Sample records for team software development

  1. A Quantitative Study of Global Software Development Teams, Requirements, and Software Projects

    ERIC Educational Resources Information Center

    Parker, Linda L.

    2016-01-01

    The study explored the relationship between global software development teams, effective software requirements, and stakeholders' perception of successful software development projects within the field of information technology management. It examined the critical relationship between Global Software Development (GSD) teams creating effective…

  2. Management Guidelines for Database Developers' Teams in Software Development Projects

    NASA Astrophysics Data System (ADS)

    Rusu, Lazar; Lin, Yifeng; Hodosi, Georg

    Worldwide job market for database developers (DBDs) is continually increasing in last several years. In some companies, DBDs are organized as a special team (DBDs team) to support other projects and roles. As a new role, the DBDs team is facing a major problem that there are not any management guidelines for them. The team manager does not know which kinds of tasks should be assigned to this team and what practices should be used during DBDs work. Therefore in this paper we have developed a set of management guidelines, which includes 8 fundamental tasks and 17 practices from software development process, by using two methodologies Capability Maturity Model (CMM) and agile software development in particular Scrum in order to improve the DBDs team work. Moreover the management guidelines developed here has been complemented with practices from authors' experience in this area and has been evaluated in the case of a software company. The management guidelines for DBD teams presented in this paper could be very usefully for other companies too that are using a DBDs team and could contribute towards an increase of the efficiency of these teams in their work on software development projects.

  3. The Effects of Development Team Skill on Software Product Quality

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.

    2006-01-01

    This paper provides an analysis of the effect of the skill/experience of the software development team on the quality of the final software product. A method for the assessment of software development team skill and experience is proposed, and was derived from a workforce management tool currently in use by the National Aeronautics and Space Administration. Using data from 26 smallscale software development projects, the team skill measures are correlated to 5 software product quality metrics from the ISO/IEC 9126 Software Engineering Product Quality standard. in the analysis of the results, development team skill is found to be a significant factor in the adequacy of the design and implementation. In addition, the results imply that inexperienced software developers are tasked with responsibilities ill-suited to their skill level, and thus have a significant adverse effect on the quality of the software product. Keywords: software quality, development skill, software metrics

  4. Performance of student software development teams: the influence of personality and identifying as team members

    NASA Astrophysics Data System (ADS)

    Monaghan, Conal; Bizumic, Boris; Reynolds, Katherine; Smithson, Michael; Johns-Boast, Lynette; van Rooy, Dirk

    2015-01-01

    One prominent approach in the exploration of the variations in project team performance has been to study two components of the aggregate personalities of the team members: conscientiousness and agreeableness. A second line of research, known as self-categorisation theory, argues that identifying as team members and the team's performance norms should substantially influence the team's performance. This paper explores the influence of both these perspectives in university software engineering project teams. Eighty students worked to complete a piece of software in small project teams during 2007 or 2008. To reduce limitations in statistical analysis, Monte Carlo simulation techniques were employed to extrapolate from the results of the original sample to a larger simulated sample (2043 cases, within 319 teams). The results emphasise the importance of taking into account personality (particularly conscientiousness), and both team identification and the team's norm of performance, in order to cultivate higher levels of performance in student software engineering project teams.

  5. Improving Video Game Development: Facilitating Heterogeneous Team Collaboration through Flexible Software Processes

    NASA Astrophysics Data System (ADS)

    Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan

    Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.

  6. Implementing Extreme Programming in Distributed Software Project Teams: Strategies and Challenges

    NASA Astrophysics Data System (ADS)

    Maruping, Likoebe M.

    Agile software development methods and distributed forms of organizing teamwork are two team process innovations that are gaining prominence in today's demanding software development environment. Individually, each of these innovations has yielded gains in the practice of software development. Agile methods have enabled software project teams to meet the challenges of an ever turbulent business environment through enhanced flexibility and responsiveness to emergent customer needs. Distributed software project teams have enabled organizations to access highly specialized expertise across geographic locations. Although much progress has been made in understanding how to more effectively manage agile development teams and how to manage distributed software development teams, managers have little guidance on how to leverage these two potent innovations in combination. In this chapter, I outline some of the strategies and challenges associated with implementing agile methods in distributed software project teams. These are discussed in the context of a study of a large-scale software project in the United States that lasted four months.

  7. Using "Facebook" to Improve Communication in Undergraduate Software Development Teams

    ERIC Educational Resources Information Center

    Charlton, Terence; Devlin, Marie; Drummond, Sarah

    2009-01-01

    As part of the CETL ALiC initiative (Centre of Excellence in Teaching and Learning: Active Learning in Computing), undergraduate computing science students at Newcastle and Durham universities participated in a cross-site team software development project. To ensure we offer adequate resources to support this collaboration, we conducted an…

  8. Leader Delegation and Trust in Global Software Teams

    ERIC Educational Resources Information Center

    Zhang, Suling

    2008-01-01

    Virtual teams are an important work structure in global software development. The distributed team structure enables access to a diverse set of expertise which is often not available in one location, to a cheaper labor force, and to a potentially accelerated development process that uses a twenty-four hour work structure. Many software teams…

  9. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  10. Developing high-quality educational software.

    PubMed

    Johnson, Lynn A; Schleyer, Titus K L

    2003-11-01

    The development of effective educational software requires a systematic process executed by a skilled development team. This article describes the core skills required of the development team members for the six phases of successful educational software development. During analysis, the foundation of product development is laid including defining the audience and program goals, determining hardware and software constraints, identifying content resources, and developing management tools. The design phase creates the specifications that describe the user interface, the sequence of events, and the details of the content to be displayed. During development, the pieces of the educational program are assembled. Graphics and other media are created, video and audio scripts written and recorded, the program code created, and support documentation produced. Extensive testing by the development team (alpha testing) and with students (beta testing) is conducted. Carefully planned implementation is most likely to result in a flawless delivery of the educational software and maintenance ensures up-to-date content and software. Due to the importance of the sixth phase, evaluation, we have written a companion article on it that follows this one. The development of a CD-ROM product is described including the development team, a detailed description of the development phases, and the lessons learned from the project.

  11. Towards a balanced software team formation based on Belbin team role using fuzzy technique

    NASA Astrophysics Data System (ADS)

    Omar, Mazni; Hasan, Bikhtiyar; Ahmad, Mazida; Yasin, Azman; Baharom, Fauziah; Mohd, Haslina; Darus, Norida Muhd

    2016-08-01

    In software engineering (SE), team roles play significant impact in determining the project success. To ensure the optimal outcome of the project the team is working on, it is essential to ensure that the team members are assigned to the right role with the right characteristics. One of the prevalent team roles is Belbin team role. A successful team must have a balance of team roles. Thus, this study demonstrates steps taken to determine balance of software team formation based on Belbin team role using fuzzy technique. Fuzzy technique was chosen because it allows analyzing of imprecise data and classifying selected criteria. In this study, two roles in Belbin team role, which are Shaper (Sh) and Plant (Pl) were chosen to assign the specific role in software team. Results show that the technique is able to be used for determining the balance of team roles. Future works will focus on the validation of the proposed method by using empirical data in industrial setting.

  12. Relating Communications Mode Choice and Teamwork Quality: Conversational versus Textual Communication in IT System and Software Development Teams

    ERIC Educational Resources Information Center

    Smith, James Robert

    2012-01-01

    This cross-sectional study explored how IT system and software development team members communicated in the workplace and whether teams that used more verbal communication (and less text-based communication) experienced higher levels of collaboration as measured using the Teamwork Quality (TWQ) scale. Although computer-mediated communication tools…

  13. A Comparison of Authoring Software for Developing Mathematics Self-Learning Software Packages.

    ERIC Educational Resources Information Center

    Suen, Che-yin; Pok, Yang-ming

    Four years ago, the authors started to develop a self-paced mathematics learning software called NPMaths by using an authoring package called Tencore. However, NPMaths had some weak points. A development team was hence formed to develop similar software called Mathematics On Line. This time the team used another development language called…

  14. Workflow-Based Software Development Environment

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    2013-01-01

    The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment

  15. TeamWATCH: Visualizing development activities using a 3-D city metaphor to improve conflict detection and team awareness

    PubMed Central

    Ye, Xin

    2018-01-01

    The awareness of others’ activities has been widely recognized as essential in facilitating coordination in a team among Computer-Supported Cooperative Work communities. Several field studies of software developers in large software companies such as Microsoft have shown that coworker and artifact awareness are the most common information needs for software developers; however, they are also two of the seven most frequently unsatisfied information needs. To address this problem, we built a workspace awareness tool named TeamWATCH to visualize developer activities using a 3-D city metaphor. In this paper, we discuss the importance of awareness in software development, review existing workspace awareness tools, present the design and implementation of TeamWATCH, and evaluate how it could help detect and resolve conflicts earlier and better maintain group awareness via a controlled experiment. The experimental results showed that the subjects using TeamWATCH performed significantly better with respect to early conflict detection and resolution. PMID:29558519

  16. Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.

    2003-01-01

    A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.

  17. Managing MDO Software Development Projects

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  18. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  19. A Team Building Model for Software Engineering Courses Term Projects

    ERIC Educational Resources Information Center

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  20. TMT approach to observatory software development process

    NASA Astrophysics Data System (ADS)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate

  1. Space and Missile Systems Center Standard: Software Development

    DTIC Science & Technology

    2015-01-16

    maintenance , or any other activity or combination of activities resulting in products . Within this standard, requirements to “develop,” “define...integration, reuse, reengineering, maintenance , or any other activity that results in products ). The term “developer” encompasses all software team...activities that results in software products . Software development includes new development, modification, reuse, reengineering, maintenance , and any other

  2. Streamlining Software Aspects of Certification: Technical Team Report on the First Industry Workshop

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Holloway, C. Michael; Knight, John C.; Leveson, Nancy G.; Yang, Jeffrey C.; Dorsey, Cheryl A.; McCormick, G. Frank

    1998-01-01

    To address concerns about time and expense associated with software aspects of certification, the Federal Aviation Administration (FAA) began the Streamlining Software Aspects of Certification (SSAC) program. As part of this program, a Technical Team was established to determine whether the cost and time associated with certifying aircraft can be reduced while maintaining or improving safety, with the intent of impacting the FAA's Flight 2000 program. The Technical Team conducted a workshop to gain a better understanding of the major concerns in industry about software cost and schedule. Over 120 people attended the workshop, including representatives from the FAA,commercial transport and general aviation aircraft manufacturers and suppliers, and procurers and developers of non-airborne systems; and, more than 200 issues about software aspects of certification were recorded. This paper provides an overview of the SSAC program, motivation for the workshop, details of the workshop activities and outcomes, and recommendations for follow-on work.

  3. Collaboration, Communication and Co-ordination in Agile Software Development Practice

    NASA Astrophysics Data System (ADS)

    Robinson, Hugh; Sharp, Helen

    This chapter analyses the results of a series of observational studies of agile software developmentagile software development teams, identifying commonalities in collaboration, co-ordination and communication activities. Pairing and customer collaborationcustomer collaboration are focussed on to illustrate the nature of collaboration and communication, as are two simple physical artefacts that emerged through analysis as being an information-rich focal point for the co-ordination of collaboration and communication activities. The analysis shows that pairingpairing has common characteristics across all teams, while customer collaboration differs between the teams depending on the application and organisational context of development.

  4. Analysis of Software Development Methodologies to Build Safety Software Applications for the SATEX-II: A Mexican Experimental Satellite

    NASA Astrophysics Data System (ADS)

    Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel

    2013-09-01

    Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.

  5. Why and how Mastering an Incremental and Iterative Software Development Process

    NASA Astrophysics Data System (ADS)

    Dubuc, François; Guichoux, Bernard; Cormery, Patrick; Mescam, Jean Christophe

    2004-06-01

    One of the key issues regularly mentioned in the current software crisis of the space domain is related to the software development process that must be performed while the system definition is not yet frozen. This is especially true for complex systems like launchers or space vehicles.Several more or less mature solutions are under study by EADS SPACE Transportation and are going to be presented in this paper. The basic principle is to develop the software through an iterative and incremental process instead of the classical waterfall approach, with the following advantages:- It permits systematic management and incorporation of requirements changes over the development cycle with a minimal cost. As far as possible the most dimensioning requirements are analyzed and developed in priority for validating very early the architecture concept without the details.- A software prototype is very quickly available. It improves the communication between system and software teams, as it enables to check very early and efficiently the common understanding of the system requirements.- It allows the software team to complete a whole development cycle very early, and thus to become quickly familiar with the software development environment (methodology, technology, tools...). This is particularly important when the team is new, or when the environment has changed since the previous development. Anyhow, it improves a lot the learning curve of the software team.These advantages seem very attractive, but mastering efficiently an iterative development process is not so easy and induces a lot of difficulties such as:- How to freeze one configuration of the system definition as a development baseline, while most of thesystem requirements are completely and naturally unstable?- How to distinguish stable/unstable and dimensioning/standard requirements?- How to plan the development of each increment?- How to link classical waterfall development milestones with an iterative approach: when

  6. Student Team Projects in Information Systems Development: Measuring Collective Creative Efficacy

    ERIC Educational Resources Information Center

    Cheng, Hsiu-Hua; Yang, Heng-Li

    2011-01-01

    For information systems development project student teams, learning how to improve software development processes is an important training. Software process improvement is an outcome of a number of creative behaviours. Social cognitive theory states that the efficacy of judgment influences behaviours. This study explores the impact of three types…

  7. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  8. Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System

    ERIC Educational Resources Information Center

    Doman, Marguerite; Besmer, Andrew; Olsen, Anne

    2015-01-01

    In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…

  9. A Capstone Course on Agile Software Development Using Scrum

    ERIC Educational Resources Information Center

    Mahnic, V.

    2012-01-01

    In this paper, an undergraduate capstone course in software engineering is described that not only exposes students to agile software development, but also makes it possible to observe the behavior of developers using Scrum for the first time. The course requires students to work as Scrum Teams, responsible for the implementation of a set of user…

  10. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  11. Performance of Student Software Development Teams: The Influence of Personality and Identifying as Team Members

    ERIC Educational Resources Information Center

    Monaghan, Conal; Bizumic, Boris; Reynolds, Katherine; Smithson, Michael; Johns-Boast, Lynette; van Rooy, Dirk

    2015-01-01

    One prominent approach in the exploration of the variations in project team performance has been to study two components of the aggregate personalities of the team members: conscientiousness and agreeableness. A second line of research, known as self-categorisation theory, argues that identifying as team members and the team's performance norms…

  12. SLS Flight Software Testing: Using a Modified Agile Software Testing Approach

    NASA Technical Reports Server (NTRS)

    Bolton, Albanie T.

    2016-01-01

    NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner

  13. Spaceport Command and Control System - Support Software Development

    NASA Technical Reports Server (NTRS)

    Tremblay, Shayne

    2016-01-01

    The Information Architecture Support (IAS) Team, the component of the Spaceport Command and Control System (SCCS) that is in charge of all the pre-runtime data, was in need of some report features to be added to their internal web application, Information Architecture (IA). Development of these reports is crucial for the speed and productivity of the development team, as they are needed to quickly and efficiently make specific and complicated data requests against the massive IA database. These reports were being put on the back burner, as other development of IA was prioritized over them, but the need for them resulted in internships being created to fill this need. The creation of these reports required learning Ruby on Rails development, along with related web technologies, and they will continue to serve IAS and other support software teams and their IA data needs.

  14. Software Development in the Water Sciences: a view from the divide (Invited)

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2013-12-01

    While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.

  15. A Genuine TEAM Player

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Qualtech Systems, Inc. developed a complete software system with capabilities of multisignal modeling, diagnostic analysis, run-time diagnostic operations, and intelligent interactive reasoners. Commercially available as the TEAMS (Testability Engineering and Maintenance System) tool set, the software can be used to reveal unanticipated system failures. The TEAMS software package is broken down into four companion tools: TEAMS-RT, TEAMATE, TEAMS-KB, and TEAMS-RDS. TEAMS-RT identifies good, bad, and suspect components in the system in real-time. It reports system health results from onboard tests, and detects and isolates failures within the system, allowing for rapid fault isolation. TEAMATE takes over from where TEAMS-RT left off by intelligently guiding the maintenance technician through the troubleshooting procedure, repair actions, and operational checkout. TEAMS-KB serves as a model management and collection tool. TEAMS-RDS (TEAMS-Remote Diagnostic Server) has the ability to continuously assess a system and isolate any failure in that system or its components, in real time. RDS incorporates TEAMS-RT, TEAMATE, and TEAMS-KB in a large-scale server architecture capable of providing advanced diagnostic and maintenance functions over a network, such as the Internet, with a web browser user interface.

  16. Development of N-version software samples for an experiment in software fault tolerance

    NASA Technical Reports Server (NTRS)

    Lauterbach, L.

    1987-01-01

    The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.

  17. Spacelab software development and integration concepts study report. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Software considerations were developed for incorporation in the spacelab systems design, and include management concepts for top-down structured programming, composite designs for modular programs, and team management methods for production programming.

  18. The use of hypermedia to increase the productivity of software development teams

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen

    1991-01-01

    Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.

  19. xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina

    Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less

  20. xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

    DOE PAGES

    Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina; ...

    2017-03-01

    Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less

  1. Team Software Process (TSP) Coach Mentoring Program Guidebook

    DTIC Science & Technology

    2009-08-01

    SEI TSP Initiative Team. • All training was conducted in English only, and observations were limited to English- speaking coaches and teams. The...Certified TSP Mentor Coach programs also enable the expansion of TSP implementation to non-English- speaking teams and organizations. This pro- gram also...Communication Needs Significant Improvement Could Benefit from Development Capable and Effective Role Model 1. I listen before speaking . 2. I

  2. Developing Software for NASA Missions in the New Millennia

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is working on new mission concepts for exploration of the solar system. The concepts for these missions include swarms of hundreds of cooperating intelligent spacecraft which will be able to work in teams and gather more data than current single spacecraft missions. These spacecraft will not only have to operate independently for long periods of time on their own and in teams, but will also need to have autonomic properties of self healing, self configuring, self optimizing and self protecting for them to survive in the harsh space environment. Software for these types of missions has never been developed before and represents some of the challenges of software development in the new millennia. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm missions NASA is considering. The ANTS mission will use a swarm of one thousand pico-spacecraft that weigh less than five pounds. Using an insect colony analog, ANTS will explore the asteroid belt and catalog the mass, density, morphology, and chemical composition of the asteroids. Due to the size of the spacecraft, each will only carry a single miniaturized science instrument which will require them to cooperate in searching for asteroids that are of scientific interest. This article also discusses the ANTS mission, the properties the spacecraft will need and how that will effect future software development.

  3. Software Program: Software Management Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.

  4. Experimental Internet Environment Software Development

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.

    1998-01-01

    Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.

  5. Effort Drivers Estimation for Brazilian Geographically Distributed Software Development

    NASA Astrophysics Data System (ADS)

    Almeida, Ana Carina M.; Souza, Renata; Aquino, Gibeon; Meira, Silvio

    To meet the requirements of today’s fast paced markets, it is important to develop projects on time and with the minimum use of resources. A good estimate is the key to achieve this goal. Several companies have started to work with geographically distributed teams due to cost reduction and time-to-market. Some researchers indicate that this approach introduces new challenges, because the teams work in different time zones and have possible differences in culture and language. It is already known that the multisite development increases the software cycle time. Data from 15 DSD projects from 10 distinct companies were collected. The analysis shows drivers that impact significantly the total effort planned to develop systems using DSD approach in Brazil.

  6. Antiterrorist Software

    NASA Technical Reports Server (NTRS)

    Clark, David A.

    1998-01-01

    In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.

  7. Achieving Agility and Stability in Large-Scale Software Development

    DTIC Science & Technology

    2013-01-16

    temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon

  8. GFAST Software Demonstration

    NASA Image and Video Library

    2017-03-17

    NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.

  9. The software development process at the Chandra X-ray Center

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina

    2008-08-01

    Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.

  10. Achieving Agility and Stability in Large-Scale Software Development

    DTIC Science & Technology

    2013-01-16

    temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer Framework...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon

  11. Using Modern Methodologies with Maintenance Software

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Francis, Laurie K.; Smith, Benjamin D.

    2014-01-01

    Jet Propulsion Laboratory uses multi-mission software produced by the Mission Planning and Sequencing (MPS) team to process, simulate, translate, and package the commands that are sent to a spacecraft. MPS works under the auspices of the Multi-Mission Ground Systems and Services (MGSS). This software consists of nineteen applications that are in maintenance. The MPS software is classified as either class B (mission critical) or class C (mission important). The scheduling of tasks is difficult because mission needs must be addressed prior to performing any other tasks and those needs often spring up unexpectedly. Keeping track of the tasks that everyone is working on is also difficult because each person is working on a different software component. Recently the group adopted the Scrum methodology for planning and scheduling tasks. Scrum is one of the newer methodologies typically used in agile development. In the Scrum development environment, teams pick their tasks that are to be completed within a sprint based on priority. The team specifies the sprint length usually a month or less. Scrum is typically used for new development of one application. In the Scrum methodology there is a scrum master who is a facilitator who tries to make sure that everything moves smoothly, a product owner who represents the user(s) of the software and the team. MPS is not the traditional environment for the Scrum methodology. MPS has many software applications in maintenance, team members who are working on disparate applications, many users, and is interruptible based on mission needs, issues and requirements. In order to use scrum, the methodology needed adaptation to MPS. Scrum was chosen because it is adaptable. This paper is about the development of the process for using scrum, a new development methodology, with a team that works on disparate interruptible tasks on multiple software applications.

  12. Ada training evaluation and recommendations from the Gamma Ray Observatory Ada Development Team

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Ada training experiences of the Gamma Ray Observatory Ada development team are related, and recommendations are made concerning future Ada training for software developers. Training methods are evaluated, deficiencies in the training program are noted, and a recommended approach, including course outline, time allocation, and reference materials, is offered.

  13. Towards easing the configuration and new team member accommodation for open source software based portals

    NASA Astrophysics Data System (ADS)

    Fu, L.; West, P.; Zednik, S.; Fox, P. A.

    2013-12-01

    For simple portals such as vocabulary based services, which contain small amounts of data and require only hyper-textual representation, it is often an overkill to adopt the whole software stack of database, middleware and front end, or to use a general Web development framework as the starting point of development. Directly combining open source software is a much more favorable approach. However, our experience with the Coastal and Marine Spatial Planning Vocabulary (CMSPV) service portal shows that there are still issues such as system configuration and accommodating a new team member that need to be handled carefully. In this contribution, we share our experience in the context of the CMSPV portal, and focus on the tools and mechanisms we've developed to ease the configuration job and the incorporation process of new project members. We discuss the configuration issues that arise when we don't have complete control over how the software in use is configured and need to follow existing configuration styles that may not be well documented, especially when multiple pieces of such software need to work together as a combined system. As for the CMSPV portal, it is built on two pieces of open source software that are still under rapid development: a Fuseki data server and Epimorphics Linked Data API (ELDA) front end. Both lack mature documentation and tutorials. We developed comparison and labeling tools to ease the problem of system configuration. Another problem that slowed down the project is that project members came and went during the development process, so new members needed to start with a partially configured system and incomplete documentation left by old members. We developed documentation/tutorial maintenance mechanisms based on our comparison and labeling tools to make it easier for the new members to be incorporated into the project. These tools and mechanisms also provided benefit to other projects that reused the software components from the CMSPV

  14. Development and Evaluation of a Computer-Based Program for Assessing Quality of Family Medicine Teams Based on Accreditation Standards

    PubMed Central

    Valjevac, Salih; Ridjanovic, Zoran; Masic, Izet

    2009-01-01

    CONFLICT OF INTEREST: NONE DECLARED SUMMARY Introduction Agency for healthcare quality and accreditation in Federation of Bosnia and Herzegovina (AKAZ) is authorized body in the field of healthcare quality and safety improvement and accreditation of healthcare institutions. Beside accreditation standards for hospitals and primary health care centers, AKAZ has also developed accreditation standards for family medicine teams. Methods Software development was primarily based on Accreditation Standards for Family Medicine Teams. Seven chapters / topics: (1. Physical factors; 2. Equipment; 3. Organization and Management; 4. Health promotion and illness prevention; 5. Clinical services; 6. Patient survey; and 7. Patient’s rights and obligations) contain 35 standards describing expected level of family medicine team’s quality. Based on accreditation standards structure and needs of different potential users, it was concluded that software backbone should be a database containing all accreditation standards, self assessment and external assessment details. In this article we will present the development of standardized software for self and external evaluation of quality of service in family medicine, as well as plans for the future development of this software package. Conclusion Electronic data gathering and storing enhances the management, access and overall use of information. During this project we came to conclusion that software for self assessment and external assessment is ideal for accreditation standards distribution, their overview by the family medicine team members, their self assessment and external assessment. PMID:24109157

  15. Team Collaboration Software

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.

    2010-01-01

    The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.

  16. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  17. GFAST Software Demonstration

    NASA Image and Video Library

    2017-03-17

    NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, launch director for Exploration Mission 1 (EM-1). The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on EM-1.

  18. Agile methods in biomedical software development: a multi-site experience report.

    PubMed

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-05-30

    Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.

  19. Agile methods in biomedical software development: a multi-site experience report

    PubMed Central

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-01-01

    Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914

  20. Payload Operations Support Team Tools

    NASA Technical Reports Server (NTRS)

    Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David; hide

    2007-01-01

    Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations

  1. Predicting Software Suitability Using a Bayesian Belief Network

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  2. Software Estimation: Developing an Accurate, Reliable Method

    DTIC Science & Technology

    2011-08-01

    Lake, CA ,93555- 6110 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S...Activity, the systems engineering team is responsible for system and software requirements. 2 . Process Dashboard is a software planning and tracking tool... CA 93555- 6110 760-939-6989 Brad Hodgins is an interim TSP Mentor Coach, SEI-Authorized TSP Coach, SEI-Certified PSP/TSP Instructor, and SEI

  3. An Investigation of Agility Issues in Scrum Teams Using Agility Indicators

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna; Wang, Xiaofeng

    Agile software development methods have emerged and become increasingly popular in recent years; yet the issues encountered by software development teams that strive to achieve agility using agile methods are yet to be explored systematically. Built upon a previous study that has established a set of indicators of agility, this study investigates what issues are manifested in software development teams using agile methods. It is focussed on Scrum teams particularly. In other words, the goal of the chapter is to evaluate Scrum teams using agility indicators and therefore to further validate previously presented agility indicators within the additional cases. A multiple case study research method is employed. The findings of the study reveal that the teams using Scrum do not necessarily achieve agility in terms of team autonomy, sharing, stability and embraced uncertainty. The possible reasons include previous organizational plan-driven culture, resistance towards the Scrum roles and changing resources.

  4. Agile software development in an earned value world: a survival guide

    NASA Astrophysics Data System (ADS)

    Kantor, Jeffrey; Long, Kevin; Becla, Jacek; Economou, Frossie; Gelman, Margaret; Juric, Mario; Lambert, Ron; Krughoff, Simon; Swinbank, John D.; Wu, Xiuqin

    2016-08-01

    Agile methodologies are current best practice in software development. They are favored for, among other reasons, preventing premature optimization by taking a somewhat short-term focus, and allowing frequent replans/reprioritizations of upcoming development work based on recent results and current backlog. At the same time, funding agencies prescribe earned value management accounting for large projects which, these days, inevitably include substantial software components. Earned Value approaches emphasize a more comprehensive and typically longer-range plan, and tend to characterize frequent replans and reprioritizations as indicative of problems. Here we describe the planning, execution and reporting framework used by the LSST Data Management team, that navigates these opposite tensions.

  5. Command and Control Software Development Memory Management

    NASA Technical Reports Server (NTRS)

    Joseph, Austin Pope

    2017-01-01

    This internship was initially meant to cover the implementation of unit test automation for a NASA ground control project. As is often the case with large development projects, the scope and breadth of the internship changed. Instead, the internship focused on finding and correcting memory leaks and errors as reported by a COTS software product meant to track such issues. Memory leaks come in many different flavors and some of them are more benign than others. On the extreme end a program might be dynamically allocating memory and not correctly deallocating it when it is no longer in use. This is called a direct memory leak and in the worst case can use all the available memory and crash the program. If the leaks are small they may simply slow the program down which, in a safety critical system (a system for which a failure or design error can cause a risk to human life), is still unacceptable. The ground control system is managed in smaller sub-teams, referred to as CSCIs. The CSCI that this internship focused on is responsible for monitoring the health and status of the system. This team's software had several methods/modules that were leaking significant amounts of memory. Since most of the code in this system is safety-critical, correcting memory leaks is a necessity.

  6. Software Quality Assurance Metrics

    NASA Technical Reports Server (NTRS)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  7. User systems guidelines for software projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, L.

    1986-04-01

    This manual presents guidelines for software standards which were developed so that software project-development teams and management involved in approving the software could have a generalized view of all phases in the software production procedure and the steps involved in completing each phase. Guidelines are presented for six phases of software development: project definition, building a user interface, designing software, writing code, testing code, and preparing software documentation. The discussions for each phase include examples illustrating the recommended guidelines. 45 refs. (DWL)

  8. Review of child development teams.

    PubMed Central

    Zahir, M; Bennett, S

    1994-01-01

    Since the Court report was published in 1976 there has been a consensus that the needs of children with disabilities are best met by child development teams. This study explored the structure, facilities, and organisational elements of child development teams operating in the South East Thames region by means of a structured interview with senior professionals involved with organising services for children with disabilities in 14 of 15 health districts in the region. Although all districts had a designated child development team, not all core professionals were adequately represented and four of 14 districts had no child development centre. The quality of buildings and facilities was variable. Teams that did not have a physical base in the form of a centre had fewer staff in the service and poorer facilities. There is a need for further consensus work about broad guidelines on the requirements of child development teams. These will help to inform purchasing authorities about the needs of children with disabilities living in their districts. PMID:8135568

  9. Custom software development for use in a clinical laboratory

    PubMed Central

    Sinard, John H.; Gershkovich, Peter

    2012-01-01

    In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care. PMID:23372985

  10. Custom software development for use in a clinical laboratory.

    PubMed

    Sinard, John H; Gershkovich, Peter

    2012-01-01

    In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care.

  11. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  12. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  13. Using iKidTools™ Software Support Systems to Develop and Implement Self-Monitoring Interventions

    ERIC Educational Resources Information Center

    Patti, Angela L.; Miller, Kevin J.

    2011-01-01

    Educational teams often are faced with the task of developing and implementing Behavioral Intervention Plans (BIPs) for students who present challenging and/or disruptive behaviors. This article describes the steps used to develop and implement a self-monitoring BIP that incorporated an innovative software system, iKidTools™. An authentic case…

  14. The Elements of an Effective Software Development Plan - Software Development Process Guidebook

    DTIC Science & Technology

    2011-11-11

    standards and practices required for all XMPL software development. This SDP implements the <corporate> Standard Software Process (SSP). as tailored...Developing and integrating reusable software products • Approach to managing COTS/Reuse software implementation • COTS/Reuse software selection...final selection and submit to change board for approval MAINTENANCE Monitor current products for obsolescence or end of support Track new

  15. A Matrix Approach to Software Process Definition

    NASA Technical Reports Server (NTRS)

    Schultz, David; Bachman, Judith; Landis, Linda; Stark, Mike; Godfrey, Sally; Morisio, Maurizio; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Software Engineering Laboratory (SEL) is currently engaged in a Methodology and Metrics program for the Information Systems Center (ISC) at Goddard Space Flight Center (GSFC). This paper addresses the Methodology portion of the program. The purpose of the Methodology effort is to assist a software team lead in selecting and tailoring a software development or maintenance process for a specific GSFC project. It is intended that this process will also be compliant with both ISO 9001 and the Software Engineering Institute's Capability Maturity Model (CMM). Under the Methodology program, we have defined four standard ISO-compliant software processes for the ISC, and three tailoring criteria that team leads can use to categorize their projects. The team lead would select a process and appropriate tailoring factors, from which a software process tailored to the specific project could be generated. Our objective in the Methodology program is to present software process information in a structured fashion, to make it easy for a team lead to characterize the type of software engineering to be performed, and to apply tailoring parameters to search for an appropriate software process description. This will enable the team lead to follow a proven, effective software process and also satisfy NASA's requirement for compliance with ISO 9001 and the anticipated requirement for CMM assessment. This work is also intended to support the deployment of sound software processes across the ISC.

  16. Leadership Identity Development Through Reflection and Feedback in Team-Based Learning Medical Student Teams.

    PubMed

    Alizadeh, Maryam; Mirzazadeh, Azim; Parmelee, Dean X; Peyton, Elizabeth; Mehrdad, Neda; Janani, Leila; Shahsavari, Hooman

    2018-01-01

    Studies on leadership identity development through reflection with Team-Based Learning (TBL) in medical student education are rare. We assumed that reflection and feedback on the team leadership process would advance the progression through leadership identity development stages in medical students within the context of classes using TBL. This study is a quasi-experimental design with pretest-posttest control group. The pretest and posttest were reflection papers of medical students about their experience of leadership during their TBL sessions. In the intervention group, TBL and a team-based, guided reflection and feedback on the team leadership process were performed at the end of all TBL sessions. In the other group, only TBL was used. The Stata 12 software was used. Leadership Identity was treated both as a categorical and quantitative variable to control for differences in baseline and gender variables. Chi-square, t tests, and linear regression analysis were performed. The population was a cohort of 2015-2016 medical students in a TBL setting at Tehran University of Medical Sciences, School of Medicine. Teams of four to seven students were formed by random sorting at the beginning of the academic year (intervention group n = 20 teams, control group n = 19 teams). At baseline, most students in both groups were categorized in the Awareness and Exploration stage of leadership identity: 51 (52%) in the intervention group and 59 (55%) in the control group: uncorrected χ 2 (3) = 15.6, design-based F(2.83, 108) = 4.87, p = .003. In the posttest intervention group, 36 (36%) were in exploration, 33 (33%) were in L-identified, 20 (20%) were in Leadership Differentiated, and 10 (10%) were in the Generativity. None were in the Awareness or Integration stages. In the control group, 3 (20%) were in Awareness, 56 (53%) were in Exploration, 35 (33%) were in Leader Identified, 13 (12%) were in Leadership Differentiated. None were in the Generativity and Integration stages

  17. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  18. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the

  19. Microcomputer software development facilities

    NASA Technical Reports Server (NTRS)

    Gorman, J. S.; Mathiasen, C.

    1980-01-01

    A more efficient and cost effective method for developing microcomputer software is to utilize a host computer with high-speed peripheral support. Application programs such as cross assemblers, loaders, and simulators are implemented in the host computer for each of the microcomputers for which software development is a requirement. The host computer is configured to operate in a time share mode for multiusers. The remote terminals, printers, and down loading capabilities provided are based on user requirements. With this configuration a user, either local or remote, can use the host computer for microcomputer software development. Once the software is developed (through the code and modular debug stage) it can be downloaded to the development system or emulator in a test area where hardware/software integration functions can proceed. The microcomputer software program sources reside in the host computer and can be edited, assembled, loaded, and then downloaded as required until the software development project has been completed.

  20. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  1. Fully Employing Software Inspections Data

    NASA Technical Reports Server (NTRS)

    Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally

    2009-01-01

    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.

  2. Enhancing Collaborative Learning through Group Intelligence Software

    NASA Astrophysics Data System (ADS)

    Tan, Yin Leng; Macaulay, Linda A.

    Employers increasingly demand not only academic excellence from graduates but also excellent interpersonal skills and the ability to work collaboratively in teams. This paper discusses the role of Group Intelligence software in helping to develop these higher order skills in the context of an enquiry based learning (EBL) project. The software supports teams in generating ideas, categorizing, prioritizing, voting and multi-criteria decision making and automatically generates a report of each team session. Students worked in a Group Intelligence lab designed to support both face to face and computer-mediated communication and employers provided feedback at two key points in the year long team project. Evaluation of the effectiveness of Group Intelligence software in collaborative learning was based on five key concepts of creativity, participation, productivity, engagement and understanding.

  3. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  4. Organizational Stresses and Practices Impeding Quality Software Development in Government Procurements

    ERIC Educational Resources Information Center

    Holcomb, Glenda S.

    2010-01-01

    This qualitative, phenomenological doctoral dissertation research study explored the software project team members perceptions of changing organizational cultures based on management decisions made at project deviation points. The research study provided a view into challenged or failing government software projects through the lived experiences…

  5. NASA's TReK Project: A Case Study in Using the Spiral Model of Software Development

    NASA Technical Reports Server (NTRS)

    Hendrix, T. Dean; Schneider, Michelle P.

    1998-01-01

    Software development projects face numerous challenges that threaten their successful completion. Whether it is not enough money, too little time, or a case of "requirements creep" that has turned into a full sprint, projects must meet these challenges or face possible disastrous consequences. A robust, yet flexible process model can provide a mechanism through which software development teams can meet these challenges head on and win. This article describes how the spiral model has been successfully tailored to a specific project and relates some notable results to date.

  6. Agile development approach for the observatory control software of the DAG 4m telescope

    NASA Astrophysics Data System (ADS)

    Güçsav, B. Bülent; ćoker, Deniz; Yeşilyaprak, Cahit; Keskin, Onur; Zago, Lorenzo; Yerli, Sinan K.

    2016-08-01

    Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify the further development methodology. The existing preliminary designs for both software (including TCS and active optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has been facing with. The potential benefits of an agile approach for the development will be discussed depending on the published experience of the community and on the resources available to us.

  7. Managing distributed software development in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  8. Software Defined GPS API: Development and Implementation of GPS Correlator Architectures Using MATLAB with Focus on SDR Implementations

    DTIC Science & Technology

    2014-05-18

    intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques...with the intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved...intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques to

  9. [Team Development in Medical Rehabilitation: Concept and Evaluation of a Team Intervention].

    PubMed

    Körner, M; Luzay, L; Becker, S; Rundel, M; Müller, C; Zimmermann, L

    2016-04-01

    Interprofessional collaboration is a main precondition of successful treatment in rehabilitation. In order to improve interprofessional collaboration, a clinic-specific, goal- and solution-oriented and systemic team development approach was designed. The aim of the study is the evaluation of this approach. A multi-centre cluster-randomized controlled study with staff questionnaires. The team development could be implemented successfully in 4 of 5 clinics and led to significant improvements in team organisation, willingness to accept responsibility and knowledge integration. The effects are small and are caused by the opposed development of intervention and control group. The team development approach can be recommended for rehabilitation practice. A train-the-trainer approach will be developed and further studies are planned in order to disseminate the approach and to investigate the conditions of implementation. © Georg Thieme Verlag KG Stuttgart · New York.

  10. STAR Algorithm Integration Team - Facilitating operational algorithm development

    NASA Astrophysics Data System (ADS)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  11. Launch Control System Software Development System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This system requires high quality testing that will measure and test the capabilities of the system. For the past two years, the Exploration and Operations Division at Kennedy Space Center (KSC) has assigned a group including interns and full-time engineers to develop automated tests to save the project time and money. The team worked on automating the testing process for the SCCS GUI that would use streamed simulated data from the testing servers to produce data, plots, statuses, etc. to the GUI. The software used to develop automated tests included an automated testing framework and an automation library. The automated testing framework has a tabular-style syntax, which means the functionality of a line of code must have the appropriate number of tabs for the line to function as intended. The header section contains either paths to custom resources or the names of libraries being used. The automation library contains functionality to automate anything that appears on a desired screen with the use of image recognition software to detect and control GUI components. The data section contains any data values strictly created for the current testing file. The body section holds the tests that are being run. The function section can include any number of functions that may be used by the current testing file or any other file that resources it. The resources and body section are required for all test files; the data and function sections can be left empty if the data values and functions being used are from a resourced library or another file. To help equip the automation team with better tools, the Project Lead of the Automated Testing Team, Jason Kapusta, assigned the task to install and train an optical character recognition (OCR

  12. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  13. WFF TOPEX Software Documentation Overview, May 1999. Volume 2

    NASA Technical Reports Server (NTRS)

    Brooks, Ronald L.; Lee, Jeffrey

    2003-01-01

    This document provides an overview'of software development activities and the resulting products and procedures developed by the TOPEX Software Development Team (SWDT) at Wallops Flight Facility, in support of the WFF TOPEX Engineering Assessment and Verification efforts.

  14. The (mis)use of subjective process measures in software engineering

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.; Condon, Steven E.

    1993-01-01

    A variety of measures are used in software engineering research to develop an understanding of the software process and product. These measures fall into three broad categories: quantitative, characteristics, and subjective. Quantitative measures are those to which a numerical value can be assigned, for example effort or lines of code (LOC). Characteristics describe the software process or product; they might include programming language or the type of application. While such factors do not provide a quantitative measurement of a process or product, they do help characterize them. Subjective measures (as defined in this study) are those that are based on the opinion or opinions of individuals; they are somewhat unique and difficult to quantify. Capturing of subjective measure data typically involves development of some type of scale. For example, 'team experience' is one of the subjective measures that were collected and studied by the Software Engineering Laboratory (SEL). Certainly, team experience could have an impact on the software process or product; actually measuring a team's experience, however, is not a strictly mathematical exercise. Simply adding up each team member's years of experience appears inadequate. In fact, most researchers would agree that 'years' do not directly translate into 'experience.' Team experience must be defined subjectively and then a scale must be developed e.g., high experience versus low experience; or high, medium, low experience; or a different or more granular scale. Using this type of scale, a particular team's overall experience can be compared with that of other teams in the development environment. Defining, collecting, and scaling subjective measures is difficult. First, precise definitions of the measures must be established. Next, choices must be made about whose opinions will be solicited to constitute the data. Finally, care must be given to defining the right scale and level of granularity for measurement.

  15. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  16. Developing high-performance cross-functional teams: Understanding motivations, functional loyalties, and teaming fundamentals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.A.

    1996-08-01

    Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teamingmore » concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.« less

  17. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  18. Translational leadership: new approaches to team development.

    PubMed

    Harrigan, Rosanne C; Emery, Lori M

    2010-01-01

    Little is known about how to develop collaborative multidisciplinary research teams. Following a comprehensive needs assessment, we developed a curriculum-based, multi-disciplinary, didactic and experiential Translational Leadership training program grounded in adult learning theory. In addition, we constructed collaborative clinical/translational research experiences for trainees to enhance clinical/translational research skills. KEY PROGRAMMATIC ELEMENTS AND PRELIMINARY FINDINGS: This 15-week Translational Leadership program was generated based on the following premises. Academic translational leadership teams should partner and collaborate, customize, make the program relevant to the culture, create a common language, use the best resources, and establish measurable goals for success. Development of effective collaborative research teams is essential to the management of successful translational research teams. Development of these skills in addition to cultural humility will provide the best infrastructure and human capital committed to the resolution of health disparities. Effective translational research teams are more comfortable with the component team members and the communities where they implement their protocols. Our participants highly valued the diverse experiences from this program; several have succeeded in leading community-based research teams. Our Translational Leadership program offers essential skills using adult learning theory for translational researchers who become capable of leading and participating in translational research teams. We believe including community members in the training of translational research programs is an important asset. The multidisciplinary approach develops skills that are also of significant use to the community and its acceptance of responsibility for its own health.

  19. Automated Software Development Workstation (ASDW)

    NASA Technical Reports Server (NTRS)

    Fridge, Ernie

    1990-01-01

    Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.

  20. Developing team cognition: A role for simulation

    PubMed Central

    Fernandez, Rosemarie; Shah, Sachita; Rosenman, Elizabeth D.; Kozlowski, Steve W. J.; Parker, Sarah Henrickson; Grand, James A.

    2016-01-01

    SUMMARY STATEMENT Simulation has had a major impact in the advancement of healthcare team training and assessment. To date, the majority of simulation-based training and assessment focuses on the teamwork behaviors that impact team performance, often ignoring critical cognitive, motivational, and affective team processes. Evidence from team science research demonstrates a strong relationship between team cognition and team performance and suggests a role for simulation in the development of this team-level construct. In this article we synthesize research from the broader team science literature to provide foundational knowledge regarding team cognition and highlight best practices for using simulation to target team cognition. PMID:28704287

  1. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  2. NA-42 TI Shared Software Component Library FY2011 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.

    The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessiblemore » by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed

  3. A Brief Survey of the Team Software ProcessSM (TSPSM)

    DTIC Science & Technology

    2011-10-24

    spent more than 20 years in industry as a software engineer, system designer, project leader, and development manager working on control systems...InnerWorkings, Inc. Instituto Tecnologico y de Estudios Superiores de Monterrey Siemens AG SILAC Ingenieria de Software S.A. de C.V

  4. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  5. Team Software Process (TSP) Coach Mentoring Program Guidebook Version 1.1

    DTIC Science & Technology

    2010-06-01

    All training was conducted in English only, and observations were limited to English- speaking coaches and teams. The SEI-Certified TSP Coach...programs also enable the expansion of TSP implementation to non-English- speaking teams and organizations. This expanded capacity for qualifying candidate...Improvement Could Benefit from Development Capable and Effective Role Model 1. I listen before speaking . 2. I demonstrate persuasiveness in

  6. Impact of Agile Software Development Model on Software Maintainability

    ERIC Educational Resources Information Center

    Gawali, Ajay R.

    2012-01-01

    Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…

  7. A Measure of Team Resilience: Developing the Resilience at Work Team Scale.

    PubMed

    McEwen, Kathryn; Boyd, Carolyn M

    2018-03-01

    This study develops, and initial evaluates, a new measure of team-based resilience for use in research and practice. We conducted preliminary analyses, based on a cross-sectional sample of 344 employees nested within 31 teams. Seven dimensions were identified through exploratory and confirmatory factor analyses. The measure had high reliability and significant discrimination to indicate the presence of a unique team-based aspect of resilience that contributed to higher work engagement and higher self-rated team performance, over and above the effects of individual resilience. Multilevel analyses showed that team, but not individual, resilience predicted self-rated team performance. Practice implications include a need to focus on collective as well as individual behaviors in resilience-building. The measure provides a diagnostic instrument for teams and a scale to evaluate organizational interventions and research the relationship of resilience to other constructs.

  8. Managing Communication among Geographically Distributed Teams: A Brazilian Case

    NASA Astrophysics Data System (ADS)

    Almeida, Ana Carina M.; de Farias Junior, Ivaldir H.; de S. Carneiro, Pedro Jorge

    The growing demand for qualified professionals is making software companies opt for distributed software development (DSD). At the project conception, communication and synchronization of information are critical factors for success. However problems such as time-zone difference between teams, culture, language and different development processes among sites could difficult the communication among teams. In this way, the main goal of this paper is to describe the solution adopted by a Brazilian team to improve communication in a multisite project environment. The purposed solution was based on the best practices described in the literature, and the communication plan was created based on the infrastructure needed by the project. The outcome of this work is to minimize the impact of communication issues in multisite projects, increasing productivity, good understanding and avoiding rework on code and document writing.

  9. Spaceport Command and Control System Automated Verification Software Development

    NASA Technical Reports Server (NTRS)

    Backus, Michael W.

    2017-01-01

    For as long as we have walked the Earth, humans have always been explorers. We have visited our nearest celestial body and sent Voyager 1 beyond our solar system1 out into interstellar space. Now it is finally time for us to step beyond our home and onto another planet. The Spaceport Command and Control System (SCCS) is being developed along with the Space Launch System (SLS) to take us on a journey further than ever attempted. Within SCCS are separate subsystems and system level software, each of which have to be tested and verified. Testing is a long and tedious process, so automating it will be much more efficient and also helps to remove the possibility of human error from mission operations. I was part of a team of interns and full-time engineers who automated tests for the requirements on SCCS, and with that was able to help verify that the software systems are performing as expected.

  10. Florida alternative NTCIP testing software (ANTS) for actuated signal controllers.

    DOT National Transportation Integrated Search

    2009-01-01

    The scope of this research project did include the development of a software tool to test devices for NTCIP compliance. Development of the Florida Alternative NTCIP Testing Software (ANTS) was developed by the research team due to limitations found w...

  11. Using practice development methodology to develop children's centre teams: ideas for the future.

    PubMed

    Hemingway, Ann; Cowdell, Fiona

    2009-09-01

    The Children's Centre Programme is a recent development in the UK and brings together multi-agency teams to work with disadvantaged families. Practice development methods enable teams to work together in new ways. Although the term practice development remains relatively poorly defined, its key properties suggest that it embraces engagement, empowerment, evaluation and evolution. This paper introduces the Children's Centre Programme and practice development methods and aims to discuss the relevance of using this method to develop teams in children's centres through considering the findings from an evaluation of a two-year project to develop inter-agency public health teams. The evaluation showed that practice development methods can enable successful team development and showed that through effective facilitation, teams can change their practice to focus on areas of local need. The team came up with their own process to develop a strategy for their locality.

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less

  13. Exploring the importance of team psychological safety in the development of two interprofessional teams.

    PubMed

    O'Leary, Denise Fiona

    2016-01-01

    It has been previously demonstrated that interactions within interprofessional teams are characterised by effective communication, shared decision-making, and knowledge sharing. This article outlines aspects of an action research study examining the emergence of these characteristics within change management teams made up of nurses, general practitioners, physiotherapists, care assistants, a health and safety officer, and a client at two residential care facilities for older people in Ireland. The theoretical concept of team psychological safety (TPS) is utilised in presenting these characteristics. TPS has been defined as an atmosphere within a team where individuals feel comfortable engaging in discussion and reflection without fear of censure. Study results suggest that TPS was an important catalyst in enhancing understanding and power sharing across professional boundaries and thus in the development of interprofessional teamwork. There were differences between the teams. In one facility, the team developed many characteristics of interprofessional teamwork while at the other there was only a limited shift. Stability in team membership and organisational norms relating to shared decision-making emerged as particularly important in accounting for differences in the development of TPS and interprofessional teamwork.

  14. Web Team Development

    ERIC Educational Resources Information Center

    Church, Jennifer; Felker, Kyle

    2005-01-01

    The dynamic world of the Web has provided libraries with a wealth of opportunities, including new approaches to the provision of information and varied internal staffing structures. The development of self-managed Web teams, endowed with authority and resources, can create an adaptable and responsive culture within libraries. This new working team…

  15. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less

  16. Models for Deploying Open Source and Commercial Software to Support Earth Science Data Processing and Distribution

    NASA Astrophysics Data System (ADS)

    Yetman, G.; Downs, R. R.

    2011-12-01

    Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may

  17. Software Development as Music Education Research

    ERIC Educational Resources Information Center

    Brown, Andrew R.

    2007-01-01

    This paper discusses how software development can be used as a method for music education research. It explains how software development can externalize ideas, stimulate action and reflection, and provide evidence to support the educative value of new software-based experiences. Parallels between the interactive software development process and…

  18. Global Team Development. Symposium 7. [AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    2001

    This document contains three papers on global team development. "Virtual Executives: A Paradox with Implications for Development" (Andrea Hornett), which is based on a case study exploring power relationships among members of a virtual team, demonstrates that members of a virtual team describe power differently for situations inside…

  19. Unobtrusive Monitoring of Spaceflight Team Functioning

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain

  20. ToxPredictor: a Toxicity Estimation Software Tool

    EPA Science Inventory

    The Computational Toxicology Team within the National Risk Management Research Laboratory has developed a software tool that will allow the user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be ac...

  1. [Developing team reflexivity as a learning and working tool for medical teams].

    PubMed

    Riskin, Arieh; Bamberger, Peter

    2014-01-01

    Team reflexivity is a collective activity in which team members review their previous work, and develop ideas on how to modify their work behavior in order to achieve better future results. It is an important learning tool and a key factor in explaining the varying effectiveness of teams. Team reflexivity encompasses both self-awareness and agency, and includes three main activities: reflection, planning, and adaptation. The model of briefing-debriefing cycles promotes team reflexivity. Its key elements include: Pre-action briefing--setting objectives, roles, and strategies the mission, as well as proposing adaptations based on what was previously learnt from similar procedures; Post-action debriefing--reflecting on the procedure performed and reviewing the extent to which objectives were met, and what can be learnt for future tasks. Given the widespread attention to team-based work systems and organizational learning, efforts should be made toward ntroducing team reflexivity in health administration systems. Implementation could be difficult because most teams in hospitals are short-lived action teams formed for a particular event, with limited time and opportunity to consciously reflect upon their actions. But it is precisely in these contexts that reflexive processes have the most to offer instead of the natural impulsive collective logics. Team reflexivity suggests a potential solution to the major problems of iatorgenesis--avoidable medical errors, as it forces all team members to participate in a reflexive process together. Briefing-debriefing technology was studied mainly in surgical teams and was shown to enhance team-based learning and to improve quality-related outcomes and safety.

  2. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  3. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  4. Technology-driven dietary assessment: a software developer’s perspective

    PubMed Central

    Buday, Richard; Tapia, Ramsey; Maze, Gary R.

    2015-01-01

    Dietary researchers need new software to improve nutrition data collection and analysis, but creating information technology is difficult. Software development projects may be unsuccessful due to inadequate understanding of needs, management problems, technology barriers or legal hurdles. Cost overruns and schedule delays are common. Barriers facing scientific researchers developing software include workflow, cost, schedule, and team issues. Different methods of software development and the role that intellectual property rights play are discussed. A dietary researcher must carefully consider multiple issues to maximize the likelihood of success when creating new software. PMID:22591224

  5. Virtual Teams and Human Work Interaction Design - Learning to Work in and Designing for Virtual Teams

    NASA Astrophysics Data System (ADS)

    Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark

    The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.

  6. A Framework for the Development of Scalable Heterogeneous Robot Teams with Dynamically Distributed Processing

    NASA Astrophysics Data System (ADS)

    Martin, Adrian

    As the applications of mobile robotics evolve it has become increasingly less practical for researchers to design custom hardware and control systems for each problem. This research presents a new approach to control system design that looks beyond end-of-lifecycle performance and considers control system structure, flexibility, and extensibility. Toward these ends the Control ad libitum philosophy is proposed, stating that to make significant progress in the real-world application of mobile robot teams the control system must be structured such that teams can be formed in real-time from diverse components. The Control ad libitum philosophy was applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical framework built with provably correct distributed algorithms. A control system for exploration and mapping, search and deploy, and foraging was developed to evaluate the architecture in three sets of hardware-in-the-loop experiments. First, the basic functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form the control system, b) dynamically form the robot team, c) dynamically form the processing network, and d) handle heterogeneous teams. Secondly, the real-time performance of the distributed algorithms was tested, and proved effective for the moderate sized systems tested. Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in resource starved scenarios, while reducing exploration time significantly. The JC-SLAM strategies are also suitable for integration into many existing particle filter SLAM approaches, complementing their unique optimizations. Thirdly, the control system was subjected to concurrent software and hardware failures in a series of increasingly complex experiments. Even with unrealistically high rates of failure the control system was able to

  7. Leader evaluation and team cohesiveness in the process of team development: A matter of gender?

    PubMed Central

    Sczesny, Sabine; Gumí, Tània; Guimerà, Roger; Sales-Pardo, Marta

    2017-01-01

    Leadership positions are still stereotyped as masculine, especially in male-dominated fields (e.g., engineering). So how do gender stereotypes affect the evaluation of leaders and team cohesiveness in the process of team development? In our study participants worked in 45 small teams (4–5 members). Each team was headed by either a female or male leader, so that 45 leaders (33% women) supervised 258 team members (39% women). Over a period of nine months, the teams developed specific engineering projects as part of their professional undergraduate training. We examined leaders’ self-evaluation, their evaluation by team members, and team cohesiveness at two points of time (month three and month nine, the final month of the collaboration). While we did not find any gender differences in leaders’ self-evaluation at the beginning, female leaders evaluated themselves more favorably than men at the end of the projects. Moreover, female leaders were evaluated more favorably than male leaders at the beginning of the project, but the evaluation by team members did not differ at the end of the projects. Finally, we found a tendency for female leaders to build more cohesive teams than male leaders. PMID:29059231

  8. Towards Archetypes-Based Software Development

    NASA Astrophysics Data System (ADS)

    Piho, Gunnar; Roost, Mart; Perkins, David; Tepandi, Jaak

    We present a framework for the archetypes based engineering of domains, requirements and software (Archetypes-Based Software Development, ABD). An archetype is defined as a primordial object that occurs consistently and universally in business domains and in business software systems. An archetype pattern is a collaboration of archetypes. Archetypes and archetype patterns are used to capture conceptual information into domain specific models that are utilized by ABD. The focus of ABD is on software factories - family-based development artefacts (domain specific languages, patterns, frameworks, tools, micro processes, and others) that can be used to build the family members. We demonstrate the usage of ABD for developing laboratory information management system (LIMS) software for the Clinical and Biomedical Proteomics Group, at the Leeds Institute of Molecular Medicine, University of Leeds.

  9. Teamwork in perioperative nursing. Understanding team development, effectiveness, evaluation.

    PubMed

    Farley, M J

    1991-03-01

    Teams are an essential part of perioperative nursing practice. Nurses who have a knowledge of teamwork and experience in working on teams have a greater understanding of the processes and problems involved as teams develop from new, immature teams to those that are mature and effective. This understanding will assist nurses in helping their teams achieve a higher level of productivity, and members will be more satisfied with team efforts. Team development progresses through several stages. Each stage has certain characteristics and desired outcomes. At each stage, team members and leaders have certain responsibilities. Team growth does not take place automatically and inevitably, but as a consequence of conscious and unconscious efforts of its leader and members to solve problems and satisfy needs. Building and maintaining a team is certainly work, but work that brings a great deal of satisfaction and feelings of pride in accomplishment. According to I Tenzer, RN, MS, teamwork "is not a panacea; it is a viable approach to developing a hospital's most valuable resource--people."

  10. Insights into software development in Japan

    NASA Technical Reports Server (NTRS)

    Duvall, Lorraine M.

    1992-01-01

    The interdependence of the U.S.-Japanese economies makes it imperative that we in the United States understand how business and technology developments take place in Japan. We can gain insight into these developments in software engineering by studying the context in which Japanese software is developed, the practices that are used, the problems encountered, the setting surrounding these problems, and the resolution of these problems. Context includes the technological and sociological characteristics of the software development environment, the software processes applied, personnel involved in the development process, and the corporate and social culture surrounding the development. Presented in this paper is a summary of results of a study that addresses these issues. Data for this study was collected during a three month visit to Japan where the author interviewed 20 software managers representing nine companies involved in developing software in Japan. These data are compared to similar data from the United States in which 12 managers from five companies were interviewed.

  11. What Not To Do: Anti-patterns for Developing Scientific Workflow Software Components

    NASA Astrophysics Data System (ADS)

    Futrelle, J.; Maffei, A. R.; Sosik, H. M.; Gallager, S. M.; York, A.

    2013-12-01

    Scientific workflows promise to enable efficient scaling-up of researcher code to handle large datasets and workloads, as well as documentation of scientific processing via standardized provenance records, etc. Workflow systems and related frameworks for coordinating the execution of otherwise separate components are limited, however, in their ability to overcome software engineering design problems commonly encountered in pre-existing components, such as scripts developed externally by scientists in their laboratories. In practice, this often means that components must be rewritten or replaced in a time-consuming, expensive process. In the course of an extensive workflow development project involving large-scale oceanographic image processing, we have begun to identify and codify 'anti-patterns'--problematic design characteristics of software--that make components fit poorly into complex automated workflows. We have gone on to develop and document low-effort solutions and best practices that efficiently address the anti-patterns we have identified. The issues, solutions, and best practices can be used to evaluate and improve existing code, as well as guiding the development of new components. For example, we have identified a common anti-pattern we call 'batch-itis' in which a script fails and then cannot perform more work, even if that work is not precluded by the failure. The solution we have identified--removing unnecessary looping over independent units of work--is often easier to code than the anti-pattern, as it eliminates the need for complex control flow logic in the component. Other anti-patterns we have identified are similarly easy to identify and often easy to fix. We have drawn upon experience working with three science teams at Woods Hole Oceanographic Institution, each of which has designed novel imaging instruments and associated image analysis code. By developing use cases and prototypes within these teams, we have undertaken formal evaluations of

  12. Improving collaborative learning in online software engineering education

    NASA Astrophysics Data System (ADS)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-11-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.

  13. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  14. Software Engineering Research/Developer Collaborations (C104)

    NASA Technical Reports Server (NTRS)

    Shell, Elaine; Shull, Forrest

    2005-01-01

    The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with

  15. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  16. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  17. Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2016-01-01

    To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.

  18. Autonomous robot software development using simple software components

    NASA Astrophysics Data System (ADS)

    Burke, Thomas M.; Chung, Chan-Jin

    2004-10-01

    Developing software to control a sophisticated lane-following, obstacle-avoiding, autonomous robot can be demanding and beyond the capabilities of novice programmers - but it doesn"t have to be. A creative software design utilizing only basic image processing and a little algebra, has been employed to control the LTU-AISSIG autonomous robot - a contestant in the 2004 Intelligent Ground Vehicle Competition (IGVC). This paper presents a software design equivalent to that used during the IGVC, but with much of the complexity removed. The result is an autonomous robot software design, that is robust, reliable, and can be implemented by programmers with a limited understanding of image processing. This design provides a solid basis for further work in autonomous robot software, as well as an interesting and achievable robotics project for students.

  19. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint

  20. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; hide

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  1. Empirical studies of design software: Implications for software engineering environments

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.

  2. Computer-aided software development process design

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Levary, Reuven R.

    1989-01-01

    The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.

  3. Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment

    USDA-ARS?s Scientific Manuscript database

    Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...

  4. Software development for teleroentgenogram analysis

    NASA Astrophysics Data System (ADS)

    Goshkoderov, A. A.; Khlebnikov, N. A.; Obabkov, I. N.; Serkov, K. V.; Gajniyarov, I. M.; Aliev, A. A.

    2017-09-01

    A framework for the analysis and calculation of teleroentgenograms was developed. Software development was carried out in the Department of Children's Dentistry and Orthodontics in Ural State Medical University. The software calculates the teleroentgenogram by the original method which was developed in this medical department. Program allows designing its own methods for calculating the teleroentgenograms by new methods. It is planned to use the technology of machine learning (Neural networks) in the software. This will help to make the process of calculating the teleroentgenograms easier because methodological points will be placed automatically.

  5. Talent development in adolescent team sports: a review.

    PubMed

    Burgess, Darren J; Naughton, Geraldine A

    2010-03-01

    Traditional talent development pathways for adolescents in team sports follow talent identification procedures based on subjective games ratings and isolated athletic assessment. Most talent development models are exclusive rather than inclusive in nature. Subsequently, talent identification may result in discontentment, premature stratification, or dropout from team sports. Understanding the multidimensional differences among the requirements of adolescent and elite adult athletes could provide more realistic goals for potential talented players. Coach education should include adolescent development, and rewards for team success at the adolescent level should reflect the needs of long-term player development. Effective talent development needs to incorporate physical and psychological maturity, the relative age effect, objective measures of game sense, and athletic prowess. The influences of media and culture on the individual, and the competing time demands between various competitions for player training time should be monitored and mediated where appropriate. Despite the complexity, talent development is a worthy investment in professional team sport.

  6. Developing Successful Teams

    DTIC Science & Technology

    2009-02-20

    Leadership Lessons Learned from General Ulysses S. Grant (Paramus, NJ: Prentice Hall Press, 1998): 93 11. Lencioni , Five Dysfunctions of a Team ...River, NJ: Pearson-Prentice Hall, 2004. Lencioni , Patrick. The Five Dysfunctions of a Team : A Leadership Fable. San Francisco, CA: Jossey-Bass...bibliography. Most of these terms were specifically cited and defined in the text book references. 5 . Wheelan, Creating Effective Teams , 60. 6. Wheelan

  7. Educational Software: A Developer's Perspective.

    ERIC Educational Resources Information Center

    Armstrong, Timothy C.; Loane, Russell F.

    1994-01-01

    Examines the current status and short-term future of computer software development in higher education. Topics discussed include educational advantages of software; current program development techniques, including object oriented programming; and market trends, including IBM versus Macintosh and multimedia programs. (LRW)

  8. Developing Your Dream Team

    ERIC Educational Resources Information Center

    Gatlin, Kenda

    2005-01-01

    Almost anyone has held various roles on a team, be it a family unit, sports team, or a project-oriented team. As an educator, one must make a conscious decision to build and invest in a team. Gathering the best team possible will help one achieve one's goals. This article explores some of the key reasons why it is important to focus on the team…

  9. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  10. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    Prouty, Dale A.; Klahr, Philip

    1988-01-01

    A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.

  11. Software interface verifier

    NASA Technical Reports Server (NTRS)

    Soderstrom, Tomas J.; Krall, Laura A.; Hope, Sharon A.; Zupke, Brian S.

    1994-01-01

    A Telos study of 40 recent subsystem deliveries into the DSN at JPL found software interface testing to be the single most expensive and error-prone activity, and the study team suggested creating an automated software interface test tool. The resulting Software Interface Verifier (SIV), which was funded by NASA/JPL and created by Telos, employed 92 percent software reuse to quickly create an initial version which incorporated early user feedback. SIV is now successfully used by developers for interface prototyping and unit testing, by test engineers for formal testing, and by end users for non-intrusive data flow tests in the operational environment. Metrics, including cost, are included. Lessons learned include the need for early user training. SIV is ported to many platforms and can be successfully used or tailored by other NASA groups.

  12. The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.

    2006-01-01

    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.

  13. Investigating Team Cohesion in COCOMO II.2000

    ERIC Educational Resources Information Center

    Snowdeal-Carden, Betty A.

    2013-01-01

    Software engineering is team oriented and intensely complex, relying on human collaboration and creativity more than any other engineering discipline. Poor software estimation is a problem that within the United States costs over a billion dollars per year. Effective measurement of team cohesion is foundationally important to gain accurate…

  14. Development of a pediatric palliative care team.

    PubMed

    Ward-Smith, Peggy; Linn, Jill Burris; Korphage, Rebecca M; Christenson, Kathy; Hutto, C J; Hubble, Christopher L

    2007-01-01

    The American Academy of Pediatrics has provided clinical recommendations for palliative care needs of children. This article outlines the steps involved in implementing a pediatric palliative care program in a Midwest pediatric magnet health care facility. The development of a Pediatric Advanced Comfort Care Team was supported by hospital administration and funded through grants. Challenges included the development of collaborative relationships with health care professionals from specialty areas. Pediatric Advanced Comfort Care Team services, available from the time of diagnosis, are provided by a multidisciplinary team of health care professionals and individualized on the basis of needs expressed by each child and his or her family.

  15. Software Quality Perceptions of Stakeholders Involved in the Software Development Process

    ERIC Educational Resources Information Center

    Padmanabhan, Priya

    2013-01-01

    Software quality is one of the primary determinants of project management success. Stakeholders involved in software development widely agree that quality is important (Barney and Wohlin 2009). However, they may differ on what constitutes software quality, and which of its attributes are more important than others. Although, software quality…

  16. Managers Handbook for Software Development

    NASA Technical Reports Server (NTRS)

    Agresti, W.; Mcgarry, F.; Card, D.; Page, J.; Church, V.; Werking, R.

    1984-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described.

  17. Space Shuttle Software Development and Certification

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Henderson, Johnnie A

    2000-01-01

    Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools

  18. Team Expo: A State-of-the-Art JSC Advanced Design Team

    NASA Technical Reports Server (NTRS)

    Tripathi, Abhishek

    2001-01-01

    In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.

  19. Toolpack mathematical software development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterweil, L.

    1982-07-21

    The purpose of this research project was to produce a well integrated set of tools for the support of numerical computation. The project entailed the specification, design and implementation of both a diversity of tools and an innovative tool integration mechanism. This large configuration of tightly integrated tools comprises an environment for numerical software development, and has been named Toolpack/IST (Integrated System of Tools). Following the creation of this environment in prototype form, the environment software was readied for widespread distribution by transitioning it to a development organization for systematization, documentation and distribution. It is expected that public release ofmore » Toolpack/IST will begin imminently and will provide a basis for evaluation of the innovative software approaches taken as well as a uniform set of development tools for the numerical software community.« less

  20. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  1. Development of a Search and Rescue Simulation to Study the Effects of Prolonged Isolation on Team Decision Making

    NASA Technical Reports Server (NTRS)

    Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip

    1998-01-01

    The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.

  2. Software Development Life Cycle Security Issues

    NASA Astrophysics Data System (ADS)

    Kaur, Daljit; Kaur, Parminder

    2011-12-01

    Security is now-a-days one of the major problems because of many reasons. Security is now-a-days one of the major problems because of many reasons. The main cause is that software can't withstand security attacks because of vulnerabilities in it which are caused by defective specifications design and implementation. We have conducted a survey asking software developers, project managers and other people in software development about their security awareness and implementation in Software Development Life Cycle (SDLC). The survey was open to participation for three weeks and this paper explains the survey results.

  3. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.

    PubMed

    Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin

    2007-11-01

    This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.

  4. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  5. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    NASA Astrophysics Data System (ADS)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  6. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  7. Software development predictors, error analysis, reliability models and software metric analysis

    NASA Technical Reports Server (NTRS)

    Basili, Victor

    1983-01-01

    The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.

  8. Software Technology Transfer and Export Control.

    DTIC Science & Technology

    1981-01-01

    development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported

  9. Linguistic correlates of team performance: toward a tool for monitoring team functioning during space missions.

    PubMed

    Fischer, Ute; McDonnell, Lori; Orasanu, Judith

    2007-05-01

    Approaches to mitigating the likelihood of psychosocial problems during space missions emphasize preflight measures such as team training and team composition. Additionally, it may be necessary to monitor team interactions during missions for signs of interpersonal stress. The present research was conducted to identify features in team members' communications indicative of team functioning. Team interactions were studied in the context of six computer-simulated search and rescue missions. There were 12 teams of 4 U.S. men who participated; however, the present analyses contrast the top two teams with the two least successful teams. Communications between team members were analyzed using linguistic analysis software and a coding scheme developed to characterize task-related and social dimensions of team interactions. Coding reliability was established by having two raters independently code three transcripts. Between-rater agreement ranged from 78.1 to 97.9%. Team performance was significantly associated with team members' task-related communications, specifically with the extent to which task-critical information was shared. Successful and unsuccessful teams also showed different interactive patterns, in particular concerning the frequencies of elaborations and no-responses. Moreover, task success was negatively correlated with variability in team members' word count, and positively correlated with the number of positive emotion words and the frequency of assenting relative to dissenting responses. Analyses isolated certain task-related and social features of team communication related to team functioning. Team success was associated with the extent to which team members shared task-critical information, equally participated and built on each other's contributions, showed agreement, and positive affect.

  10. Time Series Trends in Corporate Team Development.

    ERIC Educational Resources Information Center

    Priest, Simon; Lesperance, Mary Ann

    1994-01-01

    In two studies, the Team Development Indicator was repeatedly administered to intact work groups participating in intensive 48-hour residential corporate adventure training (CAT) and various follow-up procedures. CAT significantly improved team behaviors in all training groups, but improvements were maintained or increased only in groups that…

  11. A toolbox for developing bioinformatics software

    PubMed Central

    Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M.

    2012-01-01

    Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787

  12. Strategies for effective collaborative manuscript development in interdisciplinary science teams

    USGS Publications Warehouse

    Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.

    2018-01-01

    Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.

  13. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    NASA Technical Reports Server (NTRS)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  14. Software requirements: Guidance and control software development specification

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward; Rich, Don C.; Lowman, Douglas S.; Buckland, R. C.

    1990-01-01

    The software requirements for an implementation of Guidance and Control Software (GCS) are specified. The purpose of the GCS is to provide guidance and engine control to a planetary landing vehicle during its terminal descent onto a planetary surface and to communicate sensory information about that vehicle and its descent to some receiving device. The specification was developed using the structured analysis for real time system specification methodology by Hatley and Pirbhai and was based on a simulation program used to study the probability of success of the 1976 Viking Lander missions to Mars. Three versions of GCS are being generated for use in software error studies.

  15. Team-Based Professional Development Interventions in Higher Education: A Systematic Review

    PubMed Central

    Gast, Inken; Schildkamp, Kim; van der Veen, Jan T.

    2017-01-01

    Most professional development activities focus on individual teachers, such as mentoring or the use of portfolios. However, new developments in higher education require teachers to work together in teams more often. Due to these changes, there is a growing need for professional development activities focusing on teams. Therefore, this review study was conducted to provide an overview of what is known about professional development in teams in the context of higher education. A total of 18 articles were reviewed that describe the effects of professional development in teams on teacher attitudes and teacher learning. Furthermore, several factors that can either hinder or support professional development in teams are identified at the individual teacher level, at the team level, and also at the organizational level. PMID:28989192

  16. Team-Based Professional Development Interventions in Higher Education: A Systematic Review.

    PubMed

    Gast, Inken; Schildkamp, Kim; van der Veen, Jan T

    2017-08-01

    Most professional development activities focus on individual teachers, such as mentoring or the use of portfolios. However, new developments in higher education require teachers to work together in teams more often. Due to these changes, there is a growing need for professional development activities focusing on teams. Therefore, this review study was conducted to provide an overview of what is known about professional development in teams in the context of higher education. A total of 18 articles were reviewed that describe the effects of professional development in teams on teacher attitudes and teacher learning. Furthermore, several factors that can either hinder or support professional development in teams are identified at the individual teacher level, at the team level, and also at the organizational level.

  17. Developing Expert Teams with a Strong Safety Culture

    NASA Technical Reports Server (NTRS)

    Rogers, David G.

    2010-01-01

    Would you like to lead a world renowned team that draws out all the talents and expertise of its members and consistently out performs all others in the industry? Ever wonder why so many organizations fail to truly learn from past mistakes only to repeat the same ones at a later date? Are you a program/project manager or team member in a high-risk organization where the decisions made often carry the highest of consequences? Leadership, communication, team building, critical decision-making and continuous team improvement skills and behaviors are mere talking points without the attitudes, commitment and strategies necessary to make them the very fabric of a team. Developing Expert Teams with a Strong Safety Culture, will provide you with proven knowledge and strategies to take your team soaring to heights you may have not thought possible. A myriad of teams have applied these strategies and techniques within their organization team environments: military and commercial aviation, astronaut flight crews, Shuttle flight controllers, members of the Space Shuttle Program Mission Management Team, air traffic controllers, nuclear power control teams, surgical teams, and the fire service report having spectacular success. Many industry leaders are beginning to realize that although the circumstances and environments of these teams may differ greatly to their own, the core elements, governing principles and dynamics involved in managing and building a stellar safety conscious team remain identical.

  18. A Legal Guide for the Software Developer.

    ERIC Educational Resources Information Center

    Minnesota Small Business Assistance Office, St. Paul.

    This booklet has been prepared to familiarize the inventor, creator, or developer of a new computer software product or software invention with the basic legal issues involved in developing, protecting, and distributing the software in the United States. Basic types of software protection and related legal matters are discussed in detail,…

  19. Team Effectiveness and Team Development in CSCL

    ERIC Educational Resources Information Center

    Fransen, Jos; Weinberger, Armin; Kirschner, Paul A.

    2013-01-01

    There is a wealth of research on computer-supported cooperative work (CSCW) that is neglected in computer-supported collaborative learning (CSCL) research. CSCW research is concerned with contextual factors, however, that may strongly influence collaborative learning processes as well, such as task characteristics, team formation, team members'…

  20. Developing Team Skills through a Collaborative Writing Assignment

    ERIC Educational Resources Information Center

    Thomas, Theda Ann

    2014-01-01

    Employers want students who are able to work effectively as members of a team, and expect universities to develop this ability in their graduates. This paper proposes a framework for a collaborative writing assignment that specifically develops students' ability to work in teams. The framework has been tested using two iterations of an action…

  1. Considering Subcontractors in Distributed Scrum Teams

    NASA Astrophysics Data System (ADS)

    Rudzki, Jakub; Hammouda, Imed; Mikkola, Tuomas; Mustonen, Karri; Systä, Tarja

    In this chapter we present our experiences with working with subcontractors in distributed Scrum teams. The context of our experiences is a medium size software service provider company. We present the way the subcontractors are selected and how Scrum practices can be used in real-life projects. We discuss team arrangements and tools used in distributed development teams highlighting aspects that are important when working with subcontractors. We also present an illustrative example where different phases of a project working with subcontractors are described. The example also provides practical tips on work in such projects. Finally, we present a summary of our data that was collected from Scrum and non-Scrum projects implemented over a few years. This chapter should provide a practical point of view on working with subcontractors in Scrum teams for those who are considering such cooperation.

  2. Streamlining Software Aspects of Certification: Report on the SSAC Survey

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Dorsey, Cheryl A.; Knight, John C.; Leveson, Nancy G.; McCormick, G. Frank

    1999-01-01

    The aviation system now depends on information technology more than ever before to ensure safety and efficiency. To address concerns about the efficacy of software aspects of the certification process, the Federal Aviation Administration (FAA) began the Streamlining Software Aspects of Certification (SSAC) program. The SSAC technical team was commissioned to gather data, analyze results, and propose recommendations to maximize efficiency and minimize cost and delay, without compromising safety. The technical team conducted two public workshops to identify and prioritize software approval issues, and conducted a survey to validate the most urgent of those issues. The SSAC survey, containing over two hundred questions about the FAA's software approval process, reached over four hundred industry software developers, aircraft manufacturers, and FAA designated engineering representatives. Three hundred people responded. This report presents the SSAC program rationale, survey process, preliminary findings, and recommendations.

  3. Estimating Software-Development Costs With Greater Accuracy

    NASA Technical Reports Server (NTRS)

    Baker, Dan; Hihn, Jairus; Lum, Karen

    2008-01-01

    COCOMOST is a computer program for use in estimating software development costs. The goal in the development of COCOMOST was to increase estimation accuracy in three ways: (1) develop a set of sensitivity software tools that return not only estimates of costs but also the estimation error; (2) using the sensitivity software tools, precisely define the quantities of data needed to adequately tune cost estimation models; and (3) build a repository of software-cost-estimation information that NASA managers can retrieve to improve the estimates of costs of developing software for their project. COCOMOST implements a methodology, called '2cee', in which a unique combination of well-known pre-existing data-mining and software-development- effort-estimation techniques are used to increase the accuracy of estimates. COCOMOST utilizes multiple models to analyze historical data pertaining to software-development projects and performs an exhaustive data-mining search over the space of model parameters to improve the performances of effort-estimation models. Thus, it is possible to both calibrate and generate estimates at the same time. COCOMOST is written in the C language for execution in the UNIX operating system.

  4. Closing gaps between open software and public data in a hackathon setting: User-centered software prototyping.

    PubMed

    Busby, Ben; Lesko, Matthew; Federer, Lisa

    2016-01-01

    In genomics, bioinformatics and other areas of data science, gaps exist between extant public datasets and the open-source software tools built by the community to analyze similar data types.  The purpose of biological data science hackathons is to assemble groups of genomics or bioinformatics professionals and software developers to rapidly prototype software to address these gaps.  The only two rules for the NCBI-assisted hackathons run so far are that 1) data either must be housed in public data repositories or be deposited to such repositories shortly after the hackathon's conclusion, and 2) all software comprising the final pipeline must be open-source or open-use.  Proposed topics, as well as suggested tools and approaches, are distributed to participants at the beginning of each hackathon and refined during the event.  Software, scripts, and pipelines are developed and published on GitHub, a web service providing publicly available, free-usage tiers for collaborative software development. The code resulting from each hackathon is published at https://github.com/NCBI-Hackathons/ with separate directories or repositories for each team.

  5. Monitoring software development through dynamic variables

    NASA Technical Reports Server (NTRS)

    Doerflinger, Carl W.; Basili, Victor R.

    1983-01-01

    Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.

  6. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  7. Team Development Measure in Interprofessional Graduate Education: A Pilot Study.

    PubMed

    Beebe, Lora Humphrey; Roman, Marian; Skolits, Gary; Raynor, Hollie; Thompson, Dixie; Franks, Andrea

    2018-04-01

    A faculty team developed the 4-week Recovery-Based Interprofessional Distance Education (RIDE) rotation for graduate students in their disciplines. The evaluation team identified the Team Development Measure (TDM) as a potential alternative to reflect team development during the RIDE rotation. The TDM, completed anonymously online, was piloted on the second student cohort (N = 18) to complete the RIDE rotation. The overall pretest mean was 60.73 points (SD = 11.85) of a possible 100 points, indicating that students anticipated their RIDE team would function at a moderately high level during the 4-week rotation. The overall posttest mean, indicating student perceptions of actual team functioning, was 72.71 points (SD = 23.31), an average increase of 11.98 points. Although not statistically significant, Cohen's effect size (d = 0.43) indicates an observed difference of large magnitude. No other published work has used the TDM as a pre-/posttest measure of team development. The authors believe the TDM has several advantages as a measure of student response to interprofessional education offerings, particularly in graduate students with prior experience on health care teams. Further work is needed to validate and extend the findings of this pilot study. [Journal of Psychosocial Nursing and Mental Health Services, 56(4), 18-22.]. Copyright 2018, SLACK Incorporated.

  8. Development of an Interdisciplinary Dysphagia Team in the Public Schools.

    ERIC Educational Resources Information Center

    Homer, Emily M.; Bickerton, Cheryl; Hill, Sherry; Parham, Lisa; Taylor, Darlene

    2000-01-01

    This article describes the development of a school-based dysphagia team (swallowing action team (SWAT)) in Louisiana. It addresses how the team was initially formed, the process of identifying students who were exhibiting a swallowing disorder, steps taken for staff development, and problems encountered in seeking administrative approval.…

  9. Implementing large projects in software engineering courses

    NASA Astrophysics Data System (ADS)

    Coppit, David

    2006-03-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.

  10. Using Selection Pressure as an Asset to Develop Reusable, Adaptable Software Systems

    NASA Astrophysics Data System (ADS)

    Berrick, S. W.; Lynnes, C.

    2007-12-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) at NASA has over the years developed and honed a number of reusable architectural components for supporting large-scale data centers with a large customer base. These include a processing system (S4PM) and an archive system (S4PA) based upon a workflow engine called the Simple, Scalable, Script-based Science Processor (S4P); an online data visualization and analysis system (Giovanni); and the radically simple and fast data search tool, Mirador. These subsystems are currently reused internally in a variety of combinations to implement customized data management on behalf of instrument science teams and other science investigators. Some of these subsystems (S4P and S4PM) have also been reused by other data centers for operational science processing. Our experience has been that development and utilization of robust, interoperable, and reusable software systems can actually flourish in environments defined by heterogeneous commodity hardware systems, the emphasis on value-added customer service, and continual cost reduction pressures. The repeated internal reuse that is fostered by such an environment encourages and even forces changes to the software that make it more reusable and adaptable. Allowing and even encouraging such selective pressures to software development has been a key factor in the success of S4P and S4PM, which are now available to the open source community under the NASA Open Source Agreement.

  11. Using Selection Pressure as an Asset to Develop Reusable, Adaptable Software Systems

    NASA Technical Reports Server (NTRS)

    Berrick, Stephen; Lynnes, Christopher

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) at NASA has over the years developed and honed several reusable architectural components for supporting large-scale data centers with a large customer base. These include a processing system (S4PM) and an archive system (S4PA) based upon a workflow engine called the Simple Scalable Script based Science Processor (S4P) and an online data visualization and analysis system (Giovanni). These subsystems are currently reused internally in a variety of combinations to implement customized data management on behalf of instrument science teams and other science investigators. Some of these subsystems (S4P and S4PM) have also been reused by other data centers for operational science processing. Our experience has been that development and utilization of robust interoperable and reusable software systems can actually flourish in environments defined by heterogeneous commodity hardware systems the emphasis on value-added customer service and the continual goal for achieving higher cost efficiencies. The repeated internal reuse that is fostered by such an environment encourages and even forces changes to the software that make it more reusable and adaptable. Allowing and even encouraging such selective pressures to software development has been a key factor In the success of S4P and S4PM which are now available to the open source community under the NASA Open source Agreement

  12. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  13. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering software development was automated using an expert system (rule-based) approach. The use of this technology offers benefits not available from current software development and maintenance methodologies. A workstation was built with a library or program data base with methods for browsing the designs stored; a system for graphical specification of designs including a capability for hierarchical refinement and definition in a graphical design system; and an automated code generation capability in FORTRAN. The workstation was then used in a demonstration with examples from an attitude control subsystem design for the space station. Documentation and recommendations are presented.

  14. TOPEX Software Document Series. Volume 5; Rev. 1; TOPEX GDR Processing

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey; Lockwood, Dennis; Hancock, David W., III

    2003-01-01

    This document is a compendium of the WFF TOPEX Software Development Team's knowledge regarding Geophysical Data Record (GDR) Processing. It includes many elements of a requirements document, a software specification document, a software design document, and a user's manual. In the more technical sections, this document assumes the reader is familiar with TOPEX and instrument files.

  15. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  16. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    NASA Technical Reports Server (NTRS)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  17. Effects of the Meetings-Flow Approach on Quality Teamwork in the Training of Software Capstone Projects

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Hong, Ya-Chun; Chen, Pei-Chi

    2014-01-01

    Software development relies heavily on teamwork; determining how to streamline this collaborative development is an essential training subject in computer and software engineering education. A team process known as the meetings-flow (MF) approach has recently been introduced in software capstone projects in engineering programs at various…

  18. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  19. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  20. Framework Support For Knowledge-Based Software Development

    NASA Astrophysics Data System (ADS)

    Huseth, Steve

    1988-03-01

    The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.

  1. Developing a theory of the strategic core of teams: a role composition model of team performance.

    PubMed

    Humphrey, Stephen E; Morgeson, Frederick P; Mannor, Michael J

    2009-01-01

    Although numerous models of team performance have been articulated over the past 20 years, these models have primarily focused on the individual attribute approach to team composition. The authors utilized a role composition approach, which investigates how the characteristics of a set of role holders impact team effectiveness, to develop a theory of the strategic core of teams. Their theory suggests that certain team roles are most important for team performance and that the characteristics of the role holders in the "core" of the team are more important for overall team performance. This theory was tested in 778 teams drawn from 29 years of major league baseball (1974'-2002). Results demonstrate that although high levels of experience and job-related skill are important predictors of team performance, the relationships between these constructs and team performance are significantly stronger when the characteristics are possessed by core role holders (as opposed to non-core role holders). Further, teams that invest more of their financial resources in these core roles are able to leverage such investments into significantly improved performance. These results have implications for team composition models, as they suggest a new method for considering individual contributions to a team's success that shifts the focus onto core roles. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  2. Framework for Development of Object-Oriented Software

    NASA Technical Reports Server (NTRS)

    Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan

    2004-01-01

    The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.

  3. Real-time development of data acquisition and analysis software for hands-on physiology education in neuroscience: G-PRIME.

    PubMed

    Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R

    2009-01-01

    We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.

  4. Automated Estimation Of Software-Development Costs

    NASA Technical Reports Server (NTRS)

    Roush, George B.; Reini, William

    1993-01-01

    COSTMODL is automated software development-estimation tool. Yields significant reduction in risk of cost overruns and failed projects. Accepts description of software product developed and computes estimates of effort required to produce it, calendar schedule required, and distribution of effort and staffing as function of defined set of development life-cycle phases. Written for IBM PC(R)-compatible computers.

  5. Software development: A paradigm for the future

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1989-01-01

    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented.

  6. Manager's handbook for software development, revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.

  7. Starlink Software Developments

    NASA Astrophysics Data System (ADS)

    Bly, M. J.; Giaretta, D.; Currie, M. J.; Taylor, M.

    Some current and upcoming software developments from Starlink were demonstrated. These included invoking traditional Starlink applications via web services, the current version of the ORAC-DR reduction pipeline, and some new Java-based tools including Treeview, an interactive explorer of hierarchical data structures.

  8. Effects of two types of intra-team feedback on developing a shared mental model in Command & Control teams.

    PubMed

    Rasker, P C; Post, W M; Schraagen, J M

    2000-08-01

    In two studies, the effect of two types of intra-team feedback on developing a shared mental model in Command & Control teams was investigated. A distinction is made between performance monitoring and team self-correction. Performance monitoring is the ability of team members to monitor each other's task execution and give feedback during task execution. Team self-correction is the process in which team members engage in evaluating their performance and in determining their strategies after task execution. In two experiments the opportunity to engage in performance monitoring, respectively team self-correction, was varied systematically. Both performance monitoring as well as team self-correction appeared beneficial in the improvement of team performance. Teams that had the opportunity to engage in performance monitoring, however, performed better than teams that had the opportunity to engage in team self-correction.

  9. Biotechnology software in the digital age: are you winning?

    PubMed

    Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S

    2018-01-16

    There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.

  10. Resource utilization during software development

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  11. Software Innovation in a Mission Critical Environment

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  12. Development and evaluation of a home enteral nutrition team.

    PubMed

    Dinenage, Sarah; Gower, Morwenna; Van Wyk, Joanna; Blamey, Anne; Ashbolt, Karen; Sutcliffe, Michelle; Green, Sue M

    2015-03-05

    The organisation of services to support the increasing number of people receiving enteral tube feeding (ETF) at home varies across regions. There is evidence that multi-disciplinary primary care teams focussed on home enteral nutrition (HEN) can provide cost-effective care. This paper describes the development and evaluation of a HEN Team in one UK city. A HEN Team comprising dietetians, nurses and a speech and language therapist was developed with the aim of delivering a quality service for people with gastrostomy tubes living at home. Team objectives were set and an underpinning framework of organisation developed including a care pathway and a schedule of training. Impact on patient outcomes was assessed in a pre-post test evaluation design. Patients and carers reported improved support in managing their ETF. Cost savings were realised through: (1) prevention of hospital admission and related transport for ETF related issues; (2) effective management and reduction of waste of feed and thickener; (3) balloon gastrostomy tube replacement by the HEN Team in the patient's home, and optimisation of nutritional status. This service evaluation demonstrated that the establishment of a dedicated multi-professional HEN Team focussed on achievement of key objectives improved patient experience and, although calculation of cost savings were estimates, provided evidence of cost-effectiveness.

  13. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 9

    DTIC Science & Technology

    2005-09-01

    2004. 12. Humphrey , Watts . Introduction to the Personal Software Process SM. Addison- Wesley 1997. 13. Humphrey , Watts . Introduction to the Team...Personal Software ProcessSM (PSPSM)is a software development process orig- inated by Watts Humphrey at the Software Engineering Institute (SEI) in the...meets its commitments and bring a sense of control and predictability into an apparently chaotic project.u References 1. Humphrey , Watts . Coaching

  14. Evaluating software development by analysis of changes: The data from the software engineering laboratory

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An effective data collection methodology for evaluating software development methodologies was applied to four different software development projects. Goals of the data collection included characterizing changes and errors, characterizing projects and programmers, identifying effective error detection and correction techniques, and investigating ripple effects. The data collected consisted of changes (including error corrections) made to the software after code was written and baselined, but before testing began. Data collection and validation were concurrent with software development. Changes reported were verified by interviews with programmers.

  15. Testing Software Development Project Productivity Model

    NASA Astrophysics Data System (ADS)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  16. Team Development for High Performance Management.

    ERIC Educational Resources Information Center

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  17. Group Development of Effective Governance Teams

    ERIC Educational Resources Information Center

    Mar, Deborah Katherine

    2011-01-01

    Purpose. The purpose of this study was to identify and describe the behaviors of effective governance teams as they move through stages of group development during regular school board meetings, utilizing the task and process behaviors identified in the Group Development Assessment (Jones & Bearley, 1994). Methodology. This mixed-methods…

  18. Combining Architecture-Centric Engineering with the Team Software Process

    DTIC Science & Technology

    2010-12-01

    colleagues from Quarksoft and CIMAT have re- cently reported on their experiences in “Introducing Software Architecture Development Methods into a TSP...Postmortem Lessons, new goals, new requirements, new risk , etc. Business and technical goals Estimates, plans, process, commitment Work products...architecture to mitigate the risks unco- vered by the ATAM. At the end of the iteration, version 1.0 of the architec- ture is available. Implement a second

  19. A view of software management issues

    NASA Technical Reports Server (NTRS)

    Manley, J. H.

    1985-01-01

    The Software Development Environment (SDE) Panel addressed key programmatic, scope, and structural issues raised by its members and the general audience regarding the proposed software development environment for the Space Station program. The general team approach taken by this group led to a consensus on 18 recommendations to NASA mangament regarding the acquisition and definition of the SDE. This approach was keyed by the initial issues presentation given to the general audience. Additional issues (for a total of 23) were developed by the panelists in their first closed session from which key areas were selected and discussed in open session. These discussions led to key recommendations which are summarized and described.

  20. Software Engineering Principles for Courseware Development.

    ERIC Educational Resources Information Center

    Magel, Kenneth

    1980-01-01

    Courseware (computer based curriculum materials) development should follow the lessons learned by software engineers. The most important of 28 principles of software development presented here include a stress on human readability, the importance of early planning and analysis, the need for independent evaluation, and the need to be flexible.…

  1. Closing gaps between open software and public data in a hackathon setting: User-centered software prototyping

    PubMed Central

    Busby, Ben; Lesko, Matthew; Federer, Lisa

    2016-01-01

    In genomics, bioinformatics and other areas of data science, gaps exist between extant public datasets and the open-source software tools built by the community to analyze similar data types.  The purpose of biological data science hackathons is to assemble groups of genomics or bioinformatics professionals and software developers to rapidly prototype software to address these gaps.  The only two rules for the NCBI-assisted hackathons run so far are that 1) data either must be housed in public data repositories or be deposited to such repositories shortly after the hackathon’s conclusion, and 2) all software comprising the final pipeline must be open-source or open-use.  Proposed topics, as well as suggested tools and approaches, are distributed to participants at the beginning of each hackathon and refined during the event.  Software, scripts, and pipelines are developed and published on GitHub, a web service providing publicly available, free-usage tiers for collaborative software development. The code resulting from each hackathon is published at https://github.com/NCBI-Hackathons/ with separate directories or repositories for each team. PMID:27134733

  2. Recommended approach to software development, revision 3

    NASA Technical Reports Server (NTRS)

    Landis, Linda; Waligora, Sharon; Mcgarry, Frank; Pajerski, Rose; Stark, Mike; Johnson, Kevin Orlin; Cover, Donna

    1992-01-01

    Guidelines for an organized, disciplined approach to software development that is based on studies conducted by the Software Engineering Laboratory (SEL) since 1976 are presented. It describes methods and practices for each phase of a software development life cycle that starts with requirements definition and ends with acceptance testing. For each defined life cycle phase, guidelines for the development process and its management, and for the products produced and their reviews are presented.

  3. COSTMODL: An automated software development cost estimation tool

    NASA Technical Reports Server (NTRS)

    Roush, George B.

    1991-01-01

    The cost of developing computer software continues to consume an increasing portion of many organizations' total budgets, both in the public and private sector. As this trend develops, the capability to produce reliable estimates of the effort and schedule required to develop a candidate software product takes on increasing importance. The COSTMODL program was developed to provide an in-house capability to perform development cost estimates for NASA software projects. COSTMODL is an automated software development cost estimation tool which incorporates five cost estimation algorithms including the latest models for the Ada language and incrementally developed products. The principal characteristic which sets COSTMODL apart from other software cost estimation programs is its capacity to be completely customized to a particular environment. The estimation equations can be recalibrated to reflect the programmer productivity characteristics demonstrated by the user's organization, and the set of significant factors which effect software development costs can be customized to reflect any unique properties of the user's development environment. Careful use of a capability such as COSTMODL can significantly reduce the risk of cost overruns and failed projects.

  4. Reducing Risk in DoD Software-Intensive Systems Development

    DTIC Science & Technology

    2016-03-01

    intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly

  5. Software Development Group. Software Review Center. Microcomputing Working Paper Series.

    ERIC Educational Resources Information Center

    Perkey, Nadine; Smith, Shirley C.

    Two papers describe the roles of the Software Development Group (SDG) and the Software Review Center (SRC) at Drexel University. The first paper covers the primary role of the SDG, which is designed to assist Drexel faculty with the technical design and programming of courseware for the Apple Macintosh microcomputer; the relationship of the SDG…

  6. Understanding Acceptance of Software Metrics--A Developer Perspective

    ERIC Educational Resources Information Center

    Umarji, Medha

    2009-01-01

    Software metrics are measures of software products and processes. Metrics are widely used by software organizations to help manage projects, improve product quality and increase efficiency of the software development process. However, metrics programs tend to have a high failure rate in organizations, and developer pushback is one of the sources…

  7. Development and validation of the primary care team dynamics survey.

    PubMed

    Song, Hummy; Chien, Alyna T; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Hacker, Karen; Rosenthal, Meredith B; Singer, Sara J

    2015-06-01

    To develop and validate a survey instrument designed to measure team dynamics in primary care. We studied 1,080 physician and nonphysician health care professionals working at 18 primary care practices participating in a learning collaborative aimed at improving team-based care. We developed a conceptual model and administered a cross-sectional survey addressing team dynamics, and we assessed reliability and discriminant validity of survey factors and the overall survey's goodness-of-fit using structural equation modeling. We administered the survey between September 2012 and March 2013. Overall response rate was 68 percent (732 respondents). Results support a seven-factor model of team dynamics, suggesting that conditions for team effectiveness, shared understanding, and three supportive processes are associated with acting and feeling like a team and, in turn, perceived team effectiveness. This model demonstrated adequate fit (goodness-of-fit index: 0.91), scale reliability (Cronbach's alphas: 0.71-0.91), and discriminant validity (average factor correlations: 0.49). It is possible to measure primary care team dynamics reliably using a 29-item survey. This survey may be used in ambulatory settings to study teamwork and explore the effect of efforts to improve team-based care. Future studies should demonstrate the importance of team dynamics for markers of team effectiveness (e.g., work satisfaction, care quality, clinical outcomes). © Health Research and Educational Trust.

  8. Team Production of Learner-Controlled Courseware: A Progress Report.

    ERIC Educational Resources Information Center

    Bunderson, C. Victor

    A project being conducted by the MITRE Corporation and Brigham Young University (BYU) is developing hardware, software, and courseware for the TICCIT (Time Shared, Interactive, Computer Controlled Information Television) computer-assisted instructional system. Four instructional teams at BYU, each having an instructional psychologist, subject…

  9. Strategies Used by Superintendents in Developing Leadership Teams

    ERIC Educational Resources Information Center

    Smith, Donna J.

    2013-01-01

    The purpose of this study was to determine the strategies public school superintendents across the nation use to develop executive leadership teams. Extensive research has been conducted in private for profit and medical settings, however relatively little research on leading teams has been conducted in the public education sector. Research based…

  10. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  11. General guidelines for biomedical software development

    PubMed Central

    Silva, Luis Bastiao; Jimenez, Rafael C.; Blomberg, Niklas; Luis Oliveira, José

    2017-01-01

    Most bioinformatics tools available today were not written by professional software developers, but by people that wanted to solve their own problems, using computational solutions and spending the minimum time and effort possible, since these were just the means to an end. Consequently, a vast number of software applications are currently available, hindering the task of identifying the utility and quality of each. At the same time, this situation has hindered regular adoption of these tools in clinical practice. Typically, they are not sufficiently developed to be used by most clinical researchers and practitioners. To address these issues, it is necessary to re-think how biomedical applications are built and adopt new strategies that ensure quality, efficiency, robustness, correctness and reusability of software components. We also need to engage end-users during the development process to ensure that applications fit their needs. In this review, we present a set of guidelines to support biomedical software development, with an explanation of how they can be implemented and what kind of open-source tools can be used for each specific topic. PMID:28443186

  12. FY 2002 Report on Software Visualization Techniques for IV and V

    NASA Technical Reports Server (NTRS)

    Fotta, Michael E.

    2002-01-01

    One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.

  13. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2017-10-01

    to patient safety by addressing key methodological and conceptual gaps in healthcare simulation-based team training. The investigators are developing...primary outcome of Aim 1a is a conceptually and methodologically sound training design architecture that supports the development and integration of team...should be delivered. This subtask was delayed by approximately 1 month and is now completed. Completed Evaluation of existing experimental dataset to

  14. Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment

    NASA Astrophysics Data System (ADS)

    Jabro, A.; Jabro, J.

    2012-04-01

    PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.

  15. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  16. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  17. Concept Development for Software Health Management

    NASA Technical Reports Server (NTRS)

    Riecks, Jung; Storm, Walter; Hollingsworth, Mark

    2011-01-01

    This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health Management (CDSHM) program was a NASA funded effort sponsored by the Integrated Vehicle Health Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured approach to software health management (SHM) through the development of a comprehensive failure taxonomy that is used to characterize the fundamental failure modes of safety-critical software.

  18. Development and Validation of the Primary Care Team Dynamics Survey

    PubMed Central

    Song, Hummy; Chien, Alyna T; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Hacker, Karen; Rosenthal, Meredith B; Singer, Sara J

    2015-01-01

    Objective To develop and validate a survey instrument designed to measure team dynamics in primary care. Data Sources/Study Setting We studied 1,080 physician and nonphysician health care professionals working at 18 primary care practices participating in a learning collaborative aimed at improving team-based care. Study Design We developed a conceptual model and administered a cross-sectional survey addressing team dynamics, and we assessed reliability and discriminant validity of survey factors and the overall survey's goodness-of-fit using structural equation modeling. Data Collection We administered the survey between September 2012 and March 2013. Principal Findings Overall response rate was 68 percent (732 respondents). Results support a seven-factor model of team dynamics, suggesting that conditions for team effectiveness, shared understanding, and three supportive processes are associated with acting and feeling like a team and, in turn, perceived team effectiveness. This model demonstrated adequate fit (goodness-of-fit index: 0.91), scale reliability (Cronbach's alphas: 0.71–0.91), and discriminant validity (average factor correlations: 0.49). Conclusions It is possible to measure primary care team dynamics reliably using a 29-item survey. This survey may be used in ambulatory settings to study teamwork and explore the effect of efforts to improve team-based care. Future studies should demonstrate the importance of team dynamics for markers of team effectiveness (e.g., work satisfaction, care quality, clinical outcomes). PMID:25423886

  19. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  20. Software development for airborne radar

    NASA Astrophysics Data System (ADS)

    Sundstrom, Ingvar G.

    Some aspects for development of software in a modern multimode airborne nose radar are described. First, an overview of where software is used in the radar units is presented. The development phases-system design, functional design, detailed design, function verification, and system verification-are then used as the starting point for the discussion. Methods, tools, and the most important documents are described. The importance of video flight recording in the early stages and use of a digital signal generators for performance verification is emphasized. Some future trends are discussed.

  1. WFF TOPEX Software Documentation Altimeter Instrument File (AIF) Processing, October 1998. Volume 3

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey; Lockwood, Dennis

    2003-01-01

    This document is a compendium of the WFF TOPEX Software Development Team's knowledge regarding Sensor Data Record (SDR) Processing. It includes many elements of a requirements document, a software specification document, a software design document, and a user's manual. In the more technical sections, this document assumes the reader is familiar with TOPEX and instrument files.

  2. Better team management--better team care?

    PubMed

    Shelley, P; Powney, B

    1994-01-01

    Team building should not be a 'bolt-on' extra, it should be a well planned, integrated part of developing teams and assisting their leaders. When asked to facilitate team building by a group of NHS managers we developed a framework which enabled individual members of staff to become more effective in the way they communicated with each other, their teams and in turn within the organization. Facing the challenge posed by complex organizational changes, staff were able to use 3 training days to increase and develop their awareness of the principles of teamwork, better team management, and how a process of leadership and team building could help yield better patient care.

  3. Penn State University ground software support for X-ray missions.

    NASA Astrophysics Data System (ADS)

    Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.

    1995-03-01

    The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.

  4. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  5. Software Architecture Evaluation in Global Software Development Projects

    NASA Astrophysics Data System (ADS)

    Salger, Frank

    Due to ever increasing system complexity, comprehensive methods for software architecture evaluation become more and more important. This is further stressed in global software development (GSD), where the software architecture acts as a central knowledge and coordination mechanism. However, existing methods for architecture evaluation do not take characteristics of GSD into account. In this paper we discuss what aspects are specific for architecture evaluations in GSD. Our experiences from GSD projects at Capgemini sd&m indicate, that architecture evaluations differ in how rigorously one has to assess modularization, architecturally relevant processes, knowledge transfer and process alignment. From our project experiences, we derive nine good practices, the compliance to which should be checked in architecture evaluations in GSD. As an example, we discuss how far the standard architecture evaluation method used at Capgemini sd&m already considers the GSD-specific good practices, and outline what extensions are necessary to achieve a comprehensive architecture evaluation framework for GSD.

  6. Team development interventions: Evidence-based approaches for improving teamwork.

    PubMed

    Lacerenza, Christina N; Marlow, Shannon L; Tannenbaum, Scott I; Salas, Eduardo

    2018-01-01

    The rate of teamwork and collaboration within the workforce has burgeoned over the years, and the use of teams is projected to continue increasing. With the rise of teamwork comes the need for interventions designed to enhance teamwork effectiveness. Successful teams produce desired outcomes; however, it is critical that team members demonstrate effective processes to achieve these outcomes. Team development interventions (TDIs) increase effective team competencies and processes, thereby leading to improvements in proximal and distal outcomes. The effectiveness of TDIs is evident across domains (e.g., education, health care, military, aviation), and they are applicable in a wide range of settings. To stimulate the adoption and effective use of TDIs, the current article provides a review of four types of evidence-based TDIs including team training, leadership training, team building, and team debriefing. In doing so, we aim to provide psychologists with an understanding of the scientific principles underlying TDIs and their impact on team dynamics. Moreover, we provide evidence-based recommendations regarding how to increase the effectiveness of TDIs as well as a discussion on future research needed within this domain. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Project Development Teams: A Novel Mechanism for Accelerating Translational Research

    PubMed Central

    Sajdyk, Tammy J.; Sors, Thomas G.; Hunt, Joe D.; Murray, Mary E.; Deford, Melanie E.; Shekhar, Anantha; Denne, Scott C.

    2014-01-01

    The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) Program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators. Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT Program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds. PMID:25319172

  8. Project development teams: a novel mechanism for accelerating translational research.

    PubMed

    Sajdyk, Tammy J; Sors, Thomas G; Hunt, Joe D; Murray, Mary E; Deford, Melanie E; Shekhar, Anantha; Denne, Scott C

    2015-01-01

    The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds.

  9. Distributed agile software development for the SKA

    NASA Astrophysics Data System (ADS)

    Wicenec, Andreas; Parsons, Rebecca; Kitaeff, Slava; Vinsen, Kevin; Wu, Chen; Nelson, Paul; Reed, David

    2012-09-01

    The SKA software will most probably be developed by many groups distributed across the globe and coming from dierent backgrounds, like industries and research institutions. The SKA software subsystems will have to cover a very wide range of dierent areas, but still they have to react and work together like a single system to achieve the scientic goals and satisfy the challenging data ow requirements. Designing and developing such a system in a distributed fashion requires proper tools and the setup of an environment to allow for ecient detection and tracking of interface and integration issues in particular in a timely way. Agile development can provide much faster feedback mechanisms and also much tighter collaboration between the customer (scientist) and the developer. Continuous integration and continuous deployment on the other hand can provide much faster feedback of integration issues from the system level to the subsystem developers. This paper describes the results obtained from trialing a potential SKA development environment based on existing science software development processes like ALMA, the expected distribution of the groups potentially involved in the SKA development and experience gained in the development of large scale commercial software projects.

  10. The MINERVA Software Development Process

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.

    2017-01-01

    This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.

  11. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  12. A Web-Based Data Collection Platform for Multisite Randomized Behavioral Intervention Trials: Development, Key Software Features, and Results of a User Survey.

    PubMed

    Modi, Riddhi A; Mugavero, Michael J; Amico, Rivet K; Keruly, Jeanne; Quinlivan, Evelyn Byrd; Crane, Heidi M; Guzman, Alfredo; Zinski, Anne; Montue, Solange; Roytburd, Katya; Church, Anna; Willig, James H

    2017-06-16

    Meticulous tracking of study data must begin early in the study recruitment phase and must account for regulatory compliance, minimize missing data, and provide high information integrity and/or reduction of errors. In behavioral intervention trials, participants typically complete several study procedures at different time points. Among HIV-infected patients, behavioral interventions can favorably affect health outcomes. In order to empower newly diagnosed HIV positive individuals to learn skills to enhance retention in HIV care, we developed the behavioral health intervention Integrating ENGagement and Adherence Goals upon Entry (iENGAGE) funded by the National Institute of Allergy and Infectious Diseases (NIAID), where we deployed an in-clinic behavioral health intervention in 4 urban HIV outpatient clinics in the United States. To scale our intervention strategy homogenously across sites, we developed software that would function as a behavioral sciences research platform. This manuscript aimed to: (1) describe the design and implementation of a Web-based software application to facilitate deployment of a multisite behavioral science intervention; and (2) report on results of a survey to capture end-user perspectives of the impact of this platform on the conduct of a behavioral intervention trial. In order to support the implementation of the NIAID-funded trial iENGAGE, we developed software to deploy a 4-site behavioral intervention for new clinic patients with HIV/AIDS. We integrated the study coordinator into the informatics team to participate in the software development process. Here, we report the key software features and the results of the 25-item survey to evaluate user perspectives on research and intervention activities specific to the iENGAGE trial (N=13). The key features addressed are study enrollment, participant randomization, real-time data collection, facilitation of longitudinal workflow, reporting, and reusability. We found 100% user

  13. Quality Assurance in Software Development: An Exploratory Investigation in Software Project Failures and Business Performance

    ERIC Educational Resources Information Center

    Ichu, Emmanuel A.

    2010-01-01

    Software quality is perhaps one of the most sought-after attributes in product development, however; this goal is unattained. Problem factors in software development and how these have affected the maintainability of the delivered software systems requires a thorough investigation. It was, therefore, very important to understand software…

  14. Software Development Management: Empirical and Analytical Perspectives

    ERIC Educational Resources Information Center

    Kang, Keumseok

    2011-01-01

    Managing software development is a very complex activity because it must deal with people, organizations, technologies, and business processes. My dissertation consists of three studies that examine software development management from various perspectives. The first study empirically investigates the impacts of prior experience with similar…

  15. Developing Pupils' Performance in Team Invasion Games

    ERIC Educational Resources Information Center

    Gray, Shirley; Sproule, John

    2011-01-01

    Background: To develop pupils' team invasion games (TIG) performance within physical education (PE), practitioners have traditionally adopted teacher-centred, skill-focused approaches. Teaching Games for Understanding and the Tactical approach are alternative approaches to TIG teaching that aim to develop overall game performance, including…

  16. Team performance in resuscitation teams: Comparison and critique of two recently developed scoring tools☆

    PubMed Central

    McKay, Anthony; Walker, Susanna T.; Brett, Stephen J.; Vincent, Charles; Sevdalis, Nick

    2012-01-01

    Background and aim Following high profile errors resulting in patient harm and attracting negative publicity, the healthcare sector has begun to focus on training non-technical teamworking skills as one way of reducing the rate of adverse events. Within the area of resuscitation, two tools have been developed recently aiming to assess these skills – TEAM and OSCAR. The aims of the study reported here were:1.To determine the inter-rater reliability of the tools in assessing performance within the context of resuscitation.2.To correlate scores of the same resuscitation teams episodes using both tools, thereby determining their concurrent validity within the context of resuscitation.3.To carry out a critique of both tools and establish how best each one may be utilised. Methods The study consisted of two phases – reliability assessment; and content comparison, and correlation. Assessments were made by two resuscitation experts, who watched 24 pre-recorded resuscitation simulations, and independently rated team behaviours using both tools. The tools were critically appraised, and correlation between overall score surrogates was assessed. Results Both OSCAR and TEAM achieved high levels of inter-rater reliability (in the form of adequate intra-class coefficients) and minor significant differences between Wilcoxon tests. Comparison of the scores from both tools demonstrated a high degree of correlation (and hence concurrent validity). Finally, critique of each tool highlighted differences in length and complexity. Conclusion Both OSCAR and TEAM can be used to assess resuscitation teams in a simulated environment, with the tools correlating well with one another. We envisage a role for both tools – with TEAM giving a quick, global assessment of the team, but OSCAR enabling more detailed breakdown of the assessment, facilitating feedback, and identifying areas of weakness for future training. PMID:22561464

  17. Bridging the Qualitative/Quantitative Software Divide

    PubMed Central

    Annechino, Rachelle; Antin, Tamar M. J.; Lee, Juliet P.

    2011-01-01

    To compare and combine qualitative and quantitative data collected from respondents in a mixed methods study, the research team developed a relational database to merge survey responses stored and analyzed in SPSS and semistructured interview responses stored and analyzed in the qualitative software package ATLAS.ti. The process of developing the database, as well as practical considerations for researchers who may wish to use similar methods, are explored. PMID:22003318

  18. The development of a tool to predict team performance.

    PubMed

    Sinclair, M A; Siemieniuch, C E; Haslam, R A; Henshaw, M J D C; Evans, L

    2012-01-01

    The paper describes the development of a tool to predict quantitatively the success of a team when executing a process. The tool was developed for the UK defence industry, though it may be useful in other domains. It is expected to be used by systems engineers in initial stages of systems design, when concepts are still fluid, including the structure of the team(s) which are expected to be operators within the system. It enables answers to be calculated for questions such as "What happens if I reduce team size?" and "Can I reduce the qualifications necessary to execute this process and still achieve the required level of success?". The tool has undergone verification and validation; it predicts fairly well and shows promise. An unexpected finding is that the tool creates a good a priori argument for significant attention to Human Factors Integration in systems projects. The simulations show that if a systems project takes full account of human factors integration (selection, training, process design, interaction design, culture, etc.) then the likelihood of team success will be in excess of 0.95. As the project derogates from this state, the likelihood of team success will drop as low as 0.05. If the team has good internal communications and good individuals in key roles, the likelihood of success rises towards 0.25. Even with a team comprising the best individuals, p(success) will not be greater than 0.35. It is hoped that these results will be useful for human factors professionals involved in systems design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. The Relevance of Software Development Education for Students

    ERIC Educational Resources Information Center

    Liebenberg, Janet; Huisman, Magda; Mentz, Elsa

    2015-01-01

    Despite a widely-acknowledged shortage of software developers, and reports of a gap between industry needs and software education, the possible gap between students' needs and software development education has not been explored in detail. In their university education, students want to take courses and carry out projects that clearly relate to…

  20. Developing Multi-Agency Teams: Implications of a National Programme Evaluation

    ERIC Educational Resources Information Center

    Simkins, Tim; Garrick, Ros

    2012-01-01

    This paper explores the factors which influence the effectiveness of formal development programmes targeted at multi-agency teams in children's services. It draws on two studies of the National College for School Leadership's Multi-Agency Teams Development programme, reporting key characteristics of the programme, short-term outcomes in terms of…

  1. Next generation of decision making software for nanopatterns characterization: application to semiconductor industry

    NASA Astrophysics Data System (ADS)

    Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.

    2016-03-01

    The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.

  2. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  3. APPLICATION OF SOFTWARE QUALITY ASSURANCE CONCEPTS AND PROCEDURES TO ENVIORNMENTAL RESEARCH INVOLVING SOFTWARE DEVELOPMENT

    EPA Science Inventory

    As EPA’s environmental research expands into new areas that involve the development of software, quality assurance concepts and procedures that were originally developed for environmental data collection may not be appropriate. Fortunately, software quality assurance is a ...

  4. A Bibliography of the Personal Software Process (PSP) and the Team Software Process (TSP)

    DTIC Science & Technology

    2009-10-01

    Postmortem.‖ Proceedings of the TSP Symposium (September 2007). http://www.sei.cmu.edu/tspsymposium/ Rickets , Chris; Lindeman, Robert; & Hodgins, Brad... Rickets , Chris A. ―A TSP Software Maintenance Life Cycle.‖ CrossTalk (March 2005). Rozanc, I. & Mahnic, V. ―Teaching Software Quality with Emphasis on PSP

  5. Médicarte software developed for the Quebec microprocessor health card project.

    PubMed

    Lavoie, G; Tremblay, L; Durant, P; Papillon, M J; Bérubé, J; Fortin, J P

    1995-01-01

    The Quebec Patient Smart Card Project is a Provincial Government initiative under the responsibility of the Rgie de l'assurance-maladie du Québec (Quebec Health Insurance Board). Development, implementation, and assessment duties were assigned to a team from Université Laval, which in turn joined a group from the Direction de la santé publique du Bas-St-Laurent in Rimouski, where the experiment is taking place. The pilot project seeks to evaluate the use and acceptance of a microprocessor card as a way to improve the exchange of clinical information between card users and various health professionals. The card can be best described as a résumé containing information pertinent to an individual's health history. It is not a complete medical file; rather, it is a summary to be used as a starting point for a discussion between health professionals and patients. The target population is composed of persons 60 years and over, pregnant women, infants under 18 months, and the residents of a small town located in the target area, St-Fabien, regardless of age. The health professionals involved are general practitioners, specialists, pharmacists, nurses, and ambulance personnel. Participation in the project is on a voluntary basis. Each health care provider participating in the project has a personal identification number (PIN) and must use both an access card and a user card to access information. This prevents unauthorized access to a patient's card and allows the staff to sign and date information entered onto the patient card. To test the microprocessor card, we developed software based on a problem-oriented approach integrating diagnosis, investigations, treatments, and referrals. This software is not an expert system that constrains the clinician to a particular decisional algorithm. Instead, the software supports the physician in decision making. The software was developed with a graphical interface (Windows 3.1) to maximize its user friendliness. A version of the

  6. The Development of Educational Teams. Strategies of Organizational Change Program.

    ERIC Educational Resources Information Center

    Schwartz, Mitchell; And Others

    This monograph is designed as an introductory guide to developing effective educational teams in school districts. Aimed at both preservice and inservice educators, it shows how teams can be used to support collaboration and mutual problem-solving at all levels of the school district and describes various issues related to the development of…

  7. Killer Apps: Developing Novel Applications That Enhance Team Coordination, Communication, and Effectiveness.

    PubMed

    Buengeler, Claudia; Klonek, Florian; Lehmann-Willenbrock, Nale; Morency, Louis-Philippe; Poppe, Ronald

    2017-10-01

    As part of the Lorentz workshop, "Interdisciplinary Insights into Group and Team Dynamics," held in Leiden, Netherlands, this article describes how Geeks and Groupies (computer and social scientists) may benefit from interdisciplinary collaboration toward the development of killer apps in team contexts that are meaningful and challenging for both. First, we discuss interaction processes during team meetings as a research topic for both Groupies and Geeks. Second, we highlight teamwork in health care settings as an interdisciplinary research challenge. Third, we discuss how an automated solution for optimal team design could benefit team effectiveness and feed into team-based interventions. Fourth, we discuss team collaboration in massive open online courses as a challenge for both Geeks and Groupies. We argue for the necessary integration of social and computational research insights and approaches. In the hope of inspiring future interdisciplinary collaborations, we develop criteria for evaluating killer apps-including the four proposed here-and discuss future research challenges and opportunities that potentially derive from these developments.

  8. Ethics in computer software design and development

    Treesearch

    Alan J. Thomson; Daniel L. Schmoldt

    2001-01-01

    Over the past 20 years, computer software has become integral and commonplace for operational and management tasks throughout agricultural and natural resource disciplines. During this software infusion, however, little thought has been afforded human impacts, both good and bad. This paper examines current ethical issues of software system design and development in...

  9. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  10. 77 FR 50724 - Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes for Digital... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants... clarifications, the enhanced consensus practices for developing software life-cycle processes for digital...

  11. Infusing Software Assurance Research Techniques into Use

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; DiVito, Ben; Feather, Martin S.; Hinchey, Michael; Markosian, Lawrence; Trevino, Luis C.

    2006-01-01

    Research in the software engineering community continues to lead to new development techniques that encompass processes, methods and tools. However, a number of obstacles impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may benefit them, and cannot afford to risk time and effort evaluating and trying one out while there remains uncertainty about whether it will work for them. Researchers cannot readily identify the practitioners whose problems would be amenable to their techniques, and, lacking feedback from practical applications, are hard-pressed to gauge the where and in what ways to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team established by NASA s Software Engineering Initiative to overcome these obstacles. .

  12. Development of a New VLBI Data Analysis Software

    NASA Technical Reports Server (NTRS)

    Bolotin, Sergei; Gipson, John M.; MacMillan, Daniel S.

    2010-01-01

    We present an overview of a new VLBI analysis software under development at NASA GSFC. The new software will replace CALC/SOLVE and many related utility programs. It will have the capabilities of the current system as well as incorporate new models and data analysis techniques. In this paper we give a conceptual overview of the new software. We formulate the main goals of the software. The software should be flexible and modular to implement models and estimation techniques that currently exist or will appear in future. On the other hand it should be reliable and possess production quality for processing standard VLBI sessions. Also, it needs to be capable of processing observations from a fully deployed network of VLBI2010 stations in a reasonable time. We describe the software development process and outline the software architecture.

  13. Towards a New Paradigm of Software Development: an Ambassador Driven Process in Distributed Software Companies

    NASA Astrophysics Data System (ADS)

    Kumlander, Deniss

    The globalization of companies operations and competitor between software vendors demand improving quality of delivered software and decreasing the overall cost. The same in fact introduce a lot of problem into software development process as produce distributed organization breaking the co-location rule of modern software development methodologies. Here we propose a reformulation of the ambassador position increasing its productivity in order to bridge communication and workflow gap by managing the entire communication process rather than concentrating purely on the communication result.

  14. Compensating the Administrative Team. The Administrative Team Career Development Series, Book 2.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    As part of the Administrative Team Career Development Series, this booklet outlines several factors to consider in establishing compensation structures for school district administrators. Such structures must balance the needs and interests of the employee, the school system, and the public. Salary, working conditions, and fringe benefits must all…

  15. A Measurement Framework for Team Level Assessment of Innovation Capability in Early Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik

    When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.

  16. The ALMA Common Software as a Basis for a Distributed Software Development

    NASA Astrophysics Data System (ADS)

    Raffi, Gianni; Chiozzi, Gianluca; Glendenning, Brian

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe, North America and Japan. ALMA will consist of 64 12-m antennas operating in the millimetre and sub-millimetre wavelength range, with baselines of more than 10 km. It will be located at an altitude above 5000 m in the Chilean Atacama desert. The ALMA Computing group is a joint group with staff scattered on 3 continents and is responsible for all the control and data flow software related to ALMA, including tools ranging from support of proposal preparation to archive access of automatically created images. Early in the project it was decided that an ALMA Common Software (ACS) would be developed as a way to provide to all partners involved in the development a common software platform. The original assumption was that some key middleware like communication via CORBA and the use of XML and Java would be part of the project. It was intended from the beginning to develop this software in an incremental way based on releases, so that it would then evolve into an essential embedded part of all ALMA software applications. In this way we would build a basic unity and coherence into a system that will have been developed in a distributed fashion. This paper evaluates our progress after 1.5 year of work, following a few tests and preliminary releases. It analyzes the advantages and difficulties of such an ambitious approach, which creates an interface across all the various control and data flow applications.

  17. Software project management tools in global software development: a systematic mapping study.

    PubMed

    Chadli, Saad Yasser; Idri, Ali; Ros, Joaquín Nicolás; Fernández-Alemán, José Luis; de Gea, Juan M Carrillo; Toval, Ambrosio

    2016-01-01

    Global software development (GSD) which is a growing trend in the software industry is characterized by a highly distributed environment. Performing software project management (SPM) in such conditions implies the need to overcome new limitations resulting from cultural, temporal and geographic separation. The aim of this research is to discover and classify the various tools mentioned in literature that provide GSD project managers with support and to identify in what way they support group interaction. A systematic mapping study has been performed by means of automatic searches in five sources. We have then synthesized the data extracted and presented the results of this study. A total of 102 tools were identified as being used in SPM activities in GSD. We have classified these tools, according to the software life cycle process on which they focus and how they support the 3C collaboration model (communication, coordination and cooperation). The majority of the tools found are standalone tools (77%). A small number of platforms (8%) also offer a set of interacting tools that cover the software development lifecycle. Results also indicate that SPM areas in GSD are not adequately supported by corresponding tools and deserve more attention from tool builders.

  18. Architected Agile Solutions for Software-Reliant Systems

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Lane, Jo Ann; Koolmanojwong, Supannika; Turner, Richard

    Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70% capabilities,” interoperability, net-centricity, and rapid adaptation to change. The latter need has led to increased interest in agile methods of software development, in which teams rely on shared tacit interpersonal knowledge rather than explicit documented knowledge. However, such systems often need to be scaled up to higher level of performance and assurance, requiring stronger architectural support. Several organizations have recently transformed themselves by developing successful combinations of agility and architecture that can scale to projects of up to 100 personnel. This chapter identifies a set of key principles for such architected agile solutions for software-reliant systems, provides guidance for how much architecting is enough, and illustrates the key principles with several case studies.

  19. Requirements Engineering in Building Climate Science Software

    ERIC Educational Resources Information Center

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  20. Advanced software development workstation project: Engineering scripting language. Graphical editor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  1. Architecture-Centric Development in Globally Distributed Projects

    NASA Astrophysics Data System (ADS)

    Sauer, Joachim

    In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.

  2. Pragmatic quality metrics for evolutionary software development models

    NASA Technical Reports Server (NTRS)

    Royce, Walker

    1990-01-01

    Due to the large number of product, project, and people parameters which impact large custom software development efforts, measurement of software product quality is a complex undertaking. Furthermore, the absolute perspective from which quality is measured (customer satisfaction) is intangible. While we probably can't say what the absolute quality of a software product is, we can determine the relative quality, the adequacy of this quality with respect to pragmatic considerations, and identify good and bad trends during development. While no two software engineers will ever agree on an optimum definition of software quality, they will agree that the most important perspective of software quality is its ease of change. We can call this flexibility, adaptability, or some other vague term, but the critical characteristic of software is that it is soft. The easier the product is to modify, the easier it is to achieve any other software quality perspective. This paper presents objective quality metrics derived from consistent lifecycle perspectives of rework which, when used in concert with an evolutionary development approach, can provide useful insight to produce better quality per unit cost/schedule or to achieve adequate quality more efficiently. The usefulness of these metrics is evaluated by applying them to a large, real world, Ada project.

  3. Measures and metrics for software development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The evaluations of and recommendations for the use of software development measures based on the practical and analytical experience of the Software Engineering Laboratory are discussed. The basic concepts of measurement and system of classification for measures are described. The principal classes of measures defined are explicit, analytic, and subjective. Some of the major software measurement schemes appearing in the literature are derived. The applications of specific measures in a production environment are explained. These applications include prediction and planning, review and assessment, and evaluation and selection.

  4. Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray

    This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less

  5. Team-Based Professional Development Interventions in Higher Education: A Systematic Review

    ERIC Educational Resources Information Center

    Gast, Inken; Schildkamp, Kim; van der Veen, Jan T.

    2017-01-01

    Most professional development activities focus on individual teachers, such as mentoring or the use of portfolios. However, new developments in higher education require teachers to work together in teams more often. Due to these changes, there is a growing need for professional development activities focusing on teams. Therefore, this review study…

  6. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    NASA Technical Reports Server (NTRS)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  7. The ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Farris, Allen; Sommer, Heiko

    2004-09-01

    The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.

  8. Software Development Standard for Mission Critical Systems

    DTIC Science & Technology

    2014-03-17

    new development, modification, reuse, reengineering, maintenance , or any other activity or combination of activities resulting in products . Within...develops” includes new development, modification, integration, reuse, reengineering, maintenance , or any other activity that results in products ... Maintenance organization. The organization that is responsible for modifying and otherwise sustaining the software and other software products and

  9. Software Requirements Specification for Lunar IceCube

    NASA Astrophysics Data System (ADS)

    Glaser-Garbrick, Michael R.

    Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.

  10. Killer Apps: Developing Novel Applications That Enhance Team Coordination, Communication, and Effectiveness

    PubMed Central

    Buengeler, Claudia; Klonek, Florian; Lehmann-Willenbrock, Nale; Morency, Louis-Philippe; Poppe, Ronald

    2017-01-01

    As part of the Lorentz workshop, “Interdisciplinary Insights into Group and Team Dynamics,” held in Leiden, Netherlands, this article describes how Geeks and Groupies (computer and social scientists) may benefit from interdisciplinary collaboration toward the development of killer apps in team contexts that are meaningful and challenging for both. First, we discuss interaction processes during team meetings as a research topic for both Groupies and Geeks. Second, we highlight teamwork in health care settings as an interdisciplinary research challenge. Third, we discuss how an automated solution for optimal team design could benefit team effectiveness and feed into team-based interventions. Fourth, we discuss team collaboration in massive open online courses as a challenge for both Geeks and Groupies. We argue for the necessary integration of social and computational research insights and approaches. In the hope of inspiring future interdisciplinary collaborations, we develop criteria for evaluating killer apps—including the four proposed here—and discuss future research challenges and opportunities that potentially derive from these developments. PMID:28989264

  11. A Project Team Analysis Using Tuckman's Model of Small-Group Development.

    PubMed

    Natvig, Deborah; Stark, Nancy L

    2016-12-01

    Concerns about equitable workloads for nursing faculty have been well documented, yet a standardized system for workload management does not exist. A project team was challenged to establish an academic workload management system when two dissimilar universities were consolidated. Tuckman's model of small-group development was used as the framework for the analysis of processes and effectiveness of a workload project team. Agendas, notes, and meeting minutes were used as the primary sources of information. Analysis revealed the challenges the team encountered. Utilization of a team charter was an effective tool in guiding the team to become a highly productive group. Lessons learned from the analysis are discussed. Guiding a diverse group into a highly productive team is complex. The use of Tuckman's model of small-group development provided a systematic mechanism to review and understand group processes and tasks. [J Nurs Educ. 2016;55(12):675-681.]. Copyright 2016, SLACK Incorporated.

  12. Career Development via Counselor/Teacher Teams; Guide for Implementation.

    ERIC Educational Resources Information Center

    Royal Oak City School District, MI.

    The career development modules of the implementation guide, designed by counselor/teacher teams in Royal Oak, Michigan for junior high students, are intended to be used as a working copy for counselor/teacher teams. Career education concepts of self-awareness, assessment, and decision-making are correlated with the broad questions of: Who am I?…

  13. Emerging Technologies for Software-Reliant Systems of Systems

    DTIC Science & Technology

    2010-09-01

    conditions, such as temperature, sound, vibration, light intensity , motion, or proximity to objects [Raghavendra 2006]. Cognitive Network A cognitive...systems evolutionary development emergent behavior geographic distribution Maier also defines four types of SoS based on their management...by multinational teams. Many organizations use offshoring as a way to reduce costs of software development. Large web- based systems often use

  14. Ethics and Morality in Software Development: A Developer's Perspective

    ERIC Educational Resources Information Center

    Stephenson, James H.

    2010-01-01

    Computers and other digital devices have become ubiquitous in our lives. Almost all aspects of our lives are in part or wholly impacted by computers and the software that runs on them. Unknowingly, we are placing our livelihoods and even our lives in the hands unknown software developers. Ethical and moral decisions made during software…

  15. Shared Mental Models on the Performance of e-Learning Content Development Teams

    ERIC Educational Resources Information Center

    Jo, Il-Hyun

    2012-01-01

    The primary purpose of the study was to investigate team-based e-Learning content development projects from the perspective of the shared mental model (SMM) theory. The researcher conducted a study of 79 e-Learning content development teams in Korea to examine the relationship between taskwork and teamwork SMMs and the performance of the teams.…

  16. A Padawan Programmer's Guide to Developing Software Libraries.

    PubMed

    Yurkovich, James T; Yurkovich, Benjamin J; Dräger, Andreas; Palsson, Bernhard O; King, Zachary A

    2017-11-22

    With the rapid adoption of computational tools in the life sciences, scientists are taking on the challenge of developing their own software libraries and releasing them for public use. This trend is being accelerated by popular technologies and platforms, such as GitHub, Jupyter, R/Shiny, that make it easier to develop scientific software and by open-source licenses that make it easier to release software. But how do you build a software library that people will use? And what characteristics do the best libraries have that make them enduringly popular? Here, we provide a reference guide, based on our own experiences, for developing software libraries along with real-world examples to help provide context for scientists who are learning about these concepts for the first time. While we can only scratch the surface of these topics, we hope that this article will act as a guide for scientists who want to write great software that is built to last. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SDDL- SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

    NASA Technical Reports Server (NTRS)

    Kleine, H.

    1994-01-01

    Effective, efficient communication is an essential element of the software development process. The Software Design and Documentation Language (SDDL) provides an effective communication medium to support the design and documentation of complex software applications. SDDL supports communication between all the members of a software design team and provides for the production of informative documentation on the design effort. Even when an entire development task is performed by a single individual, it is important to explicitly express and document communication between the various aspects of the design effort including concept development, program specification, program development, and program maintenance. SDDL ensures that accurate documentation will be available throughout the entire software life cycle. SDDL offers an extremely valuable capability for the design and documentation of complex programming efforts ranging from scientific and engineering applications to data management and business sytems. Throughout the development of a software design, the SDDL generated Software Design Document always represents the definitive word on the current status of the ongoing, dynamic design development process. The document is easily updated and readily accessible in a familiar, informative form to all members of the development team. This makes the Software Design Document an effective instrument for reconciling misunderstandings and disagreements in the development of design specifications, engineering support concepts, and the software design itself. Using the SDDL generated document to analyze the design makes it possible to eliminate many errors that might not be detected until coding and testing is attempted. As a project management aid, the Software Design Document is useful for monitoring progress and for recording task responsibilities. SDDL is a combination of language, processor, and methodology. The SDDL syntax consists of keywords to invoke design structures

  18. [Development of ophthalmologic software for handheld devices].

    PubMed

    Grottone, Gustavo Teixeira; Pisa, Ivan Torres; Grottone, João Carlos; Debs, Fernando; Schor, Paulo

    2006-01-01

    The formulas for calculation of intraocular lenses have evolved since the first theoretical formulas by Fyodorov. Among the second generation formulas, the SRK-I formula has a simple calculation, taking into account a calculation that only involved anteroposterior length, IOL constant and average keratometry. With the evolution of those formulas, complexicity increased making the reconfiguration of parameters in special situations impracticable. In this way the production and development of software for such a purpose, can help surgeons to recalculate those values if needed. To idealize, develop and test a Brazilian software for calculation of IOL dioptric power for handheld computers. For the development and programming of software for calculation of IOL, we used PocketC program (OrbWorks Concentrated Software, USA). We compared the results collected from a gold-standard device (Ultrascan/Alcon Labs) with the simulation of 100 fictitious patients, using the same IOL parameters. The results were grouped for ULTRASCAN data and SOFTWARE data. Using SRK/T formula the range of those parameters included a keratometry varying between 35 and 55D, axial length between 20 and 28 mm, IOL constants of 118.7, 118.3 and 115.8. Using Wilcoxon test, it was shown that the groups do not differ (p=0.314). We had a variation in the Ultrascan sample between 11.82 and 27.97. In the tested program sample the variation was practically similar (11.83-27.98). The average of the Ultrascan group was 20.93. The software group had a similar average. The standard deviation of the samples was also similar (4.53). The precision of IOL software for handheld devices was similar to that of the standard devices using the SRK/T formula. The software worked properly, was steady without bugs in tested models of operational system.

  19. 76 FR 10403 - Hewlett Packard (HP), Global Product Development, Engineering Workstation Refresh Team, Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors... groups: The Non-Information Technology Business Development Team, the Engineering Application Support Team, and the Engineering Workstation Refresh Team. On February 2, 2011, the Department issued an...

  20. Shaping the Culture: Organizational Development through Team Building.

    ERIC Educational Resources Information Center

    Yeager, James F.

    This practicum developed and implemented an organization development plan to improve agency and team effectiveness and staff satisfaction at a private agency that provides educational and treatment services to children with emotional, mental, or behavioral disorders. An extensive literature review on organizational development was conducted and…

  1. Motivating Company Personnel by Applying the Semi-self-organized Teams Principle

    NASA Astrophysics Data System (ADS)

    Kumlander, Deniss

    The only way nowadays to improve stability of software development process in the global rapidly evolving world is to be innovative and involve professionals into projects motivating them using both material and non material factors. In this paper self-organized teams are discussed. Unfortunately not all kind of organizations can benefit directly from agile method including applying self-organized teams. The paper proposes semi-self-organized teams presenting it as a new and promising motivating factor allowing deriving many positive sides of been self-organized and partly agile and been compliant to less strict conditions for following this innovating process. The semi-self organized teams are reliable at least in the short-term perspective and are simple to organize and support.

  2. Managed Development Environment Successes for MSFC's VIPA Team

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Corder, Gary; Owens, James; Meehan, Jim; Tidwell, Paul H.

    2005-01-01

    This paper outlines the best practices of the Vehicle Design Team for VIPA. The functions of the VIPA Vehicle Design (VVD) discipline team are to maintain the controlled reference geometry and provide linked, simplified geometry for each of the other discipline analyses. The core of the VVD work, and the approach for VVD s first task of controlling the reference geometry, involves systems engineering, top-down, layout-based CAD modeling within a Product Data Manager (PDM) development environment. The top- down approach allows for simple control of very large, integrated assemblies and greatly enhances the ability to generate trade configurations and reuse data. The second VVD task, model simplification for analysis, is handled within the managed environment through application of the master model concept. In this approach, there is a single controlling, or master, product definition dataset. Connected to this master model are reference datasets with live geometric and expression links. The referenced models can be for drawings, manufacturing, visualization, embedded analysis, or analysis simplification. A discussion of web based interaction, including visualization, between the design and other disciplines is included. Demonstrated examples are cited, including the Space Launch Initiative development cycle, the Saturn V systems integration and verification cycle, an Orbital Space Plane study, and NASA Exploration Office studies of Shuttle derived and clean sheet launch vehicles. The VIPA Team has brought an immense amount of detailed data to bear on program issues. A central piece of that success has been the Managed Development Environment and the VVD Team approach to modeling.

  3. SCaN Testbed Software Development and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  4. Developing Confidence Limits For Reliability Of Software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1991-01-01

    Technique developed for estimating reliability of software by use of Moranda geometric de-eutrophication model. Pivotal method enables straightforward construction of exact bounds with associated degree of statistical confidence about reliability of software. Confidence limits thus derived provide precise means of assessing quality of software. Limits take into account number of bugs found while testing and effects of sampling variation associated with random order of discovering bugs.

  5. Enabling Software Acquisition Improvement: Government and Industry Software Development Team Acquisition Model

    DTIC Science & Technology

    2010-04-30

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining...previous and current complex SW development efforts, the program offices will have a source of objective lessons learned and metrics that can be applied...the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

  6. Built To Last: Using Iterative Development Models for Sustainable Scientific Software Development

    NASA Astrophysics Data System (ADS)

    Jasiak, M. E.; Truslove, I.; Savoie, M.

    2013-12-01

    In scientific research, software development exists fundamentally for the results they create. The core research must take focus. It seems natural to researchers, driven by grant deadlines, that every dollar invested in software development should be used to push the boundaries of problem solving. This system of values is frequently misaligned with those of the software being created in a sustainable fashion; short-term optimizations create longer-term sustainability issues. The National Snow and Ice Data Center (NSIDC) has taken bold cultural steps in using agile and lean development and management methodologies to help its researchers meet critical deadlines, while building in the necessary support structure for the code to live far beyond its original milestones. Agile and lean software development and methodologies including Scrum, Kanban, Continuous Delivery and Test-Driven Development have seen widespread adoption within NSIDC. This focus on development methods is combined with an emphasis on explaining to researchers why these methods produce more desirable results for everyone, as well as promoting developers interacting with researchers. This presentation will describe NSIDC's current scientific software development model, how this addresses the short-term versus sustainability dichotomy, the lessons learned and successes realized by transitioning to this agile and lean-influenced model, and the current challenges faced by the organization.

  7. Applying CASE Tools for On-Board Software Development

    NASA Astrophysics Data System (ADS)

    Brammer, U.; Hönle, A.

    For many space projects the software development is facing great pressure with respect to quality, costs and schedule. One way to cope with these challenges is the application of CASE tools for automatic generation of code and documentation. This paper describes two CASE tools: Rhapsody (I-Logix) featuring UML and ISG (BSSE) that provides modeling of finite state machines. Both tools have been used at Kayser-Threde in different space projects for the development of on-board software. The tools are discussed with regard to the full software development cycle.

  8. Software Capability Evaluation Version 2.0 Method Description

    DTIC Science & Technology

    1994-06-01

    These criteria are discussed below; they include training, team composition, team leadership , team member experience and knowledge, individual...previous SCEs. No more than one team member should have less than two years of professional software experience. 3 Leadership . Ideally, the team leader...features: e leadership - the assignment of responsibility the presence of sponsorship. * organizational policies - there are written po! ;goveming the

  9. Sustainability of cross-functional teams for marketing strategy development and implementation.

    PubMed

    Kono, Ken; Antonucci, Don

    2006-01-01

    This article presents a case study on a cross-functional team used for marketing strategy development and execution at a health insurance company. The study found a set of success factors that contributed to the initial success of the team, but the factors were not enough to maintain the team's high level of productivity over time. The study later identified a set of 8 factors that helped sustain the team's high-productivity level. The 2 sets (ie, success and its subsequent sustainability factors) are analyzed against a normative model of team effectiveness. All the factors are explained by the normative model except for 1 sustainability factor, "challenge motivator." In fact, the study found the "challenge motivator" to be the most critical factor to keep up the team's productivity over time. Apart from a performance crisis, the authors developed 3 "challenge motivators"--first, more granular market information that could unearth hidden performance issues; second, constant value creation to shareholders as the firm being publicly traded; and third, the firm's strategic mandate to meet and exceed customer expectations that puts ultimate performance pressure on the marketing strategy team.

  10. Lean Development with the Morpheus Simulation Software

    NASA Technical Reports Server (NTRS)

    Brogley, Aaron C.

    2013-01-01

    The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.

  11. Standardized development of computer software. Part 1: Methods

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1976-01-01

    This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change.

  12. Educational Affordances and Learning Design in Music Software Development

    ERIC Educational Resources Information Center

    Cheng, Lee; Leong, Samuel

    2017-01-01

    Although music software has become increasingly affordable and widely adopted in today's classrooms, concerns have been raised about a lack of consideration for users' needs during the software development process. This paper examines intra- and inter-sectoral communication pertaining to software development and music education to shed light on…

  13. A Systematic Review of Developing Team Competencies in Information Systems Education

    ERIC Educational Resources Information Center

    Figl, Kathrin

    2010-01-01

    The ability to work effectively in teams has been a key competence for information systems engineers for a long time. Gradually, more attention is being paid to developing this generic competence as part of academic curricula, resulting in two questions: how to best promote team competencies and how to implement team projects successfully. These…

  14. Documenting the decision structure in software development

    NASA Technical Reports Server (NTRS)

    Wild, J. Christian; Maly, Kurt; Shen, Stewart N.

    1990-01-01

    Current software development paradigms focus on the products of the development process. Much of the decision making process which produces these products is outside the scope of these paradigms. The Decision-Based Software Development (DBSD) paradigm views the design process as a series of interrelated decisions which involve the identification and articulation of problems, alternates, solutions and justifications. Decisions made by programmers and analysts are recorded in a project data base. Unresolved problems are also recorded and resources for their resolution are allocated by management according to the overall development strategy. This decision structure is linked to the products affected by the relevant decision and provides a process oriented view of the resulted system. Software maintenance uses this decision view of the system to understand the rationale behind the decisions affecting the part of the system to be modified. D-HyperCase, a prototype Decision-Based Hypermedia System is described and results of applying the DBSD approach during its development are presented.

  15. Embracing Open Software Development in Solar Physics

    NASA Astrophysics Data System (ADS)

    Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.

    2012-12-01

    We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We

  16. Evaluating software development characteristics: A comparison of software errors in different environments

    NASA Technical Reports Server (NTRS)

    Weiss, D. M.

    1981-01-01

    Error data obtained from two different software development environments are compared. To obtain data that was complete, accurate, and meaningful, a goal-directed data collection methodology was used. Changes made to software were monitored concurrently with its development. Similarities common to both environments are included: (1) the principal error was in the design and implementation of single routines; (2) few errors were the result of changes, required more than one attempt to correct, and resulted in other errors; (3) relatively few errors took more than a day to correct.

  17. Developing Software for Pharmacodynamics and Bioassay Studies

    DTIC Science & Technology

    The objective of the project is to develop a software system to process general pharmacologic, toxicological, or other biomedical research data that...exhibit a non-monotonic dose-response relationship - for which the current parametric models fail. The software will analyze dose-response

  18. Educational Software--New Guidelines for Development.

    ERIC Educational Resources Information Center

    Gold, Patricia Cohen

    1984-01-01

    Discusses standards developed by the Educational Computer Service of the National Education Association that incorporate technical, educational, and documentation components to guide authors in the development of quality educational software. (Author/MBR)

  19. Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Hammond, G. E.

    2017-12-01

    Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such

  20. Advanced program development management software system. Software description and user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives of this project were to apply emerging techniques and tools from the computer science discipline of paperless management to the activities of the Space Transportation and Exploration Office (PT01) in Marshall Space Flight Center (MSFC) Program Development, thereby enhancing the productivity of the workforce, the quality of the data products, and the collection, dissemination, and storage of information. The approach used to accomplish the objectives emphasized the utilization of finished form (off-the-shelf) software products to the greatest extent possible without impacting the performance of the end product, to pursue developments when necessary in the rapid prototyping environment to provide a mechanism for frequent feedback from the users, and to provide a full range of user support functions during the development process to promote testing of the software.

  1. Methodology for Software Reliability Prediction. Volume 2.

    DTIC Science & Technology

    1987-11-01

    The overall acquisition ,z program shall include the resources, schedule, management, structure , and controls necessary to ensure that specified AD...Independent Verification/Validation - Programming Team Structure - Educational Level of Team Members - Experience Level of Team Members * Methods Used...Prediction or Estimation Parameter Supported: Software - Characteristics 3. Objectives: Structured programming studies and Government Ur.’.. procurement

  2. Interdisciplinary team interactions: a qualitative study of perceptions of team function in simulated anaesthesia crises.

    PubMed

    Weller, Jennifer M; Janssen, Anna L; Merry, Alan F; Robinson, Brian

    2008-04-01

    We placed anaesthesia teams into a stressful environment in order to explore interactions between members of different professional groups and to investigate their perspectives on the impact of these interactions on team performance. Ten anaesthetists, 5 nurses and 5 trained anaesthetic assistants each participated in 2 full-immersion simulations of critical events using a high-fidelity computerised patient simulator. Their perceptions of team interactions were explored through questionnaires and semi-structured interviews. Written questionnaire data and interview transcriptions were entered into N6 qualitative software. Data were analysed by 2 investigators for emerging themes and coded to produce reports on each theme. We found evidence of limited understanding of the roles and capabilities of team members across professional boundaries, different perceptions of appropriate roles and responsibilities for different members of the team, limited sharing of information between team members and limited team input into decision making. There was a perceived impact on task distribution and the optimal utilisation of resources within the team. Effective management of medical emergencies depends on optimal team function. We have identified important factors affecting interactions between different health professionals in the anaesthesia team, and their perceived influences on team function. This provides evidence on which to build appropriate and specific strategies for interdisciplinary team training in operating theatre staff.

  3. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  4. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams.

    PubMed

    Van Hooft, Edwin A J; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams' composition in terms of individual-level trait procrastination, as well as the teams' motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members' stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams' collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  5. Software Project Management and Measurement on the World-Wide-Web (WWW)

    NASA Technical Reports Server (NTRS)

    Callahan, John; Ramakrishnan, Sudhaka

    1996-01-01

    We briefly describe a system for forms-based, work-flow management that helps members of a software development team overcome geographical barriers to collaboration. Our system, called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-Web service that allows for management and measurement of software development projects based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software development process, provides informal communication between the users with different roles, supports to-do lists, and helps in software process improvement. WISE minimizes the time devoted to metrics collection and analysis by providing implicit delivery of messages between users based on the content of project documents. The use of a database in WISE is hidden from the users who view WISE as maintaining a personal 'to-do list' of tasks related to the many projects on which they may play different roles.

  6. A high order approach to flight software development and testing

    NASA Technical Reports Server (NTRS)

    Steinbacher, J.

    1981-01-01

    The use of a software development facility is discussed as a means of producing a reliable and maintainable ECS software system, and as a means of providing efficient use of the ECS hardware test facility. Principles applied to software design are given, including modularity, abstraction, hiding, and uniformity. The general objectives of each phase of the software life cycle are also given, including testing, maintenance, code development, and requirement specifications. Software development facility tools are summarized, and tool deficiencies recognized in the code development and testing phases are considered. Due to limited lab resources, the functional simulation capabilities may be indispensable in the testing phase.

  7. Communication skills to develop trusting relationships on global virtual engineering capstone teams

    NASA Astrophysics Data System (ADS)

    Zaugg, Holt; Davies, Randall S.

    2013-05-01

    As universities seek to provide cost-effective, cross-cultural experiences using global virtual (GV) teams, the 'soft' communication skills typical of all teams, increases in importance for GV teams. Students need to be taught how to navigate through cultural issues and virtual tool issues to build strong trusting relationships with distant team members. Weekly team meetings provide an excellent opportunity to observe key team interactions that facilitate relationship and trust-building among team members. This study observed the weekly team meetings of engineering students attending two US universities and one Asian university as they collaborated as a single GV capstone GV team. In addition local team members were interviewed individually and collectively throughout the project to determine strategies that facilitated team relations and trust. Findings indicate the importance of student choice of virtual communication tools, the refining of communication practices, and specific actions to build trusting relationships. As student developed these attributes, collaboration and success was experienced on this GV team.

  8. Emerging Software Development and Acquisition Approaches: Panacea or Villain

    DTIC Science & Technology

    2011-05-16

    2010 Carnegie Mellon University Emerging Software Development and Acquisition Approaches: Panacea or Villain Software Engineering Institute...aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for...Emerging Software Development and Acquisition Approaches: Panacea or Villain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  9. Developing Collaboration Skills in Team Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Sturner, Kelly K.; Bishop, Pamela; Lenhart, Suzanne M.

    2017-01-01

    Interdisciplinary undergraduate research experiences often require students to work in teams with other students and researchers from different disciplines, creating a need for development of new skills in interdisciplinary collaboration. In this paper, we describe our unique efforts to mentor participants in developing these skills during our…

  10. Software metrics: The quantitative impact of four factors on work rates experienced during software development. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Gaffney, J. E., Jr.; Judge, R. W.

    1981-01-01

    A model of a software development process is described. The software development process is seen to consist of a sequence of activities, such as 'program design' and 'module development' (or coding). A manpower estimate is made by multiplying code size by the rates (man months per thousand lines of code) for each of the activities relevant to the particular case of interest and summing up the results. The effect of four objectively determinable factors (organization, software product type, computer type, and code type) on productivity values for each of nine principal software development activities was assessed. Four factors were identified which account for 39% of the observed productivity variation.

  11. Study on Spacelab software development and integration concepts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.

  12. The Use of Flexible, Interactive, Situation-Focused Software for the E-Learning of Mathematics.

    ERIC Educational Resources Information Center

    Farnsworth, Ralph Edward

    This paper discusses the classroom, home, and distance use of new, flexible, interactive, application-oriented software known as Active Learning Suite. The actual use of the software, not just a controlled experiment, is reported on. Designed for the e-learning of university mathematics, the program was developed by a joint U.S.-Russia team and…

  13. Post-Modern Software Development

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    The history of software development includes elements of art, science, engineering, and fashion(though very little manufacturing). In all domains, old ideas give way or evolve to new ones: in the fine arts, the baroque gave way to rococo, romanticism, modernism, postmodernism, and so forth. What is the postmodern programming equivalent? That is, what comes after object orientation?

  14. Dependability modeling and assessment in UML-based software development.

    PubMed

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results.

  15. Dependability Modeling and Assessment in UML-Based Software Development

    PubMed Central

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C.

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428

  16. Interactive Programming Support for Secure Software Development

    ERIC Educational Resources Information Center

    Xie, Jing

    2012-01-01

    Software vulnerabilities originating from insecure code are one of the leading causes of security problems people face today. Unfortunately, many software developers have not been adequately trained in writing secure programs that are resistant from attacks violating program confidentiality, integrity, and availability, a style of programming…

  17. Point of care use of a personal digital assistant for patient consultation management: experience of an intravenous resource nurse team in a major Canadian teaching hospital.

    PubMed

    Bosma, Laine; Balen, Robert M; Davidson, Erin; Jewesson, Peter J

    2003-01-01

    The development and integration of a personal digital assistant (PDA)-based point-of-care database into an intravenous resource nurse (IVRN) consultation service for the purposes of consultation management and service characterization are described. The IVRN team provides a consultation service 7 days a week in this 1000-bed tertiary adult care teaching hospital. No simple, reliable method for documenting IVRN patient care activity and facilitating IVRN-initiated patient follow-up evaluation was available. Implementation of a PDA database with exportability of data to statistical analysis software was undertaken in July 2001. A Palm IIIXE PDA was purchased and a three-table, 13-field database was developed using HanDBase software. During the 7-month period of data collection, the IVRN team recorded 4868 consultations for 40 patient care areas. Full analysis of service characteristics was conducted using SPSS 10.0 software. Team members adopted the new technology with few problems, and the authors now can efficiently track and analyze the services provided by their IVRN team.

  18. New technologies for supporting real-time on-board software development

    NASA Astrophysics Data System (ADS)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  19. Critical Software for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael

    2017-01-01

    The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.

  20. Team-Based Development of Medical Devices: An Engineering–Business Collaborative

    PubMed Central

    Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.

    2016-01-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869

  1. Team-Based Development of Medical Devices: An Engineering-Business Collaborative.

    PubMed

    Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G

    2016-07-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.

  2. Team behaviors: working effectively in teams.

    PubMed

    Wilson, C K

    1998-12-01

    The work of building and sustaining teams is often underestimated by middle managers. A manager must have the ability to develop and evolve staff toward a new level of competence, required because of radically upgraded expectations. Managers must be clear about what it means to empower teams, to avoid the trappings of giving "lip service" to authority boundaries, which may exist only on paper. Achieving this clarity means understanding the characteristics of effective teams: a high degree of interdependence, strong sense of organizational empowerment, self-determination, competence, commitment, and genuine concern about the quality of work being performed. An important tool for the manager interested in team development is the creation of a performance model, grounded in the foundational relationship competencies necessary for team success. Performance modeling assists not only in identifying of competency gaps that can be addressed by training but also in determining the workplace barriers to team success.

  3. Final Report. Center for Scalable Application Development Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codesmore » for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.« less

  4. Developing sustainable software solutions for bioinformatics by the “ Butterfly” paradigm

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2014-01-01

    Software design and sustainable software engineering are essential for the long-term development of bioinformatics software. Typical challenges in an academic environment are short-term contracts, island solutions, pragmatic approaches and loose documentation. Upcoming new challenges are big data, complex data sets, software compatibility and rapid changes in data representation. Our approach to cope with these challenges consists of iterative intertwined cycles of development (“ Butterfly” paradigm) for key steps in scientific software engineering. User feedback is valued as well as software planning in a sustainable and interoperable way. Tool usage should be easy and intuitive. A middleware supports a user-friendly Graphical User Interface (GUI) as well as a database/tool development independently. We validated the approach of our own software development and compared the different design paradigms in various software solutions. PMID:25383181

  5. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  6. A Core Plug and Play Architecture for Reusable Flight Software Systems

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.

  7. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams

    PubMed Central

    Van Hooft, Edwin A. J.; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team’s life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams’ composition in terms of individual-level trait procrastination, as well as the teams’ motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members’ stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams’ collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination. PMID:29674991

  8. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  9. Framework Based Guidance Navigation and Control Flight Software Development

    NASA Technical Reports Server (NTRS)

    McComas, David

    2007-01-01

    This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.

  10. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  11. Best practices for team-based assistive technology design courses.

    PubMed

    Goldberg, Mary R; Pearlman, Jonathan L

    2013-09-01

    Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.

  12. The caCORE Software Development Kit: Streamlining construction of interoperable biomedical information services

    PubMed Central

    Phillips, Joshua; Chilukuri, Ram; Fragoso, Gilberto; Warzel, Denise; Covitz, Peter A

    2006-01-01

    Background Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs). The National Cancer Institute (NCI) developed the cancer common ontologic representation environment (caCORE) to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK) was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. Results The caCORE SDK requires a Unified Modeling Language (UML) tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR) using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG) program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has emerged as a key

  13. The caCORE Software Development Kit: streamlining construction of interoperable biomedical information services.

    PubMed

    Phillips, Joshua; Chilukuri, Ram; Fragoso, Gilberto; Warzel, Denise; Covitz, Peter A

    2006-01-06

    Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs). The National Cancer Institute (NCI) developed the cancer common ontologic representation environment (caCORE) to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK) was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. The caCORE SDK requires a Unified Modeling Language (UML) tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR) using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG) program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has emerged as a key enabling technology for

  14. Development problem analysis of correlation leak detector’s software

    NASA Astrophysics Data System (ADS)

    Faerman, V. A.; Avramchuk, V. S.; Marukyan, V. M.

    2018-05-01

    In the article, the practical application and the structure of the correlation leak detectors’ software is studied and the task of its designing is analyzed. In the first part of the research paper, the expediency of the facilities development of correlation leak detectors for the following operating efficiency of public utilities exploitation is shown. The analysis of the functional structure of correlation leak detectors is conducted and its program software tasks are defined. In the second part of the research paper some development steps of the software package – requirement forming, program structure definition and software concept creation – are examined in the context of the usage experience of the hardware-software prototype of correlation leak detector.

  15. Implementing Kanban for agile process management within the ALMA Software Operations Group

    NASA Astrophysics Data System (ADS)

    Reveco, Johnny; Mora, Matias; Shen, Tzu-Chiang; Soto, Ruben; Sepulveda, Jorge; Ibsen, Jorge

    2014-07-01

    After the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA), the Software Operations Group in Chile has refocused its objectives to: (1) providing software support to tasks related to System Integration, Scientific Commissioning and Verification, as well as Early Science observations; (2) testing the remaining software features, still under development by the Integrated Computing Team across the world; and (3) designing and developing processes to optimize and increase the level of automation of operational tasks. Due to their different stakeholders, each of these tasks presents a wide diversity of importances, lifespans and complexities. Aiming to provide the proper priority and traceability for every task without stressing our engineers, we introduced the Kanban methodology in our processes in order to balance the demand on the team against the throughput of the delivered work. The aim of this paper is to share experiences gained during the implementation of Kanban in our processes, describing the difficulties we have found, solutions and adaptations that led us to our current but still evolving implementation, which has greatly improved our throughput, prioritization and problem traceability.

  16. Engineering software development with HyperCard

    NASA Technical Reports Server (NTRS)

    Darko, Robert J.

    1990-01-01

    The successful and unsuccessful techniques used in the development of software using HyperCard are described. The viability of the HyperCard for engineering is evaluated and the future use of HyperCard by this particular group of developers is discussed.

  17. Toward Developing Authentic Leadership: Team-Based Simulations

    ERIC Educational Resources Information Center

    Shapira-Lishchinsky, Orly

    2014-01-01

    Although there is a consensus that authentic leadership should be an essential component in educational leadership, no study to date has ever tried to find whether team-based simulations may promote authentic leadership. The purpose of this study was to identify whether principal trainees can develop authentic leadership through ethical decision…

  18. Terra Harvest software architecture

    NASA Astrophysics Data System (ADS)

    Humeniuk, Dave; Klawon, Kevin

    2012-06-01

    Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.

  19. Towards a general object-oriented software development methodology

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED; Stark, Mike

    1986-01-01

    Object diagrams were used to design a 5000 statement team training exercise and to design the entire dynamics simulator. The object diagrams are also being used to design another 50,000 statement Ada system and a personal computer based system that will be written in Modula II. The design methodology evolves out of these experiences as well as the limitations of other methods that were studied. Object diagrams, abstraction analysis, and associated principles provide a unified framework which encompasses concepts from Yourdin, Booch, and Cherry. This general object-oriented approach handles high level system design, possibly with concurrency, through object-oriented decomposition down to a completely functional level. How object-oriented concepts can be used in other phases of the software life-cycle, such as specification and testing is being studied concurrently.

  20. Development of Efficient Authoring Software for e-Learning Contents

    NASA Astrophysics Data System (ADS)

    Kozono, Kazutake; Teramoto, Akemi; Akiyama, Hidenori

    The contents creation in e-Learning system becomes an important problem. The contents of e-Learning should include figure and voice media for a high-level educational effect. However, the use of figure and voice complicates the operation of authoring software considerably. A new authoring software, which can build e-Learning contents efficiently, has been developed to solve this problem. This paper reports development results of the authoring software.

  1. Flight dynamics system software development environment (FDS/SDE) tutorial

    NASA Technical Reports Server (NTRS)

    Buell, John; Myers, Philip

    1986-01-01

    A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.

  2. Team Trust in Online Education: Assessing and Comparing Team-Member Trust in Online Teams versus Face-to-Face Teams

    ERIC Educational Resources Information Center

    Beranek, Peggy M.; French, Monique L.

    2011-01-01

    Trust is a key factor in enabling effective team performance and, in online teams, needs to be built quickly and early. As universities expand their online offerings students are increasingly working in online teams. Understanding how trust development may differ in online teams versus face-to-face can have implications for online education…

  3. Team Software Process (TSP) Body of Knowledge (BOK)

    DTIC Science & Technology

    2010-07-01

    styles that correspond stereotypical extremes of group control and coordination, as shown in Figure 5. closed, random, open, and synchronous group ...and confirming the resolutions • managing the design change process and coordinating changes with the configuration control board • reporting...members. 123 | CMU/SEI-2010-TR-020 4. Coaching – Obtain a lead coach and the coaches for each team. 5. Conceptual design – Form a working group of

  4. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  5. The Scientist and the Educational Development Team: An Impedance Mismatch?

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.

    2001-05-01

    This talk describes my experiences and those of several other scientists who have worked on teams to develop new instructional materials and programs. At each stage of the development process we try to communicate our skills and experiences to the rest of the development team. In turn, the experiences of non-scientist educators on the team must be communicated to us. However, in many cases there is an "impedance mismatch" which makes communication difficult. One primary source of this mismatch is the scientist's lack of experience with schools, students, teachers, school administrators, museums, and the public. The result of this mismatch can leave the scientist in one limited, but useful role: proofreader and critic. Unfortunately, this can hardly be described as a partnership. This talk gives some advice, based on 25 years of educational materials and program development work, on how to avoid such a limited role. The talk would be appropriate for those scientists who want to lead, inspire, or significantly contribute to educational initiatives and to share in the frustration and the rewards enjoyed by professional educators and professional educational developers. S. Pompea is an adjunct faculty member of Steward Observatory of the University of Arizona.

  6. Exploring the Development of Critical Incident Response Teams

    ERIC Educational Resources Information Center

    Lockhart, Charlotte Fiona; Woods, Kevin

    2017-01-01

    Critical incidents, such as human or natural disasters, can have profound effects upon children and young people, and upon the adults who work with and care for them. Educational psychologists have contributed to and led the development of critical incident response teams to support those affected. This study sought to develop understanding of the…

  7. Reconfigurable Software for Controlling Formation Flying

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph B.

    2006-01-01

    Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.

  8. Guidance and Control Software Project Data - Volume 2: Development Documents

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes the development documents from the GCS project. Volume 2 contains three appendices: A. Guidance and Control Software Development Specification; B. Design Description for the Pluto Implementation of the Guidance and Control Software; and C. Source Code for the Pluto Implementation of the Guidance and Control Software

  9. Development of Team Action Projects in Surgery (TAPS): a multilevel team-based approach to teaching quality improvement.

    PubMed

    Waits, Seth A; Reames, Bradley N; Krell, Robert W; Bryner, Benjamin; Shih, Terry; Obi, Andrea T; Henke, Peter K; Minter, Rebecca M; Englesbe, Michael J; Wong, Sandra L

    2014-01-01

    To meet the Accreditation Council for Graduate Medical Education core competency in Practice-Based Learning and Improvement, educational curricula need to address training in quality improvement (QI). We sought to establish a program to train residents in the principles of QI and to provide practical experiences in developing and implementing improvement projects. We present a novel approach for engaging students, residents, and faculty in QI efforts-Team Action Projects in Surgery (TAPS). Large academic medical center and health system. Multiple teams consisting of undergraduate students, medical students, surgery residents, and surgery faculty were assembled and QI projects developed. Using "managing to learn" Lean principles, these multilevel groups approached each project with robust data collection, development of an A3, and implementation of QI activities. A total of 5 resident led QI projects were developed during the TAPS pilot phase. These included a living kidney donor enhanced recovery protocol, consult improvement process, venous thromboembolism prophylaxis optimization, Clostridium difficile treatment standardization, and understanding variation in operative duration of laparoscopic cholecystectomy. Qualitative and quantitative assessment showed significant value for both the learner and stakeholders of QI related projects. Through the development of TAPS, we demonstrate a novel approach to addressing the increasing focus on QI within graduate medical education. Efforts to expand this multilevel team based approach would have value for teachers and learners alike. Copyright © 2014. Published by Elsevier Inc.

  10. Building the infrastructure: the effects of role identification behaviors on team cognition development and performance.

    PubMed

    Pearsall, Matthew J; Ellis, Aleksander P J; Bell, Bradford S

    2010-01-01

    The primary purpose of this study was to extend theory and research regarding the emergence of mental models and transactive memory in teams. Utilizing Kozlowski, Gully, Nason, and Smith's (1999) model of team compilation, we examined the effect of role identification behaviors and posited that such behaviors represent the initial building blocks of team cognition during the role compilation phase of team development. We then hypothesized that team mental models and transactive memory would convey the effects of these behaviors onto team performance in the team compilation phase of development. Results from 60 teams working on a command-and-control simulation supported our hypotheses. Copyright 2009 APA, all rights reserved.

  11. Software development environments: Present and future, appendix D

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    Computerized environments which facilitate the development of appropriately functioning software systems are discussed. Their current status is reviewed and several trends exhibited by their history are identified. A number of principles, some at (slight) variance with the historical trends, are suggested and it is argued that observance of these principles is critical to achieving truly effective and efficient software development support environments.

  12. Implementation of Task-Tracking Software for Clinical IT Management.

    PubMed

    Purohit, Anne-Maria; Brutscheck, Clemens; Prokosch, Hans-Ulrich; Ganslandt, Thomas; Schneider, Martin

    2017-01-01

    Often in clinical IT departments, many different methods and IT systems are used for task-tracking and project organization. Based on managers' personal preferences and knowledge about project management methods, tools differ from team to team and even from employee to employee. This causes communication problems, especially when tasks need to be done in cooperation with different teams. Monitoring tasks and resources becomes impossible: there are no defined deliverables, which prevents reliable deadlines. Because of these problems, we implemented task-tracking software which is now in use across all seven teams at the University Hospital Erlangen. Over a period of seven months, a working group defined types of tasks (project, routine task, etc.), workflows, and views to monitor the tasks of the 7 divisions, 20 teams and 340 different IT services. The software has been in use since December 2016.

  13. Improving Care Teams' Functioning: Recommendations from Team Science.

    PubMed

    Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo

    2017-07-01

    Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  14. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M.; Robinson, C.; Gupta, N.

    2012-10-10

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technicalmore » basis and calculations, and steps taken to verify its performance.« less

  15. NDE Software Developed at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.

    2014-01-01

    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.

  16. Aeronautics Autonomy Testbed Capability (AATC) Team Developed Concepts

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    2018-01-01

    In 2015, the National Aeronautics and Space Administration (NASA) formed a multi-center, interdisciplinary team of engineers from three different aeronautics research centers who were tasked with improving NASA autonomy research capabilities. This group was subsequently named the Aeronautics Autonomy Testbed Capability (AATC) team. To aid in confronting the autonomy research directive, NASA contracted IDEO, a design firm, to provide consultants and guides to educate NASA engineers through the practice of design thinking, which is an unconventional method for aerospace design processes. The team then began learning about autonomy research challenges by conducting interviews with a diverse group of researchers and pilots, military personnel and civilians, experts and amateurs. Part of this design thinking process involved developing ideas for products or programs known as concepts that could enable real world fulfillment of the most important latent needs identified through analysis of the interviews. The concepts are intended to be sacrificial, intermediate steps in the design thinking process and are presented in this report to record the efforts of the AATC group. Descriptions are provided in present tense to allow for further ideation and imagining the concept as reality as was attempted during the teams discussions and interviews. This does not indicate that the concepts are actually in practice within NASA though there may be similar existing programs independent of AATC. These concepts were primarily created at two distinct stages during the design thinking process. After the initial interviews, there was a workshop for concept development and the resulting ideas are shown in this work as from the First Round. As part of succeeding interviews, the team members presented the First Round concepts to refine the understanding of existing research needs. This knowledge was then used to generate an additional set of concepts denoted as the Second Round. Some

  17. Software ``Best'' Practices: Agile Deconstructed

    NASA Astrophysics Data System (ADS)

    Fraser, Steven

    This workshop will explore the intersection of agility and software development in a world of legacy code-bases and large teams. Organizations with hundreds of developers and code-bases exceeding a million or tens of millions of lines of code are seeking new ways to expedite development while retaining and attracting staff who desire to apply “agile” methods. This is a situation where specific agile practices may be embraced outside of their usual zone of applicability. Here is where practitioners must understand both what “best practices” already exist in the organization - and how they might be improved or modified by applying “agile” approaches.

  18. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  19. Standardized development of computer software. Part 2: Standards

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1978-01-01

    This monograph contains standards for software development and engineering. The book sets forth rules for design, specification, coding, testing, documentation, and quality assurance audits of software; it also contains detailed outlines for the documentation to be produced.

  20. Clinical software development for the Web: lessons learned from the BOADICEA project.

    PubMed

    Cunningham, Alex P; Antoniou, Antonis C; Easton, Douglas F

    2012-04-10

    In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web

  1. Clinical software development for the Web: lessons learned from the BOADICEA project

    PubMed Central

    2012-01-01

    Background In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. Results We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers

  2. Making Teamwork Work: Team Knowledge for Team Effectiveness.

    PubMed

    Guchait, Priyanko; Lei, Puiwa; Tews, Michael J

    2016-01-01

    This study examined the impact of two types of team knowledge on team effectiveness. The study assessed the impact of taskwork knowledge and teamwork knowledge on team satisfaction and performance. A longitudinal study was conducted with 27 service-management teams involving 178 students in a real-life restaurant setting. Teamwork knowledge was found to impact both team outcomes. Furthermore, team learning behavior was found to mediate the relationships between teamwork knowledge and team outcomes. Educators and managers should therefore ensure these types of knowledge are developed in teams along with learning behavior for maximum effectiveness.

  3. Developing a Multidisciplinary Team for Disorders of Sex Development: Planning, Implementation, and Operation Tools for Care Providers

    PubMed Central

    Moran, Mary Elizabeth; Karkazis, Katrina

    2012-01-01

    In the treatment of patients with disorders of sex development (DSD), multidisciplinary teams (MDTs) represent a new standard of care. While DSDs are too complex for care to be delivered effectively without specialized team management, these conditions are often considered to be too rare for their medical management to be a hospital priority. Many specialists involved in DSD care want to create a clinic or team, but there is no available guidance that bridges the gap between a group of like-minded DSD providers who want to improve care and the formation of a functional MDT. This is an important dilemma, and one with serious implications for the future of DSD care. If a network of multidisciplinary DSD teams is to be a reality, those directly involved in DSD care must be given the necessary program planning and team implementation tools. This paper offers a protocol and set of tools to meet this need. We present a 6-step process to team formation, and a sample set of tools that can be used to guide, develop, and evaluate a team throughout the course of its operation. PMID:22792098

  4. A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH

    PubMed Central

    Sadasivam, Rajani S.; Tanik, Murat M.

    2013-01-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436

  5. A meta-composite software development approach for translational research.

    PubMed

    Sadasivam, Rajani S; Tanik, Murat M

    2013-06-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.

  6. Crawling The Web for Libre: Selecting, Integrating, Extending and Releasing Open Source Software

    NASA Astrophysics Data System (ADS)

    Truslove, I.; Duerr, R. E.; Wilcox, H.; Savoie, M.; Lopez, L.; Brandt, M.

    2012-12-01

    Libre is a project developed by the National Snow and Ice Data Center (NSIDC). Libre is devoted to liberating science data from its traditional constraints of publication, location, and findability. Libre embraces and builds on the notion of making knowledge freely available, and both Creative Commons licensed content and Open Source Software are crucial building blocks for, as well as required deliverable outcomes of the project. One important aspect of the Libre project is to discover cryospheric data published on the internet without prior knowledge of the location or even existence of that data. Inspired by well-known search engines and their underlying web crawling technologies, Libre has explored tools and technologies required to build a search engine tailored to allow users to easily discover geospatial data related to the polar regions. After careful consideration, the Libre team decided to base its web crawling work on the Apache Nutch project (http://nutch.apache.org). Nutch is "an open source web-search software project" written in Java, with good documentation, a significant user base, and an active development community. Nutch was installed and configured to search for the types of data of interest, and the team created plugins to customize the default Nutch behavior to better find and categorize these data feeds. This presentation recounts the Libre team's experiences selecting, using, and extending Nutch, and working with the Nutch user and developer community. We will outline the technical and organizational challenges faced in order to release the project's software as Open Source, and detail the steps actually taken. We distill these experiences into a set of heuristics and recommendations for using, contributing to, and releasing Open Source Software.

  7. Software development infrastructure for the HYBRID modeling and simulation project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epiney, Aaron S.; Kinoshita, Robert A.; Kim, Jong Suk

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the wholemore » problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and

  8. [Dream Team--a pre-graduate surgical talent development project].

    PubMed

    Jensen, Rune Dall; Christensen, Mette Krogh; Seyer-Hansen, Mikkel

    2014-08-04

    In 2009 surgeons from Aarhus University Hospital founded an extracurricular talent development project based on a skill-acquisition training programme for medical students at Aarhus University. The training program, named Dream Team, provides medical students with the opportunity to pursue a career in surgery. This paper presents and discusses the organizational and pedagogical framework of the concept Dream Team, as well as the results from two inquiries: a survey and an exploratory observational study. The inquiries were conducted in summer 2013.

  9. Empirical studies of software design: Implications for SSEs

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.

  10. CHIME: A Metadata-Based Distributed Software Development Environment

    DTIC Science & Technology

    2005-01-01

    structures by using typography , graphics , and animation. The Software Im- mersion in our conceptual model for CHIME can be seen as a form of Software...Even small- to medium-sized development efforts may involve hundreds of artifacts -- design documents, change requests, test cases and results, code...for managing and organizing information from all phases of the software lifecycle. CHIME is designed around an XML-based metadata architecture, in

  11. IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies

    NASA Technical Reports Server (NTRS)

    Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

    1981-01-01

    This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

  12. Section 508 Electronic Information Accessibility Requirements for Software Development

    NASA Technical Reports Server (NTRS)

    Ellis, Rebecca

    2014-01-01

    Section 508 Subpart B 1194.21 outlines requirements for operating system and software development in order to create a product that is accessible to users with various disabilities. This portion of Section 508 contains a variety of standards to enable those using assistive technology and with visual, hearing, cognitive and motor difficulties to access all information provided in software. The focus on requirements was limited to the Microsoft Windows® operating system as it is the predominant operating system used at this center. Compliance with this portion of the requirements can be obtained by integrating the requirements into the software development cycle early and by remediating issues in legacy software if possible. There are certain circumstances with software that may arise necessitating an exemption from these requirements, such as design or engineering software using dynamically changing graphics or numbers to convey information. These exceptions can be discussed with the Section 508 Coordinator and another method of accommodation used.

  13. Model for Simulating a Spiral Software-Development Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  14. Putting the MeaT into TeaM Training: Development, Delivery, and Evaluation of a Surgical Team-Training Workshop.

    PubMed

    Seymour, Neal E; Paige, John T; Arora, Sonal; Fernandez, Gladys L; Aggarwal, Rajesh; Tsuda, Shawn T; Powers, Kinga A; Langlois, Gerard; Stefanidis, Dimitrios

    2016-01-01

    Despite importance to patient care, team training is infrequently used in surgical education. To address this, a workshop was developed by the Association for Surgical Education Simulation Committee to teach team training using high-fidelity patient simulators and the American College of Surgeons-Association of Program Directors in Surgery team-training curriculum. Workshops were conducted at 3 national meetings. Participants completed preworkshop and postworkshop questionnaires to define experience, confidence in using simulation, intention to implement, as well as workshop content quality. The course consisted of (A) a didactic review of Preparation, Implementation, and Debriefing and (B) facilitated small group simulation sessions followed by debriefings. Of 78 participants, 51 completed the workshops. Overall, 65% indicated that residents at their institutions used patient simulation, but only 33% used the American College of Surgeons-the Association of Program Directors in Surgery team-training modules. The workshop increased confidence to implement simulation team training (3.4 ± 1.3 vs 4.5 ± 0.9). Quality and importance were rated highly (5.4 ± 00.6, highest score = 6). Preparation for simulation-based team training is possible in this workshop setting, although the effect on actual implementation remains to be determined. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. A Prototype for the Support of Integrated Software Process Development and Improvement

    NASA Astrophysics Data System (ADS)

    Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian

    An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.

  16. TEAMS. Team Exercise for Action Management Skills: A Semester-Long Team-Management Simulation.

    ERIC Educational Resources Information Center

    Wagenheim, Gary

    A team-oriented approach is replacing the traditional management style in today's organizations. Because team management skills differ, they require different teaching methods. This paper describes an administrator education course designed to develop team management skills from an applied and behavioral viewpoint. Students participate in…

  17. The Legacy of Space Shuttle Flight Software

    NASA Technical Reports Server (NTRS)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  18. The Comparison of VLBI Data Analysis Using Software Globl and Globk

    NASA Astrophysics Data System (ADS)

    Guangli, W.; Xiaoya, W.; Jinling, L.; Wenyao, Z.

    The comparison of different geodetic data analysis software is one of the quite of- ten mentioned topics. In this paper we try to find out the difference between software GLOBL and GLOBK when use them to process the same set of VLBI data. GLOBL is a software developed by VLBI team, geodesy branch, GSFC/NASA to process geode- tic VLBI data using algorithm of arc-parameter-elimination, while GLOBK using al- gorithm of kalman filtering is mainly used in GPS data analysis, and it is also used in VLBI data analysis. Our work focus on whether there are significant difference when use the two softwares to analyze the same VLBI data set and investigate the reasons caused the difference.

  19. Developing medical device software in compliance with regulations.

    PubMed

    Zema, M; Rosati, S; Gioia, V; Knaflitz, M; Balestra, G

    2015-08-01

    In the last decade, the use of information technology (IT) in healthcare has taken a growing role. In fact, the adoption of an increasing number of computer tools has led to several benefits related to the process of patient care and allowed easier access to social and health care resources. At the same time this trend gave rise to new challenges related to the implementation of these new technologies. Software used in healthcare can be classified as medical devices depending on the way they are used and on their functional characteristics. If they are classified as medical devices they must satisfy specific regulations. The aim of this work is to present a software development framework that can allow the production of safe and high quality medical device software and to highlight the correspondence between each software development phase and the appropriate standard and/or regulation.

  20. COSTMODL - AN AUTOMATED SOFTWARE DEVELOPMENT COST ESTIMATION TOOL

    NASA Technical Reports Server (NTRS)

    Roush, G. B.

    1994-01-01

    The cost of developing computer software consumes an increasing portion of many organizations' budgets. As this trend continues, the capability to estimate the effort and schedule required to develop a candidate software product becomes increasingly important. COSTMODL is an automated software development estimation tool which fulfills this need. Assimilating COSTMODL to any organization's particular environment can yield significant reduction in the risk of cost overruns and failed projects. This user-customization capability is unmatched by any other available estimation tool. COSTMODL accepts a description of a software product to be developed and computes estimates of the effort required to produce it, the calendar schedule required, and the distribution of effort and staffing as a function of the defined set of development life-cycle phases. This is accomplished by the five cost estimation algorithms incorporated into COSTMODL: the NASA-developed KISS model; the Basic, Intermediate, and Ada COCOMO models; and the Incremental Development model. This choice affords the user the ability to handle project complexities ranging from small, relatively simple projects to very large projects. Unique to COSTMODL is the ability to redefine the life-cycle phases of development and the capability to display a graphic representation of the optimum organizational structure required to develop the subject project, along with required staffing levels and skills. The program is menu-driven and mouse sensitive with an extensive context-sensitive help system that makes it possible for a new user to easily install and operate the program and to learn the fundamentals of cost estimation without having prior training or separate documentation. The implementation of these functions, along with the customization feature, into one program makes COSTMODL unique within the industry. COSTMODL was written for IBM PC compatibles, and it requires Turbo Pascal 5.0 or later and Turbo

  1. Intelligent Software for System Design and Documentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.

  2. The Cooperate Assistive Teamwork Environment for Software Description Languages.

    PubMed

    Groenda, Henning; Seifermann, Stephan; Müller, Karin; Jaworek, Gerhard

    2015-01-01

    Versatile description languages such as the Unified Modeling Language (UML) are commonly used in software engineering across different application domains in theory and practice. They often use graphical notations and leverage visual memory for expressing complex relations. Those notations are hard to access for people with visual impairment and impede their smooth inclusion in an engineering team. Existing approaches provide textual notations but require manual synchronization between the notations. This paper presents requirements for an accessible and language-aware team work environment as well as our plan for the assistive implementation of Cooperate. An industrial software engineering team consisting of people with and without visual impairment will evaluate the implementation.

  3. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  4. Sense of Classroom Community and Team Development Process in Online Learning

    ERIC Educational Resources Information Center

    Erdem Aydin, Irem; Gumus, Salih

    2016-01-01

    The purpose of this study is to determine whether there is a relationship between Turkish online learners' sense of classroom community, perceptions of success in team development process and their preferences of studying in teams. A survey instrument included the Sense of Classroom Community Scale, Tuckman's Teamwork Questionnaire and some other…

  5. [Job stressors in software developers--a comparison with other occupations].

    PubMed

    Kadokura, M

    1997-09-01

    The aim of this study is to investigate the difference in job stressors among software developers, the sales staff and the clerical staff (n = 2,079) in two companies (A Co. and B Co.) using a self-administered questionnaire that included a job stressor scale and the 30-item General Health Questionnaire (GHQ). We developed the job stressor scale based on the interviews with out-patients who engaged in software development and previous studies about job stressors. Factor analysis with a seven-factor solution showed that seven subscales were abstracted from the job stressor scale, namely, quantitative load of work, dissatisfaction with work, demanding work, uneasiness about work, human relations, ambiguity of work and shortage of private time. Each subscale was significantly (r = .313-.442, p < 0.0001) correlated with the GHQ score and proved to be a reliable instrument, as indicated by a Cronbach's alpha of greater than 0.73. Stepwise multiple regression analysis revealed that quantitative load of work and shortage of private time subscale scores were significantly high in software developers in A Co. Software developers in A Co. tended to score higher (P < .10) than the others in demanding work and ambiguity of work subscale. All subscale scores were significantly low in the clerical staff in B Co. There was no significant difference between the sales staff and software developers in B Co. Results of the interviews with out-patients showed that demanding work, hard deadline, ambiguity of work and precarious work would cause trouble in software developers. The implications of these findings with respect to occupational issues related to software developers are discussed.

  6. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  7. Systematic Approach to the Development, Evolution, and Effectiveness of Integrated Product Development Teams (IPDTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margie Jeffs; R. Douglas Hamelin

    Integrated Product Development Teams (IPDT) are a key component of any systems engineering (SE) application, but since they are formed primarily from technical considerations, many IPDTs are far less productive than they otherwise could be. By recognizing specific personality types and skill sets, a random group of 'technical' individuals can be structured to become a highly effective team capable of delivering much more than the sum of its members.

  8. Development and validation of an instrument for measuring the quality of teamwork in teaching teams in postgraduate medical training (TeamQ).

    PubMed

    Slootweg, Irene A; Lombarts, Kiki M J M H; Boerebach, Benjamin C M; Heineman, Maas Jan; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2014-01-01

    Teamwork between clinical teachers is a challenge in postgraduate medical training. Although there are several instruments available for measuring teamwork in health care, none of them are appropriate for teaching teams. The aim of this study is to develop an instrument (TeamQ) for measuring teamwork, to investigate its psychometric properties and to explore how clinical teachers assess their teamwork. To select the items to be included in the TeamQ questionnaire, we conducted a content validation in 2011, using a Delphi procedure in which 40 experts were invited. Next, for pilot testing the preliminary tool, 1446 clinical teachers from 116 teaching teams were requested to complete the TeamQ questionnaire. For data analyses we used statistical strategies: principal component analysis, internal consistency reliability coefficient, and the number of evaluations needed to obtain reliable estimates. Lastly, the median TeamQ scores were calculated for teams to explore the levels of teamwork. In total, 31 experts participated in the Delphi study. In total, 114 teams participated in the TeamQ pilot. The median team response was 7 evaluations per team. The principal component analysis revealed 11 factors; 8 were included. The reliability coefficients of the TeamQ scales ranged from 0.75 to 0.93. The generalizability analysis revealed that 5 to 7 evaluations were needed to obtain internal reliability coefficients of 0.70. In terms of teamwork, the clinical teachers scored residents' empowerment as the highest TeamQ scale and feedback culture as the area that would most benefit from improvement. This study provides initial evidence of the validity of an instrument for measuring teamwork in teaching teams. The high response rates and the low number of evaluations needed for reliably measuring teamwork indicate that TeamQ is feasible for use by teaching teams. Future research could explore the effectiveness of feedback on teamwork in follow up measurements.

  9. The dynamics of software development project management: An integrative systems dynamic perspective

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.; Abdel-Hamid, T.

    1984-01-01

    Rather than continuing to focus on software development projects per se, the system dynamics modeling approach outlined is extended to investigate a broader set of issues pertaining to the software development organization. Rather than trace the life cycle(s) of one or more software projects, the focus is on the operations of a software development department as a continuous stream of software products are developed, placed into operation, and maintained. A number of research questions are ""ripe'' for investigating including: (1) the efficacy of different organizational structures in different software development environments, (2) personnel turnover, (3) impact of management approaches such as management by objectives, and (4) the organizational/environmental determinants of productivity.

  10. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  11. Training Software Developers and Designers to Conduct Usability Evaluations

    ERIC Educational Resources Information Center

    Skov, Mikael Brasholt; Stage, Jan

    2012-01-01

    Many efforts to improve the interplay between usability evaluation and software development rely either on better methods for conducting usability evaluations or on better formats for presenting evaluation results in ways that are useful for software designers and developers. Both of these approaches depend on a complete division of work between…

  12. Software Development through ACOT Teachers' Eyes. ACOT Report #4.

    ERIC Educational Resources Information Center

    Knapp, Linda

    Eight Apple Classrooms of Tomorrow (ACOT) teachers met with software developers at the Florida Instructional Computing Conference in January 1989. During the session, the panel of ACOT teachers expressed their wants and wishes for educational software and developers responded with their own concerns. The face-to-face communication provided a…

  13. Repository-based software engineering program

    NASA Technical Reports Server (NTRS)

    Wilson, James

    1992-01-01

    The activities performed during September 1992 in support of Tasks 01 and 02 of the Repository-Based Software Engineering Program are outlined. The recommendations and implementation strategy defined at the September 9-10 meeting of the Reuse Acquisition Action Team (RAAT) are attached along with the viewgraphs and reference information presented at the Institute for Defense Analyses brief on legal and patent issues related to software reuse.

  14. Software thresholds alter the bias of actigraphy for monitoring sleep in team-sport athletes.

    PubMed

    Fuller, Kate L; Juliff, Laura; Gore, Christopher J; Peiffer, Jeremiah J; Halson, Shona L

    2017-08-01

    Actical ® actigraphy is commonly used to monitor athlete sleep. The proprietary software, called Actiware ® , processes data with three different sleep-wake thresholds (Low, Medium or High), but there is no standardisation regarding their use. The purpose of this study was to examine validity and bias of the sleep-wake thresholds for processing Actical ® sleep data in team sport athletes. Validation study comparing actigraph against accepted gold standard polysomnography (PSG). Sixty seven nights of sleep were recorded simultaneously with polysomnography and Actical ® devices. Individual night data was compared across five sleep measures for each sleep-wake threshold using Actiware ® software. Accuracy of each sleep-wake threshold compared with PSG was evaluated from mean bias with 95% confidence limits, Pearson moment-product correlation and associated standard error of estimate. The Medium threshold generated the smallest mean bias compared with polysomnography for total sleep time (8.5min), sleep efficiency (1.8%) and wake after sleep onset (-4.1min); whereas the Low threshold had the smallest bias (7.5min) for wake bouts. Bias in sleep onset latency was the same across thresholds (-9.5min). The standard error of the estimate was similar across all thresholds; total sleep time ∼25min, sleep efficiency ∼4.5%, wake after sleep onset ∼21min, and wake bouts ∼8 counts. Sleep parameters measured by the Actical ® device are greatly influenced by the sleep-wake threshold applied. In the present study the Medium threshold produced the smallest bias for most parameters compared with PSG. Given the magnitude of measurement variability, confidence limits should be employed when interpreting changes in sleep parameters. Copyright © 2017 Sports Medicine Australia. All rights reserved.

  15. A proven approach for more effective software development and maintenance

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Hall, Dana; Sinclair, Craig

    1994-01-01

    Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the

  16. Development and evaluation of a decision-based simulation for assessment of team skills.

    PubMed

    Andrew, Brandon; Plachta, Stephen; Salud, Lawrence; Pugh, Carla M

    2012-08-01

    There is a need to train and evaluate a wide variety of nontechnical surgical skills. The goal of this project was to develop and evaluate a decision-based simulation to assess team skills. The decision-based exercise used our previously validated Laparoscopic Ventral Hernia simulator and a newly developed team evaluation survey. Five teams of 3 surgical residents (N = 15) were tasked with repairing a 10 × 10-cm right upper quadrant hernia. During the simulation, independent observers (N = 6) completed a 6-item survey assessing: (1) work quality; (2) communication; and (3) team effectiveness. After the simulation, team members self-rated their performance by using the same survey. Survey reliability revealed a Cronbach's alpha of r = .811. Significant differences were found when we compared team members' (T) and observers' (O) ratings for communication (T = 4.33/5.00 vs O = 3.00/5.00, P < .01) and work quality (T = 4.33/5.00 vs O = 3.33/5.00, P < .05). The team with the greatest survey ratings was the only group to successfully complete the task. The team evaluation survey had good reliability and correlated with task performance on the simulator. Our current and previous work provides strong evidence that nontechnical and team related skills can be assessed without simulating a crisis situation. Copyright © 2012 Mosby, Inc. All rights reserved.

  17. Archiving a Software Development Project

    DTIC Science & Technology

    2013-04-01

    an ongoing monitoring system that identifies attempts and requests for retrieval, and ensures that the attempts and requests cannot proceed without...Intelligence Division Peter Fisher has worked as a consultant, systems analyst, software developer and project manager in Australia, Holland, the USA...4 3.1.3 DRMS – Defence Records Management System

  18. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    ERIC Educational Resources Information Center

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  19. The Navy’s Management of Software Licenses Needs Improvement

    DTIC Science & Technology

    2013-08-07

    Enterprise Software Licensing ( ESL ) as a primary DON etliciency target. Through policy and Integrated Product Team actions, this efficiency...review, as well as with DoD Enterprise Software Initiative ( ESl ) Blanket Pw·chase Agreements and any r•elated fedeml Acquisition Regulation and General...organizational and multi-functional DON ESL team. The DON is also participating in DoD level enterprise softwru·e licensing project~ through the Dol

  20. Technology evaluation, assessment, modeling, and simulation: the TEAMS capability

    NASA Astrophysics Data System (ADS)

    Holland, Orgal T.; Stiegler, Robert L.

    1998-08-01

    The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.

  1. Configuration management and software measurement in the Ground Systems Development Environment (GSDE)

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    A set of functional requirements for software configuration management (CM) and metrics reporting for Space Station Freedom ground systems software are described. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the Space Station Training Facility (SSTF) and the Space Station Control Center (SSCC), and the target systems for SSCC and SSTF. The focus is on the CM of the software following delivery to NASA and on the software metrics that relate to the quality and maintainability of the delivered software. The CM and metrics requirements address specific problems that occur in large-scale software development. Mechanisms to assist in the continuing improvement of mission operations software development are described.

  2. Ground Systems Development Environment (GSDE) software configuration management

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    This report presents a review of the software configuration management (CM) plans developed for the Space Station Training Facility (SSTF) and the Space Station Control Center. The scope of the CM assessed in this report is the Systems Integration and Testing Phase of the Ground Systems development life cycle. This is the period following coding and unit test and preceding delivery to operational use. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF. This is the last report in the series. The focus of this report is on the CM plans developed by the contractors for the Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM requirements are summarized and described in terms of operational software development. The software workflows proposed in the TSC and MSC plans are reviewed in this context, and evaluated against the CM requirements defined in earlier study reports. Recommendations are made to improve the effectiveness of CM while minimizing its impact on the developers.

  3. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.

    1989-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  4. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.

    1990-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  5. Conceptions of Software Development by Project Managers: A Study of Managing the Outsourced Development of Software Applications for United States Federal Government Agencies

    ERIC Educational Resources Information Center

    Eisen, Daniel

    2013-01-01

    This study explores how project managers, working for private federal IT contractors, experience and understand managing the development of software applications for U.S. federal government agencies. Very little is known about how they manage their projects in this challenging environment. Software development is a complex task and only grows in…

  6. Costs and Benefits of Software Process Improvement

    DTIC Science & Technology

    1997-12-01

    Washington, DC 20503. 1. AGENCY USE ONLY ( Leave blank) 2. REPORT DATE December 1997 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4...in this field, an organization’s chance for success depends first on having an exceptional manager and an effective development team (PEOPLE...Secondly, it depends on its effective use of TECHNOLOGY, and finally, on its PROCESS maturity. [Ref. 4] In a software organization: PEOPLE refers to

  7. Adoption of Requirements Engineering Practices in Malaysian Software Development Companies

    NASA Astrophysics Data System (ADS)

    Solemon, Badariah; Sahibuddin, Shamsul; Ghani, Abdul Azim Abd

    This paper presents exploratory survey results on Requirements Engineering (RE) practices of some software development companies in Malaysia. The survey attempted to identify patterns of RE practices the companies are implementing. Information required for the survey was obtained through a survey, mailed self-administered questionnaires distributed to project managers and software developers who are working at software development companies operated across the country. The results showed that the overall adoption of the RE practices in these companies is strong. However, the results also indicated that fewer companies in the survey have use appropriate CASE tools or software to support their RE process and practices, define traceability policies and maintain traceability manual in their projects.

  8. Developing patient-centered teams: The role of sharing stories about patients and patient care.

    PubMed

    Bennett, Ariana H; Hassinger, Jane A; Martin, Lisa A; Harris, Lisa H; Gold, Marji

    2015-09-01

    Research indicates that health care teams are good for staff, patients, and organizations. The characteristics that make teams effective include shared objectives, mutual respect, clarity of roles, communication, trust, and collaboration. We were interested in examining how teams develop these positive characteristics. This paper explores the role of sharing stories about patients in developing patient-centered teams. Data for this paper came from 1 primary care clinic as part of a larger Providers Share Workshop study conducted by the University of Michigan. Each workshop included 5 facilitated group sessions in which staff met to talk about their work. This paper analyzes qualitative data from the workshops. Through an iterative process, research team members identified major themes, developed a coding scheme, and coded transcripts for qualitative data analysis. One of the most powerful ways group members connected was through sharing stories about their patients. Sharing clinical cases and stories helped participants bond around their shared mission of patient-centered care, build supportive relationships, enhance compassion for patients, communicate and resolve conflict, better understand workflows and job roles, develop trust, and increase morale. These attributes highlighted by participants correspond to those documented in the literature as important elements of teambuilding and key indicators of team effectiveness. The sharing of stories about patients seems to be a promising tool for positive team development in a primary care clinical setting and should be investigated further. (c) 2015 APA, all rights reserved).

  9. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  10. Extending Team Software Process (TSP) to Systems Engineering: A NAVAIR Experience Report

    DTIC Science & Technology

    2010-03-01

    instrumental in formulating the concepts and approaches presented in this report: Dan Burton, Anita Carleton, Timothy Chick, Mike Fehring, Watts Humphrey ...Senate,” GAO-04-393, Defense Acquisitions, 2004. http://www.gao.gov/new.items/d04393.pdf [ Humphrey 06] W. S . Humphrey , TSP: Leading a Development... Humphrey 08] W. S . Humphrey , “The Process Revolution,” CrossTalk The Journal of Defense Software Engineering, August 2008, Volume 28 Number 8

  11. Software development environment, appendix F

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    The current status in the area of software development environments is assessed. The purposes of environments, the types of environments, the constituents of an environment, the issue of environment integration, and the problems which must be solved in preparing an environment are discussed. Some general maxims to guide near-term future work are proposed.

  12. Analysis of DSN software anomalies

    NASA Technical Reports Server (NTRS)

    Galorath, D. D.; Hecht, H.; Hecht, M.; Reifer, D. J.

    1981-01-01

    A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies.

  13. Domain specific software architectures: Command and control

    NASA Technical Reports Server (NTRS)

    Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave

    1992-01-01

    GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.

  14. Software Tools for Development on the Peregrine System | High-Performance

    Science.gov Websites

    Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python

  15. Development of a case tool to support decision based software development

    NASA Technical Reports Server (NTRS)

    Wild, Christian J.

    1993-01-01

    A summary of the accomplishments of the research over the past year are presented. Achievements include: made demonstrations with DHC, a prototype supporting decision based software development (DBSD) methodology, for Paramax personnel at ODU; met with Paramax personnel to discuss DBSD issues, the process of integrating DBSD and Refinery and the porting process model; completed and submitted a paper describing DBSD paradigm to IFIP '92; completed and presented a paper describing the approach for software reuse at the Software Reuse Workshop in April 1993; continued to extend DHC with a project agenda, facility necessary for a better project management; completed a primary draft of the re-engineering process model for porting; created a logging form to trace all the activities involved in the process of solving the reengineering problem, and developed a primary chart with the problems involved by the reengineering process.

  16. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2003-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated

  17. [Stressor and stress reduction strategies for computer software engineers].

    PubMed

    Asakura, Takashi

    2002-07-01

    First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.

  18. Advanced Software Development Workstation Project, phase 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ACCESS provides a generic capability to develop software information system applications which are explicitly intended to facilitate software reuse. In addition, it provides the capability to retrofit existing large applications with a user friendly front end for preparation of input streams in a way that will reduce required training time, improve the productivity even of experienced users, and increase accuracy. Current and past work shows that ACCESS will be scalable to much larger object bases.

  19. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  20. Decentralized formation flying control in a multiple-team hierarchy.

    PubMed

    Mueller, Joseph B; Thomas, Stephanie J

    2005-12-01

    In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The

  1. A Mirror for Managers: Using Simulation to Develop Management Teams. Technical Report 23.

    ERIC Educational Resources Information Center

    Kaplan, Robert E.; And Others

    Although simulation is among the least common of the many methods consultants employ to stimulate team development, realistic simulation can help in the diagnosis of management teams. Simulations fill a gap in the repertoire of data collection methods for organizational diagnosis and development by affording an opportunity for direct observation…

  2. Development and Validation of an Instrument for Measuring the Quality of Teamwork in Teaching Teams in Postgraduate Medical Training (TeamQ)

    PubMed Central

    Slootweg, Irene A.; Lombarts, Kiki M. J. M. H.; Boerebach, Benjamin C. M.; Heineman, Maas Jan; Scherpbier, Albert J. J. A.; van der Vleuten, Cees P. M.

    2014-01-01

    Background Teamwork between clinical teachers is a challenge in postgraduate medical training. Although there are several instruments available for measuring teamwork in health care, none of them are appropriate for teaching teams. The aim of this study is to develop an instrument (TeamQ) for measuring teamwork, to investigate its psychometric properties and to explore how clinical teachers assess their teamwork. Method To select the items to be included in the TeamQ questionnaire, we conducted a content validation in 2011, using a Delphi procedure in which 40 experts were invited. Next, for pilot testing the preliminary tool, 1446 clinical teachers from 116 teaching teams were requested to complete the TeamQ questionnaire. For data analyses we used statistical strategies: principal component analysis, internal consistency reliability coefficient, and the number of evaluations needed to obtain reliable estimates. Lastly, the median TeamQ scores were calculated for teams to explore the levels of teamwork. Results In total, 31 experts participated in the Delphi study. In total, 114 teams participated in the TeamQ pilot. The median team response was 7 evaluations per team. The principal component analysis revealed 11 factors; 8 were included. The reliability coefficients of the TeamQ scales ranged from 0.75 to 0.93. The generalizability analysis revealed that 5 to 7 evaluations were needed to obtain internal reliability coefficients of 0.70. In terms of teamwork, the clinical teachers scored residents' empowerment as the highest TeamQ scale and feedback culture as the area that would most benefit from improvement. Conclusions This study provides initial evidence of the validity of an instrument for measuring teamwork in teaching teams. The high response rates and the low number of evaluations needed for reliably measuring teamwork indicate that TeamQ is feasible for use by teaching teams. Future research could explore the effectiveness of feedback on teamwork in

  3. Development and implementation of software systems for imaging spectroscopy

    USGS Publications Warehouse

    Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.

    2006-01-01

    Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.

  4. Leading Game-Simulation Development Teams: Enabling Collaboration with Faculty Experts

    ERIC Educational Resources Information Center

    Aleckson, Jon D.

    2010-01-01

    This study explored how educational technology development leaders can facilitate increased collaboration between the instructional design and development team and faculty member experts when developing games and simulations. A qualitative, case study method was used to analyze interviews and documents, and Web postings related specifically to…

  5. artdaq: DAQ software development made simple

    NASA Astrophysics Data System (ADS)

    Biery, Kurt; Flumerfelt, Eric; Freeman, John; Ketchum, Wesley; Lukhanin, Gennadiy; Rechenmacher, Ron

    2017-10-01

    For a few years now, the artdaq data acquisition software toolkit has provided numerous experiments with ready-to-use components which allow for rapid development and deployment of DAQ systems. Developed within the Fermilab Scientific Computing Division, artdaq provides data transfer, event building, run control, and event analysis functionality. This latter feature includes built-in support for the art event analysis framework, allowing experiments to run art modules for real-time filtering, compression, disk writing and online monitoring. As art, also developed at Fermilab, is also used for offline analysis, a major advantage of artdaq is that it allows developers to easily switch between developing online and offline software. artdaq continues to be improved. Support for an alternate mode of running whereby data from some subdetector components are only streamed if requested has been added; this option will reduce unnecessary DAQ throughput. Real-time reporting of DAQ metrics has been implemented, along with the flexibility to choose the format through which experiments receive the reports; these formats include the Ganglia, Graphite and syslog software packages, along with flat ASCII files. Additionally, work has been performed investigating more flexible modes of online monitoring, including the capability to run multiple online monitoring processes on different hosts, each running its own set of art modules. Finally, a web-based GUI interface through which users can configure details of their DAQ system has been implemented, increasing the ease of use of the system. Already successfully deployed on the LArlAT, DarkSide-50, DUNE 35ton and Mu2e experiments, artdaq will be employed for SBND and is a strong candidate for use on ICARUS and protoDUNE. With each experiment comes new ideas for how artdaq can be made more flexible and powerful. The above improvements will be described, along with potential ideas for the future.

  6. Remote Software Application and Display Development

    NASA Technical Reports Server (NTRS)

    Sanders, Brandon T.

    2014-01-01

    The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).

  7. Demographic-Based Perceptions of Adequacy of Software Security's Presence within Individual Phases of the Software Development Life Cycle

    ERIC Educational Resources Information Center

    Kramer, Aleksey

    2013-01-01

    The topic of software security has become paramount in information technology (IT) related scholarly research. Researchers have addressed numerous software security topics touching on all phases of the Software Development Life Cycle (SDLC): requirements gathering phase, design phase, development phase, testing phase, and maintenance phase.…

  8. An Interactive and Automated Software Development Environment.

    DTIC Science & Technology

    1982-12-01

    four levels. Each DFD has an accompanying textual description to aid the reader in understanding the diagram. Both the data flows and the operations...students using the SDW for major software developments. Students in the software engineering courses use the SDW as a pedagogical tool for learning the...the SDWE. For thiz reason, the modified SDWE Algorithmic Design is included as Appendix F. 172 Ui 4.4 Desigin RL the ProQiect Data Baes The Project

  9. Distributed subterranean exploration and mapping with teams of UAVs

    NASA Astrophysics Data System (ADS)

    Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.

    2017-05-01

    Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.

  10. Milestone Completion Report STCO04-1 AAPS: engagements with code teams, vendors, collaborators, developers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, E. W.

    The Advanced Architecture and Portability Specialists team (AAPS) worked with a select set of LLNL application teams to develop and/or implement a portability strategy for next-generation architectures. The team also investigated new and updated programming models and helped develop programming abstractions targeting maintainability and performance portability. Significant progress was made on both fronts in FY17, resulting in multiple applications being significantly more prepared for the nextgeneration machines than before.

  11. Health care professional development: Working as a team to improve patient care

    PubMed Central

    El Husseini, Maha; Al Nemri, Abdurrahman; Al Frayh, Abdurrahman; Al Juryyan, Nasir; Faki, Mohamed O; Assiri, Asaad; Al Saadi, Muslim; Shaikh, Farheen; Al Zamil, Fahad

    2014-01-01

    In delivering health care, an effective teamwork can immediately and positively affect patient safety and outcome. The need for effective teams is increasing due to increasing co-morbidities and increasing complexity of specialization of care. Time has gone when a doctor or a dentist or any other health practitioner in whatsoever health organization would be able to solely deliver a quality care that satisfies his or her patients. The evolution in health care and a global demand for quality patient care necessitate a parallel health care professional development with a great focus on patient centred teamwork approach. This can only be achieved by placing the patient in the centre of care and through sharing a wide based culture of values and principles. This will help forming and developing an effective team able to deliver exceptional care to the patients. Aiming towards this goal, motivation of team members should be backed by strategies and practical skills in order to achieve goals and overcome challenges. This article highlights values and principles of working as a team and principles and provides team players with a practical approach to deliver quality patient care. PMID:27493399

  12. Health care professional development: Working as a team to improve patient care.

    PubMed

    Babiker, Amir; El Husseini, Maha; Al Nemri, Abdurrahman; Al Frayh, Abdurrahman; Al Juryyan, Nasir; Faki, Mohamed O; Assiri, Asaad; Al Saadi, Muslim; Shaikh, Farheen; Al Zamil, Fahad

    2014-01-01

    In delivering health care, an effective teamwork can immediately and positively affect patient safety and outcome. The need for effective teams is increasing due to increasing co-morbidities and increasing complexity of specialization of care. Time has gone when a doctor or a dentist or any other health practitioner in whatsoever health organization would be able to solely deliver a quality care that satisfies his or her patients. The evolution in health care and a global demand for quality patient care necessitate a parallel health care professional development with a great focus on patient centred teamwork approach. This can only be achieved by placing the patient in the centre of care and through sharing a wide based culture of values and principles. This will help forming and developing an effective team able to deliver exceptional care to the patients. Aiming towards this goal, motivation of team members should be backed by strategies and practical skills in order to achieve goals and overcome challenges. This article highlights values and principles of working as a team and principles and provides team players with a practical approach to deliver quality patient care.

  13. ALFA: The new ALICE-FAIR software framework

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  14. Measuring Learners' Attitudes toward Team Projects: Scale Development Through Exploratory And Confirmatory Factor Analyses

    ERIC Educational Resources Information Center

    Chyung, Seung Youn; Winiecki, Donald J.; Hunt, Gary; Sevier, Carol M.

    2017-01-01

    Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects from prior experience, and their attitudinal responses could influence their performance during team project-based learning in the future. Thus, instructors need to measure students' attitudes toward team projects during their learner…

  15. General object-oriented software development

    NASA Technical Reports Server (NTRS)

    Seidewitz, Edwin V.; Stark, Mike

    1986-01-01

    Object-oriented design techniques are gaining increasing popularity for use with the Ada programming language. A general approach to object-oriented design which synthesizes the principles of previous object-oriented methods into the overall software life-cycle, providing transitions from specification to design and from design to code. It therefore provides the basis for a general object-oriented development methodology.

  16. Human factors in software development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, B.

    1986-01-01

    This book presents an overview of ergonomics/human factors in software development, recent research, and classic papers. Articles are drawn from the following areas of psychological research on programming: cognitive ergonomics, cognitive psychology, and psycholinguistics. Topics examined include: theoretical models of how programmers solve technical problems, the characteristics of programming languages, specification formats in behavioral research and psychological aspects of fault diagnosis.

  17. Skills Inventory for Teams (SIFT): A Resource for Teams.

    ERIC Educational Resources Information Center

    Garland, Corinne; And Others

    The Skills Inventory for Teams (SIFT) was developed for early intervention practitioners from a variety of disciplines to help them evaluate their ability to work as part of an early intervention team in identifying and serving young children with disabilities. The Team Member section is designed to help individual team members identify the skills…

  18. Forming a new clinical team for frail older people: can a group development model help?

    PubMed

    Anderson, Elizabeth Susan; Pollard, Lorraine; Conroy, Simon; Clague-Baker, Nicola

    2014-03-01

    Integrated services which utilise the expertise of team members along care pathways are evolving. Changes in service structure and subsequent team working arrangements can be a challenge for practitioners expected to redefine how they work with one another. These services are particularly important for the care of frail older people. This exploratory study of one newly forming team presents the views of staff involved in establishing an interprofessional healthcare advisory team for older people within an acute hospital admissions unit. Staff experiences of forming a new service are aligned to a model of team development. The findings are presented as themes relating to the stages of team development and identify the challenges of setting up an integrated service alongside existing services. In particular, team process issues relating to the clarity of goals, role clarification, leadership, team culture and identity. Managers must allow time to ensure new services evolve before setting up evaluation studies for efficiency and effectiveness which might prove against the potential for interprofessional teamworking.

  19. GERICOS: A Generic Framework for the Development of On-Board Software

    NASA Astrophysics Data System (ADS)

    Plasson, P.; Cuomo, C.; Gabriel, G.; Gauthier, N.; Gueguen, L.; Malac-Allain, L.

    2016-08-01

    This paper presents an overview of the GERICOS framework (GEneRIC Onboard Software), its architecture, its various layers and its future evolutions. The GERICOS framework, developed and qualified by LESIA, offers a set of generic, reusable and customizable software components for the rapid development of payload flight software. The GERICOS framework has a layered structure. The first layer (GERICOS::CORE) implements the concept of active objects and forms an abstraction layer over the top of real-time kernels. The second layer (GERICOS::BLOCKS) offers a set of reusable software components for building flight software based on generic solutions to recurrent functionalities. The third layer (GERICOS::DRIVERS) implements software drivers for several COTS IP cores of the LEON processor ecosystem.

  20. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  1. AREVA Team Develops Sump Strainer Blockage Solution for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Ray

    2006-07-01

    The purpose of this paper is to discuss the methodology, testing challenges, and results of testing that a team of experts from Areva NP, Alden Research Laboratory, Inc (ALDEN), and Performance Contracting Inc. (PCI) has developed. The team is currently implementing a comprehensive solution to the issue of Emergency Core Cooling System (ECCS) sump strainer blockage facing Pressurized Water Reactor (PWR) Nuclear Plants. The team has successfully demonstrated two key results from the testing of passive Sure-FlowTM strainers, which were designed to distribute the required flow over a large surface area resulting in extremely low approach velocities. First, the actualmore » head loss (pressure drop) as tested, across the prototype strainers, was much lower than the calculated head loss using the Nuclear Regulatory Commission (NRC) approved NUREG/CR-6224 head loss correlation. Second, the penetration fractions were much lower than those seen in the NRC sponsored debris penetration tests. (author)« less

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  3. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  4. An Experimental Investigation of Computer Program Development Approaches and Computer Programming Metrics.

    DTIC Science & Technology

    1979-12-01

    team progranming in reducing software dleveloup- ment costs relative to ad hoc approaches and improving software product quality relative to...are interpreted as demonstrating the advantages of disciplined team programming in reducing software development costs relative to ad hoc approaches...is due oartialty to the cost and imoracticality of a valiI experimental setup within a oroauct ion environment. Thus the question remains, are

  5. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  6. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  7. DPOI: Distributed software system development platform for ocean information service

    NASA Astrophysics Data System (ADS)

    Guo, Zhongwen; Hu, Keyong; Jiang, Yongguo; Sun, Zhaosui

    2015-02-01

    Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems (OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.

  8. Current practice in software development for computational neuroscience and how to improve it.

    PubMed

    Gewaltig, Marc-Oliver; Cannon, Robert

    2014-01-01

    Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers, and scientists to assess the quality of software and whether particular pieces of software are ready for use in research.

  9. Current Practice in Software Development for Computational Neuroscience and How to Improve It

    PubMed Central

    Gewaltig, Marc-Oliver; Cannon, Robert

    2014-01-01

    Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers, and scientists to assess the quality of software and whether particular pieces of software are ready for use in research. PMID:24465191

  10. Software Development Offshoring Competitiveness: A Case Study of ASEAN Countries

    ERIC Educational Resources Information Center

    Bui, Minh Q.

    2011-01-01

    With the success of offshoring within the American software industry, corporate executives are moving their software developments overseas. The member countries of the Association of Southeast Asian Nations (ASEAN) have become a preferred destination. However, there is a lack of published studies on the region's software competitiveness in…

  11. Experience as Knowledge in a New Product Development Team: Implications for Knowledge Management

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2009-01-01

    This study was conducted to better understand how New Product Development (NPD) team members apply their experiences to meet the task needs of their project. Although "experience" is highly valued in team members, little research has looked specifically at experiences as a type of knowledge, and how this knowledge is used in work settings. This research evaluated nearly 200 instances where team members referenced past experiences during team meetings. During these experience exchanges, team members structured the sharing of their experiences to include three common elements: the source of the experience, the nature of the experience, and the degree of relevance to the current work of the team. The experiences fell into four categories: people (relationships), process, product, and politics. This paper describes how team members structured, applied, and integrated their individual experiences and presents the resulting implications for knowledge management systems that wish to exploit experience knowledge.

  12. The Team Boat Exercise: Enhancing Team Communication Midsemester

    ERIC Educational Resources Information Center

    Cox, Pamela L.; Friedman, Barry A.

    2009-01-01

    This paper discusses the Team Boat Exercise, which was developed to provide students with a mechanism for addressing team problems and enhancing team communication midsemester. The inspiration for the exercise came from a video by Prentice Hall, Inc. (2001). Part III of the video, entitled "Corporate Coaching," shows senior staff members from the…

  13. The SOFIA Mission Control System Software

    NASA Astrophysics Data System (ADS)

    Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.

    1999-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.

  14. Decentralized Formation Flying Control in a Multiple-Team Hierarchy

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph .; Thomas, Stephanie J.

    2005-01-01

    This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  15. Cognitive task analysis-based design and authoring software for simulation training.

    PubMed

    Munro, Allen; Clark, Richard E

    2013-10-01

    The development of more effective medical simulators requires a collaborative team effort where three kinds of expertise are carefully coordinated: (1) exceptional medical expertise focused on providing complete and accurate information about the medical challenges (i.e., critical skills and knowledge) to be simulated; (2) instructional expertise focused on the design of simulation-based training and assessment methods that produce maximum learning and transfer to patient care; and (3) software development expertise that permits the efficient design and development of the software required to capture expertise, present it in an engaging way, and assess student interactions with the simulator. In this discussion, we describe a method of capturing more complete and accurate medical information for simulators and combine it with new instructional design strategies that emphasize the learning of complex knowledge. Finally, we describe three different types of software support (Development/Authoring, Run Time, and Post Run Time) required at different stages in the development of medical simulations and the instructional design elements of the software required at each stage. We describe the contributions expected of each kind of software and the different instructional control authoring support required. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  16. The benefits of flexible team interaction during crises.

    PubMed

    Stachowski, Alicia A; Kaplan, Seth A; Waller, Mary J

    2009-11-01

    Organizations increasingly rely on teams to respond to crises. While research on team effectiveness during nonroutine events is growing, naturalistic studies examining team behaviors during crises are relatively scarce. Furthermore, the relevant literature offers competing theoretical rationales concerning effective team response to crises. In this article, the authors investigate whether high- versus average-performing teams can be distinguished on the basis of the number and complexity of their interaction patterns. Using behavioral observation methodology, the authors coded the discrete verbal and nonverbal behaviors of 14 nuclear power plant control room crews as they responded to a simulated crisis. Pattern detection software revealed systematic differences among crews in their patterns of interaction. Mean comparisons and discriminant function analysis indicated that higher performing crews exhibited fewer, shorter, and less complex interaction patterns. These results illustrate the limitations of standardized response patterns and highlight the importance of team adaptability. Implications for future research and for team training are included.

  17. Omics Metadata Management Software v. 1 (OMMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and to perform bioinformatics analyses and information management tasks via a simple and intuitive web-based interface. Several use cases with short-read sequence datasets are provided to showcase the full functionality of the OMMS, from metadata curation tasks, to bioinformatics analyses and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for web-based deployment supporting geographically dispersed research teams. Our software was developed with open-source bundles, is flexible, extensible and easily installedmore » and run by operators with general system administration and scripting language literacy.« less

  18. The KSC Simulation Team practices for contingencies in Firing Room 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.

  19. How Knowledge Worker Teams Deal Effectively with Task Uncertainty: The Impact of Transformational Leadership and Group Development.

    PubMed

    Leuteritz, Jan-Paul; Navarro, José; Berger, Rita

    2017-01-01

    The purpose of this paper is to clarify how leadership is able to improve team effectiveness, by means of its influence on group processes (i.e., increasing group development) and on the group task (i.e., decreasing task uncertainty). Four hundred and eight members of 107 teams in a German research and development (R&D) organization completed a web-based survey; they provided measures of transformational leadership, group development, 2 aspects of task uncertainty, task interdependence, and team effectiveness. In 54 of these teams, the leaders answered a web-based survey on team effectiveness. We tested the model with the data from team members, using structural equations modeling. Group development and a task uncertainty measurement that refers to unstable demands from outside the team partially mediate the effect of transformational leadership on team effectiveness in R&D organizations ( p < 0.05). Although transformational leaders reduce unclarity of goals ( p < 0.05), this seems not to contribute to team effectiveness. The data provided by the leaders was used to assess common source bias, which did not affect the interpretability of the results. Limitations include cross-sectional data and a lower than expected variance of task uncertainty across different job types. This paper contributes to understanding how knowledge worker teams deal effectively with task uncertainty and confirms the importance of group development in this context. This is the first study to examine the effects of transformational leadership and team processes on team effectiveness considering the task characteristics uncertainty and interdependence.

  20. How Knowledge Worker Teams Deal Effectively with Task Uncertainty: The Impact of Transformational Leadership and Group Development

    PubMed Central

    Leuteritz, Jan-Paul; Navarro, José; Berger, Rita

    2017-01-01

    The purpose of this paper is to clarify how leadership is able to improve team effectiveness, by means of its influence on group processes (i.e., increasing group development) and on the group task (i.e., decreasing task uncertainty). Four hundred and eight members of 107 teams in a German research and development (R&D) organization completed a web-based survey; they provided measures of transformational leadership, group development, 2 aspects of task uncertainty, task interdependence, and team effectiveness. In 54 of these teams, the leaders answered a web-based survey on team effectiveness. We tested the model with the data from team members, using structural equations modeling. Group development and a task uncertainty measurement that refers to unstable demands from outside the team partially mediate the effect of transformational leadership on team effectiveness in R&D organizations (p < 0.05). Although transformational leaders reduce unclarity of goals (p < 0.05), this seems not to contribute to team effectiveness. The data provided by the leaders was used to assess common source bias, which did not affect the interpretability of the results. Limitations include cross-sectional data and a lower than expected variance of task uncertainty across different job types. This paper contributes to understanding how knowledge worker teams deal effectively with task uncertainty and confirms the importance of group development in this context. This is the first study to examine the effects of transformational leadership and team processes on team effectiveness considering the task characteristics uncertainty and interdependence. PMID:28861012

  1. Schedule Analysis Software Saves Time for Project Planners

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Since the early 2000s, a resource management team at Marshall Space Flight Center has developed and improved the Schedule Test and Assessment Tool, a software add-on capable of analyzing, summarizing, and finding logic gaps in project schedules. Companies like Lanham, Maryland-based Vantage Systems Inc. use the tool to manage NASA projects, but it has also been released for free to more than 200 US companies, agencies, and other entities.

  2. Designing primary health care teams for developing countries.

    PubMed Central

    Reisman, A; Duran, L

    1983-01-01

    A time-honored industrial engineering technique, job evaluation, which was developed to set rates for manual labor, was used in the design of new teams for delivering primary health care in Latin America. The technique was used both in writing job descriptions for new allied health personnel and in designing the curriculums needed to train the personnel. PMID:6856744

  3. CONRAD Software Architecture

    NASA Astrophysics Data System (ADS)

    Guzman, J. C.; Bennett, T.

    2008-08-01

    The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.

  4. Ada Programming Support Environment (APSE) Evaluation and Validation (E&V) Team

    DTIC Science & Technology

    1991-12-31

    standards. The purpose of the team was to assist the project in several ways. Raymond Szymanski of Wright Research Iand Development Center (WRDC, now...debuggers, program library systems, and compiler diagnostics. The test suite does not include explicit tests for the existence of language features . The...support software is a set of tools and procedures which assist in preparing and executing the test suite, in extracting data from the results of

  5. Big Software for Big Data: Scaling Up Photometry for LSST (Abstract)

    NASA Astrophysics Data System (ADS)

    Rawls, M.

    2017-06-01

    (Abstract only) The Large Synoptic Survey Telescope (LSST) will capture mosaics of the sky every few nights, each containing more data than your computer's hard drive can store. As a result, the software to process these images is as critical to the science as the telescope and the camera. I discuss the algorithms and software being developed by the LSST Data Management team to handle such a large volume of data. All of our work is open source and available to the community. Once LSST comes online, our software will produce catalogs of objects and a stream of alerts. These will bring exciting new opportunities for follow-up observations and collaborations with LSST scientists.

  6. Unobtrusive Monitoring of Spaceflight Team Functioning. Literature Review and Operational Assessment for NASA Behavioral Health and Performance Element

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain

  7. US Army Proposed Automatic Test Equipment Software Development and Support Facility.

    DTIC Science & Technology

    1982-10-29

    programs would be prepared as weapon and prime system operating software. The ATE Software Development and Support Facility will help prevent the TPS...ONE AS A STANDARD **Partially being Developed (2) UNDER DEVELOP- by Navy CSS Prgram MENT (3) NEEDS TAILOR- (5) NEEDS ING FOR ARMY DEVELOPMENT A- 2

  8. Novice and Experienced Instructional Software Developers: Effects on Materials Created with Instructional Software Templates

    ERIC Educational Resources Information Center

    Boot, Eddy W.; van Merrienboer, Jeroen J. G.; Veerman, Arja L.

    2007-01-01

    The development of instructional software is a complex process, posing high demands to the technical and didactical expertise of developers. Domain specialists rather than professional developers are often responsible for it, but authoring tools with pre-structured templates claim to compensate for this limited experience. This study compares…

  9. For the Common Good. A Guide for Developing Local Interagency Linkage Teams.

    ERIC Educational Resources Information Center

    Imel, Susan

    Developed from the Ohio At-Risk Linkage Team experiences, this guide assists local communities in organizing and strengthening effective collaborative interagency linkage teams for at-risk youth and adults. The guide proposes a series of steps, poses a number of questions relating to each step, and provides information about additional resources.…

  10. An Exploratory Study of the Role of Task Dependence on Team Captains' Leadership Development

    ERIC Educational Resources Information Center

    Grandzol, Christian J.

    2011-01-01

    While there is evidence that team captainship in intercollegiate sports can lead to leadership development, there is little evidence about the role that task dependence may play on that effect. The individual or team nature of sports may offer different leadership experiences for team captains, leading to differential outcomes. In this exploratory…

  11. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  12. Project Management Software for Distributed Industrial Companies

    NASA Astrophysics Data System (ADS)

    Dobrojević, M.; Medjo, B.; Rakin, M.; Sedmak, A.

    This paper gives an overview of the development of a new software solution for project management, intended mainly to use in industrial environment. The main concern of the proposed solution is application in everyday engineering practice in various, mainly distributed industrial companies. Having this in mind, special care has been devoted to development of appropriate tools for tracking, storing and analysis of the information about the project, and in-time delivering to the right team members or other responsible persons. The proposed solution is Internet-based and uses LAMP/WAMP (Linux or Windows - Apache - MySQL - PHP) platform, because of its stability, versatility, open source technology and simple maintenance. Modular structure of the software makes it easy for customization according to client specific needs, with a very short implementation period. Its main advantages are simple usage, quick implementation, easy system maintenance, short training and only basic computer skills needed for operators.

  13. Talent development of high performance coaches in team sports in Ireland.

    PubMed

    Sherwin, Ian; Campbell, Mark J; Macintyre, Tadhg Eoghan

    2017-04-01

    Coaches are central to the development of the expert performer and similarly to continued lifelong participation in sport. Coaches are uniquely positioned to deliver specific technical and tactical instruction and mentoring programmes that support the psychological and social development of athletes in a challenging, goal-oriented and motivational environment. The current study aimed to qualitatively investigate current coach learning sources and coaches' educational backgrounds in team sports in Ireland. Coaches from five team sports in Ireland were asked to complete an online questionnaire. Subsequently male coaches (n = 19) from five team sports who completed the questionnaire and met the inclusion criteria were invited to attend a follow-up semi-structured interview. Inclusion criteria for coaches were that they possess at least 10 years' experience coaching their sport and were coaching more than 4 hours per week. Formal coach education does not meet the needs of high performance coaches who rely more on self-directed learning and coaching experience as their main sources of CPD. Although prior playing experience at a high level is both valuable and desirable, there are concerns about fast-tracking of ex-players into high performance coaching roles. Preferred sources of education and the best learning environment for coaches of team sports in Ireland are more informal than formal. Further research is needed to examine how this learning is applied in a practical manner by examining coaching behaviours and the impact it has on the athlete development process.

  14. Model-Based Development of Automotive Electronic Climate Control Software

    NASA Astrophysics Data System (ADS)

    Kakade, Rupesh; Murugesan, Mohan; Perugu, Bhupal; Nair, Mohanan

    With increasing complexity of software in today's products, writing and maintaining thousands of lines of code is a tedious task. Instead, an alternative methodology must be employed. Model-based development is one candidate that offers several benefits and allows engineers to focus on the domain of their expertise than writing huge codes. In this paper, we discuss the application of model-based development to the electronic climate control software of vehicles. The back-to-back testing approach is presented that ensures flawless and smooth transition from legacy designs to the model-based development. Simulink report generator to create design documents from the models is presented along with its usage to run the simulation model and capture the results into the test report. Test automation using model-based development tool that support the use of unique set of test cases for several testing levels and the test procedure that is independent of software and hardware platform is also presented.

  15. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.

  16. Mediating the Message: The Team Approach to Developing Interdisciplinary Science Exhibitions

    NASA Astrophysics Data System (ADS)

    Stauffer, B. W.; Starrs, S. K.

    2005-05-01

    Museum exhibition developers can take advantage of a wide range of methods and media for delivering scientific information to a general audience. But, determining what information to convey and which medium is the best means of conveying it can be an arduous process. How do you design an exhibition so a visiting fifth grade school group learns basic scientific concepts while an amateur naturalist finds enough rich content to warrant coming back in a few months? How much or how little media should be included? What forms of media are most appropriate? Answering these questions requires intensive and iterative collaboration and compromise among a team of educators, scientists and designers. The National Museum of Natural History's Forces of Change Program uses a unique team approach that includes scientific, exhibit design, and education experts to create interdisciplinary science exhibitions. Exhibit topics have explored the dynamics of a grasslands ecosystem, global impacts of El Nino, climate change in the Arctic, the functions of the atmosphere, and soil composition. Exhibition-related products include publications, scavenger hunts, interactive computer kiosks, educational CD-ROMs, animated cartoons, web sites, and school group activities. Team members will describe the team process and the iterative discussions involved in developing these products so they are as scientifically sound and engaging as possible.

  17. Evolution of Software-Only-Simulation at NASA IV and V

    NASA Technical Reports Server (NTRS)

    McCarty, Justin; Morris, Justin; Zemerick, Scott

    2014-01-01

    Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.

  18. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  19. Product assurance policies and procedures for flight dynamics software development

    NASA Technical Reports Server (NTRS)

    Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon

    1987-01-01

    The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.

  20. Software use cases to elicit the software requirements analysis within the ASTRI project

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered