven-year cycle. Physics Education hopes to publish an article about all this from QAA shortly. In the meantime, suffice it to say that the review looks at six aspects of provision, essentially from the point of view of enhancing students' experiences and learning. No doubt all participants would agree with this (they'd better if they want to score well on the Review) but may have been more worried by the next QAA speaker, Norman Jackson, who drummed in the basic facts of life as HE moves from an elite provision system to a mass provision system. He had an interesting graph showing how in the last ten years or so more students were getting firsts and upper seconds and fewer getting thirds. It seems that all those A-level students getting better grades than they used to are carrying on their good luck to degree level. But they still can't do maths (allegedly) and I doubt whether Jon Ogborn (IoP Advancing Physics Project

  10. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  11. Pre-Service Physics Teachers' Understanding of the Relational Structure of Physics Concepts: Organising Subject Contents for Purposes of Teaching

    ERIC Educational Resources Information Center

    Koponen, Ismo; Nousiainen, Maija

    2013-01-01

    Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…

  12. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  13. Teaching Einsteinian physics at schools: part 3, review of research outcomes

    NASA Astrophysics Data System (ADS)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.

  14. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  15. On the Meaning of Element in the Science of Italic Tradition, the Question of Physical Objectivity (and/or Physical Meaning) and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boscarino, Giuseppe

    2006-06-01

    It is questioned: Is quantum mechanics a new science or a new (or rather old) philosophy of physical science? It is shown that Einstein's attempt in his article of 1935 to bring the concept of "element" from the classical (we call it Italic) philosophical-epistemological tradition, which goes under the names of Pythagoras Parmenides, Democritus, and Newton, into quantum mechanical theory is unclear, inadequate and contradictory.

  16. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  17. Exploring Teaching Practices in Physical Education with Culturally Diverse Classes: A Cross-Cultural Study

    ERIC Educational Resources Information Center

    Dagkas, Symeon

    2007-01-01

    This is a cross-cultural comparative study that sets out to explore teachers' knowledge, understanding and practices of the teaching of Physical Education (PE) to students from different cultural backgrounds. More specifically, it explores key issues in the teaching of PE to Muslim students. Thirteen PE teachers, six from England and seven from…

  18. Using Triage Figuratively to Describe Effective Teaching in Physical Education

    ERIC Educational Resources Information Center

    Henkel, Steven A.

    2016-01-01

    This article presents critical outcomes for physical education in a "triage" framework by comparing the process of determining the severity of injuries at the scene of an accident to the process of prioritizing decisions in the classroom. The intent is to reduce all possible outcomes of effective teaching to six nonnegotiable outcomes…

  19. Integrating computers in physics teaching: An Indian perspective

    NASA Astrophysics Data System (ADS)

    Jolly, Pratibha

    1997-03-01

    The University of Delhi has around twenty affiliated undergraduate colleges that offer a three-year physics major program to nearly five hundred students. All follow a common curriculum and submit to a centralized examination. This structure of tertiary education makes it relatively difficult to implement radical or rapid changes in the formal curriculum. The technology onslaught has, at last, irrevocably altered this; computers are carving new windows in old citadels and defining the agenda in teaching-learning environments the world over. In 1992, we formally introduced Computational Physics as a core paper in the second year of the Bachelor's program. As yet, the emphasis is on imparting familiarity with computers, a programming language and rudiments of numerical algorithms. In a parallel development, we also introduced a strong component of instrumentation with modern day electronic devices, including microprocessors. Many of us, however, would like to see not just computer presence in our curriculum but a totally new curriculum and teaching strategy that exploits, befittingly, the new technology. The current challenge is to realize in practice the full potential of the computer as the proverbial versatile tool: interfacing laboratory experiments for real-time acquisition and control of data; enabling rigorous analysis and data modeling; simulating micro-worlds and real life phenomena; establishing new cognitive linkages between theory and empirical observation; and between abstract constructs and visual representations.

  20. In Appreciation Julian Schwinger: From Nuclear Physics and Quantum Electrodynamics to Source Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.

    2007-01-01

    Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.

  1. Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results

    NASA Astrophysics Data System (ADS)

    Marchetti, Domingos H. U.; Wreszinski, Walter F.

    2013-05-01

    Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.

  2. The Teaching of Physics in Cuba from Colonial Times to 1959

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Baracca, Angelo

    The present paper will concentrate on the study of the first one and a half centuries of the teaching of physics in Cuba, starting from the early interest or activities in this. To provide the appropriate context, we will begin by going back in time to the early local signs of a modern scientific sensitivity, scornful of scholastic teaching and fond of experimental approaches, under the belated but stimulating influence of the European Enlightenment. We will go over individual cases during the initial phase of the country's academic physics in some detail, firstly during the initial period of colonial rule, and then from the beginning of the twentieth century to the triumph of the 1959 Revolution earlier that year. We thus hope to make the fundamental aspects of our subject reasonably consistent and abiding, even though further historical research may eventually throw new light on relevant details, personalities and events.

  3. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  4. Using LEDs and Phosphorescent Materials to Teach High School Students Quantum Mechanics: A Guided-Inquiry Laboratory for Introductory High School Chemistry

    ERIC Educational Resources Information Center

    Green, William P.; Trotochaud, Alan; Sherman, Julia; Kazerounian, Kazem; Faraclas, Elias W.

    2009-01-01

    The quantization of electronic energy levels in atoms is foundational to a mechanistic explanation of the periodicity of elemental properties and behavior. This paper presents a hands-on, guided inquiry approach to teaching this concept as part of a broader treatment of quantum mechanics, and as a foundation for an understanding of chemical…

  5. Teaching Games and Sport for Understanding: Exploring and Reconsidering its Relevance in Physical Education

    ERIC Educational Resources Information Center

    Stolz, Steven; Pill, Shane

    2014-01-01

    Over 30 years ago the original teaching games for understanding (TGfU) proposition was published in a special edition of the Bulletin of Physical Education (Bunker and Thorpe, 1982). In that time TGfU has attracted significant attention from a theoretical and pedagogical perspective as an improved approach to games and sport teaching in physical…

  6. Self-Efficacy: Its Effects on Physical Education Teacher Candidates' Attitudes toward the Teaching Profession

    ERIC Educational Resources Information Center

    Eroglu, Cihan; Unlu, Huseyin

    2015-01-01

    This study's main aim was to determine physical education (PE) teacher candidates' self-efficacy levels and attitudes toward the PE teaching profession. Designed on a survey model, this study was conducted during the 2011-2012 academic year. A total of 601 PE teacher candidates studying in the PE and sports teaching programs of six different…

  7. Japanese Physical Educators' Beliefs on Teaching Students with Disabilities at Urban High Schools

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel R.

    2009-01-01

    The purpose of this study was to analyse Japanese physical education teachers' beliefs on teaching students with disabilities in integrated classes. The participants were five physical education teachers in Japan. Situated in planned behaviour theory developed by Icek Ajzen in 1985, the research method was descriptive-qualitative case study as…

  8. On the theory of self-adjoint extensions of symmetric operators and its applications to quantum physics

    NASA Astrophysics Data System (ADS)

    Ibort, A.; Pérez-Pardo, J. M.

    2015-04-01

    This is a series of five lectures around the common subject of the construction of self-adjoint extensions of symmetric operators and its applications to Quantum Physics. We will try to offer a brief account of some recent ideas in the theory of self-adjoint extensions of symmetric operators on Hilbert spaces and their applications to a few specific problems in Quantum Mechanics.

  9. Quantum technology: from research to application

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter

    2016-05-01

    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.

  10. A Study on the Necessity of Introducing Teaching-Plan-Telling into Physical Education Undergraduates' Courses in Normal Universities

    ERIC Educational Resources Information Center

    Sun, Guodong

    2011-01-01

    The cultivation target of physical education major in normal universities is mainly physical teachers' qualification in basic education. Training of teaching-plan-telling on students of sports teaching major in normal universities has significant meaning to enhance the quality of students in a comprehensive way, realize the target of professional…

  11. Approach-Method Interaction: The Role of Teaching Method on the Effect of Context-Based Approach in Physics Instruction

    ERIC Educational Resources Information Center

    Pesman, Haki; Ozdemir, Omer Faruk

    2012-01-01

    The purpose of this study is to explore not only the effect of context-based physics instruction on students' achievement and motivation in physics, but also how the use of different teaching methods influences it (interaction effect). Therefore, two two-level-independent variables were defined, teaching approach (contextual and non-contextual…

  12. Teaching evidence based practice in physical therapy in a developing country: a national survey of Philippine schools

    PubMed Central

    2013-01-01

    Background Early education on the foundations of evidence based practice (EBP) is advocated as a potent intervention toward enhancing EBP uptake among physical therapists. Little is known about the extent to which EBP is integrated in educational curricula in developing countries where the benefits of EBP are more acutely needed. This study sought to describe EBP education in Philippine physical therapy schools, including the challenges encountered by educators in teaching EBP. Methods A national survey of higher education institutions offering an undergraduate degree program in physical therapy was conducted from August 2011 through January 2012. A 35-item questionnaire was developed to gather data on whether or not EBP was taught, specific EBP content covered and courses in which content was covered, teaching and evaluation methods, and challenges in teaching EBP. Data were analyzed descriptively. Results The study had a response rate of 55.7% (34/61). Majority of the participating educational institutions (82%, 28/34) reported teaching EBP by incorporating EBP content in the professional courses. Among those that did not teach EBP, inadequate educator competence was the leading barrier. Courses commonly used to teach EBP were those on research (78.6%, 22/28), therapy planning (71.4%, 20/28), treatment skills (57.1-64.3%, 16-18/28), and undergraduate thesis (60.7%, 17/28). Various EBP contents were covered, with statistical concepts more frequently taught compared with critical EBP content. Lectures and journal reports were the usual teaching methods (96.4%, 27/28 and 89.3%, 25/28, respectively) while written examinations, completion of an undergraduate thesis, and oral reports (82.1%, 23/28, 78.6%, 22/28, and 78.6%, 22/28, respectively) were often used in evaluation. Students’ inadequate knowledge of statistics and lack of curricular structure for EBP were identified as leading challenges to teaching (75%, 21/28 and 50%, 14/28, respectively). Conclusions Many

  13. Teaching evidence based practice in physical therapy in a developing country: a national survey of Philippine schools.

    PubMed

    Gorgon, Edward James R; Basco, Mark David S; Manuel, Almira T

    2013-11-22

    Early education on the foundations of evidence based practice (EBP) is advocated as a potent intervention toward enhancing EBP uptake among physical therapists. Little is known about the extent to which EBP is integrated in educational curricula in developing countries where the benefits of EBP are more acutely needed. This study sought to describe EBP education in Philippine physical therapy schools, including the challenges encountered by educators in teaching EBP. A national survey of higher education institutions offering an undergraduate degree program in physical therapy was conducted from August 2011 through January 2012. A 35-item questionnaire was developed to gather data on whether or not EBP was taught, specific EBP content covered and courses in which content was covered, teaching and evaluation methods, and challenges in teaching EBP. Data were analyzed descriptively. The study had a response rate of 55.7% (34/61). Majority of the participating educational institutions (82%, 28/34) reported teaching EBP by incorporating EBP content in the professional courses. Among those that did not teach EBP, inadequate educator competence was the leading barrier. Courses commonly used to teach EBP were those on research (78.6%, 22/28), therapy planning (71.4%, 20/28), treatment skills (57.1-64.3%, 16-18/28), and undergraduate thesis (60.7%, 17/28). Various EBP contents were covered, with statistical concepts more frequently taught compared with critical EBP content. Lectures and journal reports were the usual teaching methods (96.4%, 27/28 and 89.3%, 25/28, respectively) while written examinations, completion of an undergraduate thesis, and oral reports (82.1%, 23/28, 78.6%, 22/28, and 78.6%, 22/28, respectively) were often used in evaluation. Students' inadequate knowledge of statistics and lack of curricular structure for EBP were identified as leading challenges to teaching (75%, 21/28 and 50%, 14/28, respectively). Many physical therapy faculties across the

  14. Elementary Physical Education Teachers' Experiences in Teaching English Language Learners

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel R.

    2016-01-01

    The purpose of the current study was to describe and explain the views on teaching English Language Learners (ELLs) held by six elementary physical education (PE) teachers in the Midwest region of the United States. Situated in positioning theory, the research approach was descriptive-qualitative. The primary sources of data were face-to-face…

  15. Quantum Computer Games: Schrodinger Cat and Hounds

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  16. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  17. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  18. Total Physical Response: A Technique for Teaching All Skills in Spanish.

    ERIC Educational Resources Information Center

    Glisan, Eileen W.

    1986-01-01

    Presents a strategy for using an expanded version of Total Physical Response (TPR) as one tool for teaching listening, speaking, reading, and writing in Spanish. Variations of TPR are suggested for the purpose of implementing the technique within the foreign language curriculum. (Author/CB)

  19. Challenging Situations when Teaching Children with Autism Spectrum Disorders in General Physical Education

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Dillon, Suzanna R.

    2011-01-01

    As the first step of an instrument development, teaching challenges that occur when students with autism spectrum disorders are educated in general physical education were elicited using Goldfried and D'Zurilla's (1969) behavioral-analytic model. Data were collected from a convenience sample of 43 certified physical educators (29 women and 14 men)…

  20. A Proposal to Introduce a Topic of Contemporary Physics into High-School Teaching

    ERIC Educational Resources Information Center

    Santos, Wilma M.S.; Luiz, Adir M.; de Carvalho, Carlos R.

    2009-01-01

    This article presents an approach to integrate contemporary physics into high-school teaching. We present a simple way to understand mass spectroscopy using basic physics concepts, so that high-school students may have contact with recent topics of modern research. The main features of a time-of-flight (TOF) mass spectrometer using secondary…