Sample records for teaching scientific concepts

  1. Conceptual Teaching Based on Scientific Storyline Method and Conceptual Change Texts: Latitude-Parallel Concepts

    ERIC Educational Resources Information Center

    Uzunöz, Abdulkadir

    2018-01-01

    The purpose of this study is to identify the conceptual mistakes frequently encountered in teaching geography such as latitude-parallel concepts, and to prepare conceptual change text based on the Scientific Storyline Method, in order to resolve the identified misconceptions. In this study, the special case method, which is one of the qualitative…

  2. Promoting Scientific Literacy Using a Sociocritical and Problem-Oriented Approach to Chemistry Teaching: Concept, Examples, Experiences

    ERIC Educational Resources Information Center

    Marks, Ralf; Eilks, Ingo

    2009-01-01

    This paper revisits the discussion about the objectives of scientific literacy-oriented chemistry teaching, its connection to the German concept of "Allgemeinbildung", and the debate of "science through education" vs. "education through science". About 10 years ago the sociocritical and problem-oriented approach to…

  3. The influence of authentic scientific research experiences on teachers' conceptions of the nature of science (NOS) and their NOS teaching practices

    NASA Astrophysics Data System (ADS)

    Moriarty, Meghan A.

    This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.

  4. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  5. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    ERIC Educational Resources Information Center

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  6. Science Teaching as Educational Interrogation of Scientific Research

    ERIC Educational Resources Information Center

    Ginev, Dimitri

    2013-01-01

    The main argument of this article is that science teaching based on a pedagogy of questions is to be modeled on a hermeneutic conception of scientific research as a process of the constitution of texts. This process is spelled out in terms of hermeneutic phenomenology. A text constituted by scientific practices is at once united by a hermeneutic…

  7. The Relevance of Multi Media Skills in Teaching and Learning of Scientific Concepts in Secondary Schools in Lagos State, Nigeria

    ERIC Educational Resources Information Center

    Okedeyi, Abiodun S.; Oginni, Aderonke M.; Adegorite, Solomon O.; Saibu, Sakibu O.

    2015-01-01

    This study investigated the relevance of multi media skills in teaching and learning of scientific concepts in secondary schools. Self constructed questionnaire was administered to 120 students randomly selected in four secondary schools in Ojo Local Government Area of Lagos state. Data generated were analyzed using chi-square statistical…

  8. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    NASA Astrophysics Data System (ADS)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  9. Teaching Scientific Concepts with Transparent Detector Models: An Example from Optics.

    ERIC Educational Resources Information Center

    Allen, Sue; And Others

    This paper describes an attempt to facilitate students' learning of scientific concepts by using detectors that take as input physical information and output an instantiation of the concept. The principle hypothesis was that students would have a better understanding of the concept of image if they were taught to use a simplified, runnable model…

  10. Key-Aspects of Scientific Modeling Exemplified by School Science Models: Some Units for Teaching Contextualized Scientific Methodology

    ERIC Educational Resources Information Center

    Develaki, Maria

    2016-01-01

    Models and modeling are core elements of scientific methods and consequently also are of key importance for the conception and teaching of scientific methodology. The epistemology of models and its transfer and adaption to nature of science education are not, however, simple themes. We present some conceptual units in which school science models…

  11. Science on Stage: Engaging and teaching scientific content through performance art

    NASA Astrophysics Data System (ADS)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  12. Engaging Pre-Service Teachers to Teach Science Contextually with Scientific Approach Instructional Video

    NASA Astrophysics Data System (ADS)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning/CTL presents new concepts in real-life experiences and situations where students can find out the meaningful relationship between abstract ideas and practical applications. Implementing contextual teaching by using scientific approach will foster teachers to find the constructive ways of delivering and organizing science content. This research developed an instructional video that represented a modeling of using a scientific approach in CTL. The aim of this research are to engage pre-service teachers in learning how to teach CTL and to show how pre-service teachers’ responses about learning how to teach CTL using an instructional video. The subjects of this research were ten pre-service teachers in Department of Natural Sciences, Universitas Negeri Surabaya, Indonesia. All subjects observed the instructional video which demonstrated contextual teaching and learning combined with the scientific approach as they completed a worksheet to analyze the video content. The results showed that pre-service teachers could learn to teach contextually as well as applying the scientific approach in science classroom through a modeling in the instructional video. They also responded that the instructional video could help them to learn to teach each component contextual teaching as well as scientific approach.

  13. A pragmatic conception of science: Implications for science teaching

    NASA Astrophysics Data System (ADS)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  14. "Trees Live on Soil and Sunshine!"--Coexistence of Scientific and Alternative Conception of Tree Assimilation.

    PubMed

    Thorn, Christine Johanna; Bissinger, Kerstin; Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner's characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on "soil and sunshine", representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.

  15. Development of Teaching Materials Based Interactive Scientific Approach towards the Concept of Social Arithmetic For Junior High School Student

    NASA Astrophysics Data System (ADS)

    Abadi, M. K.; Pujiastuti, H.; Assaat, L. D.

    2017-02-01

    The scientific approach is the characteristic of the curriculum 2013. In learning to use a scientific approach, learning process consists of five stages: observe, ask, try, reasoning and convey. In the curriculum 2013 the source of learning is a book, print media, electronic and about nature or relevant learning resources. Most of the print instructional materials on the market does not appropriate in the curriculum 2013. Teaching materials with a scientific approach, beside that to the teaching materials should motivate students to not be lazy, do not get bored, and more eager to learn mathematics. So the development of scientific-based interactive teaching materials that if this approach to answer the challenge. The purpose of this research is to create teaching materials appropriate to the curriculum 2013 that is based on scientific approach and interactive. This study used research and developed methodology. The results of this study are scientific based interactive teaching materials can be used by learners. That can be used by learners are then expected to study teaching materials can be used in android smartphone and be used portable.

  16. Engaging pre-service teachers to teach science contextually with scientific approach instructional video

    NASA Astrophysics Data System (ADS)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning (CTL) present new concepts in real experiences and situations, where students can find out the meaningful relationship between abstract ideas and practical applications. Implementation of CTL using scientific approach fosters teachers to find constructive ways of delivering and organizing science contents in science classroom settings. An instructional video for modelling by using a scientific approach in CTL was then developed. Questionnaires with open-ended questions were used to, asking whether modelling through instructional video could help them to teach science contextually with a scientific approach or not. Data for pre-service teachers’ views were analyzed descriptively. The aims of this research are to engage pre-service teachers in learning how to teach CTL and to show how their responses to learning and how to teach CTL using the video. The study showed that ten pre-service teachers in science department were involved, all observed through videos that demonstrated a combined material of CTL and scientific approach and completed worksheets to analyze the video contents. The results show that pre-service teachers could learn to teach contextual teaching and make use of scientific approach in science classroom settings with the help of model in the video.

  17. Semantic Mistakes and Didactic Difficulties in Teaching the "Amount of Substance" Concept: A Useful Model

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Azizoglu, Nursen

    2013-01-01

    Textbooks still have the distinction of being the most dominant teaching tool in science teaching. The manner in which a scientific concept is expressed in a textbook is of importance in the in-depth learning process of that concept. With this in mind, problems with expressing the "amount of substance" concept were reviewed in 15…

  18. An analysis of the concept of teaching in elementary school science education

    NASA Astrophysics Data System (ADS)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  19. CONCEPT LEARNING AND CONCEPT TEACHING.

    ERIC Educational Resources Information Center

    GLASER, ROBERT

    REVIEWED ARE THE PSYCHOLOGICAL STUDIES OF CONCEPT LEARNING AS THEY RELATE TO CONCEPT TEACHING. AN ANALYSIS IS MADE OF THE NATURE OF CONCEPT LEARNING AS IT IS STUDIED IN THE PSYCHOLOGIST'S LABORATORY, INCLUDING THE NATURE OF CONCEPT TASKS AS THEY APPEAR IN SUBJECT MATTER LEARNING. THE PRIMARY KINDS OF CONCEPT LEARNING SITUATIONS, INCLUDING THE…

  20. The Effect of Using Jigsaw Strategy in Teaching Science on the Acquisition of Scientific Concepts among the Fourth Graders of Bani Kinana Directorate of Education

    ERIC Educational Resources Information Center

    Hamadneh, Qaseem Mohammad Salim

    2017-01-01

    The study aimed to identify the effect of using Jigsaw strategy in teaching science on the acquisition of scientific concepts among the fourth graders of Bani Kinana Directorate of Education compared to the traditional way. The study sample consisted of 70 male and female students, divided into two groups: experimental and control where the…

  1. Learning Gains for Core Concepts in a Serious Game on Scientific Reasoning

    ERIC Educational Resources Information Center

    Forsyth, Carol; Pavlik, Philip, Jr.; Graesser, Arthur C.; Cai, Zhiqiang; Germany, Mae-lynn; Millis, Keith; Dolan, Robert P.; Butler, Heather; Halpern, Diane

    2012-01-01

    "OperationARIES!" is an Intelligent Tutoring System that teaches scientific inquiry skills in a game-like atmosphere. Students complete three different training modules, each with natural language conversations, in order to acquire deep-level knowledge of 21 core concepts of research methodology (e.g., correlation does not mean…

  2. “Trees Live on Soil and Sunshine!”- Coexistence of Scientific and Alternative Conception of Tree Assimilation

    PubMed Central

    Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile

  3. Exploring Students' Visual Conception of Matter: Towards Developing a Teaching Framework Using Models

    ERIC Educational Resources Information Center

    Espinosa, Allen A.; Marasigan, Arlyne C.; Datukan, Janir T.

    2016-01-01

    This study explored how students visualise the states and classifications of matter with the use of scientific models. Misconceptions of students in using scientific models were also identified to formulate a teaching framework. To elicit data in the study, a Visual Conception Questionnaire was administered to thirty-four (34), firstyear, general…

  4. A generative model for scientific concept hierarchies.

    PubMed

    Datta, Srayan; Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

  5. A generative model for scientific concept hierarchies

    PubMed Central

    Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409

  6. Placing Science into Its Human Context: Using Scientific Autobiography to Teach Chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Felix A.; Seeman, Jeffrey I.

    2001-12-01

    Scientific autobiography and biography can improve chemistry learning by helping students relate otherwise abstract concepts to important events in the lives of fellow human beings. In advanced courses, reading scientific autobiography and biography can help students see how scientific collaboration, advances in instrumentation, and major events in human lives influence the development of chemical ideas over time. In addition, studying many years of an individual's research program can demonstrate the progress of science, the connectivity of research findings, and the validity of experimental results over many decades. This paper describes the use of an autobiography of an eminent chemist in an advanced undergraduate chemistry course. This approach not only enhances the teaching of chemical concepts, but it also provides students with expanded opportunities for cooperative and self-directed learning activities.

  7. Handaxes, Concepts, and Teaching

    ERIC Educational Resources Information Center

    Chazan, Michael

    2012-01-01

    This paper argues that teaching of concepts is deeply rooted in human phylogeny. The basis of this argument is a consideration of the type of knowledge used to make handaxes, a tool that is found in the archaeological record beginning around 1.8 million years ago. A distinction is made between the human capacity for teaching concepts, which has a…

  8. Badminton--Teaching Concepts.

    ERIC Educational Resources Information Center

    Gibbs, Marilyn J.

    1988-01-01

    Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)

  9. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    ERIC Educational Resources Information Center

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-01-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation…

  10. Teaching Radiology Physics Interactively with Scientific Notebook Software.

    PubMed

    Richardson, Michael L; Amini, Behrang

    2018-06-01

    The goal of this study is to demonstrate how the teaching of radiology physics can be enhanced with the use of interactive scientific notebook software. We used the scientific notebook software known as Project Jupyter, which is free, open-source, and available for the Macintosh, Windows, and Linux operating systems. We have created a scientific notebook that demonstrates multiple interactive teaching modules we have written for our residents using the Jupyter notebook system. Scientific notebook software allows educators to create teaching modules in a form that combines text, graphics, images, data, interactive calculations, and image analysis within a single document. These notebooks can be used to build interactive teaching modules, which can help explain complex topics in imaging physics to residents. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. The Relationship between Conceptions of Teaching and Approaches to Teaching

    ERIC Educational Resources Information Center

    Lam, Bick-Har; Kember, David

    2006-01-01

    The relationship between conceptions of teaching and approaches to teaching was explored in a study of 18 secondary school art teachers in Hong Kong. Conceptions of teaching approaches were fitted to a four-category model. Each of the categories was distinguished by reference to six relevant dimensions. As is the case in higher education,…

  12. Concept Teaching in Instrumental Music Education: A Literature Review

    ERIC Educational Resources Information Center

    Tan, Leonard

    2017-01-01

    This article is a review of research literature on the teaching of concepts in instrumental music education. It is organized in four parts (a) the value of concept teaching in large instrumental ensembles, (b) time spent teaching concepts during rehearsals, (c) approaches to concept teaching, and (d) implications for music education. Research has…

  13. Concept Maps as Tools for Teaching.

    ERIC Educational Resources Information Center

    Moreira, Marco A.

    1979-01-01

    Discusses how concept maps with two dimensional diagrams which show hierarchical relationships among concepts of a discipline can be used in teaching physics. An example for teaching a course in electromagnetism at the Federal University of Rio Grande do Sul, Brazil is presented. (HM)

  14. The coexistence of alternative and scientific conceptions in physics

    NASA Astrophysics Data System (ADS)

    Ozdemir, Omer F.

    The purpose of this study was to inquire about the simultaneous coexistence of alternative and scientific conceptions in the domain of physics. This study was particularly motivated by several arguments put forward in opposition to the Conceptual Change Model. In the simplest form, these arguments state that people construct different domains of knowledge and different modes of perception in different situations. Therefore, holding different conceptualizations is unavoidable and expecting a replacement in an individual's conceptual structure is not plausible in terms of instructional practices. The following research questions were generated to inquire about this argument: (1) Do individuals keep their alternative conceptions after they have acquired scientific conceptions? (2) Assuming that individuals who acquired scientific conceptions also have alternative conceptions, how are these different conceptions nested in their conceptual structure? (3) What kind of knowledge, skills, and reasoning are necessary to transfer scientific principles instead of alternative ones in the construction of a valid model? Analysis of the data collected from the non-physics group indicated that the nature of alternative conceptions is framed by two types of reasoning: reasoning by mental simulation and semiformal reasoning. Analysis of the data collected from the physics group revealed that mental images or scenes feeding reasoning by mental simulation had not disappeared after the acquisition of scientific conceptions. The analysis of data also provided enough evidence to conclude that alternative principles feeding semiformal reasoning have not necessarily disappeared after the acquisition of scientific conceptions. However, in regard to semiformal reasoning, compartmentalization was not as clear as the case demonstrated in reasoning by mental simulation; instead semiformal and scientific reasoning are intertwined in a way that the components of semiformal reasoning can easily

  15. Future Engineering Professors' Conceptions of Learning and Teaching Engineering

    ERIC Educational Resources Information Center

    Torres Ayala, Ana T.

    2012-01-01

    Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…

  16. Exploring the Relationship between Secondary Science Teachers' Subject Matter Knowledge and Knowledge of Student Conceptions While Teaching Evolution by Natural Selection

    ERIC Educational Resources Information Center

    Lucero, Margaret M.; Petrosino, Anthony J.; Delgado, Cesar

    2017-01-01

    The fundamental scientific concept of evolution occurring by natural selection is home to many deeply held alternative conceptions and considered difficult to teach. Science teachers' subject matter knowledge (SMK) and the pedagogical content knowledge (PCK) component of knowledge of students' conceptions (KOSC) can be valuable resources for…

  17. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    NASA Astrophysics Data System (ADS)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  18. Teaching toward a More Scientifically Literate Society

    ERIC Educational Resources Information Center

    LoGiudici, Raymond; Ende, Fred

    2010-01-01

    To teach scientific literacy to eighth graders, the authors created a yearlong project that emphasizes the various components and skills required to be a scientifically literate citizen. This project is broken into four separate components: skeptical thinking (pseudoscience), current-event article analysis, fiction and nonfiction literature, and…

  19. Self Concept and Nigerian Teacher-Trainees' Attitude Toward Teaching.

    ERIC Educational Resources Information Center

    Awanbor, David

    1996-01-01

    Surveys of Nigerian teacher trainees examined self-concept and attitudes toward teaching. Results established a significant relationship between self-concept and attitudes toward teaching. Most respondents scored high on the self-concept scale but did not show a positive attitude toward teaching due to poor financial benefits and low professional…

  20. Instructional games: Scientific language use, concept understanding, and attitudinal development of middle school learners

    NASA Astrophysics Data System (ADS)

    Mongillo, Geraldine

    Approach) toward learning science was positively affected by playing games. This research confirmed the value of playing instructional games and indicated the potential benefits for teaching and learning scientific vocabulary and concepts in middle school settings. Educators are in need of finding methods that stimulate the often disinterested or disengaged adolescent student. Results from this investigation suggested that games provided a meaningful alternate learning approach that relieved the boredom associated with traditional science instruction.

  1. Categorization of alternative astronomical and scientifical conceptions of the teachers from the north coast of São Paulo

    NASA Astrophysics Data System (ADS)

    Gonzaga, E. P.

    2016-05-01

    This work deals with the analysis of scientific and alternative astronomical concepts found in the responses of teachers who teach classes Science, Geography and Physic in Basic Education (BE) of the state of the North Coast of São Paulo and how to address the alternative astronomical concepts with students from students Fundamental Education (FE) and Medium Education (ME). Bringing the legal documents regarding the Astronomy in BE, within the national and the São Paulo regions curriculum level, also with rationed researches to the teacher's formation, conceptual errors in books, knowledge non-formal spaces, alternative concepts, Astronomical studies and content analysis for fundamental theoretical. The task executed with the teachers was done via Technical Orientations (TO), promoted by the Director of Education (DE) from Caraguatatuba and region, with the premise to threat the continuous formation giving moments of discussion, practical activities and using the Digital Mobile Planetarium (DMP) with non-formal spaces of knowledge to the Astronomical studies gathering data via questions. Within the analysis of the answers analysis by the teachers, tables were created with the categories that highlight actual situations on the astronomical studies in the North Coast of São Paulo, and demarked the possible paths where the continuous formation will be followed in the future. Aspects checked in the survey were highlighted; such as teachers understand that they need continuing education; teachers have scientific astronomical views on various aspects know to teach concepts of Astronomy at BE; TO is a viable option as continued training and the use of DMP as no formal teaching and learning.

  2. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  3. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  4. Teaching for Scientific Literacy: Bangladeshi Teachers' Perspectives, Practices and Challenges

    ERIC Educational Resources Information Center

    Sarkar, Mahbub; Corrigan, Deborah

    2012-01-01

    This paper reports on the way three Bangladeshi science teachers perceive scientific literacy, translate their perspectives into classroom teaching, the values they consider pertaining scientific literacy and the issues they perceive as challenging in their teaching. Employing a case study approach, data in this research were gathered through…

  5. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  6. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Shane

    (approximately 50 students participated) and the other on ecology (24 students participated). Both units proved to be a success in terms of the learning that resulted and in the positive experiences of the students and myself as the teacher. In both cases, students were give a pre and post multiple-choice test that covered questions typical of those found on the state's achievement exam and the schools' regular tests covering weather and ecology. Both groups of students showed a significant increase in learning. In an attempt to gain an understanding of student experiences with this type of learning, surveys and interviews were administered. The units appear to have profoundly affected students' ideas of weather and ecology---many reporting to see these concepts in new, richer ways. The goal of teaching for scientific sublime experiences is not only content knowledge, but to transform students' understanding of the world. Based on student comments and observations of classroom discussions, I feel that I largely achieved my goal.

  7. Narrative and epistemology: Georges Canguilhem's concept of scientific ideology.

    PubMed

    Chimisso, Cristina

    2015-12-01

    In the late 1960s, Georges Canguilhem introduced the concept of 'scientific ideology'. This concept had not played any role in his previous work, so why introduce it at all? This is the central question of my paper. Although it may seem a rather modest question, its answer in fact uncovers hidden tensions in the tradition of historical epistemology, in particular between its normative and descriptive aspects. The term ideology suggests the influence of Althusser's and Foucault's philosophies. However, I show the differences between Canguilhem's concept of scientific ideology and Althusser's and Foucault's respective concepts of ideology. I argue that Canguilhem was in fact attempting to solve long-standing problems in the tradition of historical epistemology, rather than following the lead of his younger colleagues. I argue that Canguilhem's 'refurbishment without rejection' of Bachelard's epistemology, which the concept of scientific ideology was aimed to implement, was necessary to justify the historical narratives that Canguilhem had constructed in his own work as a historian of concepts. A strict acceptance of Bachelard's epistemology would have made it impossible to justify them. Canguilhem's concept of scientific ideology therefore served as a theoretical justification of his practice as a historian. I maintain that the concept of scientific ideology was needed to reconcile Bachelard's normative epistemology with Canguilhem's view of the history of science and its aims, which differed from Bachelard's more than it is generally acknowledged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Teachers' Conceptions of Excellent Teaching and Its Relationships to Self-Reported Teaching Practices

    ERIC Educational Resources Information Center

    Chen, Junjun; Brown, Gavin T. L.; Hattie, John A. C.; Millward, Pam

    2012-01-01

    This study surveyed Chinese middle school (n = 951) teachers' conceptions of excellent teaching and examined the relationship of those conceptions to their self-reported teaching practices. Responses were analyzed using confirmatory factor analysis and structural equation modeling. These teachers identified one examination-oriented dimension and…

  9. Collectively Improving Our Teaching: Attempting Biology Department-wide Professional Development in Scientific Teaching.

    PubMed

    Owens, Melinda T; Trujillo, Gloriana; Seidel, Shannon B; Harrison, Colin D; Farrar, Katherine M; Benton, Hilary P; Blair, J R; Boyer, Katharyn E; Breckler, Jennifer L; Burrus, Laura W; Byrd, Dana T; Caporale, Natalia; Carpenter, Edward J; Chan, Yee-Hung M; Chen, Joseph C; Chen, Lily; Chen, Linda H; Chu, Diana S; Cochlan, William P; Crook, Robyn J; Crow, Karen D; de la Torre, José R; Denetclaw, Wilfred F; Dowdy, Lynne M; Franklin, Darleen; Fuse, Megumi; Goldman, Michael A; Govindan, Brinda; Green, Michael; Harris, Holly E; He, Zheng-Hui; Ingalls, Stephen B; Ingmire, Peter; Johnson, Amber R B; Knight, Jonathan D; LeBuhn, Gretchen; Light, Terrye L; Low, Candace; Lund, Lance; Márquez-Magaña, Leticia M; Miller-Sims, Vanessa C; Moffatt, Christopher A; Murdock, Heather; Nusse, Gloria L; Parker, V Thomas; Pasion, Sally G; Patterson, Robert; Pennings, Pleuni S; Ramirez, Julio C; Ramirez, Robert M; Riggs, Blake; Rohlfs, Rori V; Romeo, Joseph M; Rothman, Barry S; Roy, Scott W; Russo-Tait, Tatiane; Sehgal, Ravinder N M; Simonin, Kevin A; Spicer, Greg S; Stillman, Jonathon H; Swei, Andrea; Tempe, Leslie C; Vredenburg, Vance T; Weinstein, Steven L; Zink, Andrew G; Kelley, Loretta A; Domingo, Carmen R; Tanner, Kimberly D

    2018-01-01

    Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations. © 2018 M. T. Owens et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Research on pre-scientific concept of light in children's cognitive activity

    NASA Astrophysics Data System (ADS)

    Lan, Zhigao; Yu, Yang; Yan, Dan; Yang, Shulin

    2017-08-01

    Based on the theory of Ausubel's meaningful learning and cognitive characteristic of childens pre-scientific concept, two students of Huang Gang Middle School have been interviewed continuously about cognition of interaction between light and matter. Comprehension degree of childens pre-scientific concept about interaction between light and matter has been deeply understood, formation of strategy of childens pre-scientific concept has been discussed. Several influence factors related to formation of childens pre-scientific concept have been analyzed, such as sex, family environment, and learning experience of kindergarten and primary school.

  11. Effectiveness of the use of question-driven levels of inquiry based instruction (QD-LOIBI) assisted visual multimedia supported teaching material on enhancing scientific explanation ability senior high school students

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Muslim; Samsudin, A.; Hermita, N.; Supriyatman

    2018-05-01

    In this study, the effectiveness of the use of Question-Driven Levels of Inquiry Based Instruction (QD-LOIBI) assisted visual multimedia supported teaching materials on enhancing senior high school students scientific explanation ability has been studied. QD-LOIBI was designed by following five-levels of inquiry proposed by Wenning. Visual multimedia used in teaching materials included image (photo), virtual simulation and video phenomena. QD-LOIBI assisted teaching materials supported by visual multimedia were tried out on senior high school students at one high school in one district in West Java. A quasi-experiment method with design one experiment group (n = 31) and one control group (n = 32) were used. Experimental group were given QD-LOIBI assisted teaching material supported by visual multimedia, whereas the control group were given QD-LOIBI assisted teaching materials not supported visual multimedia. Data on the ability of scientific explanation in both groups were collected by scientific explanation ability test in essay form concerning kinetic gas theory concept. The results showed that the number of students in the experimental class that has increased the category and quality of scientific explanation is greater than in the control class. These results indicate that the use of multimedia supported instructional materials developed for implementation of QD-LOIBI can improve students’ ability to provide explanations supported by scientific evidence gained from practicum activities and applicable concepts, laws, principles or theories.

  12. Teaching the Anatomy of a Scientific Journal Article

    ERIC Educational Resources Information Center

    Schinske, Jeffrey N.; Clayman, Karen; Busch, Allison K.; Tanner, Kimberly D.

    2008-01-01

    To promote inquiry-based learning, the authors integrate the anatomy of a scientific journal article into their secondary science curriculum. In this article, they present three classroom activities used to teach students about the function and format of scientific journal articles. The first focuses on journal article figures, the second on…

  13. Cultivating the scientific research ability of undergraduate students in teaching of genetics.

    PubMed

    Xing, Wan-jin; Morigen, Morigen

    2016-11-20

    The classroom is the main venue for undergraduate teaching. It is worth pondering how to cultivate undergraduate's research ability in classroom teaching. Here we introduce the practices and experiences in teaching reform in genetics for training the research quality of undergraduate students from six aspects: (1) constructing the framework for curriculum framework systematicaly, (2) using the teaching content to reflect research progress, (3) explaining knowledge points with research activities, (4) explaining the scientific principles and experiments with PPT animation, (5) improving English reading ability through bilingual teaching, and (6) testing students' analysing ability through examination. These reforms stimulate undergraduate students' enthusiasm for learning, cultivate their ability to find, analyze and solve scientific problems, and improve their English reading and literature reviewing capacity, which lay a foundation for them to enter the field of scientific research.

  14. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  15. Student Teachers' Conceptions of Teaching Biology

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2014-01-01

    The purpose of this qualitative study was to investigate prospective biology teachers' conceptions of teaching biology and identify how these conceptions revealed their strategies for helping their future students' learning of biology. The study utilized drawings, narratives and interviews to investigate the nature of the prospective biology…

  16. How scientific concepts come to matter in early childhood curriculum: rethinking the concept of force

    NASA Astrophysics Data System (ADS)

    de Freitas, Elizabeth; Palmer, Anna

    2016-12-01

    The aim of this article is to investigate how new materialist philosophies of matter can help us study the emergence of scientific thought in young children's activities. We draw extensively on the work of Gilles Deleuze to help us understand scientific concepts as concrete universals. In particular, we show how the concept of force is re-animated through this approach, becoming less deterministic, and more inflected with chance and indeterminism. We show how this approach to concepts moves beyond constructivist socio-cultural theories of learning, and reveals how concepts are `material articulations of the world' intra-acting with all other matter and meaning. Finally, we discuss video data and artifacts from an ongoing ethnographic project in Stockholm entitled `Children's relations to the city'. Our analysis of the classroom video data from this project shows how concepts are not timeless transcendent abstractions, but part of an unfolding event and learning assemblage. Thus the article contributes to research on conceptual change in children, with particular focus on scientific concepts.

  17. Teaching the Scientific Method in the Social Sciences

    ERIC Educational Resources Information Center

    Keyes, Grace

    2010-01-01

    Many undergraduates can tell you what the scientific method means but just a little probing reveals a rather shallow understanding as well as a number of misconceptions about the method. The purpose of this paper is to indicate why such misconceptions occur and to point out some implications and suggestions for teaching the scientific method in…

  18. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  19. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  20. From Common Sense Concepts to Scientifically Conditioned Concepts of Chemical Bonding: An Historical and Textbook Approach Designed to Address Learning and Teaching Issues at the Secondary School Level

    ERIC Educational Resources Information Center

    Croft, Michael; de Berg, Kevin

    2014-01-01

    This paper selects six key alternative conceptions identified in the literature on student understandings of chemical bonding and illustrates how a historical analysis and a textbook analysis can inform these conceptions and lead to recommendations for improving the teaching and learning of chemical bonding at the secondary school level. The…

  1. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    NASA Astrophysics Data System (ADS)

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-02-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.

  2. Triatominae biochemistry goes to school: evaluation of a novel tool for teaching basic biochemical concepts of Chagas disease vectors.

    PubMed

    Cunha, Leonardo Rodrigues; Cudischevitch, Cecília de Oliveira; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; Silva-Neto, Mário Alberto Cardoso da

    2014-01-01

    We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of Trypanosoma cruzi, the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by seven distinguished contemporary Brazilian researchers working with Triatominaes. Students (22) in the seventh grade of a public elementary school received the comic book. The study was then followed up by the use of Concept Maps elaborated by the students. Six Concept Maps elaborated by the students before the introduction of the comic book received an average score of 7. Scores rose to an average of 45 after the introduction of the comic book. This result suggests that a more attractive content can greatly improve the knowledge and conceptual understanding among students not previously exposed to insect biochemistry. In conclusion, this study illustrates an alternative to current strategies of teaching about the transmission of neglected diseases. It also promotes the diffusion of the scientific knowledge produced by Brazilian researchers that may stimulate students to choose a scientific career. © 2014 The International Union of Biochemistry and Molecular Biology.

  3. Ethics Teaching in Higher Education for Principled Reasoning: A Gateway for Reconciling Scientific Practice with Ethical Deliberation.

    PubMed

    Aközer, Mehmet; Aközer, Emel

    2017-06-01

    This paper proposes laying the groundwork for principled moral reasoning as a seminal goal of ethics interventions in higher education, and on this basis, makes a case for educating future specialists and professionals with a foundation in philosophical ethics. Identification of such a seminal goal is warranted by (1) the progressive dissociation of scientific practice and ethical deliberation since the onset of a problematic relationship between science and ethics around the mid-19th century, and (2) the extensive mistrust of integrating ethics in science and engineering curricula beyond its "applied," "practical," or "professional" implications. Although calls by international scientific and educational bodies to strengthen ethics teaching in scientific education over the past quarter century have brought about a notion of combining competence in a certain field with competence in ethics, this is neither entrenched in the academic community, nor fleshed out as regards its core or instruments to realize it. The legitimate goals of ethics teaching in higher education, almost settled since the 1980s, can be subsumed under the proposed seminal goal, and the latter also would safeguard content and methods of ethics interventions against the intrusion of indoctrinative approaches. In this paper, derivation of the proposed seminal goal rests on an interpretation of the Kohlbergian cognitive-developmental conception of moral adulthood consisting in autonomous principled moral reasoning. This interpretation involves, based on Kant's conception of the virtuous person, integrating questions about the "good life" into the domain of principled reasoning.

  4. Teaching ASTRO 101 Students the Art of Scientific Argumentation

    NASA Astrophysics Data System (ADS)

    Schleigh, Sharon P.; Slater, Stephanie; Slater, Timothy F.

    2016-01-01

    Going beyond asking students to simply memorize facts about the universe, a longstanding challenge in teaching astronomy centers on successfully teaching students about the nature of science. As introductory astronomy survey courses, known widely as ASTRO 101, can sometimes be the last science course non-science majoring undergraduates take, many faculty hope to emphasize the scientific enterprise as a broad field in inquiry making valuable contributions to civilization as a whole, rather than as an isolated study of objects far from Earth. Scholars have long proposed that an understanding of the nature of science as a human endeavor requires explicit instruction. In other words, students successfully learning the facts of astronomy does not in any way ensure that students will learn anything about the nature of how astronomy is done. In a purposeful effort to improve students' understanding about the practices and discourse of astronomy, scholars working with the CAPER Center for Astronomy & Physics Education research are developing a suite of carefully designed instructional sequences—called Scientific Argumentation—focused on teaching students the differences between data and evidence, how to communicate and defend evidence-based conclusions, and how to be informed skeptics of scientific claims. Early results show students moving from naïve understandings of scientific practices to more informed understandings as well as demonstrating enhanced value for science in general as an worthwhile human endeavor with far reaching benefits.

  5. Authentic Teaching of Fitness Concepts to Children.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Thomas; Kane, Jennifer

    This paper stresses the importance of teaching aerobic and muscle fitness concepts as part of a health-related fitness curriculum in physical education, recommending outcomes for teaching aerobic endurance and muscle/strength endurance in kindergarten through sixth grade. It describes important learning aid materials and presents national…

  6. A Sample WebQuest Applicable in Teaching Topological Concepts

    ERIC Educational Resources Information Center

    Yildiz, Sevda Goktepe; Korpeoglu, Seda Goktepe

    2016-01-01

    In recent years, WebQuests have received a great deal of attention and have been used effectively in teaching-learning process in various courses. In this study, a WebQuest that can be applicable in teaching topological concepts for undergraduate level students was prepared. A number of topological concepts, such as countability, infinity, and…

  7. Promoting Scientific Literacy by Using ICT in Science Teaching

    ERIC Educational Resources Information Center

    Al-Rsa'i, Mohammed Salameh

    2013-01-01

    This study aims to identify the way upon which ICT can be employed in science teaching to develop scientific literacy level. The study has conclude to design a triple learning model (PEA) based on ICT and constructive learning strategy in teaching science through a context which cares for building positive trends of searching for knowledge and…

  8. Scientific teaching targeting faculty from diverse institutions.

    PubMed

    Gregg, Christopher S; Ales, Jo Dale; Pomarico, Steven M; Wischusen, E William; Siebenaller, Joseph F

    2013-01-01

    We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR's target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate's and associate's-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions.

  9. Scientific Teaching Targeting Faculty from Diverse Institutions

    PubMed Central

    Gregg, Christopher S.; Ales, Jo Dale; Pomarico, Steven M.; Wischusen, E. William; Siebenaller, Joseph F.

    2013-01-01

    We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR's target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate's and associate's-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions. PMID:24006387

  10. Education, Enlightenment and Positivism: The Vienna Circle's Scientific World-Conception Revisited

    NASA Astrophysics Data System (ADS)

    Uebel, Thomase.

    The scientific world-conception is properly understood as an enlightenment philosophy only if the current reassessment of the historical Vienna Circle(as opposed to the caricature still prevalent in the popular philosophical imagination) is once more extended to comprehend not only its thorough-going epistemological anti-foundationalism, but also the voluntarist point of its ethical`non-cognitivism'. That is to say, the scientific world-conception is properly understood as the opposite of village positivism only if it is recognized that it has an `other' and that the scientific world-conception was meant by its proponents to perform its enlightenment work only in conjunction with that other of scientific reason - ethical will and willing. Scientific reason cannot determine all there is to determine, it cannot determine the will. In this sense, there was, pace village positivism, more than scientific reason dreamt of. Scientific reason was not made absolute: rather, its (self-) clarification was required if a satisfactory view of its place in `life' was to be attained.

  11. Scientific Teaching Targeting Faculty from Diverse Institutions

    ERIC Educational Resources Information Center

    Gregg, Christopher S.; Ales, Jo Dale; Pomarico, Steven M.; Wischusen, E. William; Siebenaller, Joseph F.

    2013-01-01

    We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR's target was faculty from community colleges,…

  12. Promoting Scientific and Technological Literacy: Teaching Biodiesel.

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2000-01-01

    Describes a unit on biodiesel from a socio-critical chemistry teaching approach aimed at improving student participation and decision making. Explores the use of biodiesel (chemically changed vegetable oils), especially in Europe. The unit proved to be successful as students participated enthusiastically and social and scientific goals were…

  13. Mathematical Knowledge for Teaching the Function Concept and Student Learning Outcomes

    ERIC Educational Resources Information Center

    Hatisaru, Vesife; Erbas, Ayhan Kursat

    2017-01-01

    The purpose of this study was to examine the potential interrelationships between teachers' mathematical knowledge for teaching (MKT) the function concept and their students' learning outcomes of this concept. Data were collected from two teachers teaching in a vocational high school and their students through a function concept test for teachers…

  14. Incorporating Concept Sketching into Teaching Undergraduate Geomorphology

    ERIC Educational Resources Information Center

    Reusser, Lucas J.; Corbett, Lee B.; Bierman, Paul R.

    2012-01-01

    Constructing concept sketches (diagrams annotated with short captions in which students demonstrate their understanding of form, process, and interactions) provides a new and different way to teach Earth surface processes and assess the depth of student learning. During a semester-long course in Geomorphology, we used concept sketches as an…

  15. Teaching Time Concepts to Young Children.

    ERIC Educational Resources Information Center

    Muir, Sharon Pray

    1986-01-01

    Presents many activity ideas for teaching young children about time using chronological events, clocks, and calendars. Jerome Bruner's enactive-iconic-symbolic sequence of concept development is used as a guide for these learning experiences. (LP)

  16. Active Ways to Teach Health Concepts in the Elementary Setting

    ERIC Educational Resources Information Center

    Gregory, Julie

    2015-01-01

    This article provides three movement-based activities for teaching health concepts to elementary school students. Two activities focus on nutrition concepts and the other focuses on teaching body systems. Diagrams are provided to show the setup of activities, as well as links for accessing materials to help implement the activities.

  17. Does Teaching Sequence Matter When Teaching High School Chemistry with Scientific Visualisations?

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David; Mukherjee, Michelle

    2012-01-01

    Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier's Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the…

  18. From Common Sense Concepts to Scientifically Conditioned Concepts of Chemical Bonding: An Historical and Textbook Approach Designed to Address Learning and Teaching Issues at the Secondary School Level

    NASA Astrophysics Data System (ADS)

    Croft, Michael; de Berg, Kevin

    2014-09-01

    This paper selects six key alternative conceptions identified in the literature on student understandings of chemical bonding and illustrates how a historical analysis and a textbook analysis can inform these conceptions and lead to recommendations for improving the teaching and learning of chemical bonding at the secondary school level. The historical analysis and the textbook analysis focus on the concepts of charge, octet, electron pair, ionic, covalent and metallic bonding. Finally, a table of recommendations is made for teacher and student in the light of four fundamental questions and the six alternative conceptions to enhance the quality of the curriculum resources available and the level of student engagement.

  19. The Use of Popular Science Articles in Teaching Scientific Literacy

    ERIC Educational Resources Information Center

    Parkinson, Jean; Adendorff, Ralph

    2004-01-01

    This article considers the use of popular science articles in teaching scientific literacy. Comparing the discourse features of popular science with research article and textbook science--the last two being target forms for students--it argues that popular science articles cannot serve as models for scientific writing. It does, however, suggest…

  20. Thai Pre-Service Science Teachers' Struggles in Using Socio-Scientific Issues (SSIs) during Practicum

    ERIC Educational Resources Information Center

    Pitiporntapin, Sasithep; Yutakom, Naruemon; Sadler, Troy D.

    2016-01-01

    In educational reform, teaching through socio-scientific issues (SSIs) is considered the best way to promote scientific literacy for citizenship as the goal of science teaching. To bring SSIs into the science classroom, Thai pre-service science teachers (PSTs) are expected to understand the concept of SSI-based teaching and to use it effectively…

  1. An intelligent tutoring system for teaching fundamental physics concepts

    NASA Astrophysics Data System (ADS)

    Albacete, Patricia Lucia

    1999-12-01

    Students in traditional elementary mechanics classes can master problem solving of a quantitative nature but not those of a qualitative type. Moreover, students' naive conceptions of physics remain unchanged after completing their class. A few approaches have been implemented to improve this situation however none have met with great success. Since elementary mechanics is the foundation for all of physics and it is a required course for most science majors there is a clear need to improve the instruction of the subject. To address this problem I developed a intelligent tutoring system, called the Conceptual Helper, which coaches students during homework problem solving. The tutor uses a unique cognitive based approach to teaching physics, which presents innovations in three areas. (1) The teaching strategy, which focuses on teaching those links among the concepts of the domain that are essential for conceptual understanding yet are seldom learned by the students. (2) The manner in which the knowledge is taught, which is based on a combination of effective human tutoring techniques (e.g., hinting), effective pedagogical methods (e.g., a microscopic view of matter), and less cognitively demanding approaches (e.g., anthropomorphism). (3) The way in which misconceptions are handled which uses the underlying scientific correct line of reasoning to describe to the student the phenomenon that is the basis for the misconception. From a technological point of view the Conceptual Helper was implemented as a model-tracing tutor which intervenes when students make errors and after completion of each problem, at which time the tutor scaffolds the students on post-problem reflection. The remediation is guided by probabilistic assessment of mastery and the interventions are adapted to the errors. The thesis also presents the results of the evaluation of the system which revealed that the gain scores of the experimental group were statistically significantly higher than those of

  2. Concept of scientific wildlife conservation and its dissemination

    PubMed Central

    ZHOU, Xue-Hong; WAN, Xiao-Tong; JIN, Yu-Hui; ZHANG, Wei

    2016-01-01

    In recent years, wildlife conservation has attracted great public attention. However, substantial distinctions can be found in the prevailing concepts of wildlife conservation, particularly with the recent notion that emphasizes animal rights. Wildlife welfare and wildlife rights are not synonymous, with welfare more compatible with the reasonable and legal utilization of wildlife. The key to scientific wildlife conservation is the appropriate awareness and appreciation of the relationship between wildlife conservation and utilization and the theoretical basis of holism. Nevertheless, rational biases regarding the public’s understanding of wildlife conservation and the spread of information via social media still exist. As such, expansion of the concept of scientific wildlife conservation requires the application of several measures. Wildlife conservation researchers should be regarded as the most important disseminators of scientifically-based information, with education in schools and universities of growing importance. Furthermore, the media should shoulder the social responsibility for the accurate dissemination of conservation information. PMID:27686785

  3. Concept of scientific wildlife conservation and its dissemination.

    PubMed

    Zhou, Xue-Hong; Wan, Xiao-Tong; Jin, Yu-Hui; Zhang, Wei

    2016-09-18

    In recent years, wildlife conservation has attracted great public attention. However, substantial distinctions can be found in the prevailing concepts of wildlife conservation, particularly with the recent notion that emphasizes animal rights. Wildlife welfare and wildlife rights are not synonymous, with welfare more compatible with the reasonable and legal utilization of wildlife. The key to scientific wildlife conservation is the appropriate awareness and appreciation of the relationship between wildlife conservation and utilization and the theoretical basis of holism. Nevertheless, rational biases regarding the public's understanding of wildlife conservation and the spread of information via social media still exist. As such, expansion of the concept of scientific wildlife conservation requires the application of several measures. Wildlife conservation researchers should be regarded as the most important disseminators of scientifically-based information, with education in schools and universities of growing importance. Furthermore, the media should shoulder the social responsibility for the accurate dissemination of conservation information.

  4. Scientific Teaching: Defining a Taxonomy of Observable Practices

    PubMed Central

    Couch, Brian A.; Brown, Tanya L.; Schelpat, Tyler J.; Graham, Mark J.; Knight, Jennifer K.

    2015-01-01

    Over the past several decades, numerous reports have been published advocating for changes to undergraduate science education. These national calls inspired the formation of the National Academies Summer Institutes on Undergraduate Education in Biology (SI), a group of regional workshops to help faculty members learn and implement interactive teaching methods. The SI curriculum promotes a pedagogical framework called Scientific Teaching (ST), which aims to bring the vitality of modern research into the classroom by engaging students in the scientific discovery process and using student data to inform the ongoing development of teaching methods. With the spread of ST, the need emerges to systematically define its components in order to establish a common description for education researchers and practitioners. We describe the development of a taxonomy detailing ST’s core elements and provide data from classroom observations and faculty surveys in support of its applicability within undergraduate science courses. The final taxonomy consists of 15 pedagogical goals and 37 supporting practices, specifying observable behaviors, artifacts, and features associated with ST. This taxonomy will support future educational efforts by providing a framework for researchers studying the processes and outcomes of ST-based course transformations as well as a concise guide for faculty members developing classes. PMID:25713097

  5. The Progression of Prospective Primary Teachers' Conceptions of the Methodology of Teaching

    ERIC Educational Resources Information Center

    Rivero, Ana; Azcarate, Pilar; Porlan, Rafael; del Pozo, Rosa Martin; Harres, Joao

    2011-01-01

    This article describes the evolution of prospective primary teachers' conceptions of the methodology of teaching. Three categories were analyzed: the concept of activity, the organization of activities, and the concept of teaching resources. The study was conducted with five teams of prospective teachers, who were participating in teacher…

  6. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    NASA Astrophysics Data System (ADS)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  7. Extending Research on "Conceptions of Teaching": Commonalities and Differences in Recent Investigations

    ERIC Educational Resources Information Center

    Gonzalez, Carlos

    2011-01-01

    There is a significant body of research on conceptions of teaching. However, newer studies have reported facets of teaching which did not emerge in previous research. This has lead to claims that there may be still much to learn about university teachers' conceptions of teaching. In this line, the present study is aimed at exploring, from a…

  8. What Does Three-Dimensional Teaching and Learning Look Like?: Examining the Potential for Crosscutting Concepts to Support the Development of Science Knowledge

    ERIC Educational Resources Information Center

    Fick, Sarah J.

    2018-01-01

    Science education reforms focus on the integration of three dimensions: disciplinary core ideas (DCIs), scientific and engineering practices (SEPs), and crosscutting concepts (CCCs). While research has examined the role of DCIs and SEPs in teaching and learning, little research has explored how the CCCs might be integrated. This research proposes…

  9. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    ERIC Educational Resources Information Center

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  10. Secondary school physics teachers' conceptions of scientific evidence: A collective case study

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph A.

    Engaging secondary school students in inquiry-oriented tasks that more closely simulate the scholarly activities of scientists has been recommended as a way to improve scientific literacy. Two tasks that are frequently recommended include students' design of original experiments, and students' evaluation of scientific evidence and conclusions. Yet, little is known about teachers' conceptions of experimentation. The principal aim of this study, therefore, was to describe the nature of prospective and practicing physics teachers' conceptions of scientific evidence. More specifically, the following research questions guided this study: (1) What types of issues related to the measurement reliability and experimental validity of scientific evidence do practicing and prospective physics teachers think about when designing experiments? (2) When presented with hypothetical scenarios that describe unsound experimental procedures or poorly supported conclusions (or both), what concerns will prospective and practicing physics teachers raise? And (3) When the participants' responses to parallel research prompts are compared across protocols, what similarities and differences exist? The nature of the teacher-participants' conceptions was described from an analysis of data collected from research prompts such as interviews and hand written artifacts. In these research prompts, the teachers "thought aloud" while designing experiments and critically evaluated student-collected evidence presented in hypothetical classroom scenarios. The data from this study suggested that the three teachers, while contemplating the reliability and validity of scientific evidence, frequently used their conceptions of evidence in conjunction with specific subject matter conceptions. The data also indicated that the relationship between subject matter knowledge and conceptions of evidence was more pronounced for some conceptions of evidence than for others. Suggestions for future research included

  11. Teaching Concepts of Natural Sciences to Foreigners through Content-Based Instruction: The Adjunct Model

    ERIC Educational Resources Information Center

    Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam

    2015-01-01

    This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…

  12. [The venture financing of scientifically-innovative projects: teaching experience in medical high school].

    PubMed

    Grachev, S V; Gorodnova, E A

    2008-01-01

    The authors presented an original material, devoted to first experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school. The results and conclusions were based on data of the questionnaire performed by the authors. More than 90% of young scientist physicians recognized actuality of this problem for realization of their research work results into practice. Thus, experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school proves reasonability of further development and inclusion the module "The venture financing of scientifically-innovative projects in biomedicine" in the training plan.

  13. Teaching Method and Effect on Learning Piagetian Concepts

    ERIC Educational Resources Information Center

    Swiderski, David J.; Amadio, Dean M.

    2013-01-01

    Instructors of psychology typically use a variety of methods to teach concepts. The present double-blind experiment is intended to determine the effectiveness of popular television clips as exemplars of Piagetian concepts compared to verbal descriptions of the same exemplars among a sample of 86 undergraduate students enrolled in an introductory…

  14. Collectively Improving Our Teaching: Attempting Biology Department-Wide Professional Development in Scientific Teaching

    ERIC Educational Resources Information Center

    Owens, Melinda T.; Trujillo, Gloriana; Seidel, Shannon B.; Harrison, Colin D.; Farrar, Katherine M.; Benton, Hilary P.; Blair, J. R.; Boyer, Katharyn E.; Breckler, Jennifer L.; Burrus, Laura W.; Byrd, Dana T.; Caporale, Natalia; Carpenter, Edward J.; Chan, Yee-Hung M.; Chen, Joseph C.; Chen, Lily; Chen, Linda H.; Chu, Diana S.; Cochlan, William P.; Crook, Robyn J.; Crow, Karen D.; de la Torre, José R.; Denetclaw, Wilfred F.; Dowdy, Lynne M.; Franklin, Darleen; Fuse, Megumi; Goldman, Michael A.; Govindan, Brinda; Green, Michael; Harris, Holly E.; He, Zheng-Hui; Ingalls, Stephen B.; Ingmire, Peter; Johnson, Amber R. B.; Knight, Jonathan D.; LeBuhn, Gretchen; Light, Terrye L.; Low, Candace; Lund, Lance; Márquez-Magaña, Leticia M.; Miller-Sims, Vanessa C.; Moffatt, Christopher A.; Murdock, Heather; Nusse, Gloria L.; Parker, V. Thomas; Pasion, Sally G.; Patterson, Robert; Pennings, Pleuni S.; Ramirez, Julio C.; Ramirez, Robert M.; Riggs, Blake; Rohlfs, Rori V.; Romeo, Joseph M.; Rothman, Barry S.; Roy, Scott W.; Russo-Tait, Tatiane; Sehgal, Ravinder N. M.; Simonin, Kevin A.; Spicer, Greg S.; Stillman, Jonathon H.; Swei, Andrea; Timpe, Leslie C.; Vredenburg, Vance T.; Weinstein, Steven L.; Zink, Andrew G.; Kelley, Loretta A.; Domingo, Carmen R.; Tanner, Kimberly D.

    2018-01-01

    Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching…

  15. Computer Systems for Teaching Complex Concepts.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…

  16. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    ERIC Educational Resources Information Center

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  17. "Structural Transformation" as a Threshold Concept in University Teaching

    ERIC Educational Resources Information Center

    Kinchin, Ian M.; Miller, Norma L.

    2012-01-01

    In an attempt to reveal potential threshold concepts in the field of higher education pedagogy, groups of university teachers (in the UK and in Panama) were encouraged to develop personal reflection upon their conceptions of teaching. This was initiated through concept mapping activities. It was hoped that this would help participants to address…

  18. Teaching the Scientific Method Using Current News Articles

    ERIC Educational Resources Information Center

    Palmer, Laura K.; Mahan, Carolyn G.

    2013-01-01

    We describe a short (less than 50 minutes) activity using news articles from sources such as "Science Daily" to teach students the steps of the scientific method and the difference between primary and secondary literature sources. The flexibility in choosing news articles to examine allowed us to tailor the activity to the specific interests of…

  19. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  20. Teaching Abstract Concepts: Keys to the World of Ideas.

    ERIC Educational Resources Information Center

    Flatley, Joannis K.; Gittinger, Dennis J.

    1990-01-01

    Specific teaching strategies to help hearing-impaired secondary students comprehend abstract concepts include (1) pinpointing facts and fallacies, (2) organizing information visually, (3) categorizing ideas, and (4) reinforcing new vocabulary and concepts. Figures provide examples of strategy applications. (DB)

  1. A Phenomenological Examination of Perceived Skills and Concepts Necessary for Teaching Scientific Thinking

    NASA Astrophysics Data System (ADS)

    Kapetanis, Ana Cristina

    The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.

  2. Physics Teachers' Views on Teaching the Concept of Energy

    ERIC Educational Resources Information Center

    Bezen, Sevim; Bayrak, Celal; Aykutlu, Isil

    2016-01-01

    Problem Statement: With the advancement of technology, energy as a concept has become part of the every aspects of life, and it becomes more and more important day by day. Since 2013, the concept of energy has become part of the updated physics education program in Turkey. Teaching the concept of energy is a significant undertaking; most students…

  3. The Progression of Prospective Primary Teachers' Conceptions of the Methodology of Teaching

    NASA Astrophysics Data System (ADS)

    Rivero, Ana; Azcárate, Pilar; Porlán, Rafael; Martín Del Pozo, Rosa; Harres, Joao

    2011-11-01

    This article describes the evolution of prospective primary teachers' conceptions of the methodology of teaching. Three categories were analyzed: the concept of activity, the organization of activities, and the concept of teaching resources. The study was conducted with five teams of prospective teachers, who were participating in teacher education courses of a constructivist orientation. The results showed very different itineraries in the processes of change, and the presence of two major obstacles—the belief that teaching is the direct cause of learning, and epistemological absolutism. The study allows us to deduce some implications for initial teacher education.

  4. Conceptions of Effective Teaching and Perceived Use of Computer Technologies in Active Learning Classrooms

    ERIC Educational Resources Information Center

    Gebre, Engida; Saroyan, Alenoush; Aulls, Mark W.

    2015-01-01

    This paper examined professors' conceptions of effective teaching in the context of a course they were teaching in active learning classrooms and how the conceptions related to the perceived role and use of computers in their teaching. We interviewed 13 professors who were teaching in active learning classrooms in winter 2011 in a large research…

  5. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  6. Using Scientific and Industrial Films in Teaching Technical Communication.

    ERIC Educational Resources Information Center

    Veeder, Gerry

    A film course especially designed for technical communication students can illustrate basic film concepts and techniques while showing how film effectively communicates ideas in an industrial and scientific communication system. After a basic introduction to film terms, the study of actual scientific and industrial films demonstrates the following…

  7. Concept Map Structure, Gender and Teaching Methods: An Investigation of Students' Science Learning

    ERIC Educational Resources Information Center

    Gerstner, Sabine; Bogner, Franz X.

    2009-01-01

    Background: This study deals with the application of concept mapping to the teaching and learning of a science topic with secondary school students in Germany. Purpose: The main research questions were: (1) Do different teaching approaches affect concept map structure or students' learning success? (2) Is the structure of concept maps influenced…

  8. Styles of Scientific Reasoning: A Cultural Rationale for Science Education?

    ERIC Educational Resources Information Center

    Kind, Per; Osborne, Jonathan

    2017-01-01

    In this paper, we contend that what to teach about scientific reasoning has been bedeviled by a lack of clarity about the construct. Drawing on the insights emerging from a cognitive history of science, we argue for a conception of scientific reasoning based on six "styles of scientific reasoning." Each "style" requires its own…

  9. Teaching the Sociological Imagination: Learning from the Biggest Loser

    ERIC Educational Resources Information Center

    Plymire, Darcy C.

    2012-01-01

    The purpose of this article is to show how to use popular culture as a method of teaching scientific concepts. Specifically, the reality-television program The Biggest Loser is used as an example for teaching the concept of the sociological imagination by illustrating the disconnect between personal solutions for weight loss and the demands of…

  10. Approaches to Biology Teaching and Learning: Understanding the Wrong Answers--Teaching toward Conceptual Change

    ERIC Educational Resources Information Center

    Tanner, Kimberly; Allen, Deborah

    2005-01-01

    Underpinning science education reform movements in the last 20 years--at all levels and within all disciplines--is an explicit shift in the goals of science teaching from students simply creating a knowledge base of scientific facts to students developing deeper understandings of major concepts within a scientific discipline. For example, what use…

  11. A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education

    ERIC Educational Resources Information Center

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2014-01-01

    A novel didactic sequence is proposed for the teaching of chemical equilibrium. This teaching sequence takes into account the historical and epistemological evolution of the concept, the alternative conceptions and learning difficulties highlighted by teaching science and research in education, and the need to focus on both the students'…

  12. [Video-based self-control in surgical teaching. A new tool in a new concept].

    PubMed

    Dahmen, U; Sänger, C; Wurst, C; Arlt, J; Wei, W; Dondorf, F; Richter, B; Settmacher, U; Dirsch, O

    2013-10-01

    Image and video-based results and process control are essential tools of a new teaching concept for conveying surgical skills. The new teaching concept integrates approved teaching principles and new media. Every performance of exercises is videotaped and the result photographically recorded. The quality of the process and result becomes accessible for an analysis by the teacher and the student/learner. The learner is instructed to perform a criteria-based self-analysis of the video and image material by themselves. The new learning concept has so far been successfully applied in seven rounds within the newly designed modular class "Intensivkurs Chirurgische Techniken" (Intensive training of surgical techniques). Result documentation and analysis via digital picture was completed by almost every student. The quality of the results was high. Interestingly the result quality did not correlate with the time needed for the exercise. The training success had a lasting effect. The new and elaborate concept improves the quality of teaching. In the long run resources for patient care should be saved when training students according to this concept prior to performing tasks in the operating theater. These resources should be allocated for further refining innovative teaching concepts.

  13. Performative Intra-Action of a Paper Plane and a Child: Exploring Scientific Concepts as Agentic Playmates

    NASA Astrophysics Data System (ADS)

    Haus, Jana Maria

    2018-05-01

    This work uses new materialist perspectives (Barad 2007; Lenz Taguchi 2014; Rautio in Children's Geographies, 11(4), 394-408, 2013) to examine an exploration of concepts as agents and the question how intra-action of human and non-human bodies lead to the investigation of scientific concepts, relying on an article by de Freitas and Palmer (Cultural Studies of Science Education, 11(4), 1201-1222, 2016). Through an analysis of video stills of a case study, a focus on classroom assemblages shows how the intra-actions of human and non-human bodies (one 5-year-old boy, a piece of paper that becomes a paper plane and the concepts of force and flight) lead to an intertwining and intersecting of play, learning, and becoming. Video recordings were used to qualitatively analyze three questions, which emerged through and resulted from the intra-action of researcher and data. This paper aims at addressing a prevalent gap in the research literature on science learning from a materialist view. Findings of the analysis show that human and non-human bodies together become through and for another to jointly and agentically intra-act in exploring and learning about science. Implications for learning and teaching science are that teachers could attempt to focus on setting up the learning environment differently, so that children have time and access to materials that matter to them and that, as "Hultman (2011) claims […] `whisper, answer, demand and offer'" (Areljung forthcoming, p. 77) themselves to children in the learning and teaching environment.

  14. Teaching Major Economic Concepts in the High School Business Curriculum.

    ERIC Educational Resources Information Center

    Dawson, George G.

    Several important economic concepts appear in the business curriculum designed for secondary schools in New York State. This manual assists the teacher by providing brief and simple definitions of major economic concepts, noting the implications of those concepts for business, and suggesting strategies that can be used to teach the principles and…

  15. Evaluating learning and teaching using the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Zitzewitz, Paul

    1997-04-01

    Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.

  16. Preservice Elementary Teachers' Ideas About Scientific Practices

    NASA Astrophysics Data System (ADS)

    Ricketts, Amy

    2014-10-01

    With the goal of producing scientifically literate citizens who are able to make informed decisions and reason critically when science intersects with their everyday lives, the National Research Council (NRC) has produced two recent documents that call for a new approach to K-12 science education that is based on scientific practices, crosscutting concepts, and disciplinary core ideas. These documents will potentially influence future state standards and K-12 curricula. Teachers will need support in order to teach science using a practices based approach, particularly if they do not have strong science backgrounds, which is often the case with elementary teachers. This study investigates one cohort (n = 19) of preservice elementary teachers' ideas about scientific practices, as developed in a one-semester elementary science teaching methods course. The course focused on eight particular scientific practices, as defined by the National Research Council's A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012). Participants' written reflections, lesson plans and annotated teaching videos were analyzed in fine detail to better understand their ideas about what it means to engage in each of the practices. The findings suggest that preservice elementary teachers hold promising ideas about scientific practices (such as an emphasis on argumentation and communication between scientists, critical thinking, and answering and asking questions as the goal of science) as well as problematic ideas (including confusion over the purpose of modeling and the process of analysis, and conflating argumentation and explanation building). These results highlight the strengths and limitations of using the Framework (NRC 2012) as an instructional text and the difficulties of differentiating between preservice teachers' content knowledge about doing the practices and their pedagogical knowledge about teaching the practices.

  17. Marrying the "Muse" and the Thinker "Poetry as Scientific Writing"

    ERIC Educational Resources Information Center

    Marcum-Dietrich, Nanette I.; Byrne, Eileen; O'Hern, Brenda

    2009-01-01

    This article describes an unlikely collaboration between a high school chemistry teacher and a high school English teacher who attempted to teach scientific concepts through poetry. Inspired by poet John Updike's (1960) "Cosmic Gall," these two teachers crafted writing tasks aimed at teaching science content through literary devices. The result…

  18. Scientific American Frontiers Teaching Guides for Shows 801-805, October 1997-April 1998.

    ERIC Educational Resources Information Center

    Connecticut Public Television, Hartford.

    These teaching guides are meant to supplement the eighth season (1997-98) of the PBS Series "Scientific American Frontiers". Episode 801 is entitled "Expedition Panama: Science at the Smithsonian Tropical Research Institute" and the teaching guide contains information and activities on the ultrasonic communication of bats,…

  19. The Role of Individual Writing in Fostering Scientific Conceptualization

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Vezzani, Claudio; Tarchi, Christian; Fiorentini, Carlo

    2011-01-01

    This paper aims to evaluate a teaching methodology for the learning of scientific concepts in a primary school context. The focus is on the role played by individual writing, associated to a collective observation of an experiment and a classroom discussion. The hypothesis is that this methodology shows its effect both, on the scientific quality…

  20. Methods of Scientific Research: Teaching Scientific Creativity at Scale

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, K. E. Saavik

    2016-01-01

    We present a scaling-up plan for AstroComNYC's Methods of Scientific Research (MSR), a course designed to improve undergraduate students' understanding of science practices. The course format and goals, notably the open-ended, hands-on, investigative nature of the curriculum are reviewed. We discuss how the course's interactive pedagogical techniques empower students to learn creativity within the context of experimental design and control of variables thinking. To date the course has been offered to a limited numbers of students in specific programs. The goals of broadly implementing MSR is to reach more students and early in their education—with the specific purpose of supporting and improving retention of students pursuing STEM careers. However, we also discuss challenges in preserving the effectiveness of the teaching and learning experience at scale.

  1. Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration

    ERIC Educational Resources Information Center

    Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.

    2009-01-01

    The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…

  2. Scientific American Frontiers Teaching Guides for Shows 901-905, October 1998-April 1999.

    ERIC Educational Resources Information Center

    Connecticut Public Television, Hartford.

    These teaching guides are intended to supplement the shows of the ninth season (1998-99) of the PBS Television Series "Scientific American Frontiers." Episode 901 is entitled "Science in Paradise: Another Side of the Caribbean." The teaching guide contains information and activities on hawksbill turtles, volcanic eruptions,…

  3. Teaching Language Concepts to Multihandicapped Deaf Students.

    ERIC Educational Resources Information Center

    Brasch, Marilyn; Boespflug, Pam

    This brief paper offers suggestions for parents and teachers working together to develop meaningful communication skills in deaf multihandicapped children. An intervention program developed by Jan VanDijk is described. This program involves the use of environmental engineering to teach language concepts with materials such as a calendar box with…

  4. Teaching for Scientific Literacy? An Examination of Instructional Practices in Secondary Schools in Barbados

    NASA Astrophysics Data System (ADS)

    Archer-Bradshaw, Ramona E.

    2017-02-01

    This study examined the extent to which the instructional practices of science teachers in Barbados are congruent with best practices for teaching for scientific literacy. Additionally, through observation of practice, it sought to determine the teachers' demonstrated role in the classroom, their demonstration of learning through discourse, learning goals and the nature of classroom activities. Five hundred nineteen students from 12 of the 23 secondary schools on the island and 15 teachers across 8 schools participated in the study. Data were collected by means of a questionnaire, an observational schedule and field notes. It was found that while problem-solving and questioning were mainly used in the classroom, the use of experiments was among the least popular teaching strategies. Additionally, results showed that teachers' display of the knowledge of the characteristics of scientific literacy was unsatisfactory. Generally, the findings indicate a gap between teaching for scientific literacy as expressed in the literature and current instructional practices in secondary science classrooms in Barbados.

  5. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    ERIC Educational Resources Information Center

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-01-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the…

  6. Detecting changes in student teachers' conceptions of teaching science to adolescent English language learners

    NASA Astrophysics Data System (ADS)

    Pomeroy, Jonathon Richard

    2000-10-01

    This research study investigated the changes that occurred in six student teachers' conceptions of teaching science to adolescent English language learners over the duration of their participation in a one-year, graduate level, science teacher education program. Cases were created for each of the student teachers based on their concept maps, writing samples, interviews, lesson plans, informal interviews with cooperating teachers, and observation notes collected on biweekly visitations. The cases were divided into three dyads each consisting of two student teachers with similar preprogram and student teaching experiences. Cross case analysis revealed the existence of seven themes related to teaching science to adolescent English language learners. Further analysis suggested that student teachers that worked with experienced cooperating teachers and who had achieved a sense of autonomy over their student teaching demonstrated broad and sophisticated growth across all seven themes. Student teachers who had not achieved a sense of autonomy, demonstrated growth in two to three themes. Student teachers who demonstrated broad and sophisticated growth were able to clearly articulate their conceptions of teaching science to English language learners where as those who demonstrated limited growth were not. This research establishes the use of concept maps as a tool for detecting changes in student teachers' conceptions of teaching science to adolescent English language learners as well as the sensitivity of concept maps to detect the types of changes historically detected by writing samples and interviews. Recommendations based on the implications from are included.

  7. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    ERIC Educational Resources Information Center

    Taylor, Dale L.; Booth, Shirley

    2015-01-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions…

  8. Mastery of Scientific Argumentation on the Concept of Neutralization in Chemistry: A Malaysian Perspective

    ERIC Educational Resources Information Center

    Heng, Lee Ling; Surif, Johari; Seng, Cher Hau; Ibrahim, Nor Hasniza

    2015-01-01

    Purpose: Argumentative practices are central to science education, and have recently been emphasised to promote students' reasoning skills and to develop student's understanding of scientific concepts. This study examines the mastery of scientific argumentation, based on the concept of neutralisation, among secondary level science students, when…

  9. [Clinical teaching in nursing: the scientific production path].

    PubMed

    Guedes, Glauteice Freitas; Ohara, Conceição Vieira da Silva; Silva, Gilberto Tadeu Reis da; Franco, Glaci Regina Rodrigues de Melo

    2009-01-01

    It's a bibliographic study, in which it was made a scientific production survey on nursing referring to clinical teaching in the Catálogo de Dissertações e Teses do Centro de Estudos e Pesquisas em Enfermagem (CEPEn) (Nursing Study and Research Center's Dissertation and Thesis Catalog) from Associação Brasileira de Enfermagem - ABEn (Brazilian Nursing Association) between 1979 and 2004. It was aimed to describe the study distribution regarding to the number of publishing, applied title, publishing origin, year of application, methodology used and the theme approached. It was concluded that scientific production in this area is still incipient. Thus, we can improve our duties as an educator and occupy our space in the education and health in a competent and qualified way.

  10. Enriching student concept images: Teaching and learning fractions through a multiple-embodiment approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Clements, M. A. (Ken); Ellerton, Nerida F.

    2015-06-01

    This study investigated how fifth-grade children's concept images of the unit fractions represented by the symbols , , and changed as a result of their participation in an instructional intervention based on multiple embodiments of fraction concepts. The participants' concept images were examined through pre- and post-teaching written questions and pre- and post-teaching one-to-one verbal interview questions. Results showed that at the pre-teaching stage, the student concept images of unit fractions were very narrow and mainly linked to area models. However, after the instructional intervention, the fifth graders were able to select and apply a variety of models in response to unit fraction tasks, and their concept images of unit fractions were enriched and linked to capacity, perimeter, linear and discrete models, as well as to area models. Their performances on tests had improved, and their conceptual understandings of unit fractions had developed.

  11. HEALTH TECHNOLOGY ASSESSMENT: THE SCIENTIFIC CAREER OF A POLICY CONCEPT.

    PubMed

    Benoit, Cyril; Gorry, Philippe

    2017-01-01

    The aim of this work was to provide a comprehensive overview of the evolution of the health technology assessment (HTA) concept in the scientific literature through a scientometric approach. A literature search was conducted, by selecting publications, as well as news from the media, containing "health technology assessment" in their title, abstracts, or keywords. We then undertook a bibliometric and network analysis on the corpus of 2,865 publications thus obtained. Since a first publication in 1978, interest in HTA remained marginal until a turning point in the late 1980s, when growth of the number of publications took off alongside the creation of the U.K.'s NICE agency. Since then, publications have spread across several journals. The ranking of the organizations that publish such articles does not reflect any hegemonic position. However, HTA-related scientific production is strongly concentrated in Commonwealth and Nordic countries. Despite its transnational aspects, research on HTA has been framed within a small number of scientific networks and by a few opinion leaders. The "career" of the HTA concept may be seen as a scientific-knowledge based institutionalization of a public policy. To succeed in a country, HTA first needs scientific prerequisites, such as an organized scientific community working on the health sector and health services. Then, it appears that the recognition of this research by decision makers plays a key role in the development of the field.

  12. Teaching Ecological Concepts with Mud Dauber Nests.

    ERIC Educational Resources Information Center

    Matthews, Robert W.; Matthews, Janice R.

    1999-01-01

    Contends that mud dauber nests--which are widely available, safe, inexpensive, and easy to use--offer a novel and highly motivating way to teach ecological concepts to life science students at many grade levels. Presents background information for teachers, details classroom-tested methods for nest dissection, provides keys to nest contents, and…

  13. Teaching Embedded System Concepts for Technological Literacy

    ERIC Educational Resources Information Center

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  14. Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration

    NASA Astrophysics Data System (ADS)

    Krall, Rebecca Mcnall; Lott, Kimberly H.; Wymer, Carol L.

    2009-02-01

    The purpose of this descriptive study was to investigate inservice elementary and middle school teachers’ conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was utilized to assess 76 inservice elementary and middle school teachers from the central Appalachian region. Outcomes from four tasks assessing photosynthesis and respiration concepts are discussed. Findings revealed similarities between non-scientific conceptions the teachers demonstrated and non-scientific conceptions reported in the research literature on elementary and middle school students’ understanding of the concepts. Findings also informed subsequent inservice teacher professional development efforts in life science and the development of a biology course for preservice elementary teachers.

  15. Scientific teaching: defining a taxonomy of observable practices.

    PubMed

    Couch, Brian A; Brown, Tanya L; Schelpat, Tyler J; Graham, Mark J; Knight, Jennifer K

    2015-03-02

    Over the past several decades, numerous reports have been published advocating for changes to undergraduate science education. These national calls inspired the formation of the National Academies Summer Institutes on Undergraduate Education in Biology (SI), a group of regional workshops to help faculty members learn and implement interactive teaching methods. The SI curriculum promotes a pedagogical framework called Scientific Teaching (ST), which aims to bring the vitality of modern research into the classroom by engaging students in the scientific discovery process and using student data to inform the ongoing development of teaching methods. With the spread of ST, the need emerges to systematically define its components in order to establish a common description for education researchers and practitioners. We describe the development of a taxonomy detailing ST's core elements and provide data from classroom observations and faculty surveys in support of its applicability within undergraduate science courses. The final taxonomy consists of 15 pedagogical goals and 37 supporting practices, specifying observable behaviors, artifacts, and features associated with ST. This taxonomy will support future educational efforts by providing a framework for researchers studying the processes and outcomes of ST-based course transformations as well as a concise guide for faculty members developing classes. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Integration of the concepts of sustainability into teaching at post-secondary institutions

    NASA Astrophysics Data System (ADS)

    Davis, Sara Allison

    The purpose of this study was to examine the incorporation of the concepts of sustainability into teaching at two post-secondary public education residential institutions, Northern Arizona University (NAU) and the University of South Carolina (USC). A total of 17 faculty members, six administrators, and 31 students were interviewed in the study. An individual case record for each participating institution was developed. The two case records were then qualitatively cross-case analyzed to derive crosscutting themes and patterns at the two participating institutions. Based on the findings of this study, several major themes emerged across the two post-secondary public institutions. Sustainability was consistently viewed by faculty members, administrators, and students as a very broad term. While faculty members and administrators differentiated between the ecological, economic, and social dimensions of sustainability, students commonly associated sustainability more narrowly with an ecological meaning. Several common factors that influenced faculty members' and administrators' understanding of sustainability included literature, campus-wide training, personal influences, and professional networking. Common methods used by faculty to incorporate the concepts of sustainability into teaching included assigned readings, class discussions, and class projects. Key benefits of incorporating the concepts of sustainability into teaching included increased student awareness, collaboration, vision development, and social implications, while key challenges included time, support, assessment, student understanding, and more realistic classroom experiences. Key driving forces for faculty members and administrators for incorporating the concepts of sustainability into teaching were the initiatives specifically developed at the institutions. Based on the common themes at the two institutions studied, it is recommended that post-secondary institutions desiring to deploy the concepts

  17. Exploring Middle School Students' and Parents' Conceptions of Excellent Teaching

    ERIC Educational Resources Information Center

    Chen, Junjun

    2016-01-01

    While there have been many western studies about what excellent teaching means, there are far fewer eastern studies. This study explored how students and parents perceived conceptions of excellent teaching in Chinese middle schools. The 77 students' and 67 parents' responses relating to a personal narrative of a time they had experienced excellent…

  18. Shaping scientific attitude of biology education students through research-based teaching

    NASA Astrophysics Data System (ADS)

    Firdaus, Darmadi

    2017-08-01

    Scientific attitude is need of today's society for peaceful and meaningful living of every person in a multicultural world. A case study was conducted at the Faculty of Teacher Training and Education, University of Riau, Pekanbaru in order to describe the scientific attitude that shaped by research-based teaching (RBT). Eighteen students of English for Biology bilingual program were selected from 88 regular students as a subject of the study. RBT designed consists of 9 steps: 1) field observations, 2) developing research proposals, 3) research proposal seminar, 4) field data collecting, 5) data analyzing & ilustrating, 6) writing research papers, 7) preparing power point slides, 8) creating a scientific poster, 9) seminar & poster session. Data were collected by using check list observation instuments during 14 weeks (course sessions), then analyzed by using descriptive-quantitative method. The results showed that RBT were able to shape critical-mindedness, suspended judgement, respect for evidence, honesty, objectivity, and questioning attitude as well as tolerance of uncertainty. These attitudes which shaped were varies according to every steps of learning activities. It's seems that the preparation of scientific posters and research seminar quite good in shaping the critical-mindedness, suspended judgment, respect for evidence, honesty, objectivity, and questioning attitude, as well as tolerance of uncertainty. In conclusion, the application of research-based teaching through the English for Biology courses could shape the students scientific attitudes. However, the consistency of the appearance of a scientific attitude in every stage of Biology-based RBT learning process need more intensive and critical assessment.

  19. Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical and ontogenetic) origin of common and scientific sense and the genetic method of teaching (for) understanding

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2015-06-01

    For many students, the experience with science tends to be alienating and uprooting. In this study, I take up Simone Weil's concepts of enracinement (rooting) and déracinement (uprooting) to theorize the root of this alienation, the confrontation between children's familiarity with the world and unfamiliar/strange scientific conceptions. I build on the works of the phenomenological philosopher Edmund Husserl and the German physics educator Martin Wagenschein (who directly refers to Weil's concepts) to make a case for the rooting function of original/originary experiences and the genetic method to science teaching. The genetic approach allows students to retain their foundational familiarity with the world and their descriptions thereof all the while evolving other (more scientific) ways of explaining natural phenomena.

  20. An International Study of Prospective Teachers' Initial Teaching Conceptions and Concerns: The Case of Teaching "Combustion."

    ERIC Educational Resources Information Center

    De Jong, Onno; Ahtee, Maija; Goodwin, Alan; Hatzinikita, Vassilia; Koulaidis, Vasilis

    1999-01-01

    Investigated Dutch, Finnish, English, and Greek preservice science teachers' conceptions of and concerns about how to teach the concept of combustion. Participants prepared lessons for junior secondary students, then completed interviews and questionnaires. Results revealed many important and similar characteristics of prospective teachers' views…

  1. Outside the Classroom and beyond Psychology: A Citation Analysis of the Scientific Influence of Teaching Activities

    ERIC Educational Resources Information Center

    Tomcho, Thomas J.; Foels, Rob; Walter, Mark I.; Yerkes, Kyle; Brady, Brittany; Erdman, Molly; Dantoni, Lindsay; Venables, Megan; Manry, Allison

    2015-01-01

    A primary objective for researchers who publish teaching activities and methods in the "Teaching of Psychology" (ToP) is to inform best practices in classroom teaching. Beyond the learning effect in the classroom, these ToP teaching activity and method articles may also have a "scientific" effect that heretofore researchers…

  2. Taking a Scientific Approach to Science Teaching

    NASA Astrophysics Data System (ADS)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  3. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    ERIC Educational Resources Information Center

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  4. The Effects of Utilising the Concept Maps in Teaching History

    ERIC Educational Resources Information Center

    Nair, Subadrah Madhawa; Narayanasamy, Moganasundari

    2017-01-01

    Teaching History is a tough and challenging task for teachers because most students consider History as a boring subject. Many studies indicate that students are not interested in learning History. This paper is based on a quasi-experimental study conducted to investigate the effects of utilizing the concept map method in the teaching of History…

  5. Towards Student-Centred Conceptions of Teaching: The Case of Four Ethiopian Universities

    ERIC Educational Resources Information Center

    Degago, Adinew Tadesse; Kaino, Luckson Muganyizi

    2015-01-01

    This study explored instructors' conceptions of teaching in view of the existing calls for improving the quality of teaching at higher education in Ethiopia. Twenty university instructors were interviewed using a phenomenographic approach, a popular research procedure to explore variation in the ways instructors experience and understand teaching.…

  6. Operation ARA: A Computerized Learning Game that Teaches Critical Thinking and Scientific Reasoning

    ERIC Educational Resources Information Center

    Halpern, Diane F.; Millis, Keith; Graesser, Arthur C.; Butler, Heather; Forsyth, Carol; Cai, Zhiqiang

    2012-01-01

    Operation ARA (Acquiring Research Acumen) is a computerized learning game that teaches critical thinking and scientific reasoning. It is a valuable learning tool that utilizes principles from the science of learning and serious computer games. Students learn the skills of scientific reasoning by engaging in interactive dialogs with avatars. They…

  7. Teaching Science in a Multicultural World.

    ERIC Educational Resources Information Center

    Offutt, Elizabeth Rhodes

    This book is designed to be a source of ideas and motivation to encourage curiosity in children, provide opportunities to develop scientific processing skills, find out about cultures around the world, and explore science concepts. This resource incorporates multicultural literature and approaches into the teaching of science concepts in the…

  8. Using a Simple "Escherichia Coli" Growth Curve Model to Teach the Scientific Method

    ERIC Educational Resources Information Center

    McKernan, Lisa N.

    2015-01-01

    The challenge of teaching in the sciences is not only conveying knowledge in the discipline, but also developing essential critical thinking, data analysis, and scientific writing skills. I outline an exercise that can be done easily as part of a microbiology laboratory course. It teaches the nature of the research process, from asking questions…

  9. Scientific American Frontiers Teaching Guides for Shows 701-705, October 1996-April 1997.

    ERIC Educational Resources Information Center

    Connecticut Public Television, Hartford.

    These teaching guides are meant to supplement the seventh season (1996-97) of the PBS Series "Scientific American Frontiers". Episode 701 is entitled "Inventing the Future: A Tour of the MIT Media Lab" and the teaching guide contains information and activities on a virtual pet dog, computers of the future, a smart car designed…

  10. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  11. The questions of scientific literacy and the challenges for contemporary science teaching: An ecological perspective

    NASA Astrophysics Data System (ADS)

    Kim, Mijung

    This study began with questions about how science education can bring forth humanity and ethics to reflect increasing concerns about controversial issues of science and technology in contemporary society. Discussing and highlighting binary epistemological assumptions in science education, the study suggests embodied science learning with human subjectivity and integrity between knowledge and practice. The study questions (a) students' understandings of the relationships between STSE and their everyday lifeworld and (b) the challenges of cultivating scientific literacy through STSE teaching. In seeking to understand something about the pedagogical enactment of embodied scientific literacy that emphasizes the harmony of children's knowledges and their lifeworlds, this study employs a mindful pedagogy of hermeneutics. The intro- and intra-dialogical modes of hermeneutic understanding investigate the pedagogical relationship of parts (research texts of students, curriculum, and social milieu) and the whole (STSE teaching in contemporary time and place). The research was conducted with 86 Korean 6 graders at a public school in Seoul, Korea in 2003. Mixed methods were utilized for data collection including a survey questionnaire, a drawing activity, interviews, children's reflective writing, and classroom teaching and observation. The research findings suggest the challenges and possibilities of STSE teaching as follows: (a) children's separated knowledge from everyday practice and living, (b) children's conflicting ideas between ecological/ethical aspects and modernist values, (c) possibilities of embodied knowing in children's practice, and (d) teachers' pedagogical dilemmas in STSE teaching based on the researcher's experiences and reflection throughout teaching practice. As further discussion, this study suggests an ecological paradigm for science curriculum and teaching as a potential framework to cultivate participatory scientific literacy for citizenship in

  12. Teaching the Concept of the Sampling Distribution of the Mean

    ERIC Educational Resources Information Center

    Aguinis, Herman; Branstetter, Steven A.

    2007-01-01

    The authors use proven cognitive and learning principles and recent developments in the field of educational psychology to teach the concept of the sampling distribution of the mean, which is arguably one of the most central concepts in inferential statistics. The proposed pedagogical approach relies on cognitive load, contiguity, and experiential…

  13. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    NASA Astrophysics Data System (ADS)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  14. Mathematical knowledge in teaching of fraction concepts using diagrammatical approach

    NASA Astrophysics Data System (ADS)

    Veloo, Palanisamy Kathir; Puteh, Marzita

    2017-05-01

    Teachers need various types of knowledge in order to deliver various fraction concepts at elementary level. In this paper, Balls' framework (2008) or, Mathematical Knowledge for Teaching (MKT) is used as benchmark guideline. This paper investigates and explores component of MKT knowledge among eight experienced teachers of the primary school. Data was collected using paper pencil test, interview and video recording. This paper, narrowed to teacher's knowledge and their practices while teaching of various fractions concepts using diagrammatical approach in present of MKT. The data gathered from teachers were analyzed using thematic analysis techniques. The results indicated that teachers lack various components of MKT knowledge as a proposal by various researchers and assumed that teaching as procedural more than enough due to lack of deep understanding of mathematics and the various types of MKT is not required due to the present of practices in the mathematics classroom.

  15. Science Teaching Attitudes and Scientific Attitudes of Pre-Service Teachers of Gifted Students

    ERIC Educational Resources Information Center

    Erdogan, Sezen Camci

    2017-01-01

    The purpose of this study is to determine science teaching attitudes and scientific attitudes of pre-service teachers of gifted students due to gender and grade level and also correlation among these variables. It is a survey study that the group is 82 students attending Gifted Education undergraduate level. Data is gathered by Scientific Attitude…

  16. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses

    ERIC Educational Resources Information Center

    Durham, Mary F.; Knight, Jennifer K.; Couch, Brian A.

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of…

  17. Analysis of the Educational Implications of the Concept of Scientific Revolutions.

    ERIC Educational Resources Information Center

    Prather, J. Preston

    This paper is based on the work of Thomas Kuhn, a physicist turned philosopher and historian of science. In his book, "The Structure of Scientific Revolution," he posited a new concept of the nature and history of science and strongly criticized the current textbook tradition of science education. This study analyzed Kuhn's concept of…

  18. Using a Three-Dimensional Interactive Model To Teach Environmental Concepts to Visually Impaired Children.

    ERIC Educational Resources Information Center

    Budd, Julia M.; LaGrow, Steven J.

    2000-01-01

    A study investigated the efficacy of using the Buddy Road Kit, an interactive, wooden model, to teach environmental concepts to 4 children with visual impairments ages 7 to 11 years old. Results indicate the model was effective in teaching environmental concepts and traffic safety to the children involved. (Contains references.) (CR)

  19. Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool

    ERIC Educational Resources Information Center

    Newman, Dina L.; Snyder, Christopher W.; Fisk, J. Nick; Wright, L. Kate

    2016-01-01

    Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select--format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all…

  20. The integration of creative drama into science teaching

    NASA Astrophysics Data System (ADS)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  1. Using Manipulatives To Teach Quantitative Concepts in Ecology.

    ERIC Educational Resources Information Center

    Eyster, Linda S.; Tashiro, Jay Shiro

    1997-01-01

    Describes the use of manipulatives to teach the fundamental concept of limiting factors and presents a series of questions that can be used to test whether students are harboring some of the most common misconceptions about limiting factors. Includes applications to discussions of cultural eutrophication and vegetarianism. (JRH)

  2. Using Real-Life Experiences to Teach Computer Concepts

    ERIC Educational Resources Information Center

    Read, Alexis

    2012-01-01

    Teaching computer concepts to individuals with visual impairments (that is, those who are blind or visually impaired) presents some unique challenges. Students often have difficulty remembering to perform certain steps or have difficulty remembering specific keystrokes when using computers. Many cannot visualize the way in which complex computing…

  3. An Issues- and Concepts-Based Curriculum: Teaching about Climate Change

    ERIC Educational Resources Information Center

    Ross, Keith

    2014-01-01

    I argue that students want to see relevance in their studies. The National Curriculum in England is a list of concepts that we wish them to understand. However, the concepts need to be embedded into a meaningful context, such as climate change, which may become the overarching reason for teaching science. In this article I remember fondly…

  4. Teaching the Origin of the First Living Systems.

    ERIC Educational Resources Information Center

    Graz, C. J. Michael

    1998-01-01

    Presents a novel idea for teaching a scientific concept using a poem that describes the major perspectives on the origins of living systems as the medium of instruction. Addresses major concepts such as chemical evolution, DNA vs. RNA, protocell formation, coacervates, panspermia, and special creation. (Author/CCM)

  5. The Tuskegee Syphilis Study and the scientific concept of racial nervous resistance.

    PubMed

    Crenner, Christopher

    2012-04-01

    In 1932, the U.S. Public Health Service began a study of untreated syphilis among black men in Macon County, Alabama. This project, later known as the Tuskegee Syphilis Study, became one of the most notorious ventures of twentieth-century medicine. Much has been written on it. Historians have suggested that scientific racism strongly influenced the study. But specific links between earlier racial science and the scientific conduct of the study have remained unexplored. The examination in this paper of the concept of a racially determined resistance to syphilis in the nervous system establishes such a link. Discussion of nervous resistance to syphilis appeared in the medical literature in the early twentieth century as a conjecture about the natural inferiority of blacks. White physicians used the concept to interpret racial differences in neurosyphilis as evidence of the rudimentary development of the brain. A small community of African American physicians joined other national experts in syphilis who chose to explain apparent racial differences through alternate mechanisms. But the scientific advisors to the Tuskegee Syphilis Study favored the concept of a racial resistance to neurosyphilis and steered the early design of the study to help to elucidate it. The Tuskegee Syphilis Study was an examination of untreated syphilis, but it also became a demonstration of a putative racial characteristic of syphilis long considered evidence of the natural inferiority of blacks. An examination of the concept of racial nervous resistance and its influence on the research in Macon County helps to define the influence of scientific racism on this notorious medical study.

  6. Teach Life Science Concepts--with Picture Books.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Asserts that young children need help translating scientific theory into experiences that involve their senses. Provides age-appropriate, literature-based activities for exploring concepts and vocabulary in the areas of plant life cycles, animal life cycles, ocean ecology, and human growth development. Suggests specific works of children's…

  7. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    NASA Astrophysics Data System (ADS)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  8. Development of geometry materials based on scientific approach for junior high school students

    NASA Astrophysics Data System (ADS)

    Nurafni; Siswanto, R. D.; Azhar, E.

    2018-01-01

    A scientific approach is a learning process designed so that learners can actively construct concepts, encourage learners to find out from various sources through observation, and not just be told. Therefore, learning by scientific approach offers a solution, because the goals, principles, and stages of the scientific approach allow for a good understanding of the students. Because of the absence of teaching materials “polyhedron geometry based on scientific approach” which is widely published in Indonesia, then we need to develop the teaching materials. The results obtained in this study are the tasks presented on teaching materials with a scientific approach both in defining the cube and the beam, identify and solve problems related to the properties and elements of cubes and beams, making cube and beam nets, solving problems related to cube and beam nets, solving problems related to cube and beam surface area. Beginning with the difficulties students face. Then, based on the results of interviews with teachers and analysis of student difficulties on each indicator, researchers revise the teaching materials as needed. Teaching materials that have not found any more student difficulties then the teaching materials are considered valid and ready for use by teachers and students.

  9. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    NASA Astrophysics Data System (ADS)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  10. Novice Explanations of Hurricane Formation Offer Insights into Scientific Literacy and the Development of Expert-Like Conceptions

    ERIC Educational Resources Information Center

    Arthurs, Leilani A.; Van Den Broeke, Matthew S.

    2016-01-01

    The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students' prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise. The gap in knowledge about the alternate conceptions that novices have about many of Earth's…

  11. Using Online Games to Teach Personal Finance Concepts

    ERIC Educational Resources Information Center

    Huang, Chin-Wen; Hsu, Chun-Pin

    2011-01-01

    This case study explores the use of online games to teach personal finance concepts at the college level. A number of free online games targeting such topics as budgeting and saving, risk and return, consumer credit, financial services, and investments were introduced to the experimental group as homework assignments. Statistical results indicate…

  12. Strategies for Teaching Object-Oriented Concepts with Java

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel

    2006-01-01

    A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to…

  13. Teaching Topographic Map Skills and Geomorphology Concepts with Google Earth in a One-Computer Classroom

    ERIC Educational Resources Information Center

    Hsu, Hsiao-Ping; Tsai, Bor-Wen; Chen, Che-Ming

    2018-01-01

    Teaching high-school geomorphological concepts and topographic map reading entails many challenges. This research reports the applicability and effectiveness of Google Earth in teaching topographic map skills and geomorphological concepts, by a single teacher, in a one-computer classroom. Compared to learning via a conventional instructional…

  14. The Idea Bank: Teaching Harmonic Concepts at the Elementary Level.

    ERIC Educational Resources Information Center

    Music Educators Journal, 1979

    1979-01-01

    Briefly described are ways of teaching the concept of harmony to young children through the use of keyboard instruments, resonator bells, diatonic and chromatic bells, and Orff melody instruments. (KC)

  15. Using Mini-Reports to Teach Scientific Writing to Biology Students

    ERIC Educational Resources Information Center

    Simmons, Alexandria D.; Larios-Sanz, Maia; Amin, Shivas; Rosell, Rosemarie C.

    2014-01-01

    Anyone who has taught an introductory biology lab has sat at their desk in front of a towering stack of lengthy lab reports and wondered if there was a better way to teach scientific writing. We propose the use of a one-page format that we have called a "mini-report," which we believe better allows students to understand the structure…

  16. Myth, Music, and Science: Teaching the Philosophy of Science through the Use of Non-Scientific Examples.

    ERIC Educational Resources Information Center

    Slowik, Edward

    2003-01-01

    Explores the benefits of utilizing non-scientific examples and analogies in teaching philosophy of science courses. Utilizes a lengthy analogy between musical styles and Kuhn's theory of scientific revolution to demonstrate this strategy. (SOE)

  17. How to Teach Procedures, Problem Solving, and Concepts in Microbial Genetics

    ERIC Educational Resources Information Center

    Bainbridge, Brian W.

    1977-01-01

    Flow-diagrams, algorithms, decision logic tables, and concept maps are presented in detail as methods for teaching practical procedures, problem solving, and basic concepts in microbial genetics. It is suggested that the flexible use of these methods should lead to an improved understanding of microbial genetics. (Author/MA)

  18. Scientific Basis vs. Contextualized Teaching and Learning: The Effect on the Achievement of Postsecondary Students

    ERIC Educational Resources Information Center

    Curry, Kevin W., Jr.; Wilson, Elizabeth; Flowers, Jim L.; Farin, Charlotte E.

    2012-01-01

    The purpose of the study was to compare two teaching methodologies for an integrated agricultural biotechnology course at the postsecondary level. The two teaching methods tested were the explanation of the scientific basis for content (comparison treatment) versus the application of content to a real-world agricultural context (experimental…

  19. Assessment Policy and Practice Effects on New Zealand and Queensland Teachers' Conceptions of Teaching

    ERIC Educational Resources Information Center

    Brown, Gavin T. L.; Lake, Robert; Matters, Gabrielle

    2009-01-01

    Teachers' thinking about four conceptions of teaching (i.e., apprenticeship-developmental, nurturing, social reform, and transmission) were captured using the "Teaching Perspectives Inventory" (TPI). New Zealand and Queensland have very similar teaching-related policies and practices but differences around assessment policies and…

  20. [Seed geography: its concept and basic scientific issues].

    PubMed

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  1. Evolution of a Model for Socio-Scientific Issue Teaching and Learning

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Foulk, Jaimie A.; Friedrichsen, Patricia J.

    2017-01-01

    Socio-scientific teaching and learning (SSI-TL) has been suggested as an effective approach for supporting meaningful learning in school contexts; however, limited tools exist to support the work of designing and implementing this approach. In this paper, we draw from a series of four design based research projects that have produced SSI…

  2. Teaching the Concept of Precycling: A Campaign and Evaluation.

    ERIC Educational Resources Information Center

    Gillilan, Sheryl; Werner, Carol M.; Olson, Lynne; Adams, Dorothy

    1996-01-01

    Precycling, or purchasing wisely to reduce waste, is the EPA-preferred way to conserve resources and extend landfill life. A three-month campaign using radio, television, and in-store advertising was effective in teaching this concept in the greater Salt Lake City area. (Author/AIM)

  3. Teachers' conceptions of learning and teaching in student-centred medical curricula: the impact of context and personal characteristics.

    PubMed

    Jacobs, Johanna C G; van Luijk, Scheltus J; van der Vleuten, Cees P M; Kusurkar, Rashmi A; Croiset, Gerda; Scheele, Fedde

    2016-09-21

    Gibbs and Coffey (2004) have reported that teaching practices are influenced by teachers' conceptions of learning and teaching. In our previous research we found significant differences between teachers' conceptions in two medical schools with student-centred education. Medical school was the most important predictor, next to discipline, gender and teaching experience. Our research questions for the current study are (1) which specific elements of medical school explain the effect of medical school on teachers' conceptions of learning and teaching? How? and (2) which contextual and personal characteristics are related to conceptions of learning and teaching? How? Individual interviews were conducted with 13 teachers of the undergraduate curricula in two medical schools. Previously their conceptions of learning and teaching were assessed with the COLT questionnaire. We investigated the meanings they attached to context and personal characteristics, in relation to their conceptions of learning and teaching. We used a template analysis. Large individual differences existed between teachers. Characteristics mentioned at the medical school and curriculum level were 'curriculum tradition', 'support by educational department' and 'management and finances'. Other contextual characteristics were 'leadership style' at all levels but especially of department chairs, 'affordances and support', 'support and relatedness', and 'students' characteristics'. Personal characteristics were 'agency', 'experience with PBL (as a student or a teacher)','personal development', 'motivation and work engagement'and 'high content expertise'. Several context and personal characteristics associated with teachers' conceptions were identified, enabling a broader view on faculty development with attention for these characteristics, next to teaching skills.

  4. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses

    PubMed Central

    Durham, Mary F.; Knight, Jennifer K.; Couch, Brian A.

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. PMID:29196428

  5. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    ERIC Educational Resources Information Center

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  6. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  7. Making a Math Teaching Aids of Junior High School Based on Scientific Approach Through an Integrated and Sustainable Training

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Mashuri

    2017-04-01

    Not all of teachers of Mathematics in Junior High School (JHS) can design and create teaching aids. Moreover, if teaching aids should be designed so that it can be used in learning through scientific approaches. The problem: How to conduct an integrated and sustainable training that the math teacher of JHS, especially in Semarang can design and create teaching aids that can be presented to the scientific approach? The purpose of this study to find a way of integrated and continuous training so that the math teacher of JHS can design and create teaching aids that can be presented to the scientific approach. This article was based on research with a qualitative approach. Through trials activities of resulting of training model, Focus Group Discussions (FGD), interviews, and triangulation of the results of the research were: (1) Produced a training model of integrated and sustainable that the mathematics teacher of JHS can design and create teaching aids that can be presented to the scientific approach. (2) In training, there was the provision of material and workshop (3) There was a mentoring in the classroom. (4) Sustainability of the consultation. Our advice: (1) the trainer should be clever, (2) the training can be held at the holidays, while the assistance during the holiday season was over.

  8. Affordances and Challenges of Using Argument as a Connective Discourse for Scientific Practices to Teach Climate Science

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, A.; Wolfson, J.

    2015-12-01

    An important goal of science education is to support development of citizens to participate in public debate and make informed decisions relevant to their lives and their worlds. The NGSS (Next Generation Science Standards) suggest engaging students in science classrooms in argumentation as a practice to help enhance the quality of evidence based decision making. In this multi-case study, we explored the use of written argumentation in eight secondary school science classrooms during a lesson on the relationship between ocean temperature and its CO2 holding capacity. All teachers of these classrooms were trained during a day long NSF funded Climate Literacy Workshop on the basic concepts of climate science, scientific practices and implementation of an activity called "It's a Gassy World". The data of the current study involved students' written arguments, teachers' written reflections on the implementation of the activity as well as field notes from the Climate Literacy Workshop. A qualitative discourse analysis of the data was used to find common themes around affordances and challenges of argument as a connective discourse for scientific practices to teach climate change. The findings show that participating in written argumentation process encouraged students to discuss their experimental design and use data interpretation for their evidences. However, the results also indicated the following challenges: a) teachers themselves need support in connecting their evidence to their claims, b) arguing a socioscientific issue creates a sensitive environment c) conceptual quality of an argument needs to be strengthen through background in courses other than science, and d) graphing skills (or lack of) can interfere with constructing scientifically accurate claims. This study has implications in effectively teaching climate change through argumentation, and thus creating opportunities for practicing authentic climate science research in K-12 classrooms.

  9. Emerging Conceptions of ICT-Enhanced Teaching: Australian TAFE Context

    ERIC Educational Resources Information Center

    Khan, Shahadat Hossain

    2015-01-01

    This article presents the results of a study, undertaken from a phenomenographic perspective, which examines technical and further education (TAFE) teachers' conceptions of ICT-enhanced teaching. A cohort of 23 teachers from three TAFE institutions in Australia, participated in semi-structured, in-depth interviews. These interviews were used to…

  10. Ideas for a Teaching Sequence for the Concept of Energy

    ERIC Educational Resources Information Center

    Duit, Reinders; Neumann, Knut

    2014-01-01

    The energy concept is one of the most important ideas for students to understand. Looking at phenomena through the lens of energy provides powerful tools to model, analyse and predict phenomena in the scientific disciplines. The cross-disciplinary nature of the energy concept enables students to look at phenomena from different angles, helping…

  11. Problems in Teaching the Topic of Redox Reactions: Actions and Conceptions of Chemistry Teachers.

    ERIC Educational Resources Information Center

    De Jong, Onno; And Others

    1995-01-01

    Presents a case study of problems that can occur when teaching the topic of redox reactions to grade-11 students. Concludes that the teachers' scientific expertise is an important source of difficulties when teaching redox reactions. Discusses implications for improvement of current chemistry classroom practice and content-related teacher…

  12. Promotion of scientific literacy: Bangladeshi teachers' perspectives and practices

    NASA Astrophysics Data System (ADS)

    Sarkar, Mahbub; Corrigan, Deborah

    2014-05-01

    Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life - an aim consistent with the notion of scientific literacy. Purpose: This paper reports Bangladeshi science teachers' perspectives and practices in regard to the promotion of scientific literacy. Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications. Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers' science lessons, interviewing them twice - once before and once after the lesson observation, and interviewing their students in focus groups. Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students' difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition. Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic

  13. Investigating the Nature of Third Grade Students' Experiences with Concept Maps to Support Learning of Science Concepts

    ERIC Educational Resources Information Center

    Merrill, Margaret L.

    2012-01-01

    To support and improve effective science teaching, educators need methods to reveal student understandings and misconceptions of science concepts and to offer all students an opportunity to reflect on their own knowledge construction and organization. Students can benefit by engaging in scientific activities in which they build personal…

  14. Evolution of the Students' Conceptual Understanding in the Case of a Teaching Sequence in Mechanics: Concept of Interaction

    ERIC Educational Resources Information Center

    Küçüközer, Asuman

    2006-01-01

    This study aims to better understand the construction of the meaning of physics concepts in mechanics during a teaching sequence at the upper secondary school level. In the teaching sessions, students were introduced to the concepts of interaction and force. During this teaching sequence the models called "interactions" and "laws of…

  15. Pre-Service Music Teachers' Metaphorical Perceptions of the Concept of a Music Teaching Program

    ERIC Educational Resources Information Center

    Kiliç, Deniz Beste Çevik

    2017-01-01

    This study was intended to reveal pre-service music teachers' perceptions of the concept of a "music teaching program" with the use of metaphors. Its sample included 130 pre-service music teachers in the Music Teaching Program of Fine Arts Teaching Department in Balikesir University's Education Faculty. The study data were collected by…

  16. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    ERIC Educational Resources Information Center

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  17. Teaching scientific thinking skills: Students and computers coaching each other

    NASA Astrophysics Data System (ADS)

    Reif, Frederick; Scott, Lisa A.

    1999-09-01

    Our attempts to improve physics instruction have led us to analyze thought processes needed to apply scientific principles to problems—and to recognize that reliable performance requires the basic cognitive functions of deciding, implementing, and assessing. Using a reciprocal-teaching strategy to teach such thought processes explicitly, we have developed computer programs called PALs (P_ersonal A_ssistants for L_earning) in which computers and students alternately coach each other. These computer-implemented tutorials make it practically feasible to provide students with individual guidance and feedback ordinarily unavailable in most courses. We constructed PALs specifically designed to teach the application of Newton's laws. In a comparative experimental study these computer tutorials were found to be nearly as effective as individual tutoring by expert teachers—and considerably more effective than the instruction provided in a well-taught physics class. Furthermore, almost all of the students using the PALs perceived them as very helpful to their learning. These results suggest that the proposed instructional approach could fruitfully be extended to improve instruction in various practically realistic contexts.

  18. The Use of Sequence and Synthesis for Teaching Concepts.

    ERIC Educational Resources Information Center

    Frey, Linda; Reigeluth, Charles M.

    In order to investigate the effects of sequence and synthesis in the teaching of taxonomically-related concepts, a study was conducted in which 27 students from Syracuse University were asked to examine printed instructions dealing with kinds of sailboats and then to respond to a test based on those instructions. The synthesizing structure…

  19. Enriching Student Concept Images: Teaching and Learning Fractions through a Multiple-Embodiment Approach

    ERIC Educational Resources Information Center

    Zhang, Xiaofen; Clements, M. A.; Ellerton, Nerida F.

    2015-01-01

    This study investigated how fifth-grade children's concept images of the unit fractions represented by the symbols 1/2, 1/3/ and 1/4 changed as a result of their participation in an instructional intervention based on multiple embodiments of fraction concepts. The participants' concept images were examined through pre- and post-teaching written…

  20. Strategies for Teaching Elementary and Junior High Students.

    ERIC Educational Resources Information Center

    Consuegra, Gerard F.

    1980-01-01

    Discusses the applications of Piaget's theory of cognitive development to elementary and junior high school science teaching. Topics include planning concrete experiences, inductive and hypothetical deductive reasoning, measurement concepts, combinatorial logic, scientific experimentation and reflexive thinking. (SA)

  1. Sustainability: Teaching an Interdisciplinary Threshold Concept through Traditional Lecture and Active Learning

    ERIC Educational Resources Information Center

    Levintova, Ekaterina M.; Mueller, Daniel W.

    2015-01-01

    One of the difficulties in teaching global sustainability in the introductory political science classes is the different emphases placed on this concept and the absence of the consensus on where the overall balance between environmental protection, economic development, and social justice should reside. Like many fuzzy concepts with which students…

  2. Kindergarten and Primary School Children's Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall

    NASA Astrophysics Data System (ADS)

    Malleus, Elina; Kikas, Eve; Marken, Tiivi

    2017-06-01

    The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud formation and rain in kindergarten (age 5-7), second (age 8-9) and fourth (age 10-11) grade children, who were questioned on the basis of structured interview technique. In order to represent consistency in children's answers, three different types of clouds were introduced (a cirrus cloud, a cumulus cloud, and a rain cloud). Our results indicate that children in different age groups gave a similarly high amount of synthetic answers, which suggests the need for teachers to understand the formation process of different misconceptions to better support the learning process. Even children in kindergarten may have conceptions that represent different elements of scientific understanding and misconceptions cannot be considered age-specific. Synthetic understanding was also shown to be more consistent (not depending on cloud type) suggesting that gaining scientific understanding requires the reorganisation of existing concepts, that is time-consuming. Our results also show that the appearance of the cloud influences children's answers more in kindergarten where they mostly related rain cloud formation with water. An ability to create abstract connections between different concepts should also be supported at school as a part of learning new scientific information in order to better understand weather-related processes.

  3. A Teacher's Conception of Definition and Use of Examples When Doing and Teaching Mathematics

    ERIC Educational Resources Information Center

    Johnson, Heather Lynn; Blume, Glendon W.; Shimizu, Jeanne K.; Graysay, Duane; Konnova, Svetlana

    2014-01-01

    To contribute to an understanding of the nature of teachers' mathematical knowledge and its role in teaching, the case study reported in this article investigated a teacher's conception of a metamathematical concept, definition, and her use of examples in doing and teaching mathematics. Using an enactivist perspective on mathematical…

  4. Student Misconceptions About Astronomy and the Best Order of Teaching Astronomical Concepts

    NASA Astrophysics Data System (ADS)

    Favia, Andrej; Comins, N. F.; Thorpe, G.

    2013-01-01

    My (Andrej Favia) Ph.D. thesis involves quantifying the "difficulty" of unlearning common astronomy misconceptions. I do this by applying factor analysis and Item Response Theory (IRT) to a retrospective inventory of when, or if, college students dispelled the misconceptions under consideration. Our inventory covers 235 misconceptions identified over the span of 10 years of teaching the college astronomy lecture course at the Universe of Maine by NFC. The analysis yields logical groupings of topics (e.g., teach one planet at a time rather than use comparative planetology) and the "order of difficulty" of the associated topics. We have results for about one fourth of the inventory, and our results show that there are concepts of different difficulties, which suggest that they should be presented in different orders. We also find that the order of teaching concepts is sometimes different for high school and college level courses.

  5. Professional development strategies for teaching urban biology teachers to use concept maps effectively

    NASA Astrophysics Data System (ADS)

    McGregor Petgrave, Dahlia M.

    Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.

  6. ABRIXAS: scientific goal and mission concept

    NASA Astrophysics Data System (ADS)

    Predehl, Peter

    1999-10-01

    ABRIXAS is a small German satellite project having the goal of surveying the sky in the x-ray band between 0.5 and 12 keV, thereby extending the former ROSAT all-sky survey towards higher energies. It consists of seven highly nested Wolter-I mirror systems which share one common focal plane camera, a CCD detector of the novel pn-type. ABRIXAS benefits from previously developed technologies or existing instruments. ABRIXAS was launched successfully into a low earth orbit by a Russian KOSMOS rocket in late April 1999. A few hours after its launch, however, the mission failed due to a battery problem. Currently, a repetition of the mission is under discussion because both the scientific goal and the mission concept are still be regarded as very attractive.

  7. The Historical Approach to Science Teaching.

    ERIC Educational Resources Information Center

    Brouwer, Wytze; Singh, Amar

    1983-01-01

    Advantages of using an historical approach in teaching physics are discussed, focusing on the questioning techniques that a teacher can adopt in analyzing a particular episode or concept in the history of physics. Questions related to a theory's reception among the scientific community are also discussed. (JN)

  8. The Effect of Planetariums on Teaching Specific Astronomy Concepts

    ERIC Educational Resources Information Center

    Türk, Cumhur; Kalkan, Hüseyin

    2015-01-01

    This study aimed to determine students' knowledge levels related to specific astronomy concepts and the effect of a planetarium environment on teaching. The study sample included seventh-grade (12-13 years old) students. For this purpose, 240 students of various socioeconomic and cultural levels from six schools (two in the city center, two…

  9. Visualizing Sound: Demonstrations to Teach Acoustic Concepts

    NASA Astrophysics Data System (ADS)

    Rennoll, Valerie

    Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.

  10. Recostructing the Physics Teaching Didactic based on Marzano’s Learning Dimension on Training the Scientific Literacies

    NASA Astrophysics Data System (ADS)

    Karim, S.; Prima, E. C.; Utari, S.; Saepuzaman, D.; Nugaha, M. G.

    2017-02-01

    Scientific literacy is currently considered as an important aspect supporting an useful citizenship ability for civilians inhabiting highly developed countries as well as developing countries. Consequently, certain countries recommended this scientific literacy to be applied at a national curricula. The PISA study showed the Indonesian scientific literacy level of 1, which means as just simple science phenomenon that could be exactly descibed by a student. This condition indicates that common science teachings do not optimally facillitate students to guide the scientific literacy. By proposing this research, the science didactic reconstruction will be offered in order to gain the students’ scientific literacy evaluated from the qualitative analysis of the action research and the students’ respons during learning science. The qualitative evaluation was developed based on the Marzano’s learning dimension about the scientific literacy. This research, involving 29 students as participants, analyzed the improved physics teaching didactic as described in the following sentences. The teaching reconstruction concerned a high attention to the development of the structural knowledge. The knowledge was acquired from a real phenomenon followed by giving the instructed questions as the second learning dimension. The third dimension of learning reconstruction aimed to provide the knowledge repetition on an appropriate science context. At the fourth dimension, the reconstruction should be improved in order to find the best treatment for the students. Hopefully, they can control the physical parameter and evaluate the result of their investigation related to the given science problems. It can be concluded that most of the students were interested in learning science. However, the productive learning didn’t accompany students to the Marzano’s second, third, and fourth learning dimensions.

  11. Research and Teaching: Undergraduate Students' Scientifically Informed Decision Making about Socio-Hydrological Issues

    ERIC Educational Resources Information Center

    Sabel, Jaime L.; Vo, Tina; Alred, Ashley; Dauer, Jenny M.; Forbes, Cory T.

    2017-01-01

    Although knowledge of disciplinary concepts and epistemic understanding of science are foundations of scientific literacy, students must learn to apply their knowledge to real-world situations. To engage effectively with contemporary water-related challenges with scientific and social dimensions, students need to understand the properties of water…

  12. Trainee Teachers' Conceptions of Teaching and Learning, Classroom Layout and Exam Design

    ERIC Educational Resources Information Center

    Betoret, Fernando Domenech; Artiga, Amparo Gomez

    2004-01-01

    The objective of this study centres on identifying and classifying the conceptions of teaching and learning held by future secondary school teachers, and on analysing the relationship between these conceptions and the way classroom space is organized and exams are designed. The test instruments used were applied to a sample of 138 graduates, who…

  13. Recognizing Students' Scientific Reasoning: A Tool for Categorizing Complexity of Reasoning During Teaching by Inquiry

    PubMed Central

    Grady, Julia

    2010-01-01

    Teaching by inquiry is touted for its potential to encourage students to reason scientifically. Yet, even when inquiry teaching is practiced, complexity of students' reasoning may be limited or unbalanced. We describe an analytic tool for recognizing when students are engaged in complex reasoning during inquiry teaching. Using classrooms that represented “best case scenarios” for inquiry teaching, we adapted and applied a matrix to categorize the complexity of students' reasoning. Our results revealed points when students' reasoning was quite complex and occasions when their reasoning was limited by the curriculum, instructional choices, or students' unprompted prescription. We propose that teachers use the matrix as a springboard for reflection and discussion that takes a sustained, critical view of inquiry teaching practice. PMID:21113314

  14. The Influence of Teachers' Conceptions of Teaching and Learning on Their Technology Acceptance

    ERIC Educational Resources Information Center

    Teo, Timothy; Zhou, Mingming

    2017-01-01

    Prior research has attempted to incorporate different personal variables within extant theories of technology acceptance models (TAMs). This study further extends TAM by incorporating teachers' conceptions of teaching and learning (CoTL) in two forms: constructivist and traditional conceptions. The moderating effects of teachers' demographic…

  15. On the Concept of Energy: How Understanding Its History Can Improve Physics Teaching

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2009-01-01

    Some physicists have pointed out that we do not know what energy is. Many studies have shown that the concept of energy is a problem for teaching. A study of the history of the concept shows that the discoverers of energy did not find anything which is indestructible and transformable but rather that the concept of energy underwent a change of…

  16. Preschool Pathways to Science (PrePS[TM]): Facilitating Scientific Ways of Thinking, Talking, Doing, and Understanding

    ERIC Educational Resources Information Center

    Gelman, Rochel; Brenneman, Kimberly; Macdonald, Gay; Roman, Moises

    2009-01-01

    To ensure they're meeting state early learning guidelines for science, preschool educators need fun, age-appropriate, and research-based ways to teach young children about scientific concepts. The basis for the PBS KIDS show "Sid the Science Kid," this teaching resource helps children ages 3-5 investigate their everyday world and develop the…

  17. Teaching/Research Project "Wheelmap"

    NASA Astrophysics Data System (ADS)

    Gollenstede, Andreas

    2018-05-01

    In recent years new didactic concepts and approaches have been developed and evaluated at the universities. The concept for cartography lectures presented in this article is based on the close link of research and teaching/learning. The students are involved in all essential steps of a scientific project taking place during a series of lectures - beginning with the development of the scientific issues, followed by the choice and execution of the research methods and finally the presentation of the achieved outcomes. The specific project introduced here is based on self-experiments in which students took the perspective of wheelchair users entrusted with the task to map places, which are accessible for people with impairments. Among others, the goal set for the students was to develop an appropriate concept for the mobile acquisition of data and to visualise the final results by different methods of cartography.

  18. Environmental Resilience: Exploring Scientific Concepts for ...

    EPA Pesticide Factsheets

    Report This report summarizes two Community Environmental Resilience Index workshops held at EPA in May and July of 2014. The workshops explored scientific concepts for building an index of indicators of community environmental resilience to natural or human-caused disasters. The index could be used to support disaster decision-making. Key workshop outcomes include: a working definition of environmental resilience and insight into how it relates to EPA's mission and Strategic Goals, a call for an inventory of EPA resiliency tools, a preliminary list of indicators and CERI structure, identification of next steps for index development, and emergence of a network of collaborators. The report can be used to support EPA's work in resilience under PPD-8, PPD-21, and the national response and disaster recovery frameworks. It can feed into interagency efforts on building community resilience.

  19. Use of the concept mapping in teaching during a medical rotation of interns: an exploratory study.

    PubMed

    Kwas, Hamida; Ghédira, Habib

    2017-12-01

    Concept mapping is an excellent learning toolallowing to stimulate active learning.For this reason, the concept mapping is currently used increasingly in the medical and paramedical field. The aim of our study is to determine the contribution of teaching of medical interns by the concept mapping. Fourteen students enrolled at the same time in a medical rotation in Pulmonology were recruited for this exploratory study. Interns are divided into two groups (A and B).Both groups are taught by the clinical case method, illustrated by a concept mapping for group A interns. The evolution of the knowledge accuracy at post-testing has been greater in the group taught by the method of concept mapping: the number of correct responses increased in all participants of group A versus only 4 of group B. All students taught by concept mapping had at the post-test a note higher than or equal to 10/20 versus only three of the group taught by the method without concept map. The average score was 13 (11-15) in group A versus 10.28 (6-14) in group B. We emphasize the use of concept mapping in teaching especially in the faculty of medicine and we encourage clinicians to use this method in teaching interns in the hospital.

  20. Proposing a New Framework and an Innovative Approach to Teaching Reengineering and ERP Implementation Concepts

    ERIC Educational Resources Information Center

    Pellerin, Robert; Hadaya, Pierre

    2008-01-01

    Recognizing the need to teach ERP implementation and business process reengineering (BPR) concepts simultaneously, as well as the pedagogical limitations of the case teaching method and simulation tools, the objective of this study is to propose a new framework and an innovative teaching approach to improve the ERP training experience for IS…

  1. Teaching Two Basic Nanotechnology Concepts in Secondary School by Using a Variety of Teaching Methods

    ERIC Educational Resources Information Center

    Blonder, Ron; Sakhnini, Sohair

    2012-01-01

    A nanotechnology module was developed for ninth grade students in the context of teaching chemistry. Two basic concepts in nanotechnology were chosen: (1) size and scale and (2) surface-area-to-volume ratio (SA/V). A wide spectrum of instructional methods (e.g., game-based learning, learning with multimedia, learning with models, project based…

  2. Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model

    NASA Astrophysics Data System (ADS)

    Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi

    Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.

  3. Physics thematic paths: laboratorial activities and historical scientific instruments

    NASA Astrophysics Data System (ADS)

    Pantano, O.; Talas, S.

    2010-03-01

    The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how different thematic paths have been developed, reflecting on the importance of historical perspectives in science teaching. We also show how a scientific historical museum can play a central role in improving the learning of physics concepts.

  4. Pupils' liking for school: ability grouping, self-concept and perceptions of teaching.

    PubMed

    Ireson, Judith; Hallam, Susan

    2005-06-01

    Research indicates that affective aspects of development provide a basis for autonomous learning. Pupils' liking for school may be a useful indicator of their relationships with teachers and the school. The aim of the research reported in this paper is to establish the properties of a measure of pupils' liking for school and to examine associations between this measure, pupils' experiences in lessons, their self-concepts and the amount of setting implemented in school. A stratified sample of 45 mixed secondary comprehensive schools was selected for the research. Schools represented a variety of ability-grouping practices in the lower school (Years 7-9), from completely mixed-ability to setting in all academic subjects. All Year 9 pupils were included in the sample. Pupils completed a questionnaire containing items on their self-concept, liking for school, and their perceptions of teaching in English, mathematics, and science. Data on pupils' gender, ethnic origin, social disadvantage and attainment was also collected. The properties and correlates of scales indicating pupils' liking for school and their perceptions of teaching in English, mathematics, and science are established. Liking for school is greater among girls, pupils with higher academic self-concepts, and those with more positive perceptions of teaching. Pupils are more positive about teaching they experience in English than in mathematics or science. When other variables are statistically controlled, there is no significant effect of the extent of ability grouping in the school as a whole. Affective aspects of learning should not be neglected in the drive to raise standards.

  5. Promoting the Role of the Personal Narrative in Teaching Controversial Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Levinson, Ralph

    2008-01-01

    Citizens participating in contemporary socio-scientific issues (SSI) need to draw on local knowledge and personal experience. If curricular developments in the teaching of controversial SSI are to reflect contemporary notions of citizenship then the personal narrative is an indispensable instrument in bridging the gap between the local/personal…

  6. The Relationship between Academics' Conceptions of Knowledge, Research and Teaching--A Metaphor Study

    ERIC Educational Resources Information Center

    Visser-Wijnveen, Gerda J.; Van Driel, Jan H.; Van Der Rijst, Roeland M.; Verloop, Nico; Visser, Anthonya

    2009-01-01

    Universities are supposed to be institutes where research and teaching are closely related. To understand this relationship fully, it is necessary to learn how academics perceive these key components. Different conceptions among academics may stem from varying conceptions of knowledge. Thirty academics were interviewed by means of metaphors about…

  7. The Tentativeness of Scientific Theories: Conceptions of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Jain, Jasmine; Abdullah, Nabilah; Lim, Beh Kian

    2014-01-01

    The recognition of sound understanding of Nature of Science (NOS) in promoting scientific literacy among individuals has heightened the need to probe NOS conceptions among various groups. However, the nature of quantitative studies in gauging NOS understanding has left the understanding on few NOS aspects insufficiently informed. This paper aimed…

  8. What's Natural about Nature? Deceptive Concepts in Socio-Scientific Decision-Making

    ERIC Educational Resources Information Center

    Lindahl, Mats Gunnar; Linder, Cedric

    2015-01-01

    The conflicts between nature and nurture are brought to the fore and challenges socio-scientific decision-making in science education. The multitude of meanings of these concepts and their roles in societal discourses can impede students' development of understanding for different perspectives, e.g. on gene technology. This study problematizes…

  9. Teaching Scientific and Technical French at Napier College in Scotland.

    ERIC Educational Resources Information Center

    Mitchell, Evelyne

    Scotland's vocationally-oriented Napier College was funded by the French Government to develop language courses for scientists and engineers. The courses developed have been intensive and extensive, based on work started by a team of French scientists focusing on the language, concepts, and ways of thinking common to the scientific community.…

  10. Applied teaching concepts of animated motion slides in otolaryngology.

    PubMed

    Duberstein, L E; Josephs, J A; Kilgo, J

    1978-01-01

    Motion is an essential part of otolaryngologic function, and an understanding of concepts of motion is critical in teaching otolaryngology. Standard movie projection devices have intrinsic defects, such as considerable expense to make, complexity of operation, and a lack of flexibility. Slide projection transparencies (2X2) offer instructional flexibility but could not be used to project motion until recently. Using applications of gelatin films of images with polarizing light, we have been able to produce an illusion of motion similar to that used in creating the motion in cartoons. We have produced a series of slides for instructional purposes to show concepts in otolaryngology.

  11. Using Powerpoint Animations to Teach Operations Management Techniques and Concepts

    ERIC Educational Resources Information Center

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2014-01-01

    This article examines the value of using complex animated PowerPoint presentations to teach operations management techniques and concepts. To provide context, literature covering the use of PowerPoint animations in business education is briefly reviewed. The specific animations employed in this study are identified and their expected benefits to…

  12. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  13. Threshold Concepts: Impacts on Teaching and Learning at Tertiary Level

    ERIC Educational Resources Information Center

    Peter, Mira; Harlow, Ann

    2014-01-01

    This project explored teaching and learning of hard-to-learn threshold concepts in first-year English, an electrical engineering course, leadership courses, and in doctoral writing. The project was envisioned to produce disciplinary case studies that lecturers could use to reflect on and refine their curriculum and pedagogy, thereby contributing…

  14. Tools for Observation: Art and the Scientific Process

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Coryell-Martin, M.; Maisch, K.

    2015-12-01

    Art can support the scientific process during different phases of a scientific discovery. Art can help explain and extend the scientific concepts for the general public; in this way art is a powerful tool for communication. Art can aid the scientist in processing and interpreting the data towards an understanding of the concepts and processes; in this way art is powerful - if often subconscious - tool to inform the process of discovery. Less often acknowledged, art can help engage students and inspire scientists during the initial development of ideas, observations, and questions; in this way art is a powerful tool to develop scientific questions and hypotheses. When we use art as a tool for communication of scientific discoveries, it helps break down barriers and makes science concepts less intimidating and more accessible and understandable for the learner. Scientists themselves use artistic concepts and processes - directly or indirectly - to help deepen their understanding. Teachers are following suit by using art more to stimulate students' creative thinking and problem solving. We show the value of teaching students to use the artistic "way of seeing" to develop their skills in observation, questioning, and critical thinking. In this way, art can be a powerful tool to engage students (from elementary to graduate) in the beginning phase of a scientific discovery, which is catalyzed by inquiry and curiosity. Through qualitative assessment of the Girls on Ice program, we show that many of the specific techniques taught by art teachers are valuable for science students to develop their observation skills. In particular, the concepts of contour drawing, squinting, gesture drawing, inverted drawing, and others can provide valuable training for student scientists. These art techniques encourage students to let go of preconceptions and "see" the world (the "data") in new ways they help students focus on both large-scale patterns and small-scale details.

  15. Surfacing the Structures of Patriarchy: Teaching and Learning Threshold Concepts in Women's Studies

    ERIC Educational Resources Information Center

    Hassel, Holly; Reddinger, Amy; van Slooten, Jessica

    2011-01-01

    Patriarchy is a threshold concept in women's studies--a significant, defining concept that transforms students' understanding of the discipline. This article reviews our design, implementation, and findings of a lesson study crafted to teach women's studies students the complex idea of patriarchy as a social system. We analyze the lesson using…

  16. Using Social Media to Promote Pre-Service Science Teachers' Practices of Socio-Scientific Issue (SSI) - Based Teaching

    ERIC Educational Resources Information Center

    Pitiporntapin, Sasithep; Lankford, Deanna Marie

    2015-01-01

    This paper addresses using social media to promote pre-service science teachers' practices of Socio-Scientific Issue (SSI) based teaching in a science classroom setting. We designed our research in two phases. The first phase examined pre-service science teachers' perceptions about using social media to promote their SSI-based teaching. The…

  17. Teaching the Concept of Limit by Using Conceptual Conflict Strategy and Desmos Graphing Calculator

    ERIC Educational Resources Information Center

    Liang, Senfeng

    2016-01-01

    Although the mathematics community has long accepted the concept of limit as the foundation of modern Calculus, the concept of limit itself has been marginalized in undergraduate Calculus education. In this paper, I analyze the strategy of conceptual conflict to teach the concept of limit with the aid of an online tool--Desmos graphing calculator.…

  18. MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts

    ERIC Educational Resources Information Center

    Jovanovic Dolecek, G.

    2012-01-01

    An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…

  19. Development of an Electrochemistry Teaching Sequence using a Phenomenographic Approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Velazquez, Sorangel

    Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative emphasis in the application of concepts. Studies have identified conceptions (also referred to as misconceptions, alternative conceptions, etc.) about the electrochemical process that transcends academic and preparation levels (e.g., students and instructors) as well as cultural and educational settings. Furthermore, conceptual understanding of the electrochemical process requires comprehension of concepts usually studied in physics such as electric current, resistance and potential and often neglected in introductory chemistry courses. The lack of understanding of physical concepts leads to students. conceptions with regards to the relation between the concepts of redox reactions and electric circuits. The need for instructional materials to promote conceptual understanding of the electrochemical process motivated the development of the electrochemistry teaching sequence presented in this dissertation. Teaching sequences are educational tools that aim to bridge the gap between student conceptions and the scientific acceptable conceptions that instructors expect students to learn. This teaching sequence explicitly addresses known conceptions in electrochemistry and departs from traditional instruction in electrochemistry to reinforce students. previous knowledge in thermodynamics providing the foundation for the explicit relation of redox reactions and electric circuits during electrochemistry instruction. The scientific foundations of the electrochemical process are explained based on the Gibbs free energy (G) involved rather than on the standard redox potential values (E° ox/red) of redox half-reactions. Representations of

  20. Scientific reasoning profile of junior secondary school students on the concept of static fluid

    NASA Astrophysics Data System (ADS)

    Mariana, N.; Siahaan, P.; Utari, S.

    2018-05-01

    Scientific reasoning is one of the most important ability. This study aims to determine the profile of scientific reasoning of junior high school students about the concept of static fluid. This research uses a descriptive method with a quantitative approach to get an idea about the scientific reasoning of One Roof Junior Secondary School Student Kotabaru Reteh in Riau. The technique of collecting data is done by test of scientific reasoning. Scientific reasoning capability refers to Furtak’s EBR (Evidence Based Reasoning) scientific reasoning indicator that contains the components of claims, data, evidence, and rules. The result obtained on each element of scientific reasoning is 35% claim, 23% data, 21% evidence and 17% rule. The conclusions of this research that scientific reasoning of Satu Atap Junior Secondary School student Kotabaru Reteh, Riau Province still in the low category.

  1. Teachers' Perceptions of the Role of Evidence in Teaching Controversial Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Levinson, Ralph

    2006-01-01

    Eighty-three teachers across the curriculum were interviewed to explain their views on and approaches to, the teaching of socio-scientific controversial issues to 14-19 year olds, particularly with regard to developments in biomedicine and biotechnology. This study focused on teachers' views on the nature of evidence in controversial issues and…

  2. Impact of a concept map teaching approach on nursing students' critical thinking skills.

    PubMed

    Kaddoura, Mahmoud; Van-Dyke, Olga; Yang, Qing

    2016-09-01

    Nurses confront complex problems and decisions that require critical thinking in order to identify patient needs and implement best practices. An active strategy for teaching students the skills to think critically is the concept map. This study explores the development of critical thinking among nursing students in a required pathophysiology and pharmacology course during the first year of a Bachelor of Science in Nursing in response to concept mapping as an interventional strategy, using the Health Education Systems, Incorporated critical thinking test. A two-group experimental study with a pretest and posttest design was used. Participants were randomly divided into a control group (n = 42) taught by traditional didactic lecturing alone, and an intervention group (n = 41), taught by traditional didactic lecturing with concept mapping. Students in the concept mapping group performed much better on the Health Education Systems, Incorporated than students in the control group. It is recommended that deans, program directors, and nursing faculties evaluate their curricula to integrate concept map teaching strategies in courses in order to develop critical thinking abilities in their students. © 2016 John Wiley & Sons Australia, Ltd.

  3. Using river locks to teach hydrodynamic concepts

    NASA Astrophysics Data System (ADS)

    Carvalho-Santos, Vagson L.; Mendes, Thales C.; Silva, Enisvaldo C.; Rios, Márcio L.; Silva, Anderson A. P.

    2013-11-01

    In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students.

  4. Teaching German Declension as Meaning: A Concept-Based Approach

    ERIC Educational Resources Information Center

    Walter, Daniel R.; van Compernolle, Rémi Adam

    2017-01-01

    In this paper, we explore the results of a short-term concept-based pedagogical intervention on the learning of declension as a meaning-making resource among US university learners of German. The pedagogical approached derived its principles from Vygotskian sociocultural psychology, namely the role of explicit, scientific (i.e., abstract and…

  5. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    ERIC Educational Resources Information Center

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  6. Climate Change Concepts and POGIL: Using climate change to teach general chemistry

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.

    2013-12-01

    Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.

  7. Effect of Activities Prepared by Different Teaching Techniques on Scientific Creativity Levels of Prospective Pre-School Teachers

    ERIC Educational Resources Information Center

    Akcanca, Nur; Cerrah Ozsevgec, Lale

    2018-01-01

    The purpose of this research is to evaluate the effectiveness of the activities, which are prepared by teaching techniques that support scientific creativity, on the scientific creativity levels of prospective pre-school teachers. In the research, combined design is used, which is one of the mixed research approaches. The study group of the…

  8. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  9. Teaching a Concept with GeoGebra: Periodicity of Trigonometric Functions

    ERIC Educational Resources Information Center

    Kepceoglu, Ibrahim; Yavuz, llyas

    2016-01-01

    Being one of the major subjects in high school mathematics curriculum, trigonometry links algebraic, geometric and graphical reasoning. The aim of this study is to investigate the effect of GeoGebra in the teaching of the concept of the periodicity of trigonometric functions. In this study, it is investigated how effective is the dynamic…

  10. Developing Physics E-Scaffolding Teaching Media to Increase the Eleventh-Grade Students' Problem Solving Ability and Scientific Attitude

    ERIC Educational Resources Information Center

    Saputri, Affa Ardhi; Wilujeng, Insih

    2017-01-01

    This research aims at revealing (1) the suitability of physics e-scaffolding teaching media with mathematical and image/diagrammatic representation, as well as (2) the effectiveness of the e-scaffolding teaching media with mathematical and image/diagrammatic representation to improve students' problem solving ability and scientific attitude. It is…

  11. Master Curriculum Guide in Economics. A Framework for Teaching the Basic Concepts. Second Edition.

    ERIC Educational Resources Information Center

    Saunders, Phillip; And Others

    Intended for curriculum developers, this revised Framework presents a set of basic concepts for teaching K-12 economics. The revision reflects the change and development which the field of economics has undergone and includes improvements suggested by users of the first edition. The purpose of teaching economics is to impart a general…

  12. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  13. Clinical chemistry as scientific discipline: historical perspectives.

    PubMed

    Büttner, J

    1994-12-31

    The fundamental ideas which underlie clinical chemistry as an independent scientific field were formed over the course of centuries. Exactly 200 years ago the first modern concepts for this discipline were formulated in close connection with the restructuring of medical education during the French Revolution on the one hand, and the emergence of a new idea of a 'clinic' on the other hand. However, not until 1840 was clinical chemistry institutionalized as academic subject and simultaneously integrated into medical teaching. After about 1860, clinical chemistry was practiced by the clinicians themselves in close relationship with clinical activities, yet again with emphasis on teaching. In this period, clinics and hospitals established 'clinical laboratories'. With the start of the 20th century, after biochemistry had developed into an independent scientific field, clinical chemistry continued to evolve in close relationship with that latter discipline. This was particularly true in the United States, where an 'American School of Clinical Biochemistry' emerged which was to greatly influence the field.

  14. Principle-based concept analysis: Caring in nursing education

    PubMed Central

    Salehian, Maryam; Heydari, Abbas; Aghebati, Nahid; Moonaghi, Hossein Karimi; Mazloom, Seyed Reza

    2016-01-01

    Introduction The aim of this principle-based concept analysis was to analyze caring in nursing education and to explain the current state of the science based on epistemologic, pragmatic, linguistic, and logical philosophical principles. Methods A principle-based concept analysis method was used to analyze the nursing literature. The dataset included 46 English language studies, published from 2005 to 2014, and they were retrieved through PROQUEST, MEDLINE, CINAHL, ERIC, SCOPUS, and SID scientific databases. The key dimensions of the data were collected using a validated data-extraction sheet. The four principles of assessing pragmatic utility were used to analyze the data. The data were managed by using MAXQDA 10 software. Results The scientific literature that deals with caring in nursing education relies on implied meaning. Caring in nursing education refers to student-teacher interactions that are formed on the basis of human values and focused on the unique needs of the students (epistemological principle). The result of student-teacher interactions is the development of both the students and the teachers. Numerous applications of the concept of caring in nursing education are available in the literature (pragmatic principle). There is consistency in the meaning of the concept, as a central value of the faculty-student interaction (linguistic principle). Compared with other related concepts, such as “caring pedagogy,” “value-based education,” and “teaching excellence,” caring in nursing education does not have exact and clear conceptual boundaries (logic principle). Conclusion Caring in nursing education was identified as an approach to teaching and learning, and it is formed based on teacher-student interactions and sustainable human values. A greater understanding of the conceptual basis of caring in nursing education will improve the caring behaviors of teachers, create teaching-learning environments, and help experts in curriculum development

  15. Principle-based concept analysis: Caring in nursing education.

    PubMed

    Salehian, Maryam; Heydari, Abbas; Aghebati, Nahid; Karimi Moonaghi, Hossein; Mazloom, Seyed Reza

    2016-03-01

    The aim of this principle-based concept analysis was to analyze caring in nursing education and to explain the current state of the science based on epistemologic, pragmatic, linguistic, and logical philosophical principles. A principle-based concept analysis method was used to analyze the nursing literature. The dataset included 46 English language studies, published from 2005 to 2014, and they were retrieved through PROQUEST, MEDLINE, CINAHL, ERIC, SCOPUS, and SID scientific databases. The key dimensions of the data were collected using a validated data-extraction sheet. The four principles of assessing pragmatic utility were used to analyze the data. The data were managed by using MAXQDA 10 software. The scientific literature that deals with caring in nursing education relies on implied meaning. Caring in nursing education refers to student-teacher interactions that are formed on the basis of human values and focused on the unique needs of the students (epistemological principle). The result of student-teacher interactions is the development of both the students and the teachers. Numerous applications of the concept of caring in nursing education are available in the literature (pragmatic principle). There is consistency in the meaning of the concept, as a central value of the faculty-student interaction (linguistic principle). Compared with other related concepts, such as "caring pedagogy," "value-based education," and "teaching excellence," caring in nursing education does not have exact and clear conceptual boundaries (logic principle). Caring in nursing education was identified as an approach to teaching and learning, and it is formed based on teacher-student interactions and sustainable human values. A greater understanding of the conceptual basis of caring in nursing education will improve the caring behaviors of teachers, create teaching-learning environments, and help experts in curriculum development.

  16. The longitudinal effect of concept map teaching on critical thinking of nursing students.

    PubMed

    Lee, Weillie; Chiang, Chi-Hua; Liao, I-Chen; Lee, Mei-Li; Chen, Shiah-Lian; Liang, Tienli

    2013-10-01

    Concept map is a useful cognitive tool for enhancing a student's critical thinking by encouraging students to process information deeply for understanding. However, there is limited understanding of longitudinal effects of concept map teaching on students' critical thinking. The purpose of the study was to investigate the growth and the other factors influencing the development of critical thinking in response to concept map as an interventional strategy for nursing students in a two-year registered nurse baccalaureate program. The study was a quasi-experimental and longitudinal follow-up design. A convenience sample was drawn from a university in central Taiwan. Data were collected at different time points at the beginning of each semester using structured questionnaires including Critical Thinking Scale and Approaches to Learning and Studying. The intervention of concept map teaching was given at the second semester in the Medical-Surgical Nursing course. The results of the findings revealed student started with a mean critical thinking score of 41.32 and decreased at a rate of 0.42 over time, although not significant. After controlling for individual characteristics, the final model revealed that the experimental group gained a higher critical thinking score across time than the control group. The best predictive variables of initial status in critical thinking were without clinical experience and a higher pre-test score. The growth in critical thinking was predicted best by a lower pre-test score, and lower scores on surface approach and organized study. Our study suggested that concept map is a useful teaching strategy to enhance student critical thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Teaching the Teachers: Physical Science for the Non-Scientific

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.

    2004-12-01

    The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.

  18. Secondary School Teachers' Conceptions and Their Teaching Practices Using Graphing Calculators

    ERIC Educational Resources Information Center

    Lee, Jane A.; McDougall, Douglas E.

    2010-01-01

    This article investigates secondary school teachers' conceptions of mathematics and their teaching practices in the use of graphing calculators in their mathematics classrooms. Case studies on three teacher participants were developed using quantitative and qualitative data that consisted of self-assessments on beliefs in mathematics,…

  19. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    NASA Astrophysics Data System (ADS)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  20. Traditional and scientific conceptions of snakes in Kenya: Alternative perspectives for teaching

    NASA Astrophysics Data System (ADS)

    Wojnowski, David

    A 3-month qualitative study was conducted mid-September through mid-December 2005 to investigate rural southeast Kenyan teachers' conceptions of snakes. Teachers from five villages near Mt. Kasigau were interviewed to obtain an overall sense of what they thought about snakes (n = 60). Of those 60 teachers, 28 attended a 6-hour seminar on reptiles and amphibians. From these 28 teachers, 8 teachers from three villages were afforded additional educational opportunities about snakes, and 2 teachers from this group of 8 were teamed with 2 herpetologists as mentors during the last 2 months of the study. In turn, seven of these eight teachers presented lessons about snakes using live specimens to their fellow teachers and students. Observations of teacher participants during workshops and field outings were documented as well as teacher classroom pedagogy involving snakes before, during, and after the institute. Semi-structured and open-ended interviews were conducted with the eight core teacher participants and field notes were used to document participant observations during serendipitous live snake encounters, of which, there were many. In addition, village elders, including medicine men, one education administrator and one minister were interviewed to obtain a historical cultural backdrop, which teachers expressed as being an important influence while formulating their own conceptions about snakes. Findings suggest that teachers' conceptions of snakes, within a culture where all snakes are feared and killed onsite, can change toward a more favorable orientation when given the opportunity to learn about snakes, witness positive modeling of snake handling through mentoring by herpetologists, and experience direct contact with live harmless nonaggressive snakes (e.g., the Brown House Snake [Lamprohis fuliginosus] and Kenyan Sand Boa [ Eryx colubrinus]).

  1. Examining Teaching of Professional Concepts in Teacher Training and Investigating Students' Cognitive Structures Regarding Professional Concepts

    ERIC Educational Resources Information Center

    Karakus, Memet; Karakus, Fatma

    2017-01-01

    The study aims to determine education faculty students' cognitive structures regarding professional concepts, and to reveal the views of the students and faculty members about conceptual teaching. The participants of the study, which was designed as a case study, were determined using the criterion sampling method. In the study, which was carried…

  2. Teaching Energy Using an Integrated Science Approach

    ERIC Educational Resources Information Center

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary…

  3. Teaching for Scientific Literacy? An Examination of Instructional Practices in Secondary Schools in Barbados

    ERIC Educational Resources Information Center

    Archer-Bradshaw, Ramona E.

    2017-01-01

    This study examined the extent to which the instructional practices of science teachers in Barbados are congruent with best practices for teaching for scientific literacy. Additionally, through observation of practice, it sought to determine the teachers' demonstrated role in the classroom, their demonstration of learning through discourse,…

  4. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    PubMed

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Laboratory activity to effectively teach introductory geomicrobiology concepts to non-geology majors.

    PubMed

    Marvasi, Massimiliano; Davila-Vazquez, Yarely C; Martinez, Lilliam Casillas

    2013-01-01

    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students' proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84-86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors.

  6. Building a Context of Experience: Communication Audits to Teach Communication Concepts.

    ERIC Educational Resources Information Center

    Husband, Robert L.; Helmer, James E.

    The research audit is an effective means for providing undergraduate students with relevant organizational experience through which they can integrate theory and practice. A course was designed to teach students to apply basic concepts in the field of organizational communication to "real life" communication problems in organizations.…

  7. A Writing-Intensive Course Improves Biology Undergraduates' Perception and Confidence of Their Abilities to Read Scientific Literature and Communicate Science

    ERIC Educational Resources Information Center

    Brownell, Sara E.; Price, Jordan V.; Steinman, Lawrence

    2013-01-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of…

  8. Using a Discussion about Scientific Controversy to Teach Central Concepts in Experimental Design

    ERIC Educational Resources Information Center

    Bennett, Kimberley Ann

    2015-01-01

    Students may need explicit training in informal statistical reasoning in order to design experiments or use formal statistical tests effectively. By using scientific scandals and media misinterpretation, we can explore the need for good experimental design in an informal way. This article describes the use of a paper that reviews the measles mumps…

  9. An Active Learning Approach to Teach Advanced Multi-Predictor Modeling Concepts to Clinicians

    ERIC Educational Resources Information Center

    Samsa, Gregory P.; Thomas, Laine; Lee, Linda S.; Neal, Edward M.

    2012-01-01

    Clinicians have characteristics--high scientific maturity, low tolerance for symbol manipulation and programming, limited time outside of class--that limit the effectiveness of traditional methods for teaching multi-predictor modeling. We describe an active-learning based approach that shows particular promise for accommodating these…

  10. A Teaching-Learning Sequence on a Socio-Scientific Issue: Analysis and Evaluation of Its Implementation in the Classroom

    ERIC Educational Resources Information Center

    Vázquez-Alonso, Ángel; Aponte, Abdiel; Manassero-Mas, María-Antonia; Montesano, Marisa

    2016-01-01

    This study examines the effectiveness of a teaching-learning sequence (TLS) to improve the understanding of the influences and interactions between a technology (mining) and society. The aim of the study is also to show the possibility of both teaching and assessing the most innovative issues and aspects of scientific competence and their impact…

  11. Enhancing Scientific Literacy by Targeting Specific Scientific Skills

    ERIC Educational Resources Information Center

    Hicks, Sylvia; MacDonald, Shane; Martin, Ela

    2017-01-01

    The term scientific literacy is increasingly used by governments and teaching bodies, stemming from a growing international concern by scientists and government, who recognize the economic significance of developing scientific skills (McGregor & Kearton, 2010). However, in a society that requires students to be scientifically literate,…

  12. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  13. Using Metaphors to Know the Conceptions about the Teaching Profession in Initial Teacher Education

    ERIC Educational Resources Information Center

    Martínez-de-la-Hidalga, Zoe; Villardón-Gallego, Lourdes

    2017-01-01

    The Conceptions about the teaching profession affect professional performance, and metaphors are a tool to identify them. In this qualitative study metaphors are used to gain insight into conceptions held by pre-service teachers, and their development during Initial Teacher Training in the Bachelor's Degree in Primary Education. A total of 247…

  14. Thoroughly Applying Scientific Outlook on Development Implementing Sustainable Development Strategy in Higher Vocational Colleges

    ERIC Educational Resources Information Center

    Li, Zhi; Wang, Youhua

    2008-01-01

    To make breakthroughs, obtain further development, and win in the fierce competition, higher vocational colleges must apply scientific outlook on development, set up students-and-teachers oriented educational concept, enhance connotation construction, create competition advantages so as to fully improve education and teaching quality and realize…

  15. Visual illusions and ethnocentrism: exemplars for teaching cross-cultural concepts.

    PubMed

    Keith, Kenneth D

    2012-05-01

    This article discusses the origins of cross-cultural interest in two concepts fundamental to psychology students' views of the world: simple visual illusions and ethnocentrism. Although students encounter these ideas in introductory psychology, textbooks rarely describe the nature or origin of cross-cultural knowledge about them. The article presents a brief account of the history of these concepts and relates them to contemporary notions of psychology and culture. Using visual perception and ethnocentrism as examples, the article suggests the importance of teaching that different people see the world in different ways and the role of that lesson in a future demanding increased cross-cultural understanding.

  16. Teaching Aldosterone Regulation and Basic Scientific Principles Using a Classic Paper by Dr. James O. Davis and Colleagues

    ERIC Educational Resources Information Center

    Hanke, Craig J.; Bauer-Dantoin, Angela C.

    2006-01-01

    Classroom discussion of scientific articles can be an effective means of teaching scientific principles and methodology to both undergraduate and graduate science students. The availability of classic papers from the American Physiological Society Legacy Project has made it possible to access articles dating back to the early portions of the 20th…

  17. Teaching children in low-income countries to assess claims about treatment effects: prioritization of key concepts.

    PubMed

    Nsangi, Allen; Semakula, Daniel; Oxman, Andrew D; Sewankambo, Nelson K

    2015-11-01

    Health-related knowledge and behaviours developed during childhood are increasingly being recognized as foundational, deeply rooted and resistant to change as children mature into adulthood. The aim of this study was to engage stakeholders in prioritizing key concepts that children need to understand when assessing claims about treatment effects. A list of 30 concepts developed prior was categorized into six groups considered important for children to understand in order to assess claims about the effects of "treatments" (any type of healthcare intervention). A teachers' network was established comprising of primary school teachers, who attended a three-day meeting where the concepts were presented, discussed and prioritized using a pre-set criteria thus: (i) relevance of concepts for children, (ii) ease of comprehension of concepts for children, (iii) potential for developing resources to teach the children and (iv) whether the resources once developed would have an impact on children's ability to assess claims. Using a modified Delphi technique, participants ranked each group of concepts using the four criteria on a Likert scale of one to six (1 = lowest, 6 = highest). The rankings were analysed using STATA statistical software. Twenty-two of the 24 participants reported having understood the concepts well; with self-assessments of their own understanding above 75 on a scale of (1 to 100). All six groups of concepts were considered relevant. It is important to teach children how to assess claims about benefits and harms of treatments. Resources will be developed to teach children these concepts. © 2015 Chinese Cochrane Center, West China Hospital of Sichuan University and Wiley Publishing Asia Pty Ltd.

  18. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    NASA Astrophysics Data System (ADS)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  19. From Earth to Heaven: Using "Newton's Cannon" Thought Experiment for Teaching Satellite Physics

    ERIC Educational Resources Information Center

    Velentzas, Athanasios; Halkia, Krystallia

    2013-01-01

    Thought Experiments are powerful tools in both scientific thinking and in the teaching of science. In this study, the historical Thought Experiment (TE) "Newton's Cannon" was used as a tool to teach concepts relating to the motion of satellites to students at upper secondary level. The research instruments were: (a) a…

  20. Mutual Alignment Comparison Facilitates Abstraction and Transfer of a Complex Scientific Concept

    ERIC Educational Resources Information Center

    Orton, Judy M.; Anggoro, Florencia K.; Jee, Benjamin D.

    2012-01-01

    Learning about a scientific concept often occurs in the context of unfamiliar examples. Mutual alignment analogy--a type of analogical comparison in which the analogues are only partially understood--has been shown to facilitate learning from unfamiliar examples . In the present study, we examined the role of mutual alignment analogy in the…

  1. On the Concept of Force: How Understanding Its History Can Improve Physics Teaching

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2010-01-01

    Some physicists have pointed out that we do not know what force is. The most common definition of force in textbooks has been criticized for more than two centuries. Many studies have shown that the concept of force is a problem for teaching. How to conceive force on the basis of the concepts and criticism of force in the works of Newton, Euler,…

  2. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    ERIC Educational Resources Information Center

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  3. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  4. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  5. Setting the Stage for Developing Pre-service Teachers' Conceptions of Good Science Teaching: The role of classroom videos

    NASA Astrophysics Data System (ADS)

    Wong, Siu Ling; Yung, Benny Hin Wai; Cheng, Man Wai; Lam, Kwok Leung; Hodson, Derek

    2006-01-01

    This paper reports findings about a curriculum innovation conducted at The University of Hong Kong. A CD-ROM consisting of videos of two lessons by different teachers demonstrating exemplary science teaching was used to elicit conceptions of good science teaching of student-teachers enrolled for the 1-year Postgraduate Diploma in Education at several stages during the programme. It was found that the videos elicited student-teachers’ conceptions and had impact on those conceptions prior to the commencement of formal instruction. It has extended student-teachers’ awareness of alternative teaching methods and approaches not experienced in their own schooling, broadened their awareness of different classroom situations, provided proof of existence of good practices, and prompted them to reflect on their current preconceptions of good science teaching. In several ways, the videos acted as a catalyst in socializing the transition of student-teachers from the role of student to the role of teacher.

  6. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  7. Reflections on Teaching Periodic Table Concepts: A Case Study of Selected Schools in South Africa

    ERIC Educational Resources Information Center

    Mokiwa, Hamza Omari

    2017-01-01

    The Periodic Table of Elements is central to the study of modern Physics and Chemistry. It is however, considered by teachers as difficult to teach. This paper reports on a case study exploring reflections on teaching periodic table concepts in five secondary schools from South Africa. Qualitative methodology of interviews and document analysis…

  8. Stepping into the Unknown: Three Models for the Teaching and Learning of the Opening Sections of Scientific Articles

    ERIC Educational Resources Information Center

    Falk, Hedda; Yarden, Anat

    2011-01-01

    Different genres of scientific articles have begun to diffuse into science curricula. Among them, adapted primary literature (APL) retains the characteristics of scientific research articles, while adapting their contents to the knowledge level of students in the 11th to 12th grades. We present three models for the teaching and learning of the…

  9. PHARMAVIRTUA: Educational Software for Teaching and Learning Basic Pharmacology

    ERIC Educational Resources Information Center

    Fidalgo-Neto, Antonio Augusto; Alberto, Anael Viana Pinto; Bonavita, André Gustavo Calvano; Bezerra, Rômulo José Soares; Berçot, Felipe Faria; Lopes, Renato Matos; Alves, Luiz Anastacio

    2014-01-01

    Information and communication technologies have become important tools for teaching scientific subjects such as anatomy and histology as well as other, nondescriptive subjects like physiology and pharmacology. Software has been used to facilitate the learning of specific concepts at the cellular and molecular levels in the biological and health…

  10. Snow as Field-Teaching Medium for Earth Science.

    ERIC Educational Resources Information Center

    Custer, Stephan Gregory

    1991-01-01

    Snow is a widely available earth-science teaching medium which can be used to explore scientific concepts in the field, either directly or by analogy. Snow can be considered a mineral, sediment, sedimentary rock, or metamorphic rock. Natural processes such as crystal growth, melting, sedimentation, and metamorphism can be studied in practical time…

  11. The Effect of Planetariums on Teaching Specific Astronomy Concepts

    NASA Astrophysics Data System (ADS)

    Türk, Cumhur; Kalkan, Hüseyin

    2015-02-01

    This study aimed to determine students' knowledge levels related to specific astronomy concepts and the effect of a planetarium environment on teaching. The study sample included seventh-grade (12-13 years old) students. For this purpose, 240 students of various socioeconomic and cultural levels from six schools (two in the city center, two in the districts and two in the villages) were enrolled in the study. The pretest-posttest control group quasi-experimental design was used in the study. The experimental and control groups were generated by random assignment. The "Solar System and Beyond" unit was selected. In the experimental group, the unit was taught with the use of a planetarium environment, whereas the same unit was taught to the control group students in a classroom environment. A test consisting of 14 multiple-choice questions was used as the pretest and posttest at the beginning and end of the unit. The data obtained were evaluated using the SPSS 20.0 software package program. The study results showed that teaching astronomical concepts in a planetarium environment was more effective than in a classroom environment. The study also revealed that students in the planetarium-assisted group were more successful in comprehending subjects that require 3D thinking, a reference system, changing the time and observation of periodic motion than those in control group.

  12. The Implications of Arendt's Concept of Judgment for Humanistic Teaching in a Postmetaphysical Age

    ERIC Educational Resources Information Center

    Kwak, Duck-Joo

    2015-01-01

    In this essay, Duck-Joo Kwak draws on Hannah Arendt's concept of judgment in exploring what it means to teach the humanities as a form of values education in a postmetaphysical age. Arendt's concept of judgment is closely related to Ciceronian humanism, which is concerned with the wisdom to choose one's company while appreciating this pursuit…

  13. Some Applications of Linguistic Concepts to the Teaching of Freshman Composition.

    ERIC Educational Resources Information Center

    Maimon, Elaine P.

    The problems which freshmen exhibit in using the written language extend beyond difficulties with mechanics to handicaps in using words to formulate and develop concepts. A linguistic approach to teaching freshman composition involves recognizing every linguistic act as creative and a word as having a history as well as a variety of meanings. In…

  14. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    ERIC Educational Resources Information Center

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  15. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  16. An exploration for research-oriented teaching model in biology teaching.

    PubMed

    Xing, Wanjin; Mo, Morigen; Su, Huimin

    2014-07-01

    Training innovative talents, as one of the major aims for Chinese universities, needs to reform the traditional teaching methods. The research-oriented teaching method has been introduced and its connotation and significance for Chinese university teaching have been discussed for years. However, few practical teaching methods for routine class teaching were proposed. In this paper, a comprehensive and concrete research-oriented teaching model with contents of reference value and evaluation method for class teaching was proposed based on the current teacher-guiding teaching model in China. We proposed that the research-oriented teaching model should include at least seven aspects on: (1) telling the scientific history for the skills to find out scientific questions; (2) replaying the experiments for the skills to solve scientific problems; (3) analyzing experimental data for learning how to draw a conclusion; (4) designing virtual experiments for learning how to construct a proposal; (5) teaching the lesson as the detectives solve the crime for learning the logic in scientific exploration; (6) guiding students how to read and consult the relative references; (7) teaching students differently according to their aptitude and learning ability. In addition, we also discussed how to evaluate the effects of the research-oriented teaching model in examination.

  17. "Here's the iPad". The BTEC Philosophy: How Not to Teach Science to Vocational Students

    ERIC Educational Resources Information Center

    Hobley, Janet

    2016-01-01

    This research examines the delivery of scientific knowledge in vocational BTEC courses in terms of the concept of vocational pedagogy. It draws on empirical data from observations of teaching, semi-structured interviews and a documentary analysis of syllabuses from both A level and BTEC examining boards. Theoretical concepts of pedagogical…

  18. Internet discussion forums as part of a student-centred teaching concept of pharmacology.

    PubMed

    Sucha, Michael; Engelhardt, Stefan; Sarikas, Antonio

    2013-01-01

    The world wide web opens up new opportunities to interconnect electronic and classroom teaching and to promote active student participation. In this project article we describe the use of internet discussion forums as part of a student-centred teaching concept of pharmacology and discuss its advantages and disadvantages based on evaluation data and current literature. Final year medical students at the Technische Universität München (Munich, Germany) with the elective pharmacology moderated an internet forum that allowed all students to discuss pharmacology-related questions. Evaluation results of forum participants and elective students demonstrated a learning benefit of internet forums in pharmacology teaching. Internet discussion forums offer an easy-to-implement and effective way to actively engage students and increase the learning benefit of electronic and classroom teaching in pharmacology.

  19. Exploring South African High School Teachers' Conceptions of the Nature of Scientific Inquiry: A Case Study

    ERIC Educational Resources Information Center

    Dudu, Washington T.

    2014-01-01

    The paper explores conceptions of the nature of scientific inquiry (NOSI) held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was…

  20. Concept-Focused Teaching: Using Big Ideas to Guide Instruction in Science

    ERIC Educational Resources Information Center

    Olson, Joanne K.

    2008-01-01

    One of the main problems we face in science teaching is that students are learning isolated facts and missing central concepts. For instance, consider what you know about life cycles. Chances are that you remember something about butterflies and stages, such as egg, larva, pupa, adult. But what's the take-home idea that we should have learned…

  1. Examining the impact of the Guided Constructivist teaching method on students' misconceptions about concepts of Newtonian physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hyatt Abdelhaleem

    The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and

  2. On the Roots of Difficulties in Learning about Cell Division: Process-Based Analysis of Students' Conceptual Development in Teaching Experiments

    ERIC Educational Resources Information Center

    Riemeier, Tanja; Gropengiesser, Harald

    2008-01-01

    Empirical investigations on students' conceptions of cell biology indicate major misunderstandings of scientific concepts even after thorough teaching. Therefore, the main aim of our research project was to investigate students' difficulties in learning this topic and to study the impact of learning activities on students' conceptions. Using the…

  3. The Effects of Mentored Problem-Based STEM Teaching on Pre-Service Elementary Teachers: Scientific Reasoning and Attitudes Toward STEM Subjects

    NASA Astrophysics Data System (ADS)

    Caliendo, Julia C.

    Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.

  4. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    ERIC Educational Resources Information Center

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  5. Laboratory Activity to Effectively Teach Introductory Geomicrobiology Concepts to Non-Geology Majors †

    PubMed Central

    Marvasi, Massimiliano; Davila-Vazquez, Yarely C.; Martinez, Lilliam Casillas

    2013-01-01

    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students’ proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84–86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors. PMID:24358384

  6. Teaching Cultural Competence to Psychiatry Residents: Seven Core Concepts and Their Implications for Therapeutic Technique.

    PubMed

    Pena, Jose M; Manguno-Mire, Gina; Kinzie, Erik; Johnson, Janet E

    2016-04-01

    The authors describe the Tulane Model for teaching cultural competence to psychiatry residents in order to outline an innovative approach to curricula development in academic psychiatry. The authors focus on the didactic experience that takes place during the first and second postgraduate years and present seven core concepts that should inform the emerging clinician's thinking in the formulation of every clinical case. The authors discuss the correspondence between each core concept and the Outline for Cultural Formulation, introduced in Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV and updated in DSM-5. The authors illustrate how each of the core concepts is utilized as a guideline for teaching residents a process for eliciting culturally relevant information from their patients and their personal histories and how to apply that knowledge in the assessment and treatment of patients in clinical settings.

  7. The Influence of Scientific Concepts on the Music and thought of Edgard Varese

    NASA Astrophysics Data System (ADS)

    Anderson, John Davis

    The work of Edgard Varese is generally acknowledged to have played a significant role in the development of electronic media in contemporary composition, and it has been widely suspected that Varese approached music from a fundamentally scientific perspective. It was found that the literature in this area was not extensive, and hence the purpose of this study was to determine the extent and significance of influences from the physical sciences on the aesthetic philosophy and music of Edgard Varese. The method of the study was first to examine writings by and about Varese in an effort to define and clarify his unique aesthetic conceptions. Second, Octandre, one of Varese's compositions, was analyzed. Both standard analytical procedures and Varese's own unique conceptions and terminology were applied to Octandre in order to discover and illustrate the compositional techniques which he created. Finally, Varese's attitudes about and references to the relationship of science and art were examined, and various discoveries and lines of conceptual inquiry from the "new physics," at the beginning of this century, were investigated in order to discover areas of philosophical and practical similarity with Varese's aesthetics and music. This study yielded three areas of conclusions. First, it was shown that Varese regarded all sound, music included, as a primarily physical, acoustic phenomenon. He desired, in his own compositions, to create the illusion of sound operating in an inherently intelligent manner within a three-dimensional, spacial context. Analysis of Octandre disclosed that the underlying compositional procedure was continuous variation on a basic cell of pitch and rhythmic materials and that Varese's unique compositional devices were superimposed on the structure thus derived. In the last section of the study it was shown that Varese possessed a scientific background and that he believed that art should reflect cultural, particularly scientific change. Several of

  8. Teaching Sustainability from a Scientific Standpoint at the Introductory Level

    NASA Astrophysics Data System (ADS)

    Campbell-Stone, E.; Myers, J. D.

    2008-12-01

    In recent decades, humankind has recognized that current levels of resource utilization are seriously impacting our planet's life support systems and threatening the ability of future generations to provide for themselves. The concept of sustainability has been promoted by a variety of national and international organizations as a method to devise ways to adjust humanity's habits and consumption to levels that can be maintained over the long term, i.e. sustained. Courses on sustainability are being offered at many universities and colleges, but most are taught outside of science departments; they are often designed around policy concerns or focus primarily on environmental impacts while neglecting the science of sustainability. Because the three foundations necessary to implement sustainability are sustainability governance, sustainability accounting, and sustainability science, it is imperative that science departments play an active role in preparing citizens and professionals for dealing with sustainability issues. The geosciences are one of the scientific disciplines that offer a logical foundation from which to teach sustainability science. Geoscientists can also offer a unique and relevant geologic perspective on sustainability issues. The authors have developed an introductory, interdisciplinary course entitled 'Global Sustainability: Managing Earth's Resources' that integrates scientific disciplines in the examination of real world sustainability issues. In-depth understanding of physical, Earth and biological science principles are necessary for students to identify the limits and constraints imposed on important issues facing modern society, e.g. water, energy, population growth, etc. This course exposes students to all the scientific principles that apply directly to sustainability. The subject allows the instructors to present open-ended, multifaceted and complex problems relevant to today's industrialized and globalized world, and it encourages

  9. Sexuality Education: Analysis of Moroccan Teachers' and Future Teachers' Conceptions

    ERIC Educational Resources Information Center

    Sabah, Selmaoui; Boujemaa, Agorram; Salah-Eddine, Khzami; Taoufik, EL Abboudi; Dominique, Berger

    2010-01-01

    Conceptions are analyzed as being the emergences from interactions between three poles:scientific knowledge (K), values (V) and social practices (P). The teachers' beliefs and values have a direct influence on the way of understanding and teaching a topic. These beliefs must be taken into account in the content and strategies of the teacher's…

  10. Visualization and Interaction in Research, Teaching, and Scientific Communication

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2017-12-01

    Modern computing provides many tools for exploring observations, numerical calculations, and theoretical relationships. The number of options is, in fact, almost overwhelming. But the choices provide those with modest programming skills opportunities to create unique views of scientific information and to develop deeper insights into their data, their computations, and the underlying theoretical data-model relationships. I present simple examples of using animation and human-computer interaction to explore scientific data and scientific-analysis approaches. I illustrate how valuable a little programming ability can free scientists from the constraints of existing tools and can facilitate the development of deeper appreciation data and models. I present examples from a suite of programming languages ranging from C to JavaScript including the Wolfram Language. JavaScript is valuable for sharing tools and insight (hopefully) with others because it is integrated into one of the most powerful communication tools in human history, the web browser. Although too much of that power is often spent on distracting advertisements, the underlying computation and graphics engines are efficient, flexible, and almost universally available in desktop and mobile computing platforms. Many are working to fulfill the browser's potential to become the most effective tool for interactive study. Open-source frameworks for visualizing everything from algorithms to data are available, but advance rapidly. One strategy for dealing with swiftly changing tools is to adopt common, open data formats that are easily adapted (often by framework or tool developers). I illustrate the use of animation and interaction in research and teaching with examples from earthquake seismology.

  11. I Assumed You Knew: Teaching Assumptions as Co-Equal to Observations in Scientific Work

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.; Mead, C.; Anbar, A. D.

    2016-12-01

    Introductory science curricula typically begin with a lesson on the "nature of science". Usually this lesson is short, built with the assumption that students have picked up this information elsewhere and only a short review is necessary. However, when asked about the nature of science in our classes, student definitions were often confused, contradictory, or incomplete. A cursory review of how the nature of science is defined in a number of textbooks is similarly inconsistent and excessively loquacious. With such confusion both from the student and teacher perspective, it is no surprise that students walk away with significant misconceptions about the scientific endeavor, which they carry with them into public life. These misconceptions subsequently result in poor public policy and personal decisions on issues with scientific underpinnings. We will present a new way of teaching the nature of science at the introductory level that better represents what we actually do as scientists. Nature of science lessons often emphasize the importance of observations in scientific work. However, they rarely mention and often hide the importance of assumptions in interpreting those observations. Assumptions are co-equal to observations in building models, which are observation-assumption networks that can be used to make predictions about future observations. The confidence we place in these models depends on whether they are assumption-dominated (hypothesis) or observation-dominated (theory). By presenting and teaching science in this manner, we feel that students will better comprehend the scientific endeavor, since making observations and assumptions and building mental models is a natural human behavior. We will present a model for a science lab activity that can be taught using this approach.

  12. Teaching-Learning Conceptions and Academic Achievement: The Mediating Role of Test Anxiety

    ERIC Educational Resources Information Center

    Bas, Gökhan

    2016-01-01

    The current research aimed at examining the mediating role of test anxiety in the relationship between teaching-learning conceptions and academic achievement. The correlation investigation model was adopted in this research. The participants of the research were volunteering teachers (n = 108) and students (n = 526) from five different high…

  13. Science teacher candidates' perceptions about roles and nature of scientific models

    NASA Astrophysics Data System (ADS)

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-05-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks to teach and learn inaccessible facts. As being indispensable parts of learning and doing science, use of scientific models in science classes should be reinforced. At this point, uncovering pre-service science teachers' (PSTs) understandings of scientific models are of great importance since they will design and conduct teaching situations for their students. Purpose: The study aimed to provide an answer to the research question: What understandings do PSTs possess about scientific models? Sample: The sample of the study consisted of 14 PSTs enrolled in an Elementary Science Education program in a public university in Ankara, Turkey. Design and methods: Data were collected by using an open-item instrument and semi-structured interviews, and were analyzed by using qualitative data analysis methods. Results: Findings showed that PSTs held fragmented views of models by having informed views in some aspects while having naïve views on others. That is, although they displayed a constructivist orientation by acknowledging the presence of multiple models for the same phenomenon depending on scientists' perspectives or creativity involved in the production of scientific knowledge, PSTs also expressed logical positivist views by believing that models should be close to the real phenomena that they represent. Findings further revealed that PSTs generally conceptualized models' materialistic uses, yet they did not think much about their theoretical and conceptual uses. It was observed that roles like reifying and visualizing were overestimated and models were dominantly characterized as three-dimensional representations

  14. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    NASA Astrophysics Data System (ADS)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  15. On-line Resources for Teaching Sustainability

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Larsen, K.; Buhr, S. M.; Kirk, K. B.; Ledley, T. S.; Manduca, C. A.; Mogk, D. W.; Savina, M. E.; Tewksbury, B. J.

    2012-12-01

    Sustainability encompasses broad interdisciplinary topics such as climate change, agricultural food production, and water resource use that include both scientific and societal components. Today's students will need to learn how to address complex, interdisciplinary, sustainability-related challenges throughout their lives. To support faculty in teaching complex concepts in sustainability to undergraduates, the Science Education Resource Center (SERC) now provides integrated access to all resources on teaching sustainability developed by projects hosted on SERC websites. Drawing extensively from collections developed by On the Cutting Edge: Professional Development for Geoscience Faculty, InTeGrate: Interdisciplinary Teaching of Geoscience for a Sustainable Future, the Climate Literacy and Energy Awareness Network (CLEAN), as well as more than 10 smaller projects, these resources include browsable access to (1) over 120 course descriptions submitted by faculty that provide information about course goals, assessments, and syllabi used in teaching courses with a sustainability focus, (2) over 160 faculty-submitted descriptions of activities that can be used to incorporate and address sustainability concepts, and (3) more than 90 interdisciplinary essays that highlight how faculty incorporate sustainability concepts into their teaching. The Sustainability Portal additionally includes several collections of lessons focused on a central theme, such as carbon footprint exercises and materials for teaching about energy that incorporate quantitative skills. The Sustainability Portal provides access to information about incorporating sustainability issues into geoscience courses and examples of how these concepts can be taught for topics such as geology and human health, public policy and Earth science, complex systems, urban students and urban environments, energy, and climate change. A rich collection of innovative pedagogical approaches conducive to teaching about

  16. Students' Multimodal Construction of the Work-Energy Concept

    NASA Astrophysics Data System (ADS)

    Tang, Kok-Sing; Chee Tan, Seng; Yeo, Jennifer

    2011-09-01

    This article examines the role of multimodalities in representing the concept of work-energy by studying the collaborative discourse of a group of ninth-grade physics students engaging in an inquiry-based instruction. Theorising a scientific concept as a network of meaning relationships across semiotic modalities situated in human activity, this article analyses the students' interactions through their use of natural language, mathematical symbolism, depiction, and gestures, and examines the intertextual meanings made through the integration of these modalities. Results indicate that the thematic integration of multimodalities is both difficult and necessary for students in order to construct a scientific understanding that is congruent with the physics curriculum. More significantly, the difficulties in multimodal integration stem from the subtle differences in the categorical, quantitative, and spatial meanings of the work-energy concept whose contrasts are often not made explicit to the students. The implications of these analyses and findings for science teaching and educational research are discussed.

  17. The Effectiveness of Embedded Teaching through the Most-to-Least Prompting Procedure in Concept Teaching to Children with Autism within Orff-Based Music Activities

    ERIC Educational Resources Information Center

    Eren, Bilgehan; Deniz, Jale; Duzkantar, Ayten

    2013-01-01

    The purpose of this study was to demonstrate the effectiveness of embedded teaching through the most-to-least prompting procedure in concept teaching to children with autism in Orff-based music activities. In this research, being one of the single subject research designs, multiple probe design was used. The generalization effect of the research…

  18. Beyond the Clock--Using the Computer to Teach the Abstract Concept of Time.

    ERIC Educational Resources Information Center

    Drysdale, Julie

    1993-01-01

    Discusses several projects to help teach and reinforce the concept of time, using the books "The Very Hungry Caterpillar" (by Eric Carle) and "Charlotte's Web (by E. B. White) as well as the computer software program "Timeliner" (by Tom Snyder). (SR)

  19. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  20. PSYCHOLOGICAL CONCEPTIONS OF TEACHING.

    ERIC Educational Resources Information Center

    GAGE, N.L.

    A CONCEPTUAL FRAMEWORK WAS PROPOSED FOR AN EDUCATIONAL PSYCHOLOGY COURSE IN THE GENERAL METHODOLOGY OF TEACHING. THIS COURSE WOULD TRANSCEND THE SPECIAL REQUIREMENTS OF ANY GIVEN SUBJECT MATTER OR GRADE LEVEL AND SERVE AS THE BASIS FOR DERIVING THE SPECIAL METHODS OF TEACHING THAT WOULD APPLY TO ANY PARTICULAR GRADE LEVEL OR SUBJECT MATTER.…

  1. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  2. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  3. Supporting Reform-Oriented Secondary Science Teaching Through the Use of a Framework to Analyze Construction of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-08-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students' learning of science in this 3D way. We examined TCs' ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs' ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate's ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.

  4. Normative Values in Teachers' Conceptions of Teaching and Learning in Higher Education: A Belief System Approach

    ERIC Educational Resources Information Center

    Schwieler, Elias; Ekecrantz, Stefan

    2011-01-01

    The effects of teachers' normative values and emotive reactions on teaching in higher education have received relatively little research attention. The focus is often on descriptive beliefs such as conceptions of teaching and their inter-relations with practice. In this study, which is illustrated by a heuristic model, a belief system approach is…

  5. Transformation between scientific and social representations of conception: the method of serial reproduction.

    PubMed

    Bangerter, A

    2000-12-01

    The social representation (SR) of conception was investigated using an adapted version of Bartlett's (1932) method of serial reproduction. A sample of 75 participants reproduced a text describing the conception process in 20 segregated chains of four reproductive generations. Changes in sentence structure and content were analysed. Results indicated that when the scientific representation of conception is apprehended by laypersons, two different processes take place. First, the abstract biological description of the process is progressively transformed into an anthropomorphic description centred on the sperm and ovum (personification). Second, stereotypical sex-role attributes are projected onto the sperm and ovum. Limitations of the method of serial reproduction are discussed, as well as its potential for modelling processes of cultural diffusion of knowledge.

  6. Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines

    NASA Astrophysics Data System (ADS)

    Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo

    2016-11-01

    Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.

  7. A Concept-Based Approach to Teaching Speech Acts in the EFL Classroom

    ERIC Educational Resources Information Center

    Nicholas, Allan

    2015-01-01

    While concept-based instruction (CBI), grounded in sociocultural theory, has been the subject of increased attention in recent years, it is still a relatively unknown methodology in language teaching contexts. In this approach, the emphasis is on helping learners develop a deep, conceptual understanding of a skill or knowledge area, so that this…

  8. Scientific Skills and Concept Learning by Rural Women for Personal and National Development

    ERIC Educational Resources Information Center

    Agbo, Felicia Onyemowo; Isa, Ali A. Muluku

    2017-01-01

    This paper examined scientific skills and concept learning by rural women for personal and national development. The research design employed was a quasi-experimental, one-group pre-test and post-test design. A non-formal science program package to enhance and empower the rural women's knowledge and skills in their daily activities (nutrition,…

  9. 3D Visualization in Elementary Education Astronomy: Teaching Urban Second Graders about the Sun, Earth, and Moon

    NASA Astrophysics Data System (ADS)

    Isik-Ercan, Zeynep; Kim, Beomjin; Nowak, Jeffrey

    This research-in-progress hypothesizes that urban second graders can have an early understanding about the shape of Sun, Moon, and Earth, how day and night happens, and how Moon appears to change its shape by using three dimensional stereoscopic vision. The 3D stereoscopic vision system might be an effective way to teach subjects like astronomy that explains relationships among objects in space. Currently, Indiana state standards for science teaching do not suggest the teaching of these astronomical concepts explicitly before fourth grade. Yet, we expect our findings to indicate that students can learn these concepts earlier in their educational lives with the implementation of such technologies. We also project that these technologies could revolutionize when these concepts could be taught to children and expand the ways we think about children's cognitive capacities in understanding scientific concepts.

  10. Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value

    ERIC Educational Resources Information Center

    Besson, Ugo; De Ambrosis, Anna

    2014-01-01

    Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…

  11. An iLab for Teaching Advanced Logic Concepts with Hardware Descriptive Languages

    ERIC Educational Resources Information Center

    Ayodele, Kayode P.; Inyang, Isaac A.; Kehinde, Lawrence O.

    2015-01-01

    One of the more interesting approaches to teaching advanced logic concepts is the use of online laboratory frameworks to provide student access to remote field-programmable devices. There is as yet, however, no conclusive evidence of the effectiveness of such an approach. This paper presents the Advanced Digital Lab, a remote laboratory based on…

  12. Intertextual learning strategy with guided inquiry on solubility equilibrium concept to improve the student’s scientific processing skills

    NASA Astrophysics Data System (ADS)

    Wardani, K. U.; Mulyani, S.; Wiji

    2018-04-01

    The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.

  13. Learning from the Land: Teaching Ecology through Stories and Activities.

    ERIC Educational Resources Information Center

    Ellis, Brian Fox

    This book strives to combine creative writing, the whole language approach, thinking skills, and problem-solving strategies with an introduction to ecological concepts. It aims to bring scientific facts to life by creating empathy for wild creatures and teach basic science skills by using creative writing and storytelling. This book contains nine…

  14. Design and Development of an Interactive Multimedia Simulation for Augmenting the Teaching and Learning of Programming Concepts

    ERIC Educational Resources Information Center

    Baloyi, Leonah L.; Ojo, Sunday O.; Van Wyk, Etienne A.

    2017-01-01

    Teaching and learning programming has presented many challenges in institutions of higher learning worldwide. Teaching and learning programming require cognitive reasoning, mainly due to the fundamental reality that the underlying concepts are complex and abstract. As a result, many institutions of higher learning are faced with low success rates…

  15. Proceeding of the International Scientific Colloquium: MATHEMATICS AND CHILDREN (How to Teach and Learn Mathematics) (Osijek, Croatia, April 13, 2007)

    ERIC Educational Resources Information Center

    Pavlekovic, Margita, Ed.

    2007-01-01

    The main aim of the Organisational Committee of the international scientific colloquium Mathematics and Children is to encourage additional scientific research in the field of mathematics teaching in Croatia. The development of science and education is a part of a long-term Education Sector Development Plan 2005-2010. Following the example of…

  16. Wallace Creek Virtual Field Trip: Teaching Geoscience Concepts with LiDAR

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; Crosby, C. J.

    2009-12-01

    Recently available data such as LiDAR (Light Detection and Ranging) high-resolution topography can assist students to better visualize and understand geosciences concepts. It is important to bring these data into geosciences curricula as teaching aids while ensuring that the visualization tools, virtual environments, etc. do not serve as barriers to student learning. As a Southern California Earthquake Center ACCESS-G intern, I am creating a “virtual field trip” to Wallace Creek along the San Andreas Fault (SAF) using Google Earth as a platform and the B4 project LiDAR data. Wallace Creek is an excellent site for understanding the centennial-to-millennial record of SAF slip because of its dramatic stream offsets. Using the LiDAR data instead of, or alongside, traditional visualizations and teaching methods enhances a student’s ability to understand plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology. Viewing a high-resolution representation of the topography in Google Earth allows students to analyze the landscape and answer questions about the behavior of the San Andreas Fault. The activity guides students along the fault allowing them to measure channel offsets using the Google Earth measuring tool. Knowing the ages of channels, they calculate slip rate. They look for the smallest channel offsets around Wallace Creek in order to determine the slip per event. At both a “LiDAR and Education” workshop and the Cyberinfrastructure Summer Institute for Geoscientists (CSIG), I presented the Wallace Creek activity to high school and college earth science teachers. The teachers were positive in their responses and had numerous important suggestions including the need for a teacher’s manual for instruction and scientific background, and that the student goals and science topics should be specific and well-articulated for the sake of both the teacher and the student. The teachers also noted that the technology in classrooms varies

  17. Cultural factors in the origin and remediation of alternative conceptions in physics

    NASA Astrophysics Data System (ADS)

    Thijs, Gerard D.; van den Berg, Ed

    1995-10-01

    Over a wide range of subject areas students exhibit persistent conceptions contrary to the prevailing scientific concepts. The same alternative conceptions in physics are reported to exist across many countries, within a variety of cultural and environmental contexts. Also, many alternative conceptions show striking similarities with difficulties encountered in the historical development of physics. What is the reason for these similarities? Is intuitive science learned or triggered? And, if similar brain structures are responsible for common-sense theories, in what way then are cultural factors still important in the teaching-learning process? The influence of cultural factors will be discussed on the basis of literature available on this topic. Data collected by the authors in the Netherlands, Indonesia and countries in Africa are also taken into consideration. A distinction is proposed between alternative conceptions some of which may be universal and some dependent on culture. The same distinction is made regarding ways of reasoning and epistemology. It is suggested that the effectiveness of methods for the remediation of alternative conceptions is strongly influenced by cultural aspects of the teaching-learning process.

  18. Mining Concept Maps from News Stories for Measuring Civic Scientific Literacy in Media

    ERIC Educational Resources Information Center

    Tseng, Yuen-Hsien; Chang, Chun-Yen; Rundgren, Shu-Nu Chang; Rundgren, Carl-Johan

    2010-01-01

    Motivated by a long-term goal in education for measuring Taiwanese civic scientific literacy in media (SLiM), this work reports the detailed techniques to efficiently mine a concept map from 2 years of Chinese news articles (901,446 in total) for SLiM instrument development. From the Chinese news stories, key terms (important words or phrases),…

  19. Improving students’ conceptions on fluid dynamics through peer teaching model with PDEODE (PTM-PDEODE)

    NASA Astrophysics Data System (ADS)

    Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.

    2018-05-01

    This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.

  20. Using Nonfiction Narratives in an English Course to Teach the Nature of Science and Its Importance to Communicating About Science †

    PubMed Central

    Aune, Jeanine Elise; Evans, Lynn Lundy; Boury, Nancy

    2018-01-01

    The nature of science (NOS) is a foundational framework for understanding scientific ideas and concepts. This framework includes scientific methodology, the process of revising and interpreting data, and the ways in which science is a social endeavor. Nature of science literature treats science as a way of knowing that is based on observable phenomenon. While discipline-specific coursework teaches the factual information of science, it may fall short on teaching scientific literacy, a key component of which is understanding NOS. We have designed an English course that features nonfiction narratives describing the early days of epidemiology, hygiene awareness, and the current controversy surrounding vaccination. Using a validated assessment of student understanding of NOS, the Student Understanding of Science and Scientific Inquiry (SUSSI), we have determined that this science-themed English composition course was effective in teaching NOS. Student understanding of NOS increased between the beginning and the end of the course in eight of the nine parameters of NOS measured, with the greatest gains in understanding the role of revision and of creativity in science. Our data imply that the course helped students develop a slightly less naïve understanding of the nature of science and its importance in the development and dissemination of scientific ideas and concepts. PMID:29904539

  1. Mathematics Undergraduate Student Teachers' Conceptions of Guided Inductive and Deductive Teaching Approaches

    ERIC Educational Resources Information Center

    Ndemo, Zakaria; Zindi, Fred; Mtetwa, David

    2017-01-01

    This contribution aimed at developing an understanding of student teachers' conceptions of guided discovery teaching approaches. A cross-sectional survey design involving eleven secondary mathematics teachers who had enrolled for an in-service mathematics education degree was used to address the research question: What are undergraduate student…

  2. A Systemic View of the Learning and Differentiation of Scientific Concepts: The Case of Electric Current and Voltage Revisited

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Kokkonen, Tommi

    2014-01-01

    In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…

  3. The Teaching of Food Guide Pyramid Concepts by Nebraska Elementary School Educators.

    ERIC Educational Resources Information Center

    Martin, H. Darlene; Driskell, Judy A.

    2001-01-01

    In an analysis of food selection education using the Food Guide Pyramid for students in grades 1-4, over two-thirds of teachers (n=464) responded that nutrition should be a high priority in the elementary curriculum. Fewer than half teach pyramid concepts consistently or frequently, younger teachers (20-29) more rarely than older teachers.…

  4. Development of Problem-Based Learning Oriented Teaching Learning Materials to Facilitate Students’ Mastery of Concept and Critical Thinking Skill

    NASA Astrophysics Data System (ADS)

    Reza, M.; Ibrahim, M.; Rahayu, Y. S.

    2018-01-01

    This research aims to develop problem-based learning oriented teaching materials to improve students’ mastery of concept and critical thinking skill. Its procedure was divided into two phases; developmental phase and experimental phase. This developmental research used Four-D Model. However, within this research, the process of development would not involve the last stages, which is disseminate. The teaching learning materials which were developed consist of lesson plan, student handbook, student worksheet, achievement test and critical thinking skill test. The experimental phase employs a research design called one group pretest-posttest design. Results show that the validity of the teaching materials which were developed was good and revealed the enhancement of students’ activities with positive response to the teaching learning process. Furthermore, the learning materials improve the students’ mastery of concept and critical thinking skill.

  5. Teaching weight to explicitly address language ambiguities and conceptual difficulties

    NASA Astrophysics Data System (ADS)

    Taibu, Rex; Schuster, David; Rudge, David

    2017-06-01

    Language ambiguities in concept meanings can exacerbate student learning difficulties and conceptual understanding of physics concepts. This is especially true for the concept of "weight," which has multiple meanings in both scientific and everyday usage. The term weight has been defined in several different ways, with nuances, but in textbooks and teaching the term is almost always defined in one of two ways: operationally either as the contact force between an object and a measuring scale or as the gravitational force on an object due to some other body such as Earth. The use of the same name for different concepts leads to much confusion, especially in accelerating situations, and to conflicting notions of "weightlessness" in free fall situations. In the present paper, we share an innovative approach that initially avoids the term weight entirely while teaching the physics of each situation, and then teaches the language ambiguities explicitly. We developed an instructional module with this approach and implemented it over two terms in three sections of an introductory physics course for preservice elementary teachers. Learning gains for content understanding were assessed using pretests and post-tests. Participants achieved remarkably high gains for both static and accelerating situations. Surveys pre- and postinstruction showed substantially improved appreciation of language issues and ambiguities associated with weight, weightlessness, and free fall. Interviews with instructors teaching the module provided additional insight into the advantages and teaching demands of the new approach.

  6. Observing and Producing Sounds, Elementary School Science, Level Four, Teaching Manual.

    ERIC Educational Resources Information Center

    Hale, Helen E.

    This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to help children discover specific concepts which relate to sound, such as volume, pitch, and echo. The student activities employ important scientific processes, such as observation, communication, inference, classification,…

  7. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2013-05-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's synthesis and the birth of Tribology (1930-1980); nanotribology, friction at the atomic scale, and new fields of research (after 1980). Attention is given to recent research, so giving the sense of a topic that is still alive and currently an object of interest, with interpretative controversies. The development of explanatory and visual models is especially stressed, in connection with students' common ideas and with didactic purposes. The history shows that many models proposed in the past have been modified but not abandoned, so that here the scientific evolution has worked more by adding than by eliminating. The last sections discuss problems and proposals on teaching friction and the possible uses in teaching of models, images and theories found in history. Concerning the role of the history in science teaching, the case of friction has particular features, because some recent developments are unknown to most teachers and many results, also not very recent, contrast with the laws usually proposed in textbooks. Here history can supply a number of models, examples and experiments which can constitute useful resources to improve student understanding, joining together objectives of cultural value and of better scientific knowledge.

  8. Teaching for Scientific Literacy: Context, Competency, and Curriculum. Proceedings of the International Utrecht/ICASE Symposium (2nd, October 11-13, 2000).

    ERIC Educational Resources Information Center

    de Jong, Onno, Ed.; Savelsbergh, Elwin R., Ed.; Alblas, Art, Ed.

    The second Utrecht/ICASE Symposium brought a variety of European colleagues together to discuss scientific literacy which has played an important role in curriculum development for the past 25 years. This proceedings contains papers presented at the symposium. Papers include: (1) "Teaching for scientific literacy: An introduction" (Elwin…

  9. Kindergarten and Primary School Children's Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Marken, Tiivi

    2017-01-01

    The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud…

  10. Construction of technological artifacts and teaching strategies to promote flexible scientific understanding

    NASA Astrophysics Data System (ADS)

    Spitulnik, Michele Wisnudel

    Science education reforms advocate inquiry as a way to build explanations and make informed decisions. Based on this call this dissertation (1) defines flexible scientific understanding by elaborating on content, inquiry and epistemic understandings; (2) describes an inquiry based unit that integrates dynamic modeling software; (3) examines students' understandings as they construct models; and (4) identifies instructional strategies that support inquiry and model building. A curriculum unit was designed to engage students in inquiry by identifying problems and constructing models to represent, explain and predict phenomena. Ninth grade students in a public mid-western high school worked in teams of 2-3 to ask questions, find information and reflect on the purposes of models. Data sources including classroom video, observations, interviews, student models and handouts were used to formulate cases that examine how two groups construct understanding. A teacher case study identifies the teaching strategies that support understanding. Categories within content, inquiry and epistemic understandings were used to analyze student understandings and teaching supports. The findings demonstrate that students can build flexible understanding by constructing models. Students built: (1) content understanding by identifying key ideas and building relationships and explanations of phenomena; (2) inquiry understanding by defining problems, constructing models and developing positions; and (3) epistemic understanding by describing the purposes of models as generalizing phenomena, testing hypotheses and making predictions. However, students demonstrated difficulty in using evidence to defend scientific arguments. Strategies that support flexible understanding were also identified. Content supports include: setting expectations for explanations; using examples to illustrate explanations; modeling questions; and providing feedback that prompts detailed explanations. Supports for

  11. A Scientific Method Based upon Research Scientists' Conceptions of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Reiff, Rebecca; Harwood, William S.; Phillipson, Teddie

    For students to develop a more realistic picture of how scientists practice science, there must be well-researched understanding of how scientists do science. A model for the process of scientific inquiry that more closely reflects actual scientific practices can provide a means of dispelling some of the myths about scientific inquiry. This paper…

  12. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  13. Demonstrating Experimenter "Ineptitude" as a Means of Teaching Internal and External Validity

    ERIC Educational Resources Information Center

    Treadwell, Kimberli R.H.

    2008-01-01

    Internal and external validity are key concepts in understanding the scientific method and fostering critical thinking. This article describes a class demonstration of a "botched" experiment to teach validity to undergraduates. Psychology students (N = 75) completed assessments at the beginning of the semester, prior to and immediately following…

  14. The Feature of Scientific Explanation in the Teaching of Chemistry in the Environment of New Information of School Students' Developmental Education

    ERIC Educational Resources Information Center

    Gilmanshina, Suriya I.; Gilmanshin, Iskander R.; Sagitova, Rimma N.; Galeeva, Asiya I.

    2016-01-01

    The aim of this article is to disclose features of scientific explanation in teaching of chemistry in the environment of new information of school students' developmental education. The leading approach to the study of this problem is the information and environmental approach that comprehensively address the problem of scientific explanation in…

  15. Assessment of Students' Scientific and Alternative Conceptions of Energy and Momentum Using Concentration Analysis

    ERIC Educational Resources Information Center

    Dega, Bekele Gashe; Govender, Nadaraj

    2016-01-01

    This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…

  16. The concept lens diagram: a new mechanism for presenting biochemistry content in terms of "big ideas".

    PubMed

    Rowland, Susan L; Smith, Christopher A; Gillam, Elizabeth M A; Wright, Tony

    2011-07-01

    A strong, recent movement in tertiary education is the development of conceptual, or "big idea" teaching. The emphasis in course design is now on promoting key understandings, core competencies, and an understanding of connections between different fields. In biochemistry teaching, this radical shift from the content-based tradition is being driven by the "omics" information explosion; we can no longer teach all the information we have available. Biochemistry is a core, enabling discipline for much of modern scientific research, and biochemistry teaching is in urgent need of a method for delivery of conceptual frameworks. In this project, we aimed to define the key concepts in biochemistry. We find that the key concepts we defined map well onto the core science concepts recommended by the Vision and Change project. We developed a new method to present biochemistry through the lenses of these concepts. This new method challenged the way we thought about biochemistry as teachers. It also stimulated the majority of the students to think more deeply about biochemistry and to make links between biochemistry and material in other courses. This method is applicable to the full spectrum of content usually taught in biochemistry. Copyright © 2011 Wiley Periodicals, Inc.

  17. The Vital Role of Basic Mathematics in Teaching and Learning the Mole Concept

    ERIC Educational Resources Information Center

    Mehrotra, Alka; Koul, Anjni

    2016-01-01

    This article focuses on the importance of activity-based teaching in understanding the mole concept and the vital role of basic mathematical operations. It describes needs-based training for teachers in a professional development programme in India. Analysis of test results before and after the training indicates that teachers improved their…

  18. Turkish Preservice Elementary Science Teachers' Conceptions of Learning Science and Science Teaching Efficacy Beliefs: Is There a Relationship?

    ERIC Educational Resources Information Center

    Bahcivan, Eralp; Kapucu, Serkan

    2014-01-01

    This study has been conducted to investigate conceptions of learning science (COLS) and personal science teaching efficacy belief (PSTE) of Turkish preservice elementary science teachers (PSTs) and to explore the relationship between these variables. Two instruments COLS questionnaire and PSTE subscale of Science Teaching Efficacy Beliefs…

  19. Is Case-Based Learning an Effective Teaching Strategy to Challenge Students' Alternative Conceptions regarding Chemical Kinetics?

    ERIC Educational Resources Information Center

    Yalcinkaya, Eylem; Tastan-Kirik, Ozgecan; Boz, Yezdan; Yildiran, Demet

    2012-01-01

    Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students…

  20. Like Teacher, Like Student? Conceptions of Children from Traditional and Constructive Teachers Regarding the Teaching and Learning of String Instruments

    ERIC Educational Resources Information Center

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-01-01

    While many studies have considered the association between teachers' and students' conceptions of teaching and learning and classroom practices, few studies have researched the influence of teachers' conceptions on students' conceptions. Our objective was to analyze the influence of music teachers' conceptions on student…

  1. A writing-intensive course improves biology undergraduates' perception and confidence of their abilities to read scientific literature and communicate science.

    PubMed

    Brownell, Sara E; Price, Jordan V; Steinman, Lawrence

    2013-03-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

  2. Teaching Writing

    ERIC Educational Resources Information Center

    Tomas, Z.; Kostka, I.; Mott-Smith, J. A.

    2013-01-01

    The authors of "Teaching Writing" draw on their years of teaching and their knowledge of theory and research to present major concepts in teaching L2 writing. These concepts encompass how cultural differences affect the writing class, planning instruction, text-based writing, writing strategies, modeling, and responding to student…

  3. A persuasive concept of research-oriented teaching in Soil Biochemistry

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Kuzyakova, Irina

    2013-04-01

    scientific projects to study the uncertainties revealed in soil responses to abiotic factors (second and third semesters); 7) Lecture, seminar and training courses on estimation of active microbial biomass in soil where students realize their projects applying a new knowledge to the soils from the stands they are responsible for (fourth semester). Thus, during four semesters the students continuously combine the theoretical knowledge from the lectures with their own experimental experience, compare and discuss results of various groups during seminars and obtain the skills in project design. The successful application of research-oriented teaching system in University of Göttingen allowed each student the early-stage revealing knowledge gaps, accelerated their involvement in ongoing research projects, and motivated them to begin own scientific career.

  4. Think Scientifically: Science Hidden in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.

    2012-12-01

    The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;

  5. Joseph Henry's Conception of Scientific Knowledge

    NASA Astrophysics Data System (ADS)

    Theerman, Paul

    1997-04-01

    Joseph Henry, America's premier physicist and physics teacher in the mid-nineteenth century, had decided views of scientific knowledge. These were expressed in two ways. First of all, scientific knowledge led to moral betterment. Thus the study of science was a morally good thing. This was not only because it led to the contemplation of God's creation, which was a standard reason justifying the study of science dating from the Scientific Revolution and even earlier. More importantly, the study of science itself was a moral discipline, imparting to scientists the habits and virtues of truthfulness, respect for others, care and diligence, and the discernment of meaningful patterns from experience. The moral ideals of science were expressed most strongly in Henry's upholding the international "Republic of Science"; conversely, cheapening science was a sign of moral failure. Second, for Henry and his generation, science provided a path to sure truth, separate from falsehood of both the politics and the quackery that characterized mid-century public life. Henry promoted this in his championing of the Smithsonian Institution a scientific establishment, against the ideas of others who wanted to make it a literary establishment or a training school for teachers. For Henry, the Smithsonian's scientific reputation would be established by relying on careful peer review in its publications, and supporting established scientists to write authoritative popular works. The purpose of both these activities was to raise the profile of science in the United States and further establish science and the scientific method as a guide to public life.

  6. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  7. Facilitating the Concept of Universal Design Among Design Students - Changes in Teaching in the Last Decade.

    PubMed

    Vavik, Tom

    2016-01-01

    This short paper describes and reflects on how the teaching of the concept of Universal Design (UD) has developed in the last decade at the Institute of Design at the Oslo School of Architecture and Design (AHO). Four main changes are described. Firstly, the curriculum has evolved from teaching guidelines and principles to focusing on design processes. Secondly, an increased emphasis is put on cognitive accessibility. Thirdly, non-stigmatizing aesthetics expressions and solutions that communicate through different senses have become more important subjects. Fourthly the teaching of UD has moved from the second to the first year curriculum.

  8. Is case-based learning an effective teaching strategy to challenge students' alternative conceptions regarding chemical kinetics?

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Eylem; Taştan-Kırık, Özgecan; Boz, Yezdan; Yıldıran, Demet

    2012-07-01

    Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students have generally low levels of conceptual understanding and many alternative conceptions regarding it. Purpose: This study aimed to explore the effect of CBL on dealing with students' alternative conceptions about chemical kinetics. Sample: The sample consists of 53 high school students from one public high school in Turkey. Design and methods : Nonequivalent pre-test and post-test control group design was used. Reaction Rate Concept Test and semi-structured interviews were used for data collection. Convenience sampling technique was followed. For data analysis, the independent samples t-test and ANOVA was performed. Results : Both concept test and interview results showed that students instructed with cases had better understanding of core concepts of chemical kinetics and had less alternative conceptions related to the subject matter compared to the control group students, despite the fact that it was impossible to challenge all the alternative conceptions in the experimental group. Conclusions: CBL is an effective teaching method for challenging students' alternative conceptions in the context of chemical kinetics. Since using cases in small groups and whole class discussions has been found to be an effective way to cope with the alternative conceptions, it can be applied to other subjects and grade levels in high schools with a higher sample size. Furthermore, the effect of this method on academic achievement, motivation and critical thinking skills are other variables that can be investigated for future studies in the subject area of chemistry.

  9. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    NASA Astrophysics Data System (ADS)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  10. The Power of Colombian Mathematics Teachers' Conceptions of Social/Institutional Factors of Teaching

    ERIC Educational Resources Information Center

    Agudelo-Valderrama, Cecilia

    2008-01-01

    In this paper I shall discuss data from a study on Colombian mathematics teachers' conceptions of their own teaching practices of beginning algebra, which led to the development of a theoretical model of teachers' thought structures designed as a thinking tool at the initial stage of the study. With a focus on the perspectives of teachers, the…

  11. Activities for Teaching K-6 Math/Science Concepts. Classroom Activities Series - Number 2.

    ERIC Educational Resources Information Center

    Farmer, Walter A.; Farrell, Margaret A.

    This book is a revised edition of one of the products of a project, "Teaching Mathematics and Science Concepts, K-6, funded by the New York State Education Department. The project was a collaborative effort by mathematics and science education faculty at the State University of New York at Albany and representatives of eight school districts in…

  12. Application of Core Science Concepts Using Digital Video: A "Hands-On" Laptop Approach

    ERIC Educational Resources Information Center

    Jarvinen, Michael Keith; Jarvinen, Lamis Zaher; Sheehan, Danielle N.

    2012-01-01

    Today's undergraduates are highly engaged in a variety of social media outlets. Given their comfort with technology, we wondered if we could use this phenomenon to teach science-related material. We asked students to use freeware to make a short video with text, images, and music as a way to explain scientific concepts that are traditionally…

  13. Utilizing Professional Vision in Supporting Preservice Teachers' Learning About Contextualized Scientific Practices. Collaborative Discourse Practices Between Teachers and Scientists

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, Asli

    2018-03-01

    Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.

  14. Supporting Reform-Oriented Secondary Science Teaching through the Use of a Framework to Analyze Construction of Scientific Explanations

    ERIC Educational Resources Information Center

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-01-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice…

  15. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  16. The Global Ethics Corner: Foundations, Beliefs, and the Teaching of Biomedical and Scientific Ethics around the World

    ERIC Educational Resources Information Center

    Jakubowski, Henry; Xie, Jianping; Kumar Mitra, Arup; Ghooi, Ravindra; Hosseinkhani, Saman; Alipour, Mohsen; Hajipour, Behnam; Obiero, George

    2017-01-01

    The profound advances in the biomolecular sciences over the last decades have enabled similar advances in biomedicine. These advances have increasingly challenged our abilities to deploy them in an equitable and ethically acceptable manner. As such, it has become necessary and important to teach biomedical and scientific ethics to our students who…

  17. "Look at what I am saying": Multimodal science teaching

    NASA Astrophysics Data System (ADS)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  18. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    ERIC Educational Resources Information Center

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-01-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are…

  19. Pre-Service Physics Teachers' Understanding of the Relational Structure of Physics Concepts: Organising Subject Contents for Purposes of Teaching

    ERIC Educational Resources Information Center

    Koponen, Ismo; Nousiainen, Maija

    2013-01-01

    Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…

  20. Process skills acquisition, cognitive growth, and attitude change of ninth grade students in a scientific literacy course

    NASA Astrophysics Data System (ADS)

    Baker, Dale R.; Piburn, Michael

    This is a report of the effects of a scientific literacy course on the skills, cognitive ability, and attitude of students in the first year of high school. Specifically, the research examines (1) whether it is possible to teach scientific skills, (2) whether a literacy curriculum affects attitude and cognitive ability, and (3) whether incoming student characteristics affect the development of attitude and cognitive abilities. Two hundred and fifty (126 male and 124 female) ninth grade students were enrolled in a specially designed literacy course which met for 3 hours and 20 minutes each week for 39 weeks. Students were pretested for logical, spatial, verbal, and mathematical ability, as well as for attitude toward self and science, and psychological type. The course was successful in teaching skills. In addition, there were significant increases in spatial, verbal, and quantitative ability. Increases in cognitive ability were predicted by logical ability, measurement skills, and academic self-concept. Attitudes declined as a result of participation in the course. Self concept and mastery were related to cognitive variables and motivation, mastery, and control were related to psychological type.

  1. The Impact of Video Case Content on Preservice Elementary Teachers' Decision-Making and Conceptions of Effective Science Teaching

    ERIC Educational Resources Information Center

    Olson, Joanne K.; Bruxvoort, Crystal N.; Vande Haar, Andrea J.

    2016-01-01

    Little is known about how the content of a video case influences what preservice teachers learn about science teaching. This study was designed to determine the impact of two different video cases on preservice elementary teachers' conceptions of multiple aspects of effective science teaching, with one video selected to focus attention on the role…

  2. The Hospitalist Huddle: a 1-year experience of teaching Hospital Medicine utilizing the concept of peer teaching in medical education.

    PubMed

    Elhassan, Mohammed

    2017-01-01

    The relatively new specialty of Hospital Medicine in the USA is one of the fastest growing fields in internal medicine. Academic hospitalists are largely involved in the medical education of postgraduate residents and medical students. Little is known about the effectiveness of peer-to-peer teaching in internal medicine residency training programs and how the medical residents perceive its educational value in learning Hospital Medicine. The Hospitalist Huddle is a weekly educational activity newly established by our Hospitalist Division to facilitate the concept of peer-to-peer teaching. It requires medical residents to teach and educate their peers about the clinical topics related to Hospital Medicine. Faculty hospitalists serve as facilitators during the teaching sessions. A survey disseminated at the end of the first year of its implementation examined the residents' perception of the educational value of this new teaching activity. Most residents reported that they see the Huddle as a useful educational forum which may improve their skills in teaching, create a better educational and learning environment during their inpatient rotation, and improve their understanding of Hospital Medicine. Most residents also prefer that their peers, rather than faculty hospitalists, run the activity and do the teaching. The survey results support the notion that teaching and learning with flat hierarchies can be an appealing educational method to medical residents to help them understand Hospital Medicine during their medical wards rotation. Some areas need to be improved and others need to be continued and emphasized in order to make this novel educational activity grow and flourish in terms of its educational value and residents' satisfaction.

  3. Optimize scientific communication skills on work and energy concept with implementation of interactive conceptual instruction and multi representation approach

    NASA Astrophysics Data System (ADS)

    Patriot, E. A.; Suhandi, A.; Chandra, D. T.

    2018-05-01

    The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.

  4. The ontic conception of scientific explanation.

    PubMed

    Wright, Cory

    2015-12-01

    Wesley Salmon's version of the ontic conception of explanation is a main historical root of contemporary work on mechanistic explanation. This paper examines and critiques the philosophical merits of Salmon's version, and argues that his conception's most fundamental construct is either fundamentally obscure, or else reduces to a non-ontic conception of explanation. Either way, the ontic conception is a misconception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    NASA Astrophysics Data System (ADS)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  6. Diagnosing Portuguese Students' Misconceptions about the Mineral Concept

    NASA Astrophysics Data System (ADS)

    Monteiro, António; Nóbrega, Clévio; Abrantes, Isabel; Gomes, Celeste

    2012-11-01

    Educational researchers and teachers are well aware that misconceptions-erroneous ideas that differ from the scientifically accepted ones-are very common amongst students. Daily experiences, creative and perceptive thinking and science textbooks give rise to students' misconceptions which lead them to draw erroneous conclusions that become strongly attached to their views and somehow affect subsequent learning. The main scope of this study was to understand what students consider a mineral to be and why. Therefore, the goals were (1) to identify eleventh-grade students' misconceptions about the mineral concept; (2) to understand which variables (gender, parents' education level and attitude towards science) influenced students' conceptions; and (3) to create teaching tools for the prevention of misconceptions. In order to achieve these goals, a diagnostic instrument (DI), constituted of a two-tier diagnostic test and a Science Attitude Questionnaire, was developed to be used with a sample of 89 twelfth-grade students from five schools located in central Portugal. As far as we know, this is the first DI developed for the analysis of misconceptions about the mineral concept. Data analysis allows us to conclude that students had serious difficulties in understanding the mineral concept, having easily formed misconceptions. The variables gender and parents' education level influence certain students' conceptions. This study provides a valuable basis for reflection on teaching and learning strategies, especially on this particular theme.

  7. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    NASA Astrophysics Data System (ADS)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  8. Teaching Wellness Concepts Using Mosston's Spectrum of Teaching Styles

    ERIC Educational Resources Information Center

    Wilkinson, Carol; Pennington, Todd; Zanandrea, Maria

    2011-01-01

    Teaching wellness principles in secondary physical education classes has become an important aspect of physical education as teachers work to help their students develop lifelong healthy lifestyle habits. Many schools now have a required wellness/fitness component as part of their state core requirements. Having developed their teaching skills by…

  9. Conceptions of scientific literacy: Reactionaries in ascendency in the state of Victoria

    NASA Astrophysics Data System (ADS)

    Cross, Rober

    1995-06-01

    Schooling as much as any other social activity is determined by ideology. The introduction of the Victorian Curriculum & Standards Framework is a case in point. The alliance between the new Victorian State government and traditionalists has “reformed” the schooling of science. Evidence is presented that points to a return to a conception of scientific literacy in which the central mythology of value-free science is the guiding principle. Here is a vision for an “educated” Australia, which begs the question: Whose Australia?

  10. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    ERIC Educational Resources Information Center

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  11. A Framework for Teaching Basic Economic Concepts with Scope and Sequence Guidelines K-12.

    ERIC Educational Resources Information Center

    Saunders, Phillip, Ed.; Gilliard, June V., Ed.

    This publication is an updated, edited merger of two earlier National Council on Economic Education documents: "A Framework for Teaching the Basic Concepts" and "Economics: What and When." The combined publication is designed to aid those who construct curricula or who provide economics instruction in U.S. schools. The book…

  12. Using a Concept Cartoon© Method to Address Elementary School Students' Ideas about Natural Phenomena

    ERIC Educational Resources Information Center

    Minárechová, Michaela

    2016-01-01

    This study investigated the identification and subsequent development or modification of students´ ideas about scientific phenomena by teaching by concept cartoons© method. We found out ideas of students of the fourth grade of primary school by conceptual tasks which were parts of quasi-experiment (pretest and posttest design). For triangulation…

  13. More than a Picture: Helping Undergraduates Learn to Communicate through Scientific Images

    PubMed Central

    Watson, Fiona L.

    2008-01-01

    Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most undergraduate lab science courses do not actively teach students skills to communicate effectively through images. To meet this need, we developed a series of image portfolio assignments and imaging workshops in our Developmental Biology course to encourage students to develop communication skills using images. The improvements in their images over the course of the semester were striking, and on anonymous course evaluations, 73% of students listed imaging skills as the most important skill or concept they learned in the course. The image literacy skills acquired through simple lab assignments and in-class workshops appeared to stimulate confidence in the student's own evaluations of current scientific literature to assess research conclusions. In this essay, we discuss our experiences and methodology teaching undergraduates the basic criteria involved in generating images that communicate scientific content and provide a road map for integrating this curriculum into any upper-level biology laboratory course. PMID:18316805

  14. Teaching and learning grade 7 science concepts by elaborate analogies: Mainstream and East and South Asian ESL students' experiences

    NASA Astrophysics Data System (ADS)

    Kim, Judy Joo-Hyun

    This study explored the effectiveness of an instructional tool, elaborate analogy, in teaching the particle theory to both Grade 7 mainstream and East or South Asian ESL students. Ten Grade 7 science classes from five different schools in a large school district in the Greater Toronto area participated. Each of the ten classes were designated as either Group X or Y. Using a quasi-experimental counterbalanced design, Group X students were taught one science unit using the elaborate analogies, while Group Y students were taught by their teachers' usual methods of teaching. The instructional methods used for Group X and Y were interchanged for the subsequent science unit. Quantitative data were collected from 95 students (50 mainstream and 45 ESL) by means of a posttest and a follow-up test for each of the units. When the differences between mainstream and East or South Asian ESL students were analyzed, the results indicate that both groups scored higher on the posttests when they were instructed with elaborate analogies, and that the difference between the two groups was not significant. That is, the ESL students, as well as the mainstream students, benefited academically when they were instructed with the elaborate analogies. The students obtained higher inferential scores on the posttest when their teacher connected the features of less familiar and more abstract scientific concepts to the features of the familiar and easy-to-visualize concept of school dances. However, after two months, the students were unable to recall inferential content knowledge. This is perhaps due to the lack of opportunity for the students to represent and test their initial mental models. Rather than merely employing elaborate analogies, perhaps, science teachers can supplement the use of elaborate analogies with explicit guidance in helping students to represent and test the coherence of their mental models.

  15. The Use of History and Philosophy of Science as a Core for a Socioconstructivist Teaching Approach of the Concept of Energy in Primary Education

    ERIC Educational Resources Information Center

    Rizaki, Aikaterini; Kokkotas, Panagiotis

    2013-01-01

    The present study should be thought as a socioconstructivist teaching approach (a teaching model) for the concept of energy in primary education. It contains important and crucial aspects of the History and Philosophy of Natural Sciences, introduces the concept of energy using the macroscopic framework of thermodynamics, takes into consideration…

  16. EFFICIENTLY ESTABLISHING CONCEPTS OF INFERENTIAL STATISTICS AND HYPOTHESIS DECISION MAKING THROUGH CONTEXTUALLY CONTROLLED EQUIVALENCE CLASSES

    PubMed Central

    Fienup, Daniel M; Critchfield, Thomas S

    2010-01-01

    Computerized lessons that reflect stimulus equivalence principles were used to teach college students concepts related to inferential statistics and hypothesis decision making. Lesson 1 taught participants concepts related to inferential statistics, and Lesson 2 taught them to base hypothesis decisions on a scientific hypothesis and the direction of an effect. Lesson 3 taught the conditional influence of inferential statistics over decisions regarding the scientific and null hypotheses. Participants entered the study with low scores on the targeted skills and left the study demonstrating a high level of accuracy on these skills, which involved mastering more relations than were taught formally. This study illustrates the efficiency of equivalence-based instruction in establishing academic skills in sophisticated learners. PMID:21358904

  17. The Effectiveness of Educational Games on Scientific Concepts Acquisition in First Grade Students in Science

    ERIC Educational Resources Information Center

    Al-Tarawneh, Mohammad Hasan

    2016-01-01

    This study aimed at investigating the effectiveness of educational games on scientific concepts acquisition by the first grade students. The sample of the study consisted of (53) male and female students distributed into two groups: experimental group (n = 26) which taught by educational games, and control group (n = 27) which taught by…

  18. [Academician Li Lianda talking about doctors doing scientific research].

    PubMed

    He, Ping; Li, Yi-kui

    2015-09-01

    At present, Chinese medical field faces with an important problem of how to correctly handle the relationship between medical and scientific research. Academician Li Lianda advocates doctors doing scientific research under the premise of putting the medical work first. He points out that there are many problems in the process of doctors doing scientific research at present such as paying more attention to scientific research than medical care, excessively promoting building scientific research hospital, only paying attention to training scientific talents, research direction be flashy without substance, the medical evaluation system should be improved and so on. Medical, scientific research and teaching are inseparable because improving medical standards depends on scientific research and personnel training. But not all doctors need to take into account of medical treatment, scientific research and teaching in the same degree while not all hospitals need to turn into three-in-one hospital, scientific research hospital or teaching hospital. It must be treated differently according to the actual situation.

  19. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  20. [Objects from scientific collections in demand: the value of the various collections of the Urologic History Center of the German Society of Urology for modern teaching purposes in urology].

    PubMed

    Moll, F H

    2015-02-01

    The use of artifacts and objects from scientific medical collections and museums for academic teaching purposes are one of the main qualifying tasks of those institutions. In recent years, this aspect of scientific collections has again become on focus within academics. The collections offer a unique chance for visual and haptic forms of teaching in many fields. Due to the potential of scientific collections, educators in all branches in academic learning should be familiar with handling objects for such purposes.

  1. The complexity of teaching density in middle school

    NASA Astrophysics Data System (ADS)

    Hashweh, Maher Z.

    2016-01-01

    Background: Density is difficult to learn and teach in middle schools. This study, hypothesizing that the density concept develops as part of a conceptual system, used a conceptual change approach to teaching density. The approach emphasized the use of multiple strategies to teach the density concept and the associated concepts in the conceptual system. Purpose: This study assessed post-instructional understanding of different aspects of density in a sample of seventh grade students, examined the effectiveness of the multi-dimensional approach in teaching density, investigated the relations between prior student characteristics and their post-instructional understanding, and investigated if the concept of density develops as part of a conceptual system. Program description: In the first part of the study, student understanding of density was assessed in regular classrooms. In the second part, the investigator and a science teacher co-taught the density unit over a two-week period emphasizing relations between density, mass, volume, part-whole relations, and a scientific particulate conception of matter. A conceptual change approach was used which emphasized multiple representations of knowledge and the use of analogies. Sample: The sample in regular classes consisted of 1645 seventh graders in 51 schools in the West Bank, Palestine. The intervention group consisted of 29 students in one school. Design and methods: The post-instructional understanding of density in 51 regularly taught classrooms was assessed in the first part of the study using a pencil-and paper test. In the second part, a pre-test was used with the intervention group. Students in both parts of the study took the same post-test. Descriptive statistics were calculated to describe student performance. Comparison between pre-test and post-test performance of students in the intervention group was conducted using t-test and ANOVA. Correlations between pre-test sub-scores and post-test scores for

  2. Master Curriculum Guide in Economics for the Nation's Schools. Part I, A Framework for Teaching Economics: Basic Concepts.

    ERIC Educational Resources Information Center

    Hansen, W. Lee; And Others

    A concise framework of basic concepts and generalizations for teaching economics for K-12 students is presented. The guide summarizes the basic structure and substance of economics and lists and describes economic concepts. Standard guidelines are provided to help school systems integrate economics into their on-going courses of study. Designed to…

  3. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  4. Using a Historical Controversy to Teach Critical Thinking, the Meaning of "Theory", and the Status of Scientific Knowledge

    ERIC Educational Resources Information Center

    Montgomery, Keith

    2009-01-01

    It is important that students understand the "open-ended" nature of scientific knowledge and the correct relationship between facts and theory. One way this can be taught is to examine a past controversy in which the interpretation of facts was contested. The controversy discussed here, with suggestions for teaching, is "Expanding…

  5. Ethics teaching in European veterinary schools: a qualitative case study.

    PubMed

    Magalhães-Sant'Ana, M

    2014-12-13

    Veterinary ethics is recognised as a relevant topic in the undergraduate veterinary curriculum. However, there appears to be no widely agreed view on which contents are best suited for veterinary ethics teaching and there is limited information on the teaching approaches adopted by veterinary schools. This paper provides an inside perspective on the diversity of veterinary ethics teaching topics, based on an in-depth analysis of three European veterinary schools: Copenhagen, Lisbon and Nottingham. The case study approach integrated information from the analysis of syllabi contents and interviews with educators (curricular year 2010-2011). These results show that the curriculum of veterinary ethics is multidimensional and can combine a wide range of scientific, regulatory, professional and philosophical subjects, some of which may not be explicitly set out in the course descriptors. A conceptual model for veterinary ethics teaching is proposed comprising prominent topics included within four overarching concepts: animal welfare science, laws/regulations, professionalism, and theories/concepts. It is intended that this work should inform future curriculum development of veterinary ethics in European schools and assist ethical deliberation in veterinary practice. British Veterinary Association.

  6. Teaching Scientific Inquiry with Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.; Slater, Timothy F.; Lyons, Daniel J.

    2011-02-01

    The universe of topics to choose from when teaching an astronomy course is astronomically immense. This wide array of opportunity presents some inherently difficult choices for teachers at all levels on how to limit the scope of the course to make the syllabus manageable. As but one example, consider that even the most experienced astronomy teacher must choose between focusing on the astrophysics of stellar processes or on the nomenclature for stars and constellations because there is rarely time to give both justice. One might go as far as saying that planning an astronomy course is similar to the perspective offered by Michael Pollan in his book The Omnivore's Dilemma, which can be paraphrased as, ``When entering a modern grocery store in the U.S. with unlimited choices, what is it that one chooses to eat and why?'' Indeed, teaching about the entire universe in a single astronomy course involves some serious choices, as one can most certainly not teach everything.

  7. Strategies for teaching object-oriented concepts with Java

    NASA Astrophysics Data System (ADS)

    Sicilia, Miguel-Ángel

    2006-03-01

    A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to overcome them, are addressed. Concretely, practical issues regarding associations, interfaces, genericity and exceptions are described. These issues suggest that more emphasis is required on presenting Java programs as derivations of conceptual models, in order to guarantee that a thorough design of the object structure actually precedes implementation issues. In addition, common student misunderstandings about the uses of interfaces and exceptions point to the necessity of introducing both specific design philosophies and also a clear distinction between design-for-reuse and more specific implementation issues.

  8. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  9. Analyzing the Effect of Metaconceptual Teaching Practices on Students' Understanding of Force and Motion Concepts

    ERIC Educational Resources Information Center

    Yuruk, Nejla; Beeth, Michael E.; Andersen, Christopher

    2009-01-01

    This study investigated the effect of metaconceptual teaching interventions on students' understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students'…

  10. Rekindling Scientific Curiosity.

    ERIC Educational Resources Information Center

    Coble, Charles R.; Rice, Dale R.

    1983-01-01

    Active involvement in society-related issues can elevate junior high school students' interest not only in the problem being solved but also in related scientific concepts. Examples of how scientific concepts and society-related issues can be taught in the same class are presented, focusing on genetic engineering, water shortage, and others.…

  11. Four science teachers' perceptions and reflections about teaching science to middle school students: A case study

    NASA Astrophysics Data System (ADS)

    Theadford, Brita A.

    This qualitative case study examined four middle school science teachers from Southern New Jersey perceptions and reflections about their selections of instructional strategies used to teach scientific concepts to seventh and eighth grade students. They reflected upon their pedagogy by reviewing videotaped lessons, reflective journaling, and participating in in-depth interviews. The findings in this study indicated that reflecting upon instruction contributes to the knowledge base of teaching, improves teachers' individual practices, and helps practitioners become deliberate about their instructional practices. Teacher should have opportunities to observe, investigate and practice using components they perceive as useful instructional strategies to teach scientific concepts to middle school students. When teachers engage in reflection, pedagogical strategies transform and teachers lean toward choosing instructional strategies that are less teacher-centered toward that of more student-centered. In conclusion, it is evident that engaging in student-centered dialogue, argumentation, and researched-based projects improved the way students learned. The participants found that constructivist, hands-on inquiry and reasoning, are skills that middle school students can readily engage in and students can develop skills that help them to think and act more like scientist.

  12. Why I teach the controversy: using creationism to teach critical thinking

    PubMed Central

    Honey, P. Lynne

    2015-01-01

    Creationism and intelligent design are terms used to describe supernatural explanations for the origin of life, and the diversity of species on this planet. Many scientists have argued that the science classroom is no place for discussion of creationism. When I began teaching I did not teach creationism, as I focused instead on my areas of expertise. Over time it became clear that students had questions about creationism, and did not understand the difference between a scientific approach to knowledge and non-scientific approaches. This led me to wonder whether ignoring supernatural views allowed them to remain as viable “alternatives” to scientific hypotheses, in the minds of students. Also, a psychology class is an ideal place to discuss not only the scientific method but also the cognitive errors associated with non-science views. I began to explain creationism in my classes, and to model the scientific thought process that leads to a rejection of creationism. My approach is consistent with research that demonstrates that teaching content alone is insufficient for students to develop critical thinking and my admittedly anecdotal experience leads me to conclude that “teaching the controversy” has benefits for science students. PMID:26136700

  13. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  14. Taiwanese middle school students' materialistic concepts of sound

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Lin, Tzu-Chiang; Tsai, Chin-Chung

    2016-06-01

    This study investigated if and to what extent grade 8 and 9 students in Taiwan attributed materialistic properties to sound concepts, and whether they hold scientific views in parallel with materialistic views. Taiwanese middle school students are a special population since their scores in international academic comparison tests such as TIMSS and PISA are among the highest in the world. The "Sound Concept Inventory Instrument" with both materialistic and scientific statements of sound concepts was applied to explore Taiwanese students' ideas and corresponding confidence. The results showed that although the subject of sound is taught extensively in grade 8 in Taiwan, students still hold materialistic views of sound. The participants agreed, on average, with 41% of the statements that associate sound with materialistic properties. Moreover, they were quite confident in their materialistic answers (mean=3.27 on a 5-point Likert scale). In parallel, they also agreed with 71% of the scientific statements in the questions. They were also confident of their scientific answers (mean=3.21 ). As for the difference between grade 8 and 9 students, it seems that in grade 9, when students do not learn about sound, there is a kind of regression to a more materialistic view of sound. The girls performed better than the boys (t =3.59 , p <0. 001 ). The paper uses Vosniadou and Brewer's [Cogn. Sci. 18, 123 (1994)., 10.1207/s15516709cog1801_4] framework theory to explain the results, and suggests some ideas for improving the teaching of sound.

  15. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    ERIC Educational Resources Information Center

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  16. A New Approach for Teaching the History and Development of Scientific Concepts in Junior High School Science.

    ERIC Educational Resources Information Center

    Williams, Charles Fenton

    The purpose of this study was to develop and evaluate curricular material concepts for junior high school science teachers. The vehicle chosen was the evolutionary development of physiological concepts relating to blood circulation and kidney function in man from the prehistoric period to the present. This material was produced as a teacher…

  17. Using Magic Board as a Teaching Aid in Third Grader Learning of Area Concepts

    ERIC Educational Resources Information Center

    Chang, Wen-Long; Yuan, Yuan; Lee, Chun-Yi; Chen, Min-Hui; Huang, Wen-Guu

    2013-01-01

    The purpose of this study was to explore the impact of incorporating Magic Board in the instruction of concepts related to area. We adopted a non-equivalent quasi-experimental design and recruited participants from two classes of third-grade students in an elementary school in Taoyuan County, Taiwan. Magic Board was used as a teaching aid in the…

  18. Third Graders' Understanding of Air Concepts Facilitated by the iPod Inquiry Teaching Method

    ERIC Educational Resources Information Center

    Lai, Ching-san

    2016-01-01

    The major purpose of this study was to determine the learning performance of the air concept unit for third graders in a primary school facilitated by the iPod inquiry teaching method. This study adopts a quasi-experimental method. Participants were third graders in a primary school in New Taipei city. The experimental group consisted of 53…

  19. Analysing teachers' operations when teaching students: what constitutes scientific theories?

    NASA Astrophysics Data System (ADS)

    Holmqvist, Mona O.; Olander, Clas

    2017-05-01

    The aim of the study is to analyse teachers' efforts to develop secondary school students' knowledge and argumentation skills of what constitutes scientific theories. The analysis is based on Leontiev's three-level structure of activity (activity, action, and operation), as these levels correspond to the questions why, what, and how content is taught. The unit of analysis was a school development project in science education, where design-based interventions were conducted. Data comprised notes and minutes from eight meetings, plans, and video recordings of the lessons, and a written teacher evaluation. The teachers' (n = 7) learning actions were analysed to identify (a) concept formation in science education, (b) expressions of agency, (c) discursive manifestations of contradictions, and (d) patterns of interaction during the science interventions. Three lessons on what constitutes scientific theories were implemented in three different student groups (n = 24, 23, 24), framed by planning and evaluation meetings for each lesson. The results describe (1) the ways in which teachers became more skilled at ensuring instruction met their students' needs and (2) the ways in which teachers' operations during instruction changed as a result of their developed knowledge of how to express the content based on theoretical assumptions.

  20. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    ERIC Educational Resources Information Center

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  1. [Professionalization of surgical education in the daily clinical routine. Training concept of the Surgical Working Group for Teaching of the German Society of Surgery].

    PubMed

    Adili, F; Kadmon, M; König, S; Walcher, F

    2013-10-01

    For competency-oriented teaching in surgery a comprehensive medical educational training and professionalization of clinical teachers is essential. The Surgical Working Group for Teaching has therefore set itself the task of developing an appropriate training concept. In the first step the core group took stock of the most relevant educational barriers in the clinical environment. Taking into account these findings a trimodular course was devised that addressed both previous knowledge and different clinical functions of the faculty as well as modern concepts of competency-based academic teaching. The A course is designed for medical teaching of novices with a focus on collation of the medical history, clinical examination and teaching of practical skills. The B course is devised for experienced clinicians and should qualify them for competency-based teaching in complex educational scenarios, such as the operating room or ward rounds, while the C course is directed to a group of persons entrusted with the organization and administration of clinical teaching.

  2. Teaching Darwinian Evolution: Learning from Religious Education

    NASA Astrophysics Data System (ADS)

    Stolberg, Tonie L.

    2010-06-01

    This article examines what science education might be able to learn from phenomenological religious education’s attempts to teach classes where students hold a plurality of religious beliefs. Recent statements as to how best to accomplish the central pedagogical concept of ‘learning from religion’ as a vehicle for human transformation are explored, and then used to appraise the historical research into how Charles Darwin’s responses to religious ideas influenced and were influenced by his scientific work. The issues identified as crucial for science educators to be aware of when teaching students Darwinian evolution are then outlined and, finally, suggestions are made to enable individual students to examine how their personal religious beliefs might interact with their growing understanding of Darwin’s evolutionary approach.

  3. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    NASA Astrophysics Data System (ADS)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  4. Concept Attainment Teaching Methodology (CATM)--An Effective Approach for Training Workers on Chemicals Health Hazards

    ERIC Educational Resources Information Center

    Suleiman, Abdulqadir Mohamad

    2016-01-01

    Workers handling chemicals need to understand the risk to health involved in their work, and this requires training. In this study effectivity of concept attainment teaching methodology (CATM) as training strategy for cleaning workers was assessed. CATM was used to train workers on chemicals information and health hazards. Pictures, illustrations,…

  5. The Effectiveness of Programed Instruction Versus the Lecture-Discussion Method of Teaching Basic Metallurgical Concepts.

    ERIC Educational Resources Information Center

    Bockman, David Carl

    The purpose of this study was to compare the conventional lecture-discussion method and an illustrated programed textbook method when teaching a unit of instruction on the basic concepts of metallurgy. The control group used a portion of a conventional textbook accompanied by lecture, chalkboard illustration, and class discussion. The experimental…

  6. Teaching foundational topics and scientific skills in biochemistry within the conceptual framework of HIV protease.

    PubMed

    Johnson, R Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a perfect framework for integrating foundational topics in biochemistry around a big picture scientific and societal issue. Herein, I describe a series of classroom exercises that integrate foundational topics in biochemistry around the structure, biology, and therapeutic inhibition of HIV protease. These exercises center on foundational topics in biochemistry including thermodynamics, acid/base properties, protein structure, ligand binding, and enzymatic catalysis. The exercises also incorporate regular student practice of scientific skills including analysis of primary literature, evaluation of scientific data, and presentation of technical scientific arguments. Through the exercises, students also gain experience accessing computational biochemical resources such as the protein data bank, Proteopedia, and protein visualization software. As these HIV centered exercises cover foundational topics common to all first semester biochemistry courses, these exercises should appeal to a broad audience of undergraduate students and should be readily integrated into a variety of teaching styles and classroom sizes. © 2014 The International Union of Biochemistry and Molecular Biology.

  7. Virtual Visualisation Laboratory for Science and Mathematics Content (Vlab-SMC) with Special Reference to Teaching and Learning of Chemistry

    NASA Astrophysics Data System (ADS)

    Badioze Zaman, Halimah; Bakar, Norashiken; Ahmad, Azlina; Sulaiman, Riza; Arshad, Haslina; Mohd. Yatim, Nor Faezah

    Research on the teaching of science and mathematics in schools and universities have shown that available teaching models are not effective in instilling the understanding of scientific and mathematics concepts, and the right scientific and mathematics skills required for learners to become good future scientists (mathematicians included). The extensive development of new technologies has a marked influence on education, by facilitating the design of new learning and teaching materials, that can improve the attitude of learners towards Science and Mathematics and the plausibility of advanced interactive, personalised learning process. The usefulness of the computer in Science and Mathematics education; as an interactive communication medium that permits access to all types of information (texts, images, different types of data such as sound, graphics and perhaps haptics like smell and touch); as an instrument for problem solving through simulations of scientific and mathematics phenomenon and experiments; as well as measuring and monitoring scientific laboratory experiments. This paper will highlight on the design and development of the virtual Visualisation Laboratory for Science & Mathematics Content (VLab-SMC) based on the Cognitivist- Constructivist-Contextual development life cycle model as well as the Instructional Design (ID) model, in order to achieve its objectives in teaching and learning. However, this paper with only highlight one of the virtual labs within VLab-SMC that is, the Virtual Lab for teaching Chemistry (VLab- Chem). The development life cycle involves the educational media to be used, measurement of content, and the authoring and programming involved; whilst the ID model involves the application of the cognitivist, constructivist and contextual theories in the modeling of the modules of VLab-SMC generally and Vlab-Chem specifically, using concepts such as 'learning by doing', contextual learning, experimental simulations 3D and real

  8. CU’s Department of Geological Sciences - Science Education Initiative Project (GEOL-SEI): A five-year plan for introducing and supporting an evidence-based and scientific approach to teaching

    NASA Astrophysics Data System (ADS)

    Arthurs, L.; Budd, D. A.

    2009-12-01

    The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).

  9. Intentionally flawed manuscripts as means for teaching students to critically evaluate scientific papers.

    PubMed

    Ferenc, Jaroslav; Červenák, Filip; Birčák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Ďuríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Soňa; Mentelová, Lucia; Slaninová, Miroslava; Ševčovicová, Andrea; Tomáška, Ľubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  11. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  12. Conceptions about Teaching and Learning of Expressivity in Music among Higher Education Teachers and Students

    ERIC Educational Resources Information Center

    Bonastre, Carolina; Muñoz, Enrique; Timmers, Renee

    2017-01-01

    This work aimed to analyse factors related to conceptions and beliefs about expressivity in music among students and teachers. A questionnaire with 11 Likert-type items was developed covering the main factors included in the literature of teaching-learning of expressivity and emotion in music. Through exploratory factor analysis three factors were…

  13. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  14. Development of Teaching Material Oxidation-Reduction Reactions through Four Steps Teaching Material Development (4S TMD)

    NASA Astrophysics Data System (ADS)

    Syamsuri, B. S.; Anwar, S.; Sumarna, O.

    2017-09-01

    This research aims to develop oxidation-reduction reactions (redox) teaching material used the Four Steps Teaching Material Development (4S TMD) method consists of four steps: selection, structuring, characterization and didactical reduction. This paper is the first part of the development of teaching material that includes selection and structuring steps. At the selection step, the development of teaching material begins with the development concept of redox based on curriculum demands, then the development of fundamental concepts sourced from the international textbook, and last is the development of values or skills can be integrated with redox concepts. The results of this selection step are the subject matter of the redox concept and values can be integrated with it. In the structuring step was developed concept map that provide on the relationship between redox concepts; Macro structure that guide systematic on the writing of teaching material; And multiple representations which are the development of teaching material that connection between macroscopic, submicroscopic, and symbolic level representations. The result of the two steps in this first part of the study produced a draft of teaching material. Evaluation of the draft of teaching material is done by an expert lecturer in the field of chemical education to assess the feasibility of teaching material.

  15. Conflicting Interpretations of Scientific Pedagogy

    NASA Astrophysics Data System (ADS)

    Galamba, Arthur

    2016-05-01

    Not surprisingly historical studies have suggested that there is a distance between concepts of teaching methods, their interpretations and their actual use in the classroom. This issue, however, is not always pitched to the personal level in historical studies, which may provide an alternative insight on how teachers conceptualise and engage with concepts of teaching methods. This article provides a case study on this level of conceptualisation by telling the story of Rómulo de Carvalho, an educator from mid-twentieth century Portugal, who for over 40 years engaged with the heuristic and Socratic methods. The overall argument is that concepts of teaching methods are open to different interpretations and are conceptualised within the melting pot of external social pressures and personal teaching preferences. The practice and thoughts of Carvalho about teaching methods are scrutinised to unveil his conflicting stances: Carvalho was a man able to question the tenets of heurism, but who publicly praised the heurism-like "discovery learning" method years later. The first part of the article contextualises the arrival of heurism in Portugal and how Carvalho attacked its philosophical tenets. In the second part, it dwells on his conflicting positions in relation to pupil-centred approaches. The article concludes with an appreciation of the embedded conflicting nature of the appropriation of concepts of teaching methods, and of Carvalho's contribution to the development of the philosophy of practical work in school science.

  16. Collaborative Group Learning Approaches for Teaching Comparative Planetology

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.

    2013-12-01

    Modern science education reform documents propose that the teaching of contemporary students should focus on doing science, rather than simply memorizing science. Duschl, Schweingruber, and Shouse (2007) eloquently argue for four science proficiencies for students. Students should: (i) Know, use, and interpret scientific explanations of the natural world; (ii) Generate and evaluate scientific evidence and explanations; (iii) Understand the nature and development of scientific knowledge; and (iv) Participate productively in scientific practices and discourse. In response, scholars with the CAPER Center for Astronomy & Physics Education Research are creating and field-tested two separate instructional approaches. The first of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction. Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to the most challenging part of inquiry - inventing scientifically appropriate questions. Planetary science databases and virtual environments used by students to conduct scientific investigations include the NASA and JPL Solar System Simulator and Eyes on the Solar System as well as the USGS Moon and Mars Global GIS Viewers. The second of these is known widely as a Lecture-Tutorial approach. Lecture-Tutorials are self-contained, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course

  17. Teaching Innovations in Marketing: A Brand-Based Student-Led Inquiry of Marketing Concepts and Practices

    ERIC Educational Resources Information Center

    Hostetter, Leonard R., Jr.

    2017-01-01

    This teaching innovation is a brand-based student-led inquiry of marketing concepts and practices for an introductory marketing course. During the first week of class, teams of students (or individual students) each select a brand of interest to research and analyze throughout the course. The objective is for students to understand the practical…

  18. [The scientific revolution in medicine of second half of XX - early XXI centuries: occurrence of new conceptions about human organism and essence of diseases].

    PubMed

    Stepin, V S; Zatravkin, S N

    2016-01-01

    The article presents the results of analysis of works of supreme Russian physiologists and pathologists of XX-XXI centuries. The analysis was applied on the basis concept of structure and dynamics of scientific cognition developed by one o the authors of the present article. The applied analysis permits affirming that during second half of XX-early XXI centuries in medicine occurred and continues to occurring transformations whose character and scope totally corresponds to scientific revolution and occurring and establishing in medicine new conceptions have all signs permitting referring them to post-neoclassic type of scientific rationality.

  19. Promoting knowledge integration of scientific principles and environmental stewardship: Assessing an issue-based approach to teaching evolution and marine conservation

    NASA Astrophysics Data System (ADS)

    Zimmerman, Timothy David

    2005-11-01

    Students and citizens need to apply science to important issues every day. Yet the design of science curricula that foster integration of science and everyday decisions is not well understood. For example, can curricula be designed that help learners apply scientific reasons for choosing only environmentally sustainable seafood for dinner? Learners must develop integrated understandings of scientific principles, prior experiences, and current decisions in order to comprehend how everyday decisions impact environmental resources. In order to investigate how such integrated understandings can be promoted within school science classes, research was conducted with an inquiry-oriented curriculum that utilizes technology and a visit to an informal learning environment (aquarium) to promote the integration of scientific principles (adaptation) with environmental stewardship. This research used a knowledge integration approach to teaching and learning that provided a framework for promoting the application of science to environmental issues. Marine biology, often forsaken in classrooms for terrestrial biology, served as the scientific context for the curriculum. The curriculum design incorporated a three-phase pedagogical strategy and new technology tools to help students integrate knowledge and experiences across the classroom and aquarium learning environments. The research design and assessment protocols included comparisons among and within student populations using two versions of the curriculum: an issue-based version and a principle-based version. These inquiry curricula were tested with sophomore biology students attending a marine-focused academy within a coastal California high school. Pretest-posttest outcomes were compared between and within the curricular treatments. Additionally, comparisons were made between the inquiry groups and seniors in an Advanced Placement biology course who attend the same high school. Results indicate that the inquiry curricula

  20. Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela

    2013-11-01

    The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's (Prim Sci Rev 63:6-19, 2002, Aspects of teaching secondary science, Routledge Falmer, London, 2002) ladder of explanations for the context of dissolving, current scientific explanations for dissolving and perspectives on conceptions and misconceptions provided the unified framework for the study. Concept maps, interview transcripts, written artifacts, and drawings and narratives were used as data to investigate these prospective teachers' conceptual understanding of dissolving throughout the 15-weeks of the methods course. Analysis revealed that participants' explanations of dissolving were predominantly descriptive explanations (39 %) and interpretative explanations (38 %), with lower percentage occurrences of intentional (14 %) and cause and effect (9 %) level explanations. Most of these explanations were also constructed by a set of loosely connected and reinforcing everyday concepts abstracted from common everyday experiences making them misconceptions. Implications include: (1) the need for science teacher educators to use multiple platforms to derive their prospective elementary teachers' conceptual understandings of science content; and (2) to identify and help them identify their own scientific conceptions and misconceptions and how they influence the construction of scientific/nonscientific explanations. Science teacher educators also need to emphasize the role of meaningful frameworks associated with the concept that is being introduced during the Engage phase of the 5E learning cycle. This is important because, relevant prior knowledge is associated with the knowledge of the particle theory of matter and both are part of larger

  1. Integrating teaching into routine outpatient care: The design and evaluation of an ambulatory training concept (HeiSA).

    PubMed

    Hundertmark, Jan; Apondo, Sandra Karina; Schultz, Jobst-Hendrik

    2018-01-01

    Background: Direct patient contact is crucial in learning important interactional and examination skills. However, medical students have limited opportunity to self-responsibly practise these skills in authentic clinical settings and typically receive insufficient feedback on their performance. We developed a novel single-session ambulatory teaching concept (Heidelberg Student Ambulatory training, "HeiSA") to prepare students more adequately for clinical-practical responsibilities. Methods: To identify challenges and target group needs, we reviewed current literature and consulted an expert group of faculty lecturers and training researchers. The resulting course concept was put into practice at the University Hospital's general-internistic outpatient department and evaluated in a pilot phase (winter term 2010, ten participants) and a main project phase (summer and winter terms 2011, 14 and 21 participants, respectively). Third and fourth-year students autonomously take a new patient's medical history and conduct a complete physical examination in one hour under supervision, followed by extensive preceptor feedback. To assess learning achievements, participants and a control group self-rated their communication and examination skills before and (participants only) after the session on six-point Likert scales (1=completely able, 6=completely unable). The preceptor also evaluated the participants' performance. Finally, all stakeholders re-evaluated the course concept. Results: HeiSA is a feasible training concept and accepted by staff members and students. It provides opportunities to practise clinical skills in a relevant, authentic learning environment with extensive feedback. Participants report improved anamnesis (0.27±0.51, p =.003) and physical examination (0.25±0.41, p =.008) skills. The preceptor evaluated students' performance to be generally high, with ratings ranging from 1.40±0.55 (item: the student does not interrupt the patient) to 2.51±0.89 (item

  2. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    ERIC Educational Resources Information Center

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  3. Modelling Scientific Argumentation in the Classroom : Teachers perception and practice

    NASA Astrophysics Data System (ADS)

    Probosari, R. M.; Sajidan; Suranto; Prayitno, B. A.; Widyastuti, F.

    2017-02-01

    The purposes of this study were to investigate teacher’s perception about scientific argumentation and how they practice it in their classroom. Thirty biology teachers in high school participated in this study and illustrated their perception of scientific argumentation through a questionnaire. This survey research was developed to measure teachers’ understanding of scientific argumentation, what they know about scientific argumentation, the differentiation between argument and reasoning, how they plan teaching strategies in order to make students’ scientific argumentation better and the obstacles in teaching scientific argumentation. The result conclude that generally, teachers modified various representation to accommodate student’s active participation, but most of them assume that argument and reasoning are similar. Less motivation, tools and limited science’s knowledge were considered as obstacles in teaching argumentation. The findings can be helpful to improving students’ abilities of doing scientific argumentation as a part of inquiry.

  4. Concept Study on a Flexible Standard Bus for Small Scientific Satellites

    NASA Astrophysics Data System (ADS)

    Fukuda, Seisuke; Sawai, Shujiro; Sakai, Shin-Ichiro; Saito, Hirobumi; Tohma, Takayuki; Takahashi, Junko; Toriumi, Tsuyoshi; Kitade, Kenji

    In this paper, a new standard bus system for a series of small scientific satellites in the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA) is described. Since each mission proposed for the series has a wide variety of requirements, a lot of efforts are needed to enhance flexibility of the standard bus. Some concepts from different viewpoints are proposed. First, standardization layers concerning satellite configuration, instruments, interfaces, and design methods are defined respectively. Methods of product platform engineering, which classify specifications of the bus system into a core platform, alternative variants, and selectable variants, are also investigated in order to realize a semi-custom-made bus. Furthermore, a tradeoff between integration and modularization architecture is fully considered.

  5. Tugboats and tennis games: Preservice conceptions of teaching and learning revealed through metaphors

    NASA Astrophysics Data System (ADS)

    Gurney, Bruce F.

    Black (1979) writes about the inextricable interrelationships among language, perception, knowledge, experience and metaphor. An extension of this, grounded in Wittgenstein's (1953) notion of the symbolic, experiential basis of first language, is the view that metaphors are windows into this primitive, personal framework. The purpose of this paper is to take an exploratory look at preservice teachers' metaphors of teaching and learning and to examine some components of student teachers' own intuitions in this area. In this study, a questionnaire was administered to one hundred and fifty-one science education students at the beginning of their preservice training on which they were challenged to generate a personal metaphor for teaching and learning. Descriptive elements within the responses were differentiated and applied to the development of a classification scheme. Both the technique and the categorization are seen as useful devices for the identification of common conceptions about the teaching and learning process. The metaphors have been seen to communicate a richness of meaning which convey elements of mood, control, roles, attitudes and beliefs as they apply to teaching and learning and which, it is argued here, are grounded on more deeply rooted symbols than literal language. In the light of constructivist pedagogy, the elicitation of students' preconceptions is seen to be germane to the organization of learning experiences.Received: 27 June 1993; Revised: 2 August 1994;

  6. The Effects of Explicit Teaching of Strategies, Second-Order Concepts, and Epistemological Underpinnings on Students' Ability to Reason Causally in History

    ERIC Educational Resources Information Center

    Stoel, Gerhard L.; van Drie, Jannet P.; van Boxtel, Carla A. M.

    2017-01-01

    This article reports an experimental study on the effects of explicit teaching on 11th grade students' ability to reason causally in history. Underpinned by the model of domain learning, explicit teaching is conceptualized as multidimensional, focusing on strategies and second-order concepts to generate and verbalize causal explanations and…

  7. Students' conceptions of evidence during a university introductory forensic science course

    NASA Astrophysics Data System (ADS)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  8. Comparison of Direct Instruction and Simultaneous Prompting Procedure on Teaching Concepts to Individuals with Intellectual Disability

    ERIC Educational Resources Information Center

    Celik, Semiha; Vuran, Sezgin

    2014-01-01

    The purpose of this study was to compare the efficiency, effectiveness, maintenance effects and social validity of two instructional methods, Direct Instruction and Simultaneous Prompting Procedure, on teaching concepts (long, old, few and thick) using a parallel treatments design. All sessions were conducted at a private special education center…

  9. Confronting prospective teachers' ideas of evolution and scientific inquiry using technology and inquiry-based tasks

    NASA Astrophysics Data System (ADS)

    Crawford, Barbara A.; Zembal-Saul, Carla; Munford, Danusa; Friedrichsen, Patricia

    2005-08-01

    This study addresses the need for research in three areas: (1) teachers' understandings of scientific inquiry; (2) conceptual understandings of evolutionary processes; and (3) technology-enhanced instruction using an inquiry approach. The purpose of this study was to determine in what ways The Galapagos Finches software-based materials created a context for learning and teaching about the nature of scientific knowledge and evolutionary concepts. The research used a design experiment in which researchers significantly modified a secondary science methods course. The multiple data sources included: audiotaped conversations of two focus pairs of participants as they interacted with the software; written pre- and posttests on concepts of natural selection of the 21 prospective teachers; written pre- and posttests on views of the nature of science; three e-mail journal questions; and videotaped class discussions. Findings indicate that prospective teachers initially demonstrated alternative understandings of evolutionary concepts; there were uninformed understandings of the nature of scientific inquiry; there was little correlation between understandings and disciplines; and even the prospective teachers with research experience failed to understand the diverse methods used by scientists. Following the module there was evidence of enhanced understandings through metacognition, and the potential for interactive software to provide promising context for enhancing content understandings.

  10. An exploration of worldview and conceptions of nature of science among science teachers at a private Christian high school

    NASA Astrophysics Data System (ADS)

    Kits, Kara M.

    Both worldview and conceptions of nature of science (NOS) are important components in teaching and learning science. However, few empirical studies have examined the interplay between both of these components for teachers or students. Therefore, this study examines the possible relationship between worldview and conceptions of nature of science for secondary science teachers who currently teach at a Christian school. Qualitative methodologies developed a rich description of the worldview beliefs and conceptions of NOS for teachers in this study. Eight secondary science teachers employed at a private Christian school participated in the study. A Views of Nature of Science (VNOS) questionnaire and follow-up interviews elicited participants' conceptions of NOS. A semi-structured interview and Test of Preferred Explanations (TOPE) questionnaire elicited participants' worldview beliefs regarding nature and the natural world and causality. Participants communicated understandings of NOS that ranged from uninformed to informed in various aspects. In addition, while their worldview beliefs and conceptions of NOS reflected their faith beliefs, participants did not have a less informed view of NOS than other science teachers in previous studies. In fact, for several aspects of NOS, these participants articulated more informed conceptions of NOS than participants in previous studies. For these participants, faith did not appear to interfere with their ability to think scientifically in regards to their worldview beliefs regarding nature and causality. Rather, faith was incorporated into a scientifically compatible worldview regarding nature and causality that is not much different from other teachers. Other than the fact that these science teachers integrated their faith beliefs into some of their responses regarding worldview and NOS, these teachers did not appear to be much different from other science teachers. That is, there was no predictable pattern between worldview

  11. Using the Feature Film "American History X" To Teach Principles of Self-Concept in the Introduction to Interpersonal Communication Course.

    ERIC Educational Resources Information Center

    Siddens, Paul J., III

    This paper explores possibilities of using the feature film, "American History X," to illustrate and assist in teaching principles of self-concept in an introduction to interpersonal communication course. The paper: (1) summarizes the plot of the film; (2) outlines and defines principles of self-concept that can be discussed in…

  12. Developing a Test of Scientific Literacy Skills (TOSLS): Measuring Undergraduates' Evaluation of Scientific Information and Arguments

    ERIC Educational Resources Information Center

    Gormally, Cara; Brickman, Peggy; Lutz, Mary

    2012-01-01

    Life sciences faculty agree that developing scientific literacy is an integral part of undergraduate education and report that they teach these skills. However, few measures of scientific literacy are available to assess students' proficiency in using scientific literacy skills to solve scenarios in and beyond the undergraduate biology classroom.…

  13. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  14. Characterization of study focus of the Brazilian academic-scientific production about experimentation in Physics Teaching

    NASA Astrophysics Data System (ADS)

    Wesendonk, F. S.; Terrazzan, E. A.

    2016-12-01

    In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.

  15. DLESE Teaching Boxes and Beyond: A promising prototype for structuring web services to support concept- and inquiry-based STEM learning and interdisciplinary partnerships.

    NASA Astrophysics Data System (ADS)

    Davis, L.; Weatherley, J.; Bhushan, S.; Khan, H.; de La Chica, S.; Deardorff, R.

    2004-12-01

    An exciting pilot program took place this summer, pioneering the development of Digital Library for Earth System Education (DLESE) Teaching Boxes with the Univ. of CA. Berkeley Museum of Paleontology, SF State Univ., USGS and 7 middle/high school teachers from the San Francisco area. This session will share the DLESE Teaching Box concept, explain the pilot program, and explore the tremendous opportunities for expanding this notion to embrace interdisciplinary approaches to learning about the Earth in the undergraduate science and pre-service teaching arenas. A Teaching Box is a metaphor for an online assembly of interrelated learning concepts, digital resources, and cohesive narration that bridges the gap between discrete resources and understanding. Within a Teaching Box, an instructor or student can pick a topic and see the concepts that build an understanding of that topic, explore online resources that support learning of those concepts, and benefit from the narration (the glue) that weaves concepts, activities, and background information together into a complete teaching/learning story. In this session, we will demonstrate the emerging Teaching Box prototypes and explore how this platform may promote STEM learning by utilizing DLESE tools and services in ways that begin to blur traditional disciplinary boundaries, overcome limitations of discipline-specific vocabularies, and foster collaboration. We will show ways in which new DLESE Web Services could support learning in this highly contextualized environment. We will see glimpses of how learners and educators will be able to modify or create their own Teaching Boxes specific to a unit of study or course, and perhaps share them with the Earth Science Education community. We will see ways to stay abreast of current Earth events, emerging research, and real-time data and incorporate such dynamic information into one learning environment. Services will be described and demonstrated in the context of Teaching

  16. The Dogma of "The" Scientific Method.

    ERIC Educational Resources Information Center

    Wivagg, Dan; Allchin, Douglas

    2002-01-01

    Points out major problems with the scientific method as a model for learning about methodology in science and suggests teaching about the scientists' toolbox to remedy problems with the conventional scientific method. (KHR)

  17. Sighting Horizons of Teaching in Higher Education

    ERIC Educational Resources Information Center

    Barnett, Ronald; Guzmán-Valenzuela, Carolina

    2017-01-01

    This conceptual paper tackles the matter of teaching in higher education and proposes a concept of "horizons of teaching." It firstly offers an overview of the considerable empirical literature around teaching--especially conceptions of teaching, approaches to teaching and teaching practices--and goes on to pose some philosophical and…

  18. Teach Concepts, Not Words.

    ERIC Educational Resources Information Center

    Williamson, Leon E.

    Since concepts are the mental divisions man makes among the concrete and abstract phenomena of his environment so he may generate, maneuver, and control their relationships in a manner ot satisfy his physical, emotional, social, and aesthetic needs, concepts should be the vortex of intelligence. Too often students are taught as if they lack a…

  19. Metacognitive Analysis of Pre-Service Teacher Conception of Teaching Games for Understanding (TGfU) Using Blogs

    ERIC Educational Resources Information Center

    Dudley, Dean; Baxter, David

    2013-01-01

    Previous studies have sought to ascertain Teaching Games for Understanding (TGfU) conception in pre-service teachers. This exploratory study investigated the problems outlined in the literature surrounding the development of TGfU understanding among pre-service teachers ("n" = 44) of the curriculum instruction model. Blog postings were…

  20. Generating Students' Information Seeking Questions in the Scholar Lab: What Benefits Can We Expect from Inquiry Teaching Approaches?

    ERIC Educational Resources Information Center

    Torres, Tarcilo; Milicic, Beatriz; Soto, Carlos; Sanjose, Vicente

    2013-01-01

    Physics teachers use experimental devices to show students how scientific concepts, principles, and laws are applied to understand the real world. This paper studies question generation of secondary and under-graduate university students when they are confronted with experimental devices in different but usual teaching situations: reading about…

  1. Analyse d'un programme d'electromecanique en ses concepts et principes physiques: Methode et application

    NASA Astrophysics Data System (ADS)

    Gagnon, Richard; Besançon, Jacques; Jean, Pascale

    1989-09-01

    In many Western countries there is growing interest in the usefulness of scientific knowledge in vocational and technical training. Moreover, there is an increasing tendency in these countries to formulate objectives within teaching programmes, in order to come closer to the real tasks of the world of work. To determine what knowledge is required, a general method of analysing objective-based vocational training programmes was developed. This allows the identification of the minimum scientific and mathematical concepts and principles which are necessary to reach the learning objectives, and the establishment of their relative significance and the requisite level of detail. It has been used to determine the essential physical concepts of the industrial mechanics section (625 hours) of a programme on the electromechanics of automated systems. The results reveal the existence of 41 concepts needed for a total of 2,452.5 hours. A limited group of these is of particular importance.

  2. Exploring Elementary Science Methods Course Contexts to Improve Preservice Teachers' NOS of Science Conceptions and Understandings of NOS Teaching Strategies

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader

    2014-01-01

    We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…

  3. Scientific Creationism: A Case Study.

    ERIC Educational Resources Information Center

    Pipho, Chris

    1981-01-01

    Describes the current movement to elevate biblical creationism to a scientific theory to be taught alongside evolution in the public schools. Focuses on the strategies and influence of pro "scientific creationism" groups and reviews pending legislation that would mandate equal teaching time for creationism. (GC)

  4. Effects of Model-Based Teaching on Pre-Service Physics Teachers' Conceptions of the Moon, Moon Phases, and Other Lunar Phenomena

    ERIC Educational Resources Information Center

    Ogan-Bekiroglu, Feral

    2007-01-01

    The purpose of this study was twofold. First, it was aimed to identify Turkish pre-service physics teachers' knowledge and understanding of the Moon, Moon phases, and other lunar phenomena. Second, the effects of model-based teaching on pre-service teachers' conceptions were examined. Conceptions were proposed as mental models in this study. Four…

  5. Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms

    NASA Astrophysics Data System (ADS)

    Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy

    2017-06-01

    The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.

  6. The Intercultural Dimension in EFL-Teaching: A Study of Conceptions among Finland-Swedish Comprehensive School Teachers

    ERIC Educational Resources Information Center

    Larzen-Ostermark, Eva

    2008-01-01

    The overall aim of this study is to deepen our knowledge about the attitudes of teachers at the upper level of the Finland-Swedish comprehensive school towards the treatment of culture in English foreign language (EFL) teaching. More specifically, the questions are how teachers interpret the concept "culture" in English foreign language…

  7. Constructed vs. received graphical representations for learning about scientific controversy: Implications for learning and coaching

    NASA Astrophysics Data System (ADS)

    Cavalli-Sforza, Violetta Laura Maria

    Students in science classes hardly ever study scientific controversy, especially in terms of the different types of arguments used to support and criticize theories and hypotheses. Yet, learning the reasons for scientific debate and scientific change is an important part of appreciating the nature of the scientific enterprise and communicating it to the non-scientific world. This dissertation explores the usefulness of graphical representations in teaching students about scientific arguments. Subjects participating in an extended experiment studied instructional materials and used the Belvedere graphical interface to analyze texts drawn from an actual scientific debate. In one experimental condition, subjects used a box-and-arrow representation whose primitive graphical elements had preassigned meanings tailored to the domain of instruction. In the other experimental condition, subjects could use the graphical elements as they wished, thereby creating their own representation. The development of a representation, by forcing a deeper analysis, can potentially yield a greater understanding of the domain under study. The results of the research suggest two conclusions. From the perspective of learning target concepts, asking subjects to develop their own representation may not hurt those subjects who gain a sufficient understanding of the possibilities of abstract representation. The risks are much greater for less able subjects because, if they develop a representation that is inadequate for expressing the target concepts, they will use those concepts less or not at all. From the perspective of coaching subjects as they diagram their analysis of texts, a predefined representation has significant advantages. If it is appropriately expressive for the task, it provides a common language and clearer shared meaning between the subject and the coach. It also enables the coach to understand subjects' analysis more easily, and to evaluate it more effectively against the

  8. Teaching Scientific Reasoning to Liberal Arts Students

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis

    2014-03-01

    University courses in conceptual physics and astronomy typically serve as the terminal science experience for the liberal arts student. Within this population significant content knowledge gains can be achieved by utilizing research verified pedagogical methods. However, from the standpoint of the Univeristy, students are expected to complete these courses not necessarily for the content knowledge but instead for the development of scientific reasoning skills. Results from physics education studies indicate that unless scientific reasoning instruction is made explicit students do not progress in their reasoning abilities. How do we complement the successful content based pedagogical methods with instruction that explicitly focuses on the development of scientific reasoning skills? This talk will explore methodologies that actively engages the non-science students with the explicit intent of fostering their scientific reasoning abilities.

  9. Is Answering Questions Teaching?

    ERIC Educational Resources Information Center

    Ennis, Robert H.

    1986-01-01

    This article argues that the Macmillan and Garrison concept of teaching called erotetics is not successful because it is not reducible to four recognized types of teaching. These types, which are discussed, include teaching that..., teaching how..., teaching to..., and teaching the.... (MT)

  10. Blended Learning in Vocational Education: Teachers' Conceptions of Blended Learning and Their Approaches to Teaching and Design

    ERIC Educational Resources Information Center

    Bliuc, Ana-Maria; Casey, Grant; Bachfischer, Agnieszka; Goodyear, Peter; Ellis, Robert A.

    2012-01-01

    This paper presents research exploring teachers' experiences of using blended learning in vocational education. Teachers involved in designing and teaching using blended learning from a major Australian vocational education provider participated in the study. They received open-ended questionnaires asking to describe their conceptions of blended…

  11. Improving College English Teaching Pattern and English Learning Effect among Students in Physical Education Institutes--A Survey on the Implementation of New Concept Teaching Pattern

    ERIC Educational Resources Information Center

    Wang, Youming

    2010-01-01

    In order to sharpen English learning capabilities of students in the institutes of physical education, the author makes a tracking investigation of New Concept English teaching model in Grade 08 of the department of sports training and national traditional sports. By analyzing and comparing the students' English levels before and after the…

  12. Trois Conceptions de l'apprentissage (Three Conceptions of Learning).

    ERIC Educational Resources Information Center

    Janitza, Jean

    1990-01-01

    Three broad conceptions of second-language learning and teaching (behaviorist, cognitive, and a third labeled "voluntarist") are described and compared, and issues in the choice between these different conceptions for classroom use are examined. (MSE)

  13. Interplay of Secondary Pre-Service Teacher Content Knowledge (CK), Pedagogical Content Knowledge (PCK) and Attitudes Regarding Scientific Inquiry Teaching within Teacher Training

    ERIC Educational Resources Information Center

    Smit, Robbert; Weitzel, Holger; Blank, Robert; Rietz, Florian; Tardent, Josiane; Robin, Nicolas

    2017-01-01

    Background: Beginning teachers encounter several constraints with respect to scientific inquiry. Depending on their prior beliefs, knowledge and understanding, these constraints affect their teaching of inquiry. Purpose: To investigate quantitatively the longitudinal relationship between pre-service teachers' knowledge and attitudes on scientific…

  14. Case Studies of the Development of Science Teachers' Practices of Socio-Scientific Issue (SSI)-Based Teaching through a Professional Development Program

    ERIC Educational Resources Information Center

    Pitiporntapin, Sasithep; Srisakuna, Suchada

    2017-01-01

    This research aimed to assess three case studies of in-service science teachers regarding their practices of socio-scientific issue (SSI)-based teaching as they participated in a specially developed professional development (PD) program. Data were collected throughout the PD program from group discussions, observations, interviews, and the review…

  15. Triatominae Biochemistry Goes to School: Evaluation of a Novel Tool for Teaching Basic Biochemical Concepts of Chagas Disease Vectors

    ERIC Educational Resources Information Center

    Cunha, Leonardo Rodrigues; de Oliveria Cudischevitch, Cecília; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; da Silva-Neto, Mário Alberto Cardoso

    2014-01-01

    We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of "Trypanosoma cruzi," the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by…

  16. Tailoring Summer Research Experiences to Diverse Student Cohorts: Lessons Learned from Teaching Scientific Communication to Summer Interns

    NASA Astrophysics Data System (ADS)

    Batchelor, R. L.; Haacker, R.

    2014-12-01

    Scientific posters, presentations and papers are frequently assigned outputs for students participating in summer research experiences, yet previous exposure to any form of scientific communication is not a given. Providing training in scientific communication in some form is thus a necessity for many internship programs, especially those aimed towards academically younger students. In this presentation, we will share some of the experiences we've gained from teaching scientific communication workshops to summer interns who range from high school to graduate school. Building on the many years of experience learned through the Significant Opportunities in Atmospheric Research Science (SOARS) program, course material has been adapted and tailored to students participating in the National Center for Atmospheric Research High-School Internship Research Opportunity (HIRO, now the NCAR PreCollege Internship) and Research Experiences for Community College Students (RECCS, based with Colorado University's Cooperative Institute for Research in Environmental Science). SOARS also has experience supporting graduate students towards publication. Weekly communications workshops have served not only to provide necessary scientific skills, but also as a place to gather, reflect, discuss and build community. The unique opportunities and challenges in working with each of these groups will be discussed as part of the larger community discussion of how we can increase diversity in STEM through providing genuine research experiences to diverse and academically young students.

  17. Interactive Explanations: The Functional Role of Gestural and Bodily Action for Explaining and Learning Scientific Concepts in Face-to-Face Arrangements

    NASA Astrophysics Data System (ADS)

    Scopelitis, Stephanie A.

    As human beings, we live in, live with, and live through our bodies. And because of this it is no wonder that our hands and bodies are in motion as we interact with others in our world. Hands and body move as we give directions to another, anticipate which way to turn the screwdriver, and direct our friend to come sit next to us. Gestures, indeed, fill our everyday lives. The purpose of this study is to investigate the functional role of the body in the parts of our lives where we teach and learn with another. This project is an investigation into, what I call, "interactive explanations". I explore how the hands and body work toward the joint achievement of explanation and learning in face-to-face arrangements. The study aims to uncover how the body participates in teaching and learning in and across events as it slides between the multiple, interdependent roles of (1) a communicative entity, (2) a tool for thinking, and (3) a resource to shape interaction. Understanding gestures functional roles as flexible and diverse better explains how the body participates in teaching and learning interactions. The study further aims to show that these roles and functions are dynamic and changeable based on the interests, goals and contingencies of participants' changing roles and aims in interactions, and within and across events. I employed the methodology of comparative microanalysis of pairs of videotaped conversations in which, first, experts in STEM fields (Science, Technology, Engineering and Mathematics) explained concepts to non-experts, and second, these non-experts re-explained the concept to other non-experts. The principle finding is that people strategically, creatively and collaboratively employ the hands and body as vital and flexible resources for the joint achievement of explanation and understanding. Findings further show that gestures used to explain complex STEM concepts travel across time with the non-expert into re-explanations of the concept. My

  18. Teaching surgical exposures to undergraduate medical students: an integration concept for anatomical and surgical education.

    PubMed

    Hammer, Niels; Hepp, Pierre; Löffler, Sabine; Schleifenbaum, Stefan; Steinke, Hanno; Klima, Stefan

    2015-06-01

    Decreasing numbers of students are interested in starting a surgical career, posing substantial challenges to patient care in the next years. The anatomy course is one of the key subjects in medical training, especially in surgical disciplines. Innovative teaching concepts that integrate surgically relevant anatomy and manual dexterity might help boost student interest in surgery. A preclinical workshop entitled "Surgical exposures" was developed. A team of anatomists and surgeons introduced the surgical exposures, demonstrating the procedures on Thiel-fixed body donors. Following this introduction, students practiced the exposures in an operating room-like manner. A six-point Likert scale was used to evaluate the workshop and to compare it to the first-year dissection course. The overall evaluation result for the surgical exposures was excellent, proving to be a significantly better result when compared to the first-year dissection course. The students were more satisfied with the teaching time invested by the peers and regarded the workshop as clinically highly relevant. Furthermore, they felt that questions were addressed better and that the overall atmosphere was better than in the gross anatomy course. Subject to criticism was the course size and practicing time in both cases. The surgical exposures workshop provides preclinical students with clinically relevant anatomy and manual dexterity. It may positively influence the decision to follow a surgical career. This course, however, requires extensive teaching resources. The given concept may help implement practical medical skills in the preclinical curriculum, strengthening the professional identity of surgeons and anatomists.

  19. Scientific divulgation through the teaching of Astronomy and Mathematics

    NASA Astrophysics Data System (ADS)

    Silva, Alysson Wanderley Teixeira; de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-09-01

    This article presents an experience report of a workshop held at the State School Professor Plínio Ribeiro, who aimed to spread the use of interactive materials for teaching Astronomy and its relationship with Mathematics during the Forum Biotemas. Despite being part of the official documents, be present in the curricular proposals from several Brazilian states, and has contributed to the human and technological development, Astronomy is rarely taught adequately in basic education, with unsatisfactory results presented by students and teachers. In this sense was held a workshop planned for elementary education students called 'Astronomy and Mathematics: Learn to Observe the Sky With Other Eyes' involving several resources. The methodology consisted of awareness of those involved, presentation videos, using Stellarium software, application of Mathematics in Astronomy and discussions. Among the main results, can highlight students' interest in scientific matters, because when the study of the sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources, as templates, observations, real and virtual experiments, animations, simulations, video lessons, can arouse the interest of students by conceptual content, differently from what happens when the study takes place using only conventional resources, with books and handouts.

  20. The Effect of Concept Mapping-Guided Discovery Integrated Teaching Approach on Chemistry Students' Achievement and Retention

    ERIC Educational Resources Information Center

    Fatokun, K. V. F.; Eniayeju, P. A.

    2014-01-01

    This study investigates the effects of Concept Mapping-Guided Discovery Integrated Teaching Approach on the achievement and retention of chemistry students. The sample comprised 162 Senior Secondary two (SS 2) students drawn from two Science Schools in Nasarawa State, Central Nigeria with equivalent mean scores of 9.68 and 9.49 in their pre-test.…

  1. Teaching Basic Programming Concepts to Young Primary School Students Using Tablets: Results of a Pilot Project

    ERIC Educational Resources Information Center

    Fokides, Emmanuel

    2018-01-01

    The study presents the results of a project in which tablets and a ready-made application were used for teaching basic programming concepts to young primary school students (ages 7-9). A total of 135 students participated in the study, attending primary schools in Athens, Greece, divided into three groups. The first was taught conventionally. The…

  2. The Relationship between Students' Perception of the Scientific Models and Their Alternative Conceptions of the Lunar Phases

    ERIC Educational Resources Information Center

    Park, Su-Kyeong

    2013-01-01

    The aim of this study was to reveal whether there were differences in the understanding of scientific models according to their conceptions of lunar phases. The participants were 252 10th grader in South Korea. They were asked to respond SUMS (Students Understanding of Models in Science) instrument and to draw and explain why the different lunar…

  3. Analizing Student Biology Education Misconception And Scientific Argumentation Ability Using Diagnostic Question Clusters (Dqcs) Of Molecular Genetic Concept

    NASA Astrophysics Data System (ADS)

    Nurlaila, L.; Sriyati, S.; Riandi

    2017-02-01

    The purpose of this research is to describe the profile of misconceptions and scientific argumentation ability using Diagnostic Question Cluster (DQCs) of molecular genetics concept. This research use descriptive research method and biology education students as a research subject. The Instrument that used in this research are DQCs, sheets interviews, observations, and field notes. The DQCs tested by writing and oral that used to analyze misconceptions and scientific argumentation ability. Sheets interviews, observations and field notes, are used to analyze the possible factors causing misconceptions and scientific argumentation ability. The results showed that misconception of molecular genetics are: DNA (23.75%), genes (18.75%) of chromosomes (15%) and protein synthesis (5.5%). The pattern of the highest misconceptions owned Misconception-Understand Partial. The average scientific argumentation ability is 55% and still categorized warrant (W). The pattern of the scientific argumentation abilities formed is level 2 to level 2 that consists of the arguments in the form of a claim with a counter claim that accompanied by data, collateral (warrant) or support (backing) but does not contain a disclaimer (rebutal).

  4. Edmund's Idea and Research Report on the General Pattern of the Scientific Method. A Challenge to America To Recognize and Teach the Basic Method by Which We Refine, Extend, and Apply Knowledge in All Fields. SM-14. Second Edition.

    ERIC Educational Resources Information Center

    Edmund, Norman W.

    This booklet introduces a new and general approach to the scientific method for everyone. Teaching the scientific method to all students allows them to develop their own talents and is necessary to prevent the loss of jobs. Many job areas that require scientific methodology are listed. Harmful results that may occur because of not teaching the…

  5. Educational interventions to advance children's scientific thinking.

    PubMed

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  6. Scientific Jargon, Good and Bad

    ERIC Educational Resources Information Center

    Hirst, Russel

    2003-01-01

    Scientific and technical jargon--specialized vocabulary, usually Latinate--plays a vital role in scientific and technical communication. But its proper use continues to be a point of discussion because of our concern with audience adaptation, rhetorical exigence, rhetorical purpose, and ethics. We've focused on teaching students--and on convincing…

  7. Threshold Concepts and Conceptions: Student Learning in Introductory Management Courses

    ERIC Educational Resources Information Center

    Wright, April L.; Gilmore, Anne

    2012-01-01

    This article explores how insights from the broader education literature on threshold concepts and conceptions can be applied to improve the teaching of undergraduate introductory management courses. The authors propose that these courses are underpinned by the threshold conception, or "underlying game," that management is a practice…

  8. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    NASA Astrophysics Data System (ADS)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-02-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students' understandings of the discussed aspects of nature of scientific knowledge.

  9. [Reform and practice of teaching methods for culture of medicinal plant].

    PubMed

    Si, Jinping; Zhu, Yuqiu; Liu, Jingjing; Bai, Yan; Zhang, Xinfeng

    2012-02-01

    Culture of pharmaceutical plant is a comprehensive multi-disciplinary theory, which has a long history of application. In order to improve the quality of this course, some reformation schemes have been carried out, including stimulating enthusiasm for learning, refining the basic concepts and theories, promoting the case study, emphasis on latest achievements, enhancing exercise in laboratory and planting base, and guiding students to do scientific and technological innovation. Meanwhile, the authors point out some teaching problems of this course.

  10. MATERIALS USED IN TEACHING AND EVALUATING THE CONCEPTS RELATED TO THE BIOLOGICAL CELL IN GRADES 2-6, PRACTICAL PAPER NO. 2.

    ERIC Educational Resources Information Center

    STAUSS, NYLES G.

    INCLUDED ARE MATERIALS FOR USE IN TEACHING AND EVALUATING 11 SELECTED CONCEPTS RELATED TO THE BIOLOGICAL CELL IN GRADES 2 TO 6. THE CONCEPTS WERE SELECTED AND THEIR ORDER DETERMINED THROUGH AN ANALYSIS OF ELEMENTARY TEXTBOOK SERIES, HIGH SCHOOL AND COLLEGE BIOLOGY TEXTS, CYTOLOGY TEXTS, AND INFORMATION GATHERED THROUGH A PILOT STUDY. THE MATERIALS…

  11. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-06-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an interdisciplinary, SSI-focused undergraduate human biology major (SSI) and those participating in a traditional biology major (BIO). Forty-five SSI students and 50 BIO students completed an open-ended questionnaire examining their understanding of scientific inquiry. Eight general themes including approximately 60 subthemes emerged from questionnaire responses, and the numbers of students including each subtheme in their responses were statistically compared between groups. A subset of students participated in interviews, which were used to validate and triangulate questionnaire data and probe students' understanding of scientific inquiry in relation to their majors. We found that both groups provided very similar responses, differing significantly in only five subthemes. Results indicated that both groups held generally adequate understandings of inquiry, but also a number of misconceptions. Small differences between groups supported by both questionnaires and interviews suggest that the SSI context contributed to nuanced understandings, such as a more interdisciplinary and problem-centered conception of scientific inquiry. Implications for teaching and research are discussed.

  12. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  13. Enhancing Eight Grade Students' Scientific Conceptual Change and Scientific Reasoning through a Web-Based Learning Program

    ERIC Educational Resources Information Center

    Liao, Ya-Wen; She, Hsiao-Ching

    2009-01-01

    This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…

  14. Teaching chemistry concepts using differentiated instruction via tiered labs and activity menus

    NASA Astrophysics Data System (ADS)

    Collins, Betsy C.

    Today's high school classrooms are composed of students with different levels of knowing and ways of understanding. Differentiating the type of work that they are asked to do to achieve the same objective is one way to meet each student's special circumstances on a somewhat equal playing field. By doing so, students are being challenged at their level rather than just blindly going through the same motions that they see others around them doing. Offering students choices to better understand a concept places the student in the driver seat of their educational journey. The purpose of this research project was to design and implement choice activities within the chemistry classroom to more appropriately teach and assess chemistry concepts and assess understanding of those concepts. These choice activities included tiered-laboratory investigations and activity menus. This project was implemented over the course of two trimesters in a high school chemistry classroom. Topics covered included calculating and interpreting density and applying significant figures, calculating and interpreting percent composition with the mole concept, and stoichiometry. The effectiveness of the tiered-labs and activity menus were evaluated using pre and post test comparisons, student surveys, and general in-class observations. Gains in conceptual understanding and student motivation were documented. These findings indicated that allowing choice and leveling of skills to achieve the same conceptual understanding promoted student learning and the overall enjoyment and motivation for learning.

  15. How can we enhance girls' interest in scientific topics?

    PubMed

    Kerger, Sylvie; Martin, Romain; Brunner, Martin

    2011-12-01

    Girls are considerably less interested in scientific subjects than boys. One reason may be that scientific subjects are considered to be genuinely masculine. Thus, being interested in science may threaten the self-perception of girls as well as the femininity of their self-image. If scientific topics that are considered to be stereotypically feminine were chosen, however, this potential threat might be overcome which, in turn, might lead to an increase in girls' interest in science. This hypothesis was empirically tested by means of two studies. Participants were 294 (Study 1) and 190 (Study 2) Grade 8 to Grade 9 students. Gender differences in students' interest in masculine and feminine topics were investigated for a range of scientific concepts (Study 1) as well as for a given scientific concept (Study 2) for four scientific subjects (i.e., biology, physics, information technology, and statistics), respectively. Both studies indicated that the mean level of girls' scientific interest was higher when scientific concepts were presented in the context of feminine topics and boys' level of scientific interests was higher when scientific concepts were presented in the context of masculine topics. Girls' interest in science could be substantially increased by presenting scientific concepts in the context of feminine topics. Gender differences as well as individual differences in the level of interest in scientific topics may be taken into account by creating learning environments in which students could select the context in which a certain scientific concept is embedded. ©2011 The British Psychological Society.

  16. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  17. A Critical Review of Concept Mapping Research Literature: Informing Teaching and Learning Practices in GED Preparation Programs

    ERIC Educational Resources Information Center

    Martin, Larry G.; Martin, Fatima A.; Southworth, Erica

    2015-01-01

    Concept maps (Cmaps) are still underutilized in adult literacy programs and classes. The teaching and learning approaches that have been used historically in adult literacy programs to address the learning needs of these students have not kept pace with the literacy skill demands that have sprung from the increased pace of technological…

  18. Teaching English.

    ERIC Educational Resources Information Center

    Nemanich, Donald, Ed.

    1975-01-01

    Articles in this volume of the "Illinois English Bulletin" include "Competencies in Teaching English" by Alan C. Purves, which sets forth a tentative model for planning competency-based instruction and certification based on concepts, teaching acts, skills, and strategies; "Passing the Buck Versus the Teaching of English" by Dennis Q. McInerny,…

  19. Of Monkeys and Men--An Atheist's Heretical View of the Constitutionality of Teaching the Disproof of a Religion in the Public Schools.

    ERIC Educational Resources Information Center

    Gelfand, Gregory

    1987-01-01

    Reviews court decisions on creationism, science, and separation of church and state in relation to 1st and 14th amendments,establishment clause, and free exercise clause. Discusses fundamentalist interpretation of evolution and concept of "scientific neutrality." Proposes that rights of religious minorities are best served if teaching of…

  20. Representing the Quantum Object through Fiction in Teaching: The Ontological Contribution of Gamow's Narrative as Part of an Introduction to Quantum Physics

    ERIC Educational Resources Information Center

    Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues

    2017-01-01

    Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing…