Sample records for technical infrastructure monitoring

  1. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  2. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  3. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  4. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  5. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  6. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  7. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  8. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  9. Distributed Monitoring Infrastructure for Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Babik, M.; Bhatt, K.; Chand, P.; Collados, D.; Duggal, V.; Fuente, P.; Hayashi, S.; Imamagic, E.; Joshi, P.; Kalmady, R.; Karnani, U.; Kumar, V.; Lapka, W.; Quick, R.; Tarragon, J.; Teige, S.; Triantafyllidis, C.

    2012-12-01

    The journey of a monitoring probe from its development phase to the moment its execution result is presented in an availability report is a complex process. It goes through multiple phases such as development, testing, integration, release, deployment, execution, data aggregation, computation, and reporting. Further, it involves people with different roles (developers, site managers, VO[1] managers, service managers, management), from different middleware providers (ARC[2], dCache[3], gLite[4], UNICORE[5] and VDT[6]), consortiums (WLCG[7], EMI[11], EGI[15], OSG[13]), and operational teams (GOC[16], OMB[8], OTAG[9], CSIRT[10]). The seamless harmonization of these distributed actors is in daily use for monitoring of the WLCG infrastructure. In this paper we describe the monitoring of the WLCG infrastructure from the operational perspective. We explain the complexity of the journey of a monitoring probe from its execution on a grid node to the visualization on the MyWLCG[27] portal where it is exposed to other clients. This monitoring workflow profits from the interoperability established between the SAM[19] and RSV[20] frameworks. We show how these two distributed structures are capable of uniting technologies and hiding the complexity around them, making them easy to be used by the community. Finally, the different supported deployment strategies, tailored not only for monitoring the entire infrastructure but also for monitoring sites and virtual organizations, are presented and the associated operational benefits highlighted.

  10. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    NASA Astrophysics Data System (ADS)

    Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron

    2011-12-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  11. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    NASA Astrophysics Data System (ADS)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  12. 48 CFR 642.271 - Government Technical Monitor (GTM).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Government Technical... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Services 642.271 Government Technical Monitor (GTM). (a) Policy. The contracting officer may appoint a Government Technical Monitor (GTM...

  13. Research on public participant urban infrastructure safety monitoring system using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu

    2017-04-01

    Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.

  14. Cloud Environment Automation: from infrastructure deployment to application monitoring

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.

    2017-10-01

    The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.

  15. Local Infrastructures for School Networking: Current Models and Prospects. Technical Report No. 22.

    ERIC Educational Resources Information Center

    Newman, Denis; And Others

    This paper identifies a paradigm shift that must take place in school networking. The ultimate goal is to retool the schools with a local technical infrastructure that gives teachers and students immediate access to communication systems and information resources, thereby supporting the implementation of advances in pedagogy and educational…

  16. Technical support for Life Sciences communities on a production grid infrastructure.

    PubMed

    Michel, Franck; Montagnat, Johan; Glatard, Tristan

    2012-01-01

    Production operation of large distributed computing infrastructures (DCI) still requires a lot of human intervention to reach acceptable quality of service. This may be achievable for scientific communities with solid IT support, but it remains a show-stopper for others. Some application execution environments are used to hide runtime technical issues from end users. But they mostly aim at fault-tolerance rather than incident resolution, and their operation still requires substantial manpower. A longer-term support activity is thus needed to ensure sustained quality of service for Virtual Organisations (VO). This paper describes how the biomed VO has addressed this challenge by setting up a technical support team. Its organisation, tooling, daily tasks, and procedures are described. Results are shown in terms of resource usage by end users, amount of reported incidents, and developed software tools. Based on our experience, we suggest ways to measure the impact of the technical support, perspectives to decrease its human cost and make it more community-specific.

  17. 77 FR 37060 - Critical Infrastructure and Key Resources (CIKR) Asset Protection Technical Assistance Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ...), National Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP.../IP/IICD, 245 Murray Lane SW., Mailstop 0602, Arlington, VA 20598-0602. Email requests should go to... Technical Assistance Program (CAPTAP) is offered jointly by the NPPD/IP and the Federal Emergency Management...

  18. 48 CFR 642.271 - Government Technical Monitor (GTM).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Government Technical Monitor (GTM). 642.271 Section 642.271 Federal Acquisition Regulations System DEPARTMENT OF STATE CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Services 642.271 Government Technical Monitor (GTM). (a) Policy. The...

  19. Monitoring and Evaluation of Public Policies for Educational Infrastructure.

    ERIC Educational Resources Information Center

    Wilkinson, Richard

    This paper provides an overview of how the Department for Education and Skills (the Ministry of Education of the United Kingdom) is managing, monitoring, and evaluating investment in school accommodation in England. School infrastructure in the United Kingdom is going through a period of significant change as the government seeks dramatic…

  20. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  1. Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT

    NASA Astrophysics Data System (ADS)

    Ou, Jinping

    2005-06-01

    The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.

  2. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  3. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    USGS Publications Warehouse

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as

  4. The Global Communication Infrastructure of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lastowka, L.; Gray, A.; Anichenko, A.

    2007-05-01

    The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis

  5. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project.

    PubMed

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.

  6. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    PubMed Central

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489

  7. InSAR remote sensing for performance monitoring of transportation infrastructure at the network level.

    DOT National Transportation Integrated Search

    2016-01-11

    The goal of the project was the implementation of interferometric synthetic aperture radar : (InSAR) monitoring techniques to allow for early detection of geohazard, potentially : affecting the transportation infrastructure, as well as the monitoring...

  8. ATLAS EventIndex general dataflow and monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Fernández Casaní, Á.; Barberis, D.; Favareto, A.; García Montoro, C.; González de la Hoz, S.; Hřivnáč, J.; Prokoshin, F.; Salt, J.; Sánchez, J.; Többicke, R.; Yuan, R.; ATLAS Collaboration

    2017-10-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast dataset discovery, event-picking, crosschecks with other ATLAS systems and checks for event duplication. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome the performance shortcomings detected during production peaks; an object storage approach is instead used to convey the event index information, and messages to signal their location and status. Recent changes in the Producer/Consumer architecture are also presented in detail, as well as the monitoring infrastructure.

  9. A data management infrastructure for bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Byun, Jaewook; Kim, Daeyoung; Sohn, Hoon; Bae, In Hwan; Law, Kincho H.

    2015-04-01

    This paper discusses a data management infrastructure framework for bridge monitoring applications. As sensor technologies mature and become economically affordable, their deployment for bridge monitoring will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection. The focus of this study is on the effective data management of bridge information and sensor data, which is crucial to structural health monitoring and life cycle management of bridge structures. We review the state-of-the-art of bridge information modeling and sensor data management, and propose a data management framework for bridge monitoring based on NoSQL database technologies that have been shown useful in handling high volume, time-series data and to flexibly deal with unstructured data schema. Specifically, Apache Cassandra and Mongo DB are deployed for the prototype implementation of the framework. This paper describes the database design for an XML-based Bridge Information Modeling (BrIM) schema, and the representation of sensor data using Sensor Model Language (SensorML). The proposed prototype data management framework is validated using data collected from the Yeongjong Bridge in Incheon, Korea.

  10. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  11. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  12. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks

    PubMed Central

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018

  13. Web-GIS platform for green infrastructure in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Sercaianu, Mihai; Petrescu, Florian; Aldea, Mihaela; Oana, Luca; Rotaru, George

    2015-06-01

    In the last decade, reducing urban pollution and improving quality of public spaces became a more and more important issue for public administration authorities in Romania. The paper describes the development of a web-GIS solution dedicated to monitoring of the green infrastructure in Bucharest, Romania. Thus, the system allows the urban residents (citizens) to collect themselves and directly report relevant information regarding the current status of the green infrastructure of the city. Consequently, the citizens become an active component of the decision-support process within the public administration. Besides the usual technical characteristics of such geo-information processing systems, due to the complex legal and organizational problems that arise in collecting information directly from the citizens, additional analysis was required concerning, for example, local government involvement, environmental protection agencies regulations or public entities requirements. Designing and implementing the whole information exchange process, based on the active interaction between the citizens and public administration bodies, required the use of the "citizen-sensor" concept deployed with GIS tools. The information collected and reported from the field is related to a lot of factors, which are not always limited to the city level, providing the possibility to consider the green infrastructure as a whole. The "citizen-request" web-GIS for green infrastructure monitoring solution is characterized by a very diverse urban information, due to the fact that the green infrastructure itself is conditioned by a lot of urban elements, such as urban infrastructures, urban infrastructure works and construction density.

  14. Civil infrastructure monitoring for IVHS using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.

    1995-01-01

    8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.

  15. Forest health monitoring: 2008 national technical report

    Treesearch

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  16. Transaction aware tape-infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Nikolaidis, Fotios; Kruse, Daniele Francesco

    2014-06-01

    Administrating a large scale, multi protocol, hierarchical tape infrastructure like the CERN Advanced STORage manager (CASTOR)[2], which stores now 100 PB (with an increasing step of 25 PB per year), requires an adequate monitoring system for quick spotting of malfunctions, easier debugging and on demand report generation. The main challenges for such system are: to cope with CASTOR's log format diversity and its information scattered among several log files, the need for long term information archival, the strict reliability requirements and the group based GUI visualization. For this purpose, we have designed, developed and deployed a centralized system consisting of four independent layers: the Log Transfer layer for collecting log lines from all tape servers to a single aggregation server, the Data Mining layer for combining log data into transaction context, the Storage layer for archiving the resulting transactions and finally the Web UI layer for accessing the information. Having flexibility, extensibility and maintainability in mind, each layer is designed to work as a message broker for the next layer, providing a clean and generic interface while ensuring consistency, redundancy and ultimately fault tolerance. This system unifies information previously dispersed over several monitoring tools into a single user interface, using Splunk, which also allows us to provide information visualization based on access control lists (ACL). Since its deployment, it has been successfully used by CASTOR tape operators for quick overview of transactions, performance evaluation, malfunction detection and from managers for report generation.

  17. Development of a PVDF film sensor for infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Satpathi, Debashis; Victor, J. P.; Wang, Ming L.; Yang, H. Y.; Shih, C. C.

    1999-05-01

    Development of a health monitoring system is of vital importance for all civil infrastructures. However, this effort has been stymied in part by the lack of suitable low priced sensors and associated signal conditioning. Very often the requirement of a controlled stable power supply to the sensor itself poses another challenge. Piezoelectric polymer films offer an excellent alternative to the ubiquitous strain gage technology. The PVDF film generates an electrical charge when mechanically deformed. The PVDF film is typically a high impedance source with a capacitance in the nanofarad range and measurement of low frequency event can pose a challenge. The authors have utilized a charge mode amplification scheme for measuring quasi-static processes. The processed signal can be transmitted to a data acquisition system via a RF microelectronic circuit. The PVDF film as a transducer can be cut to very small size and are very affordable at around 50 cents per sensor. The whole circuitry can be integrated into one single unit. It would require very low power to function and could be embedded in the structure for a large number of remote applications. In this article the authors have reported the result of the various characterization test that have been carried out to determine the suitability of the basic film as the core of an autoadaptive sensor system to be designed for infrastructure monitoring.

  18. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  19. Clarkesville Green Infrastructure Implementation Strategy

    EPA Pesticide Factsheets

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  20. Monitoring of civil infrastructures by interferometric radar: a review.

    PubMed

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated.

  1. CALS Infrastructure Analysis. Draft. Volume 21

    DOT National Transportation Integrated Search

    1990-03-01

    This executive overview to the DoD CALS Infrastructure Analysis Report summarizes the Components' current effort to modernize the DoD technical data infrastructure. This infrastructure includes all existing and planned capabilities to acquire, manage...

  2. Technology Assessment On Stressor Impacts To Green Infrastructure BMP Performance, Monitoring And Integration

    EPA Science Inventory

    This presentation will document, benchmark and evalute state-of-the-science research and implementation on BMP performance, monitoring, and integration for green infrastructure applications, to manage wet weather flwo, storm-water-runoff stressor relief and remedial sustainable w...

  3. 75 FR 74713 - Reliability Monitoring, Enforcement and Compliance Issues; Notice Allowing Post-Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Monitoring, Enforcement and Compliance Issues; Notice Allowing Post-Technical Conference Comments November 23... Commission-led technical conference to explore issues associated with reliability monitoring, enforcement and...- 000, on or before December 9, 2010. \\1\\ Reliability Monitoring, Enforcement and Compliance Issues...

  4. Uncertainty in Predicted Neighborhood-Scale Green Stormwater Infrastructure Performance Informed by field monitoring of Hydrologic Abstractions

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Jeffers, S.; Montalto, F. A.

    2013-12-01

    Human alterations to the environment provide infrastructure for housing and transportation but have drastically changed local hydrology. Excess stormwater runoff from impervious surfaces generates erosion, overburdens sewer infrastructure, and can pollute receiving bodies. Increased attention to green stormwater management controls is based on the premise that some of these issues can be mitigated by capturing or slowing the flow of stormwater. However, our ability to predict actual green infrastructure facility performance using physical or statistical methods needs additional validation, and efforts to incorporate green infrastructure controls into hydrologic models are still in their infancy stages. We use more than three years of field monitoring data to derive facility specific probability density functions characterizing the hydrologic abstractions provided by a stormwater treatment wetland, streetside bioretention facility, and a green roof. The monitoring results are normalized by impervious area treated, and incorporated into a neighborhood-scale agent model allowing probabilistic comparisons of the stormwater capture outcomes associated with alternative urban greening scenarios. Specifically, we compare the uncertainty introduced into the model by facility performance (as represented by the variability in the abstraction), to that introduced by both precipitation variability, and spatial patterns of emergence of different types of green infrastructure. The modeling results are used to update a discussion about the potential effectiveness of urban green infrastructure implementation plans.

  5. Monitoring of Civil Infrastructures by Interferometric Radar: A Review

    PubMed Central

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated. PMID:24106454

  6. A framework for quantifying and optimizing the value of seismic monitoring of infrastructure

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr

    2017-04-01

    This paper outlines a framework for quantifying and optimizing the value of information from structural health monitoring (SHM) technology deployed on large infrastructure, which may sustain damage in a series of earthquakes (the main and the aftershocks). The evolution of the damage state of the infrastructure without or with SHM is presented as a time-dependent, stochastic, discrete-state, observable and controllable nonlinear dynamical system. The pre-posterior Bayesian analysis and the decision tree are used for quantifying and optimizing the value of SHM information. An optimality problem is then formulated how to decide on the adoption of SHM and how to manage optimally the usage and operations of the possibly damaged infrastructure and its repair schedule using the information from SHM. The objective function to minimize is the expected total cost or risk.

  7. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  8. Monitoring performance of a highly distributed and complex computing infrastructure in LHCb

    NASA Astrophysics Data System (ADS)

    Mathe, Z.; Haen, C.; Stagni, F.

    2017-10-01

    In order to ensure an optimal performance of the LHCb Distributed Computing, based on LHCbDIRAC, it is necessary to be able to inspect the behavior over time of many components: firstly the agents and services on which the infrastructure is built, but also all the computing tasks and data transfers that are managed by this infrastructure. This consists of recording and then analyzing time series of a large number of observables, for which the usage of SQL relational databases is far from optimal. Therefore within DIRAC we have been studying novel possibilities based on NoSQL databases (ElasticSearch, OpenTSDB and InfluxDB) as a result of this study we developed a new monitoring system based on ElasticSearch. It has been deployed on the LHCb Distributed Computing infrastructure for which it collects data from all the components (agents, services, jobs) and allows creating reports through Kibana and a web user interface, which is based on the DIRAC web framework. In this paper we describe this new implementation of the DIRAC monitoring system. We give details on the ElasticSearch implementation within the DIRAC general framework, as well as an overview of the advantages of the pipeline aggregation used for creating a dynamic bucketing of the time series. We present the advantages of using the ElasticSearch DSL high-level library for creating and running queries. Finally we shall present the performances of that system.

  9. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  10. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  11. Northern goshawk inventory and monitoring technical guide

    Treesearch

    B. Woodbridge; C.D. Hargis

    2006-01-01

    This technical guide provides information on all aspects of inventory and monitoring related to the northern goshawk (Accipiter gentilis) and is to be used by the U.S. Department of Agriculture (USDA) Forest Service consistent with national direction, local priorities, and available funding, and also by interested partners and collaborators. When the protocols...

  12. Forest health monitoring: 2006 national technical report

    Treesearch

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...

  13. Forest health monitoring: 2005 national technical report

    Treesearch

    Mark J. Ambrose; Barbara L. Conkling

    2007-01-01

    The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...

  14. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    NASA Astrophysics Data System (ADS)

    Sipos, Roland; Govi, Giacomo; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-10-01

    The CMS experiment at CERN LHC has a dedicated infrastructure to handle the alignment and calibration data. This infrastructure is composed of several services, which take on various data management tasks required for the consumption of the non-event data (also called as condition data) in the experiment activities. The criticality of these tasks imposes tights requirements for the availability and the reliability of the services executing them. In this scope, a comprehensive monitoring and alarm generating system has been developed. The system has been implemented based on the Nagios open source industry standard for monitoring and alerting services, and monitors the database back-end, the hosting nodes and key heart-beat functionalities for all the services involved. This paper describes the design, implementation and operational experience with the monitoring system developed and deployed at CMS in 2016.

  15. Forest health monitoring: 2007 national technical report

    Treesearch

    Barbara L. Conkling

    2011-01-01

    The Forest Health Monitoring Program produces an annual technical report that has two main objectives. The first objective is to present information about forest health from a national perspective. The second objective is to present examples of useful techniques for analyzing forest health data new to the annual national reports and new applications of techniques...

  16. Forest health monitoring: 2009 national technical report

    Treesearch

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  17. Technology Assessment On Stressor Impacts to Green Infrastructure BMP Performance, Monitoring, and Integration (Cincinnati, OH)

    EPA Science Inventory

    This poster presentation will document, benchmark and evaluate state-of-the-science research and implementation on BMP performance, monitoring and integration for green infrastructure applications, to manage wet weather flow, storm-water runoff stressor relief and remedial sustai...

  18. TCIA Secure Cyber Critical Infrastructure Modernization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keliiaa, Curtis M.

    The Sandia National Laboratories (Sandia Labs) tribal cyber infrastructure assurance initiative was developed in response to growing national cybersecurity concerns in the the sixteen Department of Homeland Security (DHS) defined critical infrastructure sectors1. Technical assistance is provided for the secure modernization of critical infrastructure and key resources from a cyber-ecosystem perspective with an emphasis on enhanced security, resilience, and protection. Our purpose is to address national critical infrastructure challenges as a shared responsibility.

  19. Development of an intelligent hydroinformatic system for real-time monitoring and assessment of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Cahill, Paul; Michalis, Panagiotis; Solman, Hrvoje; Kerin, Igor; Bekic, Damir; Pakrashi, Vikram; McKeogh, Eamon

    2017-04-01

    With the effects of climate change becoming more apparent, extreme weather events are now occurring with greater frequency throughout the world. Such extreme events have resulted in increased high intensity flood events which are having devastating consequences on hydro-structures, especially on bridge infrastructure. The remote and often inaccessible nature of such bridges makes inspections problematic, a major concern if safety assessments are required during and after extreme flood events. A solution to this is the introduction of smart, low cost sensing solutions at locations susceptible to hydro-hazards. Such solutions can provide real-time information on the health of the bridge and its environments, with such information aiding in the mitigation of the risks associated with extreme weather events. This study presents the development of an intelligent system for remote, real-time monitoring of hydro-hazards to bridge infrastructure. The solution consists of two types of remote monitoring stations which have the capacity to monitor environmental conditions and provide real-time information to a centralized, big data database solution, from which an intelligent decision support system will accommodate the results to control and manage bridge, river and catchment assets. The first device developed as part of the system is the Weather Information Logging Device (WILD), which monitors rainfall, temperature and air and soil moisture content. The ability of the WILD to monitor rainfall in real time enables flood early warning alerts and predictive river flow conditions, thereby enabling decision makers the ability to make timely and effective decisions about critical infrastructures in advance of extreme flood events. The WILD is complemented by a second monitoring device, the Bridge Information Recording Device (BIRD), which monitors water levels at a given location in real-time. The monitoring of water levels of a river allows for, among other applications

  20. Critical infrastructure monitoring using UAV imagery

    NASA Astrophysics Data System (ADS)

    Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos

    2016-08-01

    The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.

  1. Economic Benefits of Green Infrastructure in Lancaster PA

    EPA Pesticide Factsheets

    This document outlines technical assistance for demonstrating how accounting for the multiple benefits of green infrastructure can provide a more complete assessment of infrastructure and community investments.

  2. Forest health monitoring: 2004 national technical report

    Treesearch

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. Results presented in the report pertain to the Santiago Declaration’s Criterion 1— Conservation of Biological Diversity and Criterion 3—Maintenance of Forest Ecosystem Health and...

  3. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  4. Promising Data for Public Empowerment: The Making of Data Culture and Water Monitoring Infrastructures in the Marcellus Shale Gas Rush

    NASA Astrophysics Data System (ADS)

    Jalbert, Kirk

    A recent wave of advanced technologies for collecting and interpreting data offer new opportunities for laypeople to contribute to environmental monitoring science. This dissertation examines the conditions in which building knowledge infrastructures and embracing data "cultures" empowers and disempowers communities to challenge polluting industries. The processes and technologies of data cultures give people new capacities to understand their world, and to formulate powerful scientific arguments. However, data cultures also make many aspects of social life invisible, and elevate quantitative objective analysis over situated, subjective observation. This study finds that data cultures can empower communities when concerned citizens are equal contributors to research partnerships; ones that enable them to advocate for more nuanced data cultures permitting of structural critiques of status-quo environmental governance. These arguments are developed through an ethnographic study of participatory watershed monitoring projects that seek to document the impacts of shale gas extraction in Pennsylvania, New York, and West Virginia. Energy companies are drilling for natural gas using highly controversial methods of extraction known as hydraulic fracturing. Growing evidence suggests that nearby watersheds can be impacted by a myriad of extraction related problems including seepage from damaged gas well casing, improper waste disposal, trucking accidents, and the underground migration of hydraulic fracking fluids. In response to these risks, numerous organizations are coordinating and carrying out participatory water monitoring efforts. All of these projects embrace data culture in different ways. Each monitoring project has furthermore constructed its own unique infrastructure to support the sharing, aggregation, and analysis of environmental data. Differences in data culture investments and infrastructure building make some projects more effective than others in empowering

  5. The ISTIMES project: a new integrated system for monitoring critical transport infrastructures interested by natural hazards

    NASA Astrophysics Data System (ADS)

    Proto, Monica; Massimo, Bavusi; Francesco, Soldovieri

    2010-05-01

    The research project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), was approved in the 7th Framework Programme, in the Joint Call ICT and Security and started on 1st July 2009. The purpose of ISTIMES project is to design, assess and promote an ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring in order to achieve the critical transport infrastructures more reliable and safe. The transportation sector's components are susceptible to the consequences of natural disasters and can also be attractive as terrorist targets. The sector's size, its physically dispersed and decentralized nature, the many public and private entities involved in its operations, the critical importance of cost considerations, and the inherent requirement of convenient accessibility to its services by all users - make the transportation particularly vulnerable to security and safety threats. As well known, the surface transportation system consists of interconnected infrastructures including highways, transit systems, railroads, airports, waterways, pipelines and ports, and the vehicles, aircraft, and vessels that operate along these networks. Thus, interdependencies exist between transportation and nearly every other sector of the economy and the effective operation of this system is essential to the European economic productivity; therefore, transportation sector protection is of paramount importance since threats to it may impact other industries that rely on it. The system exploits an open network architecture that can accommodate a wide range of sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfacing with other networks. It relies on heterogeneous state-of-the-art electromagnetic sensors, enabling a self-organizing, self-healing, ad-hoc networking of terrestrial sensors, supported by specific satellite

  6. Home monitoring and decision support for international liver transplant children.

    PubMed

    Song, Bianying; Schulze, Mareike; Goldschmidt, Imeke; Haux, Reinhold; Baumann, Ulrich; Marschollek, Michael

    2013-01-01

    Complications may occur after a liver transplantation, therefore proper monitoring and care in the post-operation phase plays a very important role. Sometimes, monitoring and care for patients from abroad is difficult due to a variety of reasons, e.g., different care facilities. The objective of our research for this paper is to design, implement and evaluate a home monitoring and decision support infrastructure for international children who underwent liver transplant operation. A point-of-care device and the PedsQL questionnaire were used in patients' home environment for measuring the blood parameters and assessing quality of life. By using a tablet PC and a specially developed software, the measured results were able to be transmitted to the health care providers via internet. So far, the developed infrastructure has been evaluated with four international patients/families transferring 38 records of blood test. The evaluation showed that the home monitoring and decision support infrastructure is technically feasible and is able to give timely alarm in case of abnormal situation as well as may increase parent's feeling of safety for their children.

  7. Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, Stanley

    This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less

  8. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures

  9. The Infrastructure of Open Educational Resources

    ERIC Educational Resources Information Center

    Smith, Marshall S.; Wang, Phoenix M.

    2007-01-01

    The success of OER is likely to depend on a flexible, extendable infrastructure that will meet the challenges of an evolving World Wide Web. In this article, the authors examine three key dimensions of this infrastructure--technical, legal/cultural/social/political, and research--and discuss possible directions for development. (Contains 1 table…

  10. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    NASA Astrophysics Data System (ADS)

    Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-06-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker

  11. Forest health monitoring: 2002 national technical report

    Treesearch

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. This annual report focuses on “Criterion 3—Maintenance of Forest Ecosystem Health and Vitality” from the “Criteria and Indicators of Sustainable Forestry of the Santiago Declaration”...

  12. ISTIMES Integrated System for Transport Infrastructures Surveillance and Monitoring by Electromagnetic Sensing

    NASA Astrophysics Data System (ADS)

    Argenti, M.; Giannini, V.; Averty, R.; Bigagli, L.; Dumoulin, J.

    2012-04-01

    The EC FP7 ISTIMES project has the goal of realizing an ICT-based system exploiting distributed and local sensors for non destructive electromagnetic monitoring in order to make critical transport infrastructures more reliable and safe. Higher situation awareness thanks to real time and detailed information and images of the controlled infrastructure status allows improving decision capabilities for emergency management stakeholders. Web-enabled sensors and a service-oriented approach are used as core of the architecture providing a sys-tem that adopts open standards (e.g. OGC SWE, OGC CSW etc.) and makes efforts to achieve full interoperability with other GMES and European Spatial Data Infrastructure initiatives as well as compliance with INSPIRE. The system exploits an open easily scalable network architecture to accommodate a wide range of sensors integrated with a set of tools for handling, analyzing and processing large data volumes from different organizations with different data models. Situation Awareness tools are also integrated in the system. Definition of sensor observations and services follows a metadata model based on the ISO 19115 Core set of metadata elements and the O&M model of OGC SWE. The ISTIMES infrastructure is based on an e-Infrastructure for geospatial data sharing, with a Data Cata-log that implements the discovery services for sensor data retrieval, acting as a broker through static connections based on standard SOS and WNS interfaces; a Decision Support component which helps decision makers providing support for data fusion and inference and generation of situation indexes; a Presentation component which implements system-users interaction services for information publication and rendering, by means of a WEB Portal using SOA design principles; A security framework using Shibboleth open source middleware based on the Security Assertion Markup Language supporting Single Sign On (SSO). ACKNOWLEDGEMENT - The research leading to these

  13. Space-based communications infrastructure for developing countries

    NASA Astrophysics Data System (ADS)

    Barker, Keith; Barnes, Carl; Price, K. M.

    1995-08-01

    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infrastructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing.

  14. 75 FR 62534 - Reliability Monitoring, Enforcement and Compliance Issues; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD11-1-000] Reliability Monitoring, Enforcement and Compliance Issues; Notice of Technical Conference October 1, 2010. The Federal...-referenced proceeding to explore issues associated with reliability monitoring, enforcement and compliance...

  15. Green infrastructure monitoring in Camden, NJ

    EPA Science Inventory

    The Camden County Municipal Utilities Authority (CCMUA) installed green infrastructure Stormwater Control Measures (SCMs) at multiple locations around the city of Camden, NJ. The SCMs include raised downspout planter boxes, rain gardens, and cisterns. The cisterns capture water ...

  16. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less

  17. Railway infrastructure monitoring with COSMO/SkyMed imagery and multi-temporal SAR interferometry

    NASA Astrophysics Data System (ADS)

    Chiaradia, M.; Nutricato, R.; Nitti, D. O.; Bovenga, F.; Guerriero, L.

    2012-12-01

    For all the European Countries, the rail network represents a key critical infrastructure, deserving protection in view of its continuous structure spread over the whole territory, of the high number of European citizens using it for personal and professional reasons, and of the large volume of freight moving through it. Railway system traverses a wide variety of terrains and encounters a range of geo-technical conditions. The interaction of these factors together with climatic and seismic forcing, may produce ground instabilities that impact on the safety and efficiency of rail operations. In such context, a particular interest is directed to the development of technologies regarding both the prevention of mishaps of infrastructures and the fast recovery of their normal working conditions after the occurrence of accidents (disaster managing). Both these issues are of strategic interest for EU Countries, and in particular for Italy, since, more than other countries, it is characterized by a geo-morphological and hydro-geological structure complexity that increases the risk of natural catastrophes due to landslides, overflowings and floods. The present study has been carried out in the framework of a scientific project aimed at producing a diagnostic system, capable to foresee and monitor landslide events along railway networks by integrating in situ data, detected from on board sophisticated innovative measuring systems, with Earth Observation (EO) techniques. Particular importance is devoted to the use of advanced SAR interferometry, thanks to their all-weather, day-night capability to detect and measure with sub-centimeter accuracy ground surface displacements that, in such context, can occur before a landslide event or after that movements . Special attention is directed to the use of SAR images acquired by COSMO/SkyMed (ASI) constellation capable to achieve very high spatial resolution and very short revisit and response time. In this context, a stack of 57 CSK

  18. Capacity for research in minority health: the need for infrastructure plus will.

    PubMed

    Pearson, T A

    2001-11-01

    Cardiovascular mortality has continued to decline, but racial disparities in cardiovascular diseases (CVD) continue to grow. To build the capacity to address these racial disparities, two things will be required. First, a research and policy infrastructure must be in place to provide guidance on what to do and how to do it. Second, the will to implement and activate this infrastructure must be present at the community and policy-making levels. The Jackson Heart Study is an example of a research infrastructure with the economic resources, scientific expertise, and technical manpower required to monitor, organize, assess, and follow a cohort of individuals over time to study the burden, natural history, predictive factors, and level of care for CVD in an African American community. The creation of will within the community for CVD research may require additional strategies than in the majority community, such as community organization and local policy development. These additional efforts at the community level should create a fertile environment to develop research and, ultimately, test strategies for reducing national disparities in cardiovascular health.

  19. Technical consultation on the use of satellite communications for remote monitoring of field instrumentation systems.

    DOT National Transportation Integrated Search

    2011-01-01

    The increasing emphasis on the maintenance of existing infrastructure systems have led to : greater use of advanced sensors and condition monitoring systems. Wireless sensors and : sensor networks are emerging as sensing paradigms that the structural...

  20. Metadata and network API aspects of a framework for storing and retrieving civil infrastructure monitoring data

    NASA Astrophysics Data System (ADS)

    Wong, John-Michael; Stojadinovic, Bozidar

    2005-05-01

    A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.

  1. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring

    PubMed Central

    Gharavi, Hamid; Hu, Bin

    2018-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505

  2. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    PubMed

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  3. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  4. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  5. EV Charging Infrastructure Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumesmore » that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge« less

  6. Intelligent Transportation Infrastructure Deployment Analysis System

    DOT National Transportation Integrated Search

    1997-01-01

    Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, Standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementa...

  7. A Case Study Based Analysis of Performance Metrics for Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Gordon, B. L.; Ajami, N.; Quesnel, K.

    2017-12-01

    Aging infrastructure, population growth, and urbanization are demanding new approaches to management of all components of the urban water cycle, including stormwater. Traditionally, urban stormwater infrastructure was designed to capture and convey rainfall-induced runoff out of a city through a network of curbs, gutters, drains, and pipes, also known as grey infrastructure. These systems were planned with a single-purpose and designed under the assumption of hydrologic stationarity, a notion that no longer holds true in the face of a changing climate. One solution gaining momentum around the world is green infrastructure (GI). Beyond stormwater quality improvement and quantity reduction (or technical benefits), GI solutions offer many environmental, economic, and social benefits. Yet many practical barriers have prevented the widespread adoption of these systems worldwide. At the center of these challenges is the inability of stakeholders to know how to monitor, measure, and assess the multi-sector performance of GI systems. Traditional grey infrastructure projects require different monitoring strategies than natural systems; there are no overarching policies on how to best design GI monitoring and evaluation systems and measure performance. Previous studies have attempted to quantify the performance of GI, mostly using one evaluation method on a specific case study. We use a case study approach to address these knowledge gaps and develop a conceptual model of how to evaluate the performance of GI through the lens of financing. First, we examined many different case studies of successfully implemented GI around the world. Then we narrowed in on 10 exemplary case studies. For each case studies, we determined what performance method the project developer used such as LCA, TBL, Low Impact Design Assessment (LIDA) and others. Then, we determined which performance metrics were used to determine success and what data was needed to calculate those metrics. Finally, we

  8. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  9. Landfills as critical infrastructures: analysis of observational datasets after 12 years of non-invasive monitoring

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Raco, Brunella; Battaglini, Raffaele

    2016-04-01

    This work presents the results of more than ten years of observations, performed on a regular basis, on a municipal solid waste disposal located in Italy. Observational data are generated by the combination of non-invasive techniques, involving the direct measurement of biogas release to the atmosphere and thermal infrared imaging. In fact, part of the generated biogas tends to escape from the landfill surface even when collecting systems are installed and properly working. Thus, methodologies for estimating the behaviour of a landfill system by means of direct and/or indirect measurement systems have been developed in the last decades. It is nowadays known that these infrastructures produce more than 20% of the total anthropogenic methane released to the atmosphere, justifying the need for a systematic and efficient monitoring of such infrastructures. During the last 12 years, observational data regarding a solid waste disposal site located in Tuscany (Italy) have been collected on a regular basis. The collected datasets consist in direct measurements of gas flux with the accumulation chamber method, combined with the detection of thermal anomalies by infrared radiometry. This work discusses the evolution of the estimated performance of the landfill system, its trends, the benefits and the critical aspects of such relatively long-term monitoring activity.

  10. Can Economics Provide Insights into Trust Infrastructure?

    NASA Astrophysics Data System (ADS)

    Vishik, Claire

    Many security technologies require infrastructure for authentication, verification, and other processes. In many cases, viable and innovative security technologies are never adopted on a large scale because the necessary infrastructure is slow to emerge. Analyses of such technologies typically focus on their technical flaws, and research emphasizes innovative approaches to stronger implementation of the core features. However, an observation can be made that in many cases the success of adoption pattern depends on non-technical issues rather than technology-lack of economic incentives, difficulties in finding initial investment, inadequate government support. While a growing body of research is dedicated to economics of security and privacy in general, few theoretical studies in this area have been completed, and even fewer that look at the economics of “trust infrastructure” beyond simple “cost of ownership” models. This exploratory paper takes a look at some approaches in theoretical economics to determine if they can provide useful insights into security infrastructure technologies and architectures that have the best chance to be adopted. We attempt to discover if models used in theoretical economics can help inform technology developers of the optimal business models that offer a better chance for quick infrastructure deployment.

  11. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  12. Relationship between vaccine vial monitors and cold chain infrastructure in a rural district of India.

    PubMed

    Samant, Y; Lanjewar, H; Parker, L; Block, D; Stein, B; Tomar, G

    2007-01-01

    The potency of oral polio vaccine (OPV), a heat-labile vaccine, is preserved by the cold chain. The Vaccine Vial Monitor, a heat-sensitive label, is critical to the monitoring and maintenance of the cold chain. This study was conducted to evaluate the relationship between the adequacy of cold chain infrastructure and the proper use of Vaccine Vial Monitor in a rural district of India. Forty-six health centers in a rural district were included in our evaluation of the cold chain equipment and the Vaccine Vial Monitors. Cold chain equipment and vaccine vials within each health center were evaluated for adherence to WHO cold chain maintenance protocols and the Vaccine Vial Monitor stage, respectively. Among the 46 health centers, Vaccine Vial Monitor stage I was found at 58% of the health centers, 33% of the health centers reported stage II and 9% reported a stage III, indicating weaknesses in the cold chain mechanism Cold chain for the OPV was not adequately maintained at primary and sub-health centers in this rural district. Well maintained ice packs and vaccine carriers will help ensure delivery and availability of a safe and potent vaccine to children in rural areas of India.

  13. Analysis of CERN computing infrastructure and monitoring data

    NASA Astrophysics Data System (ADS)

    Nieke, C.; Lassnig, M.; Menichetti, L.; Motesnitsalis, E.; Duellmann, D.

    2015-12-01

    Optimizing a computing infrastructure on the scale of LHC requires a quantitative understanding of a complex network of many different resources and services. For this purpose the CERN IT department and the LHC experiments are collecting a large multitude of logs and performance probes, which are already successfully used for short-term analysis (e.g. operational dashboards) within each group. The IT analytics working group has been created with the goal to bring data sources from different services and on different abstraction levels together and to implement a suitable infrastructure for mid- to long-term statistical analysis. It further provides a forum for joint optimization across single service boundaries and the exchange of analysis methods and tools. To simplify access to the collected data, we implemented an automated repository for cleaned and aggregated data sources based on the Hadoop ecosystem. This contribution describes some of the challenges encountered, such as dealing with heterogeneous data formats, selecting an efficient storage format for map reduce and external access, and will describe the repository user interface. Using this infrastructure we were able to quantitatively analyze the relationship between CPU/wall fraction, latency/throughput constraints of network and disk and the effective job throughput. In this contribution we will first describe the design of the shared analysis infrastructure and then present a summary of first analysis results from the combined data sources.

  14. 75 FR 68780 - Reliability Monitoring, Enforcement and Compliance Issues; Agenda for the Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD11-1-000] Reliability Monitoring, Enforcement and Compliance Issues; Agenda for the Technical Conference November 2, 2010. The... associated with reliability monitoring, enforcement and compliance. The Commission announced the conference...

  15. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains.

    PubMed

    Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T

    2015-09-01

    Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management.

  16. Analysis of the Parameters Required for Performance Monitoring and Assessment of Military Communications Systems by Military Technical Controller

    DTIC Science & Technology

    1975-12-01

    139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters

  17. Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    NASA Technical Reports Server (NTRS)

    Beebe, Reta F.; Crichton, D.; Hughes, S.; Grayzeck, E.

    2010-01-01

    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4.

  18. Automated water monitor system field demonstration test report. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.

  19. Technical challenges for big data in biomedicine and health: data sources, infrastructure, and analytics.

    PubMed

    Peek, N; Holmes, J H; Sun, J

    2014-08-15

    To review technical and methodological challenges for big data research in biomedicine and health. We discuss sources of big datasets, survey infrastructures for big data storage and big data processing, and describe the main challenges that arise when analyzing big data. The life and biomedical sciences are massively contributing to the big data revolution through secondary use of data that were collected during routine care and through new data sources such as social media. Efficient processing of big datasets is typically achieved by distributing computation over a cluster of computers. Data analysts should be aware of pitfalls related to big data such as bias in routine care data and the risk of false-positive findings in high-dimensional datasets. The major challenge for the near future is to transform analytical methods that are used in the biomedical and health domain, to fit the distributed storage and processing model that is required to handle big data, while ensuring confidentiality of the data being analyzed.

  20. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas

  1. Low power wireless sensor networks for infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Ghaed, Mohammad Hassan; Ghahramani, Mohammad Mahdi; Chen, Gregory; Fojtik, Matthew; Blaauw, David; Flynn, Michael P.; Sylvester, Dennis

    2012-04-01

    Sensors with long lifetimes are ideal for infrastructure monitoring. Miniaturized sensor systems are only capable of storing small amounts of energy. Prior work has increased sensor lifetime through the reduction of supply voltage , necessitating voltage conversion from storage elements such as batteries. Sensor lifetime can be further extended by harvesting from solar, vibrational, or thermal energy. Since harvested energy is sporadic, it must be detected and stored. Harvesting sources do not provide voltage levels suitable for secondary power sources, necessitating DC-DC upconversion. We demonstrate a 8.75mm3 sensor system with a near-threshold ARM microcontroller, custom 3.3fW/bit SRAM, two 1mm2 solar cells, a thin-film Li-ion battery, and integrated power management unit. The 7.7μW system enters a 550pW data-retentive sleep state between measurements and harvests solar energy to enable energy autonomy. Our receiver and transmitter architectures benefit from a design strategy that employs mixed signal and digital circuit schemes that perform well in advanced CMOS integrated circuit technologies. A prototype transmitter implemented in 0.13μm CMOS satisfies the requirements for Zigbee, but consumes far less power consumption than state-of-the-art commercial devices.

  2. Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott

    An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulusmore » fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse structures as: buildings, bridges, railroad cars, trucks and other heavy machinery, steel power and communication towers, pipelines, factories, mining equipment, ships, tanks and other military vehicles. This LDRD also proved the concept of a living infrastructure by developing custom sensors and self-healing chemistry and linking this technology with the application of advanced composite materials. Structural Health Monitoring (SHM) systems and mountable, miniature sensors were designed to continuously or periodically assess structural integrity. Such systems are able to

  3. A Security Monitoring Framework For Virtualization Based HEP Infrastructures

    NASA Astrophysics Data System (ADS)

    Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.; ALICE Collaboration

    2017-10-01

    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.

  4. The forest health monitoring national technical reports: examples of analyses and results from 2001-2004

    Treesearch

    Mark J. Ambrose; Barbara L. Conkling; Kurt H. Riitters; John W. Coulston

    2008-01-01

    This brochure presents examples of analyses included in the first four Forest Health Monitoring (FHM) national technical reports. Its purpose is to introduce the reader to the kinds of information available in these and subsequent FHM national technical reports. Indicators presented here include drought, air pollution, forest fragmentation, and tree mortality. These...

  5. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old andmore » classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure

  6. Can Sensors Solve the Deterioration Problems of Public Infrastructure?

    NASA Astrophysics Data System (ADS)

    Miki, Chitoshi

    2014-11-01

    Various deteriorations are detected in public infrastructures, such as bridges, viaducts, piers and tunnels and caused fatal accidents in some cases. The possibility of the applications of health monitoring by using sensors is the issues of this lecture. The inspection and diagnosis are essential in the maintenance works which include appropriate rehabilitations and replacements. The introduction of monitoring system may improve accuracy and efficiency of inspection and diagnosis. This seems to be innovation of maintenance, old structures may change smart structures by the installation of nerve network and brain, specifically. Cost- benefit viewpoint is also important point, because of public infrastructures. The modes of deterioration are fatigue, corrosion, and delayed fracture in steel, and carbonization and alkali aggregate reaction in concrete. These are like adult disease in human bodies. The developments of Infrastructures in Japan were concentrated in the 1960th and 1970th. These ages are approaching 50 and deterioration due to aging has been progress gradually. The attacks of earthquakes are also a major issue. Actually, these infrastructures have been supporting economic and social activities in Japan and the deterioration of public infrastructure has become social problems. How to secure the same level of safety and security for all public infrastructures is the challenge we face now. The targets of monitoring are external disturbances such as traffic loads, earthquakes, winds, temperature, responses against external disturbances, and the changes of performances. In the monitoring of infrastructures, 3W1H(WHAT, WHERE, WHEN and HOW) are essential, that is what kind of data are necessary, where sensors place, when data are collected, and how to collect and process data. The required performances of sensors are accuracy, stability for long time. In the case of long term monitoring, the durability of systems needs more than five years, because the interval

  7. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  8. Analysis of surveying and legal problems in granting right-of-way and expropriation for the purpose of locating technical infrastructure

    NASA Astrophysics Data System (ADS)

    Trembecka, Anna

    2016-06-01

    A condition which determines the location of technical infrastructure is an entrepreneur holding the right to use the property for construction purposes. Currently, there are parallel separate legal forms allowing the use of a real property for the purpose of locating transmission lines, i.e. transmission easement (right-of-way) established under the civil law and expropriation by limiting the rights to a property under the administrative law. The aim of the study is to compare these forms conferring the right to use real properties and to analyze the related surveying and legal problems occurring in practice. The research thesis of the article is ascertainment that the current legal provisions for establishing legal titles to a property in order to locate transmission lines need to be amended. The conducted study regarded legal conditions, extent of expropriation and granting right-of-way in the city of Krakow, as well as the problems associated with the ambiguous wording of the legal regulations. Part of the research was devoted to the form of rights to land in order to carry out similar projects in some European countries (France, Czech Republic, Germany, Sweden). The justification for the analysis of these issues is dictated by the scale of practical use of the aforementioned forms of rights to land in order to locate technical infrastructure. Over the period of 2011-2014, 651 agreements were concluded on granting transmission right-of-way for 967 cadastral parcels owned by the city of Krakow, and 105 expropriation decisions were issued, limiting the use of real properties in Krakow.

  9. Space-based Communications Infrastructure for Developing Countries

    NASA Technical Reports Server (NTRS)

    Barker, Keith; Barnes, Carl; Price, K. M.

    1995-01-01

    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infractructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing.

  10. Building the Digital Library Infrastructure: A Primer.

    ERIC Educational Resources Information Center

    Tebbetts, Diane R.

    1999-01-01

    Provides a framework for examining the complex infrastructure needed to successfully implement a digital library. Highlights include database development, online public-access catalogs, interactive technical services, full-text documents, hardware and wiring, licensing, access, and security issues. (Author/LRW)

  11. National Water Infrastructure Adaptation Assessment, Part I: Climate Change Adaptation Readiness Analysis

    EPA Science Inventory

    The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...

  12. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  13. Linking International Development Actors to Geophysical Infrastructure: Exploring an IRIS Community Role in Bridging a Communications Gap

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Fisher, K.; Meltzer, A.; Nyblade, A.; Sandvol, E.; Willemann, R.

    2008-12-01

    Over the past quarter century, national investments in high-fidelity digital seismograph networks have resulted in a global infrastructure for real-time in situ earthquake monitoring. Many network operators adhere to community-developed standards, with the result that there are few technical impediments to data sharing and real-time information exchange. Two unanswered questions, however, are whether the existing models of international collaboration will ensure the stability and sustainability of global earthquake monitoring, and whether the participating institutions can work with international development agencies and non- governmental organizations in meeting linked development and natural hazard risk reduction goals. Since the 2004 Indian Ocean tsunami, many of these actors are enlarging their commitments to natural hazard risk reduction and building national technical capacities, among broader programs in poverty alleviation and adaptation to environmental stress. Despite this renewed commitment, international development organizations, with notable exceptions, have been relatively passive in discussions of how the existing earthquake monitoring infrastructure could be leveraged to support risk-reduction programs and meet sustainable development goals. At the same time, the international seismological community - comprising universities and government seismological surveys - has built research and education initiatives such as EarthScope, AfricaArray, and similar programs in China, Europe and South America, that use innovative instrumentation technologies and deployment strategies to enable new science and applications, and promote education and training in critical sectors. Can these developments be combined? Recognizing this communication or knowledge gap, the IRIS International Working Group (IWG) explores the link between the activities of IRIS Members using IRIS facilities and the missions of international development agencies, such as US AID, the World

  14. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water – Technical Report Series

    EPA Science Inventory

    This presentation will cover the development and content of new EPA Technical Resource Documents on the application of monitored natural attenuation for inorganic contaminants in ground water. This presentation discusses the various mechanisms that are recognized to result in th...

  15. Dynamic interaction between vehicles and infrastructure experiment (DIVINE) : technical report

    DOT National Transportation Integrated Search

    1998-10-27

    The Dynamic Interaction between Vehicles and Infrastructure Experiment (DIVINE) Project provides scientific evidence of the dynamic effects of heavy vehicles and their suspension systems on pavements and bridges in support of transport policy decisio...

  16. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  17. Towards technical interoperability in telemedicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Richard Layne, II

    2004-05-01

    For telemedicine to realize the vision of anywhere, anytime access to care, the question of how to create a fully interoperable technical infrastructure must be addressed. After briefly discussing how 'technical interoperability' compares with other types of interoperability being addressed in the telemedicine community today, this paper describes reasons for pursuing technical interoperability, presents a proposed framework for realizing technical interoperability, identifies key issues that will need to be addressed if technical interoperability is to be achieved, and suggests a course of action that the telemedicine community might follow to accomplish this goal.

  18. Acoustic emission safety monitoring of intermodal transportation infrastructure.

    DOT National Transportation Integrated Search

    2015-09-01

    Safety and integrity of the national transportation infrastructure are of paramount importance and highway bridges are critical components of the highway system network. This network provides an immense contribution to the industry productivity and e...

  19. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  20. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  1. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030

    2011-12-01

    At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to

  2. Unraveling Structural Infrasound: understanding the science for persistent remote monitoring of critical infrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    McKenna, S. M.; Diaz-Alvarez, H.; McComas, S.; Costley, D.; Whitlow, R. D.; Jordan, A. M.; Taylor, O.

    2013-12-01

    In 2006, the Engineer Research and Development Center (ERDC) began a program designed to meet the capability gap associated with remote assessment of critical infrastructure. This program addresses issues arising from the use of geophysical techniques to solve engineering problems through persistent monitoring of critical infrastructure using infrasound. In the original 2006-2009 study of a railroad bridge in Ft. Leonard Wood, MO, the fundamental modes of motion of the structure were detected at up to 30 km away, with atmospheric excitation deemed to be the source driver. Follow-on research focused on the mechanically driven modes excited by traffic, with directional acoustic emanations. The success of the Ft. Wood ambient excitation study resulted in several subsequent programs to push the boundaries of this new technique for standoff assessment, discussed herein. Detection of scour and river system health monitoring are serious problems for monitoring civil infrastructure, from both civilian and military perspectives. Knowledge of overall system behavior over time is crucial for assessment of bridge foundations and barge navigation. This research focuses on the same steel-truss bridge from the Ft. Wood study, and analyzes 3D and 2D substructure models coupled with the superstructure reaction loads to assess the modal deformations within the infrasound bandwidth and the correlation to scour of embedment material. The Urban infrasound program is infrasound modeling, data analysis, and sensor research leading to the detection, classification and localization of threat activities in complex propagation environments. Three seismo-acoustic arrays were deployed on rooftops across the Southern Methodist University campus in Dallas, Texas, to characterize the urban infrasound environment. Structural sources within 15 km of the arrays have been identified through signal processing and confirmed through acoustical models. Infrasound is also being studied as a means of

  3. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  4. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  5. Infrastructure monitoring data management.

    DOT National Transportation Integrated Search

    2015-07-01

    The primary objective of this project is to advance the development of a structural health monitoring : system (SHMS) for the Cut River Bridge. The scope includes performing an analysis from the fiber : optic strain gauge readings and making recommen...

  6. The Development and Technical Adequacy of Seventh-Grade Reading Comprehension Measures in a Progress Monitoring Assessment System. Technical Report #1102

    ERIC Educational Resources Information Center

    Park, Bitnara Jasmine; Alonzo, Julie; Tindal, Gerald

    2011-01-01

    This technical report describes the process of development and piloting of reading comprehension measures that are appropriate for seventh-grade students as part of an online progress screening and monitoring assessment system, http://easycbm.com. Each measure consists of an original fictional story of approximately 1,600 to 1,900 words with 20…

  7. Service Modeling Language Applied to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Baldini, Gianmarco; Fovino, Igor Nai

    The modeling of dependencies in complex infrastructure systems is still a very difficult task. Many methodologies have been proposed, but a number of challenges still remain, including the definition of the right level of abstraction, the presence of different views on the same critical infrastructure and how to adequately represent the temporal evolution of systems. We propose a modeling methodology where dependencies are described in terms of the service offered by the critical infrastructure and its components. The model provides a clear separation between services and the underlying organizational and technical elements, which may change in time. The model uses the Service Modeling Language proposed by the W3 consortium for describing critical infrastructure in terms of interdependent services nodes including constraints, behavior, information flows, relations, rules and other features. Each service node is characterized by its technological, organizational and process components. The model is then applied to a real case of an ICT system for users authentication.

  8. California Hydrogen Infrastructure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The projectmore » also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  9. The National Geospatial Technical Operations Center

    USGS Publications Warehouse

    Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.

    2009-01-01

    The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).

  10. Concept of a spatial data infrastructure for web-mapping, processing and service provision for geo-hazards

    NASA Astrophysics Data System (ADS)

    Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara

    2017-04-01

    Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned

  11. Technical Report - FINAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current buildingmore » standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities« less

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottler, Gary

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  13. Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes : [technical summary].

    DOT National Transportation Integrated Search

    2011-09-01

    There are approximately 4,000 instances per year that require infrastructure located along right-of-way maintained by the Indiana Department of Transportation (INDOT) to be replaced or repaired due to motor vehicle crashes. This infrastructure includ...

  14. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  15. Decontamination of Drinking Water Infrastructure ...

    EPA Pesticide Factsheets

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  16. Network and computing infrastructure for scientific applications in Georgia

    NASA Astrophysics Data System (ADS)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  17. Requirement Generation for Space Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    Despite heavy investment, in the half-century period between 1970 and 2020 there will almost no progress in the capability provided by the space infrastructure. It is argued that this is due to a failure during the requirement generation phase of the infrastructure's elements, a failure that is primarily due to following the accepted good practice of involving stakeholders while establishing a mission based set of technical requirements. This argument is supported by both a consideration of the history of the requirement generation phase of past space infrastructure projects, in particular the Space Shuttle, and an analysis of the interactions of the stakeholders during this phase. Traditional stakeholder involvement only works well in mature infrastructures where investment aims to make minor improvements, whereas space activity is still in the early experimental stages and is open to major new initiatives that aim to radically change the way we work in space. A new approach to requirement generation is proposed, which is more appropriate to these current circumstances. This uses a methodology centred on the basic functions the system is intended to perform rather than its expected missions.

  18. A cyber infrastructure for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul

    2016-07-01

    The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.

  19. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  1. NAS infrastructure management system build 1.5 computer-human interface

    DOT National Transportation Integrated Search

    2001-01-01

    Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...

  2. System for critical infrastructure security based on multispectral observation-detection module

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław

    2013-10-01

    Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents

  3. Technical adequacy of growth estimates from a computer adaptive test: Implications for progress monitoring.

    PubMed

    Van Norman, Ethan R; Nelson, Peter M; Parker, David C

    2017-09-01

    Computer adaptive tests (CATs) hold promise to monitor student progress within multitiered systems of support. However, the relationship between how long and how often data are collected and the technical adequacy of growth estimates from CATs has not been explored. Given CAT administration times, it is important to identify optimal data collection schedules to minimize missed instructional time. We used simulation methodology to investigate how the duration and frequency of data collection influenced the reliability, validity, and precision of growth estimates from a math CAT. A progress monitoring dataset of 746 Grade 4, 664 Grade 5, and 400 Grade 6 students from 40 schools in the upper Midwest was used to generate model parameters. Across grades, 53% of students were female and 53% were White. Grade level was not as influential as the duration and frequency of data collection on the technical adequacy of growth estimates. Low-stakes decisions were possible after 14-18 weeks when data were collected weekly (420-540 min of assessment), 20-24 weeks when collected every other week (300-360 min of assessment), and 20-28 weeks (150-210 min of assessment) when data were collected once a month, depending on student grade level. The validity and precision of growth estimates improved when the duration and frequency of progress monitoring increased. Given the amount of time required to obtain technically adequate growth estimates in the present study, results highlight the importance of weighing the potential costs of missed instructional time relative to other types of assessments, such as curriculum-based measures. Implications for practice, research, as well as future directions are also discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Implementing OpenMRS for patient monitoring in an HIV/AIDS care and treatment program in rural Mozambique.

    PubMed

    Manders, Eric-Jan; José, Eurico; Solis, Manuel; Burlison, Janeen; Nhampossa, José Leopoldo; Moon, Troy

    2010-01-01

    We have adopted the Open Medical Record System (OpenMRS) framework to implement an electronic patient monitoring system for an HIV care and treatment program in Mozambique. The program provides technical assistance to the Ministry of Health supporting the scale up of integrated HIV care and support services in health facilities in rural resource limited settings. The implementation is in use for adult and pediatric programs, with ongoing roll-out to cover all supported sites. We describe early experiences in adapting the system to the program needs, addressing infrastructure challenges, creating a regional support team, training data entry staff, migrating a legacy database, deployment, and current use. We find that OpenMRS offers excellent prospects for in-country development of health information systems, even in severely resource limited settings. However, it also requires considerable organizational infrastructure investment and technical capacity building to ensure continued local support.

  5. Strategic plan for infrastructure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donley, C.D.

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructuremore » and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.« less

  6. Technical Adequacy of Growth Estimates from a Computer Adaptive Test: Implications for Progress Monitoring

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Nelson, Peter M.; Parker, David C.

    2017-01-01

    Computer adaptive tests (CATs) hold promise to monitor student progress within multitiered systems of support. However, the relationship between how long and how often data are collected and the technical adequacy of growth estimates from CATs has not been explored. Given CAT administration times, it is important to identify optimal data…

  7. Digital Libraries: Situating Use in Changing Information Infrastructure.

    ERIC Educational Resources Information Center

    Bishop, Ann Peterson; Neumann, Laura J.; Star, Susan Leigh; Merkel, Cecelia; Ignacio, Emily; Sandusky, Robert J.

    2000-01-01

    Reviews empirical studies about how digital libraries evolve for use in scientific and technical work based on the Digital Libraries Initiative (DLI) at the University of Illinois. Discusses how users meet infrastructure and document disaggregation; describes use of the DLI testbed of full text journal articles; and explains research methodology.…

  8. Perspectives in understanding open access to research data - infrastructure and technology challenges

    NASA Astrophysics Data System (ADS)

    Bigagli, Lorenzo; Sondervan, Jeroen

    2014-05-01

    The Policy RECommendations for Open Access to Research Data in Europe (RECODE) project, started in February 2013 with a duration of two years, has the objective to identify a series of targeted and over-arching policy recommendations for Open Access to European research data, based on existing good practice and addressing such hindering factors as stakeholder fragmentation, technical and infrastructural issues, ethical and legal issues, and financial and institutional policies. In this work we focus on the technical and infrastructural aspect, where by "infrastructure" we mean the technological assets (hardware and software), the human resources, and all the policies, processes, procedures and training for managing and supporting its continuous operation and evolution. The context targeted by RECODE includes heterogeneous networks, initiatives, projects and communities that are fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries. Many of these organizations are already addressing key technical and infrastructural barriers to Open Access to research data. Such barriers may include: lack of automatic mechanisms for policy enforcement, lack of metadata and data models supporting open access, obsolescence of infrastructures, scarce awareness about new technological solutions, lack of training and/or expertise on IT and semantics aspects. However, these organizations are often heterogeneous and fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries, and often work in isolation, or with limited contact with one another. RECODE has addressed these challenges, and the possible solutions to mitigate them, engaging all the identified stakeholders in a number of ways, including an online questionnaire, case studies interviews, literature review, a workshop. The conclusions have been validated by the RECODE Advisory Board and

  9. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  10. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  11. Information support of monitoring of technical condition of buildings in construction risk area

    NASA Astrophysics Data System (ADS)

    Skachkova, M. E.; Lepihina, O. Y.; Ignatova, V. V.

    2018-05-01

    The paper presents the results of the research devoted to the development of a model of information support of monitoring buildings technical condition; these buildings are located in the construction risk area. As a result of the visual and instrumental survey, as well as the analysis of existing approaches and techniques, attributive and cartographic databases have been created. These databases allow monitoring defects and damages of buildings located in a 30-meter risk area from the object under construction. The classification of structures and defects of these buildings under survey is presented. The functional capabilities of the developed model and the field of it practical applications are determined.

  12. From Informal to Formal: Status and Challenges of Informal Water Infrastructures in Indonesia

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Humaira, A. N. S.; Kipuw, D. M.

    2018-05-01

    Informal water infrastructures in Indonesia have emerged due to the government’s inability or incapacity to guarantee the service of water provision to all communities. Communities have their own mechanisms to meet their water needs and arrange it as a self-supplying or self-governed form of water infrastructure provision. In general, infrastructure provisions in Indonesia are held in the form of public systems (centralized systems) that cover most of the urban communities; communal systems that serve some groups of households limited only to a particular small-scale area; and individual systems. The communal and individual systems are systems that are provided by the communities themselves, sometimes with some intervention by the government. This kind of system is usually built according to lower standards compared to the system built by the government. Informal systems in this study are not defined in terms of their legal aspect, but more in technical terms. The aim of this study was to examine the existing status and challenges in transforming informal water infrastructures to formal infrastructures. Formalizing informal infrastructures is now becoming an issue because of the limitations the government faces in building new formal infrastructures. On the other hand, global and national targets state 100% access to water supplies for the whole population in the near future. Formalizing informal infrastructures seems more realistic than building new infrastructures. The scope of this study were the technical aspects thereof. Making descriptive and comparative analyses was the methodology used. Generally, most of the informal systems do not apply progressive tariffs, do not have storage/reservoirs, do not have water treatment plants, and rarely conduct treatment in accordance with standards and procedures as formal systems do, which leads to dubious access to safe water, especially considering the quality aspect.

  13. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  14. Infrastructure Joint Venture Projects in Malaysia: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Romeli, Norsyakilah; Muhamad Halil, Faridah; Ismail, Faridah; Sufian Hasim, Muhammad

    2018-03-01

    As many developed country practise, the function of the infrastructure is to connect the each region of Malaysia holistically and infrastructure is an investment network projects such as transportation water and sewerage, power, communication and irrigations system. Hence, a billions allocations of government income reserved for the sake of the infrastructure development. Towards a successful infrastructure development, a joint venture approach has been promotes by 2016 in one of the government thrust in Construction Industry Transformation Plan which encourage the internationalisation among contractors. However, there is depletion in information on the actual practise of the infrastructure joint venture projects in Malaysia. Therefore, this study attempt to explore the real application of the joint venture in Malaysian infrastructure projects. Using the questionnaire survey, a set of survey question distributed to the targeted respondents. The survey contained three section which the sections are respondent details, organizations background and project capital in infrastructure joint venture project. The results recorded and analyse using SPSS software. The contractors stated that they have implemented the joint venture practice with mostly the client with the usual construction period of the infrastructure project are more than 5 years. Other than that, the study indicates that there are problems in the joint venture project in the perspective of the project capital and the railway infrastructure should be given a highlights in future study due to its high significant in term of cost and technical issues.

  15. Building an intellectual infrastructure for space commerce

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Struthers, Jeffrey L.

    1992-01-01

    Competition in commerce requires an 'intellectual infrastructure', that is, a work force with extensive scientific and technical knowledge and a thorough understanding of the business world. This paper focuses on the development of such intellectual infrastructure for space commerce. Special consideration is given to the contributions to this development by the 17 Centers for the Commercial Development of Space Program conducting commercially oriented research in eight specialized areas: automation and robotics, remote sensing, life sciences, materials processing in space, space power, space propulsion, space structures and materials, and advanced satellite communications. Attention is also given to the Space Business Development Center concept aimed at addressing a variety of barriers common to the development of space commerce.

  16. Rheticus: a cloud-based Geo-Information Service for the Detection and Monitoring of Geohazards and Infrastructural Instabilities

    NASA Astrophysics Data System (ADS)

    Chiaradia, M. T.; Samarelli, S.; Massimi, V.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.

    2017-12-01

    Geospatial information is today essential for organizations and professionals working in several industries. More and more, huge information is collected from multiple data sources and is freely available to anyone as open data. Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and, if appropriate, a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (Service-Oriented-Architecture) model. Due to its spread architecture, where every functionality is defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. This approach makes the system very flexible with respect to the services implementation, ensuring the ability to rethink and redesign the whole process with little effort. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (MTInSAR), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub. S1 data are then processed by SPINUA (Stable Point Interferometry even in Unurbanized Areas), a robust MTInSAR algorithm, which is responsible of producing displacement maps immediately usable to measure movements of point and distributed scatterers, with sub-centimetric precision. We outline the automatic generation

  17. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings

  18. The National Information Infrastructure: Requirements for Education and Training.

    ERIC Educational Resources Information Center

    Educational IRM Quarterly, 1994

    1994-01-01

    Includes 19 access, education and training, and technical requirements that must be addressed in the development of the national information infrastructure. The requirements were prepared by national education, training, and trade associations participating in the National Coordinating Committee on Technology in Education and Training (NCC-TET). A…

  19. Enabling fast charging - Infrastructure and economic considerations

    NASA Astrophysics Data System (ADS)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.

    2017-11-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  20. The use of ultrasound for postoperative monitoring of cerebral bypass grafts: A technical report.

    PubMed

    Morton, Ryan P; Abecassis, Isaac Joshua; Moore, Anne E; Kelly, Cory M; Levitt, Michael R; Kim, Louis J; Sekhar, Laligam N

    2017-06-01

    Duplex ultrasound and transcranial Doppler are valuable tools for post-operative monitoring of extracranial-intracranial cerebral bypass grafts. Here we describe our technique for the evaluation of both high-flow and low-flow cerebral bypass grafts over a nine year period. 186 bypass grafts were studied daily during the inpatient period between Jan 2005 and Dec 2014 after surgery for various cerebrovascular pathologies. There was a technical success rate of 97%. Duplex ultrasonographic flow measurements had excellent interobserver reliability with an intraclass correlation coefficient (ICC) of 0.89 (p=0.009). Technical nuances are highlighted and a brief discussion of pathology is undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structuring Disaster Recovery Infrastructure Decisions: Lessons from Boulder County's 2013 Flood Recovery

    NASA Astrophysics Data System (ADS)

    Clavin, C.; Petropoulos, Z.

    2017-12-01

    Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.

  2. National Infrastructure Protection Plan

    DTIC Science & Technology

    2006-01-01

    effective and efficient CI/KR protection; and • Provide a system for continuous measurement and improvement of CI/KR...information- based core processes, a top-down system -, network-, or function- based approach may be more appropri- ate. A bottom-up approach normally... e - commerce , e -mail, and R&D systems . • Control Systems : Cyber systems used within many infrastructure and industries to monitor and

  3. The computing and data infrastructure to interconnect EEE stations

    NASA Astrophysics Data System (ADS)

    Noferini, F.; EEE Collaboration

    2016-07-01

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  4. Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?

    PubMed

    Gizachew, Belachew; Duguma, Lalisa A

    2016-11-01

    A climate change mitigation mechanism for emissions reduction from reduced deforestation and forest degradation, plus forest conservation, sustainable management of forest, and enhancement of carbon stocks (REDD+), has received an international political support in the climate change negotiations. The mechanism will require, among others, an unprecedented technical capacity for monitoring, reporting and verification of carbon emissions from the forest sector. A functional monitoring, reporting and verification requires inventories of forest area, carbon stock and changes, both for the construction of forest reference emissions level and compiling the report on the actual emissions, which are essentially lacking in developing countries, particularly in Africa. The purpose of this essay is to contribute to a better understanding of the state and prospects of forest monitoring and reporting in the context of REDD+ in Africa. We argue that monitoring and reporting capacities in Africa fall short of the stringent requirements of the methodological guidance for monitoring, reporting and verification for REDD+, and this may weaken the prospects for successfully implementing REDD+ in the continent. We presented the challenges and prospects in the national forest inventory, remote sensing and reporting infrastructures. A North-South, South-South collaboration as well as governments own investments in monitoring, reporting and verification system could help Africa leapfrog in monitoring and reporting. These could be delivered through negotiations for the transfer of technology, technical capacities, and experiences that exist among developed countries that traditionally compile forest carbon reports in the context of the Kyoto protocol.

  5. ENVRI PLUS: European initiative towards technical and research cultural solutions for across-disciplines accessible Research Infrastructure products

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Kutsch, W. L.

    2015-12-01

    Environmental Research Infrastructures are often built as bottom-up initiatives to provide products for specific target group, which often is very discipline specific. However, the societal or environmental challenges are typically not concentrated on specific disciplines, and require usage of data sets from many RIs. ENVRI PLUS is an initiative where the European environmental RIs work together to provide common technical background (in physical observation technologies and in data products and descriptions) to make the RI products more usable to user groups outside of the original RI target groups. ENVRI PLUS also includes many policy and dissemination concentrated actions to make the RI operations coherent and understandable to both scientists and other potential users. The actions include building common technological capital of the RIs (physical and data-oriented), creating common access procedures (especially for cross-diciplinary access), developing ethical guidelines and related policies, distributing know-how between RIs and building common communication and collaboration system for European environmental RIs. All ENVRI PLUS products are free to use, e.g. for use of new or existing environmental RIs worldwide.

  6. Integration of structural health monitoring and asset management.

    DOT National Transportation Integrated Search

    2012-08-01

    This project investigated the feasibility and potential benefits of the integration of infrastructure monitoring systems into enterprise-scale transportation management systems. An infrastructure monitoring system designed for bridges was implemented...

  7. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  8. First year update on green infrastructure monitoring in Camden, NJ

    EPA Science Inventory

    The Camden County Municipal Utilities Authority (CCMUA) installed green infrastructure Stormwater Control Measures (SCMs) at multiple locations around the city of Camden, NJ. The SCMs include raised downspout planter boxes, rain gardens, and cisterns. The cisterns capture water ...

  9. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick O'Neill

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested onmore » two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and

  10. The Role of GIS and Data Librarians in Cyber-infrastructure Support and Governance

    NASA Astrophysics Data System (ADS)

    Branch, B. D.

    2012-12-01

    A governance road-map for cyber-infrastructure in the geosciences will include an intentional librarian core capable of technical skills that include GIS and open source support for data curation that involves all aspects of data life cycle management. Per Executive Order 12906 and other policy; spatial data, literacy, and curation are critical cyber-infrastructure needs in the near future. A formal earth science and space informatics librarian may be an outcome of such development. From e-science to e-research, STEM pipelines need librarians as critical data intermediaries in technical assistance and collaboration efforts with scientists' data and outreach needs. Future training concerns should advocate trans-disciplinary data science and policy skills that will be necessary for data management support and procurement.

  11. Environmentally Responsible Aviation Project: Infrastructure Enhancements and New Capabilities

    NASA Technical Reports Server (NTRS)

    Bezos-OConnor, Gaudy M.

    2015-01-01

    This oral presentation highlights the technical investments the NASA Environmentally Responsible Aviation Project under the Integrated Systems Research Program within ARMD made during FY10-FY14 to upgrade/enhance the NASA infrastructure/testing assets and new capabilities required to mature the ERA N=2 Portfolio of airframe and propulsion technologies to TRL 5/6.

  12. The Pedagogy of Complex Work Support Systems: Infrastructuring Practices and the Production of Critical Awareness in Risk Auditing

    ERIC Educational Resources Information Center

    Mathisen, Arve; Nerland, Monika

    2012-01-01

    This paper employs a socio-technical perspective to explore the role of complex work support systems in organising knowledge and providing opportunities for learning in professional work. Drawing on concepts from infrastructure studies, such systems are seen as work infrastructures which connect information, knowledge, standards and work…

  13. The National Information Infrastructure: Requirements for Education and Training: Executive Summary.

    ERIC Educational Resources Information Center

    TechTrends, 1994

    1994-01-01

    Includes 19 requirements prepared by the National Coordinating Committee for Technology in Education (NCC-TET) to ensure that the national information infrastructure (NII) provides expanded opportunities for education and training. The requirements, which cover access, education and training applications, and technical needs, are intended as…

  14. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington.more » The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with

  15. COOPEUS - connecting research infrastructures in environmental sciences

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources

  16. Anticipatory ethics for a future Internet: analyzing values during the design of an Internet infrastructure.

    PubMed

    Shilton, Katie

    2015-02-01

    The technical details of Internet architecture affect social debates about privacy and autonomy, intellectual property, cybersecurity, and the basic performance and reliability of Internet services. This paper explores one method for practicing anticipatory ethics in order to understand how a new infrastructure for the Internet might impact these social debates. This paper systematically examines values expressed by an Internet architecture engineering team-the Named Data Networking project-based on data gathered from publications and internal documents. Networking engineers making technical choices also weigh non-technical values when working on Internet infrastructure. Analysis of the team's documents reveals both values invoked in response to technical constraints and possibilities, such as efficiency and dynamism, as well as values, including privacy, security and anonymity, which stem from a concern for personal liberties. More peripheral communitarian values espoused by the engineers include democratization and trust. The paper considers the contextual and social origins of these values, and then uses them as a method of practicing anticipatory ethics: considering the impact such priorities may have on a future Internet.

  17. District-Scale Green Infrastructure Scenarios for the Zidell Development Site, City of Portland

    EPA Pesticide Factsheets

    The report outlines technical assistance to develop green infrastructure scenarios for the Zidell Yards site consistent with the constraints of a recently remediated brownfield that can be implemented within a 15-20 year time horizon.

  18. Development of an Open Global Oil and Gas Infrastructure Inventory and Geodatabase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Kelly

    This submission contains a technical report describing the development process and visual graphics for the Global Oil and Gas Infrastructure database. Access the GOGI database using the following link: https://edx.netl.doe.gov/dataset/global-oil-gas-features-database

  19. SUPERFUND TECHNICAL SUPPORT

    EPA Science Inventory

    Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....

  20. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  1. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There weremore » 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass

  2. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    NASA Astrophysics Data System (ADS)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  3. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  4. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  5. Enabling fast charging – Infrastructure and economic considerations

    DOE PAGES

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; ...

    2017-10-23

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  6. Means of storage and automated monitoring of versions of text technical documentation

    NASA Astrophysics Data System (ADS)

    Leonovets, S. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The paper presents automation of the process of preparation, storage and monitoring of version control of a text designer, and program documentation by means of the specialized software is considered. Automation of preparation of documentation is based on processing of the engineering data which are contained in the specifications and technical documentation or in the specification. Data handling assumes existence of strictly structured electronic documents prepared in widespread formats according to templates on the basis of industry standards and generation by an automated method of the program or designer text document. Further life cycle of the document and engineering data entering it are controlled. At each stage of life cycle, archive data storage is carried out. Studies of high-speed performance of use of different widespread document formats in case of automated monitoring and storage are given. The new developed software and the work benches available to the developer of the instrumental equipment are described.

  7. The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems

    ERIC Educational Resources Information Center

    Diamanti, Eirini Ilana

    2012-01-01

    Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…

  8. Geodetic Infrastructure in the Ibiza and Barcelona Harbours for Sea Level Monitoring

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Perez, B.; Pros, F.

    2013-12-01

    The presentation is directed to the description of the actual situation and relevant information of the geodetic infrastructure of Ibiza and Barcelona sites for sea level determination and contribution to regional sea level rise. Time series are being analysed for mean sea level variations www.puertos.es. .In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica s.l. near an acoustic tide gauge. Puertos del Estado installed in 2007 a MIROS radar tide gauge and the Barcelona Harbour Authority a GPS referente station in the roof of the new Control Tower situated in the Energy Pier. The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land. The measured settlement rate is about 1cm/year that may be could mask the values registered by the tide gauge. A description of the actual infrastructure at Ibiza harbour at Marina de Botafoch, is presented and its applications to sea level monitoring and altimeter calibration in support of the main CGPS at Ibiza harbour. It is described the geometrical precision levelling made in June 2013 between the radar tide gauge and the GPS station. In particular, the CGPS located at Ibiza harbour is essential for its application to the marine campaign Baleares 2013, near Ibiza island. The main objective is to determine the altimeter bias for Jason-2, about 9:09 UTC September 15, 2013, and Saral/AltiKa, about 05:30 UTC September 16, UTC. These activities has been received funding of the Ministerio de Ciencia e Innovacion under Spanish

  9. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  10. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  11. Next Generation Monitoring: Tier 2 Experience

    NASA Astrophysics Data System (ADS)

    Fay, R.; Bland, J.; Jones, S.

    2017-10-01

    Monitoring IT infrastructure is essential for maximizing availability and minimizing disruption by detecting failures and developing issues. The HEP group at Liverpool have recently updated our monitoring infrastructure with the goal of increasing coverage, improving visualization capabilities, and streamlining configuration and maintenance. Here we present a summary of Liverpool’s experience, the monitoring infrastructure, and the tools used to build it. In brief, system checks are configured in Puppet using Hiera, and managed by Sensu, replacing Nagios. Centralised logging is managed with Elasticsearch, together with Logstash and Filebeat. Kibana provides an interface for interactive analysis, including visualization and dashboards. Metric collection is also configured in Puppet, managed by collectd and stored in Graphite, with Grafana providing a visualization and dashboard tool. The Uchiwa dashboard for Sensu provides a web interface for viewing infrastructure status. Alert capabilities are provided via external handlers. A custom alert handler is in development to provide an easily configurable, extensible and maintainable alert facility.

  12. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  13. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  14. Measuring infrastructure: A key step in program evaluation and planning

    PubMed Central

    Schmitt, Carol L.; Glasgow, LaShawn; Lavinghouze, S. Rene; Rieker, Patricia P.; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-01-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General’s call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model’s utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. PMID:27037655

  15. Measuring infrastructure: A key step in program evaluation and planning.

    PubMed

    Schmitt, Carol L; Glasgow, LaShawn; Lavinghouze, S Rene; Rieker, Patricia P; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-06-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General's call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model's utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-06-30

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4. The analysis of the effect of cracks on the acceleration of the calcium leaching process of cement-based materials has been pursued. During the last period (Technical Progress Report No 3), we have introduced a modeling accounting for the high diffusivity of fractures in comparison with the weak solid material diffusivity. It has been shown through dimensional and asymptotic analysis that small fractures do not significantly accelerate the material aging process. This important result for the overall structural aging kinetics of containment structure has beenmore » developed in a paper submitted to the international journal ''Transport in Porous Media''.« less

  17. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    PubMed Central

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-01

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events. PMID:26805832

  18. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure.

    PubMed

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-20

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  19. Information Infrastructure, Information Environments, and Long-Term Collaboration

    NASA Astrophysics Data System (ADS)

    Baker, K. S.; Pennington, D. D.

    2009-12-01

    Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.

  20. Environmental and natural resource implications of sustainable urban infrastructure systems

    NASA Astrophysics Data System (ADS)

    Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine

    2017-12-01

    As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of

  1. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  2. The evolution of monitoring system: the INFN-CNAF case study

    NASA Astrophysics Data System (ADS)

    Bovina, Stefano; Michelotto, Diego

    2017-10-01

    Over the past two years, the operations at CNAF, the ICT center of the Italian Institute for Nuclear Physics, have undergone significant changes. The adoption of configuration management tools, such as Puppet, and the constant increase of dynamic and cloud infrastructures have led us to investigate a new monitoring approach. The present work deals with the centralization of the monitoring service at CNAF through a scalable and highly configurable monitoring infrastructure. The selection of tools has been made taking into account the following requirements given by users: (I) adaptability to dynamic infrastructures, (II) ease of configuration and maintenance, capability to provide more flexibility, (III) compatibility with existing monitoring system, (IV) re-usability and ease of access to information and data. In the paper, the CNAF monitoring infrastructure and its related components are hereafter described: Sensu as monitoring router, InfluxDB as time series database to store data gathered from sensors, Uchiwa as monitoring dashboard and Grafana as a tool to create dashboards and to visualize time series metrics.

  3. Development of a system for monitoring technical state of the equipment of a cogeneration steam turbine unit

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Brodov, Yu. M.; Novoselov, V. B.

    2012-12-01

    Generalized results from the work on developing elements of a comprehensive system for monitoring technical state of the equipment of cogeneration turbines are presented. The parameters of the electrohydraulic turbine control system are considered together with a number of problems concerned with assessing the state of condensers and delivery water heaters.

  4. Enabling Research without Geographical Boundaries via Collaborative Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Gesing, S.

    2016-12-01

    Collaborative research infrastructures on global scale for earth and space sciences face a plethora of challenges from technical implementations to organizational aspects. Science gateways - also known as virtual research environments (VREs) or virtual laboratories - address part of such challenges by providing end-to-end solutions to aid researchers to focus on their specific research questions without the need to become acquainted with the technical details of the complex underlying infrastructures. In general, they provide a single point of entry to tools and data irrespective of organizational boundaries and thus make scientific discoveries easier and faster. The importance of science gateways has been recognized on national as well as on international level by funding bodies and by organizations. For example, the US NSF has just funded a Science Gateways Community Institute, which offers support, consultancy and open accessible software repositories for users and developers; Horizon 2020 provides funding for virtual research environments in Europe, which has led to projects such as VRE4EIC (A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration); national or continental research infrastructures such as XSEDE in the USA, Nectar in Australia or EGI in Europe support the development and uptake of science gateways; the global initiatives International Coalition on Science Gateways, the RDA Virtual Research Environment Interest Group as well as the IEEE Technical Area on Science Gateways have been founded to provide global leadership on future directions for science gateways in general and facilitate awareness for science gateways. This presentation will give an overview on these projects and initiatives aiming at supporting domain researchers and developers with measures for the efficient creation of science gateways, for increasing their usability and sustainability

  5. Applied Space Systems Engineering. Chapter 17; Manage Technical Data

    NASA Technical Reports Server (NTRS)

    Kent, Peter

    2008-01-01

    Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.

  6. Instrumentation and monitoring of the nextgen road infrastructure: Some results and perspectives from the R5G project

    NASA Astrophysics Data System (ADS)

    Hautière, Nicolas; Bourquin, Frédéric

    2017-04-01

    Through the centuries, the roads - which today constitute in France a huge transport network of 1 millions kilometers length - have always been able to cope with society needs and challenges. As a consequence, the next generation road infrastructure will have to take into account at least three societal transitions: ecological, energetic and digital. The goal of the 5th generation road project (R5G©) [1], led by Ifsttar in France, aligned with the Forever Open program [2], is to design and build demonstrators of such future road infrastructures. The goal of this presentation is to present different results related to the greening of road materials [3], the design of energy-positive roads [4, 5], the test of roads that self-diagnose [6], the design of roads adapted for connected [7], autonomous [8] and electrified vehicles [9], etc. In terms of perspectives, we will demonstrate that the road infrastructures will soon become a complex system: On one side road users will benefit from new services, on the other side such massively connected and instrumented infrastructures will potentially become an opportune sensor for knowledge development in geoscience, such as air quality, visibility and fog monitoring. References: [1] R5G project. r5g.ifsttar.fr [2] Forever Open Road project. www.foreveropenroad.eu [3] Biorepavation project. www.infravation.net/projects/BIOREPAVATION [4] N. Le Touz, J. Dumoulin. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities. EGU General Assembly 2015, Apr 2015, Vienne, Austria. [5] S. Asfour, F. Bernardin, E. Toussaint, J.-M. Piau. Hydrothermal modeling of porous pavement for its surface de-freezing. Applied Thermal Engineering. Volume 107, 25 August 2016, Pages 493-500 [6] LGV BPL Instrumentation. http://railenium.eu/wp-content/uploads/2016/08/INSTRUMENTATION-BPL-FR.pdf [7] SCOOP@F project. https

  7. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  8. Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure

    EPA Science Inventory

    Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure Charles Lane, US Environmental Protection Agency, Ellen D’Amico, Pegasus Technical ServicesDepressional wetlands are frequently amongst the first aquatic systems to be ...

  9. Comparison of WinSLAMM Modeled Results with Monitored Biofiltration Data

    EPA Science Inventory

    The US EPA’s Green Infrastructure Demonstration project in Kansas City incorporates both small scale individual biofiltration device monitoring, along with large scale watershed monitoring. The test watershed (100 acres) is saturated with green infrastructure components (includin...

  10. SEE-GRID eInfrastructure for Regional eScience

    NASA Astrophysics Data System (ADS)

    Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel

    In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure

  11. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, Edward T.

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  12. Challenges and opportunities in the design and construction of a GIS-based emission inventory infrastructure for the Niger Delta region of Nigeria.

    PubMed

    Fagbeja, Mofoluso A; Hill, Jennifer L; Chatterton, Tim J; Longhurst, James W S; Akpokodje, Joseph E; Agbaje, Ganiy I; Halilu, Shaba A

    2017-03-01

    Environmental monitoring in middle- and low-income countries is hampered by many factors which include enactment and enforcement of legislations; deficiencies in environmental data reporting and documentation; inconsistent, incomplete and unverifiable data; a lack of access to data; and technical expertise. This paper describes the processes undertaken and the major challenges encountered in the construction of the first Niger Delta Emission Inventory (NDEI) for criteria air pollutants and CO 2 released from the anthropogenic activities in the region. This study focused on using publicly available government and research data. The NDEI has been designed to provide a Geographic Information System-based component of an air quality and carbon management framework. The NDEI infrastructure was designed and constructed at 1-, 10- and 20-km grid resolutions for point, line and area sources using industry standard processes and emission factors derived from activities similar to those in the Niger Delta. Due to inadequate, incomplete, potentially inaccurate and unavailable data, the infrastructure was populated with data based on a series of best possible assumptions for key emission sources. This produces outputs with variable levels of certainty, which also highlights the critical challenges in the estimation of emissions from a developing country. However, the infrastructure is functional and has the ability to produce spatially resolved emission estimates.

  13. Advancing innovative high-speed remote-sensing highway infrastructure assessment using emerging technologies : technical report.

    DOT National Transportation Integrated Search

    2017-02-01

    Asset management is a strategic approach to the optimal allocation of resources for the management, operation, maintenance, and preservation of transportation infrastructure. Asset management combines engineering and economic principles with sound bu...

  14. Technical status of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Grenard, P.

    2009-04-01

    The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.

  15. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    NASA Astrophysics Data System (ADS)

    Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.

    2009-12-01

    Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.

  16. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion.

    PubMed

    Parker, Amy L; Featherstone, Will E; Penna, Nigel T; Filmer, Mick S; Garthwaite, Matt C

    2017-07-31

    Continuously operating Global Navigation Satellite Systems (cGNSS) can be used to convert relative values of vertical land motion (VLM) derived from Interferometric Synthetic Aperture Radar (InSAR) to absolute values in a global or regional reference frame. Artificial trihedral corner reflectors (CRs) provide high-intensity and temporally stable reflections in SAR time series imagery, more so than naturally occurring permanent scatterers. Therefore, it is logical to co-locate CRs with cGNSS as ground-based geodetic infrastructure for the integrated monitoring of VLM. We describe the practical considerations for such co-locations using four case-study examples from Perth, Australia. After basic initial considerations such as land access, sky visibility and security, temporary test deployments of co-located CRs with cGNSS should be analysed together to determine site suitability. Signal to clutter ratios from SAR imagery are used to determine potential sites for placement of the CR. A significant concern is whether the co-location of a deliberately designed reflecting object generates unwanted multipath (reflected signals) in the cGNSS data. To mitigate against this, we located CRs >30 m from the cGNSS with no inter-visibility. Daily RMS values of the zero-difference ionosphere-free carrier-phase residuals, and ellipsoidal heights from static precise point positioning GNSS processing at each co-located site were then used to ascertain that the CR did not generate unwanted cGNSS multipath. These steps form a set of recommendations for the installation of such geodetic ground-infrastructure, which may be of use to others wishing to establish integrated InSAR-cGNSS monitoring of VLM elsewhere.

  17. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion

    PubMed Central

    Featherstone, Will E.; Filmer, Mick S.

    2017-01-01

    Continuously operating Global Navigation Satellite Systems (cGNSS) can be used to convert relative values of vertical land motion (VLM) derived from Interferometric Synthetic Aperture Radar (InSAR) to absolute values in a global or regional reference frame. Artificial trihedral corner reflectors (CRs) provide high-intensity and temporally stable reflections in SAR time series imagery, more so than naturally occurring permanent scatterers. Therefore, it is logical to co-locate CRs with cGNSS as ground-based geodetic infrastructure for the integrated monitoring of VLM. We describe the practical considerations for such co-locations using four case-study examples from Perth, Australia. After basic initial considerations such as land access, sky visibility and security, temporary test deployments of co-located CRs with cGNSS should be analysed together to determine site suitability. Signal to clutter ratios from SAR imagery are used to determine potential sites for placement of the CR. A significant concern is whether the co-location of a deliberately designed reflecting object generates unwanted multipath (reflected signals) in the cGNSS data. To mitigate against this, we located CRs >30 m from the cGNSS with no inter-visibility. Daily RMS values of the zero-difference ionosphere-free carrier-phase residuals, and ellipsoidal heights from static precise point positioning GNSS processing at each co-located site were then used to ascertain that the CR did not generate unwanted cGNSS multipath. These steps form a set of recommendations for the installation of such geodetic ground-infrastructure, which may be of use to others wishing to establish integrated InSAR-cGNSS monitoring of VLM elsewhere. PMID:28758970

  18. The Trauma Patient Tracking System: implementing a wireless monitoring infrastructure for emergency response.

    PubMed

    Maltz, Jonathan; C Ng, Thomas; Li, Dustin; Wang, Jian; Wang, Kang; Bergeron, William; Martin, Ron; Budinger, Thomas

    2005-01-01

    In mass trauma situations, emergency personnel are challenged with the task of prioritizing the care of many injured victims. We propose a trauma patient tracking system (TPTS) where first-responders tag all patients with a wireless monitoring device that continuously reports the location of each patient. The system can be used not only to prioritize patient care, but also to determine the time taken for each patient to receive treatment. This is important in training emergency personnel and in identifying bottlenecks in the disaster response process. In situations where biochemical agents are involved, a TPTS may be employed to determine sites of cross-contamination. In order to track patient location in both outdoor and indoor environments, we employ both Global Positioning System (GPS) and Television/ Radio Frequency (TVRF) technologies. Each patient tag employs IEEE 802.11 (Wi-Fi)/TCP/IP networking to communicate with a central server via any available Wi-Fi basestation. A key component to increase TPTS fault-tolerance is a mobile Wi-Fi basestation that employs redundant Internet connectivity to ensure that tags at the disaster scene can send information to the central server even when local infrastructure is unavailable for use. We demonstrate the robustness of the system in tracking multiple patients in a simulated trauma situation in an urban environment.

  19. The road against fatalities: infrastructure spending vs. regulation??

    PubMed

    Albalate, Daniel; Fernández, Laura; Yarygina, Anastasiya

    2013-10-01

    The road safety literature is typified by a high degree of compartmentalization between studies that focus on infrastructure and traffic conditions and those devoted to the evaluation of public policies and regulations. As a result, few studies adopt a unified empirical framework in their attempts at evaluating the road safety performance of public interventions, thus limiting our understanding of successful strategies in this regard. This paper considers both types of determinants in an analysis of a European country that has enjoyed considerable success in reducing road fatalities. After constructing a panel data set with road safety outcomes for all Spanish provinces between 1990 and 2009, we evaluate the role of the technical characteristics of infrastructure and recent infrastructure spending together with the main regulatory changes introduced. Our results show the importance of considering both types of determinants in a unified framework. Moreover, we highlight the importance of maintenance spending given its effectiveness in reducing fatalities and casualties in the current economic context of austerity that is having such a marked impact on investment efforts in Spain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Helix Nebula: Enabling federation of existing data infrastructures and data services to an overarching cross-domain e-infrastructure

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard

    2014-05-01

    so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf

  1. User-level framework for performance monitoring of HPC applications

    NASA Astrophysics Data System (ADS)

    Hristova, R.; Goranov, G.

    2013-10-01

    HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.

  2. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  3. Data discovery and data processing for environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these

  4. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  5. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Kindergarten. Technical Report # 0921

    ERIC Educational Resources Information Center

    Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in kindergarten. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from…

  6. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  7. Vehicle infrastructure integration proof of concept : technical description--vehicle : final report

    DOT National Transportation Integrated Search

    2009-05-19

    This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...

  8. BBN technical memorandum W1291 infrasound model feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, T., BBN Systems and Technologies

    1998-05-01

    The purpose of this study is to determine the need and level of effort required to add existing atmospheric databases and infrasound propagation models to the DOE`s Hydroacoustic Coverage Assessment Model (HydroCAM) [1,2]. The rationale for the study is that the performance of the infrasound monitoring network will be an important factor for both the International Monitoring System (IMS) and US national monitoring capability. Many of the technical issues affecting the design and performance of the infrasound network are directly related to the variability of the atmosphere and the corresponding uncertainties in infrasound propagation. It is clear that the studymore » of these issues will be enhanced by the availability of software tools for easy manipulation and interfacing of various atmospheric databases and infrasound propagation models. In addition, since there are many similarities between propagation in the oceans and in the atmosphere, it is anticipated that much of the software infrastructure developed for hydroacoustic database manipulation and propagation modeling in HydroCAM will be directly extendible to an infrasound capability. The study approach was to talk to the acknowledged domain experts in the infrasound monitoring area to determine: 1. The major technical issues affecting infrasound monitoring network performance. 2. The need for an atmospheric database/infrasound propagation modeling capability similar to HydroCAM. 3. The state of existing infrasound propagation codes and atmospheric databases. 4. A recommended approach for developing the required capabilities. A list of the people who contributed information to this study is provided in Table 1. We also relied on our knowledge of oceanographic and meteorological data sources to determine the availability of atmospheric databases and the feasibility of incorporating this information into the existing HydroCAM geographic database software. This report presents a summary of the need for an

  9. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  10. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  11. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata

  12. What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure?

    PubMed

    Hossain, Faisal; Arnold, Jeffrey; Beighley, Ed; Brown, Casey; Burian, Steve; Chen, Ji; Mitra, Anindita; Niyogi, Dev; Pielke, Roger; Tidwell, Vincent; Wegner, Dave

    2015-01-01

    This article represents the second report by an ASCE Task Committee "Infrastructure Impacts of Landscape-driven Weather Change" under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the 'infrastructure impacts" are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC's survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the 'perception' of these managers. Finally, we discuss what these 'perception' averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community.

  13. What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure?

    PubMed Central

    Hossain, Faisal; Arnold, Jeffrey; Beighley, Ed; Brown, Casey; Burian, Steve; Chen, Ji; Mitra, Anindita; Niyogi, Dev; Pielke, Roger; Tidwell, Vincent; Wegner, Dave

    2015-01-01

    This article represents the second report by an ASCE Task Committee “Infrastructure Impacts of Landscape-driven Weather Change” under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the ‘infrastructure impacts” are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC’s survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the ‘perception’ of these managers. Finally, we discuss what these ‘perception’ averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community. PMID:26544045

  14. Building and strengthening infrastructure for data exchange: lessons from the beacon communities.

    PubMed

    Torres, Gretchen W; Swietek, Karen; Ubri, Petry S; Singer, Rachel F; Lowell, Kristina H; Miller, Wilhelmine

    2014-01-01

    The Beacon Community Cooperative Agreement Program supports interventions, including care-delivery innovations, provider performance measurement and feedback initiatives, and tools for providers and consumers to enhance care. Using a learning health system framework, we examine the Beacon Communities' processes in building and strengthening health IT (HIT) infrastructures, specifically successes and challenges in sharing patient information to improve clinical care. In 2010, the Office of the National Coordinator for Health Information Technology (ONC) launched the three-year program, which provided $250 million to 17 Beacon Communities to invest in HIT and health information exchange (HIE) infrastructure. Beacon Communities used this funding to develop and disseminate HIT-enabled quality improvement practices found effective in particular community and practice environments. NORC conducted 7 site visits, November 2012-March 2013, selecting Communities to represent diverse program features. From August-October 2013, NORC held discussions with the remaining 10 Communities. Following each visit or discussion, NORC summarized the information gathered, including transcripts, team observations, and other documents the Community provided, to facilitate a within-Community analysis of context and stakeholders, intervention strategies, enabling factors, and challenges. Although each Community designed and implemented data-sharing strategies in a unique environment, similar challenges and enabling factors emerged across the Beacons. From a learning health system perspective, their strategies to build and strengthen data-sharing infrastructures address the following crosscutting priorities: promoting technical advances and innovations by helping providers adapt EHRs for data exchange and performance measurement with customizable IT and offering technical support to smaller, independent providers; engaging key stakeholders; and fostering transparent governance and stewardship

  15. Building and Strengthening Infrastructure for Data Exchange: Lessons from the Beacon Communities

    PubMed Central

    Torres, Gretchen W.; Swietek, Karen; Ubri, Petry S.; Singer, Rachel F.; Lowell, Kristina H.; Miller, Wilhelmine

    2014-01-01

    Introduction: The Beacon Community Cooperative Agreement Program supports interventions, including care-delivery innovations, provider performance measurement and feedback initiatives, and tools for providers and consumers to enhance care. Using a learning health system framework, we examine the Beacon Communities’ processes in building and strengthening health IT (HIT) infrastructures, specifically successes and challenges in sharing patient information to improve clinical care. Background: In 2010, the Office of the National Coordinator for Health Information Technology (ONC) launched the three-year program, which provided $250 million to 17 Beacon Communities to invest in HIT and health information exchange (HIE) infrastructure. Beacon Communities used this funding to develop and disseminate HIT-enabled quality improvement practices found effective in particular community and practice environments. Methods: NORC conducted 7 site visits, November 2012–March 2013, selecting Communities to represent diverse program features. From August–October 2013, NORC held discussions with the remaining 10 Communities. Following each visit or discussion, NORC summarized the information gathered, including transcripts, team observations, and other documents the Community provided, to facilitate a within-Community analysis of context and stakeholders, intervention strategies, enabling factors, and challenges. Results: Although each Community designed and implemented data-sharing strategies in a unique environment, similar challenges and enabling factors emerged across the Beacons. From a learning health system perspective, their strategies to build and strengthen data-sharing infrastructures address the following crosscutting priorities: promoting technical advances and innovations by helping providers adapt EHRs for data exchange and performance measurement with customizable IT and offering technical support to smaller, independent providers; engaging key stakeholders; and

  16. Cybernation : the American infrastructure in the information age : a technical primer on risks and reliability

    DOT National Transportation Integrated Search

    1997-04-01

    The infrastructure on which American society depends, in sectors such as transportation, finance, energy, and telecommunications is becoming increasingly automated as advances in information technology open up new possibilities for improved service, ...

  17. FOSS Tools for Research Infrastructures - A Success Story?

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a

  18. Romanian contribution to research infrastructure database for EPOS

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian

    2014-05-01

    European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential

  19. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  20. Stormwater and Wastewater Infrastructure Monitoring Test Bed

    EPA Science Inventory

    The growing application of stormwater and wastewater management in urban and urbanizing environments is increasing the demand for monitoring technologies and systems that can provide reliable performance data, in real-time or near real-time, for operation and maintenance decision...

  1. A Flexible Monitoring Infrastructure for the Simulation Requests

    NASA Astrophysics Data System (ADS)

    Spinoso, V.; Missiato, M.

    2014-06-01

    Running and monitoring simulations usually involves several different aspects of the entire workflow: the configuration of the job, the site issues, the software deployment at the site, the file catalogue, the transfers of the simulated data. In addition, the final product of the simulation is often the result of several sequential steps. This project tries a different approach to monitoring the simulation requests. All the necessary data are collected from the central services which lead the submission of the requests and the data management, and stored by a backend into a NoSQL-based data cache; those data can be queried through a Web Service interface, which returns JSON responses, and allows users, sites, physics groups to easily create their own web frontend, aggregating only the needed information. As an example, it will be shown how it is possible to monitor the CMS services (ReqMgr, DAS/DBS, PhEDEx) using a central backend and multiple customized cross-language frontends.

  2. Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases.

    PubMed

    Topsakal, Cahide; Al-Mefty, Ossama; Bulsara, Ketan R; Williford, Veronica S

    2008-01-01

    The fundamental goal of skull base surgery is tumor removal with preservation of neurological function. Injury to the lower cranial nerves (LCN; CN 9-12) profoundly affects a patient's quality of life. Although intraoperative cranial nerve monitoring (IOM) is widely practiced for other cranial nerves, literature addressing the LCN is scant. We examined the utility of IOM of the LCN in a large patient series. One hundred twelve patients underwent 123 skull base operations with IOM between January 1994 to December 1999. The vagus nerve (n=37), spinal accessory nerve (n=118), and the hypoglossal nerve (n=83) were monitored intraoperatively. Electromyography (EMG) and compound muscle action potentials (CMAP) were recorded from the relevant muscles after electrical stimulation. This data was evaluated retrospectively. Patients who underwent IOM tended to have larger tumors with more intricate involvement of the lower cranial nerves. Worsening of preoperative lower cranial nerve function was seen in the monitored and unmonitored groups. With the use of IOM in the high risk group, LCN injury was reduced to a rate equivalent to that of the lower risk group (p>0.05). The immediate feedback obtained with IOM may prevent injury to the LCN due to surgical manipulation. It can also help identify the course of a nerve in patients with severely distorted anatomy. These factors may facilitate gross total tumor resection with cranial nerve preservation. The incidence of high false positive and negative CMAP and the variability in CMAP amplitude and threshold can vary depending on individual and technical factors.

  3. Encouraging an ecological evolution of data infrastructure

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.

    2015-12-01

    Infrastructure is often thought of as a complex physical construct usually designed to transport information or things (e.g. electricity, water, cars, money, sound, data…). The Research Data Alliance (RDA) takes a more holistic view and considers infrastructure as a complex body of relationships between people, machines, and organisations. This paper will describe how this more ecological perspective leads RDA to define and govern an agile virtual organization. We seek to harness the power of the volunteer, through an open problem solving approach that focusses on the problems of our individual members and their organisations. We focus on implementing solutions that make data sharing work better without defining a priori what is necessary. We do not judge the fitness of a solution, per se, but instead assess how broadly the solution is adopted, recognizing that adoption is often the social challenge of technical problem. We seek to encourage a bottoms up approach with light guidance on principles from the top. The goal is to develop community solutions that solve real problems today yet are adaptive to changing technologies and needs.

  4. Transmission Line Security Monitor

    ScienceCinema

    None

    2017-12-09

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  5. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  6. The data access infrastructure of the Wadden Sea Long Term Ecosystem Research (WaLTER) project

    NASA Astrophysics Data System (ADS)

    De Bruin, T.

    2011-12-01

    The Wadden Sea, North of The Netherlands, Germany and Danmark, is one of the most important tidal areas in the world. In 2009, the Wadden Sea was listed on the UNESCO World Heritage list. The area is noted for its ecological diversity and value, being a stopover for large numbers of migrating birds. The Wadden Sea is also used intensively for economic activities by inhabitants of the surrounding coasts and islands, as well as by the many tourists visiting the area every year. A whole series of monitoring programmes is carried out by a range of governmental bodies and institutes to study the natural processes occuring in the Wadden Sea ecosystems as well as the influence of human activities on those ecosystems. Yet, the monitoring programmes are scattered and it is difficult to get an overview of those monitoring activities or to get access to the data resulting from those monitoring programmes. The Wadden Sea Long Term Ecosystem Research (WaLTER) project aims to: 1. To provide a base set of consistent, standardized, long-term data on changes in the Wadden Sea ecological and socio-economic system in order to model and understand interrelationships with human use, climate variation and possible other drivers. 2. To provide a research infrastructure, open access to commonly shared databases, educational facilities and one or more field sites in which experimental, innovative and process-driven research can be carried out. This presentation will introduce the WaLTER-project and explain the rationale for this project. The presentation will focus on the data access infrastructure which will be used for WaLTER. This infrastructure is part of the existing and operational infrastructure of the National Oceanographic Data Committee (NODC) in the Netherlands. The NODC forms the Dutch node in the European SeaDataNet consortium, which has built an European, distributed data access infrastructure. WaLTER, NODC and SeaDataNet all use the same technology, developed within the Sea

  7. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 1. Technical Report # 0919

    ERIC Educational Resources Information Center

    Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grade 1. These measures, available as part of easyCBM [TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from schools…

  8. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 2. Technical Report # 0920

    ERIC Educational Resources Information Center

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  9. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 7. Technical Report 0908

    ERIC Educational Resources Information Center

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  10. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  11. State Technical Assistance Initiatives for IDEA Part B Programs.

    ERIC Educational Resources Information Center

    Hanft, Barbara

    This report discusses a study that examined state technical assistance (TA) infrastructures that support research-based practices for improved outcomes for students with disabilities served under Part B of the Individuals with Disabilities Education Act. The 10 participating states included: Alabama, Colorado, Iowa, Maryland, Montana, Oklahoma,…

  12. Supervisory Control and Data Acquisition (SCADA) Systems and Cyber-Security: Best Practices to Secure Critical Infrastructure

    ERIC Educational Resources Information Center

    Morsey, Christopher

    2017-01-01

    In the critical infrastructure world, many critical infrastructure sectors use a Supervisory Control and Data Acquisition (SCADA) system. The sectors that use SCADA systems are the electric power, nuclear power and water. These systems are used to control, monitor and extract data from the systems that give us all the ability to light our homes…

  13. Networking of Icelandic Earth Infrastructures - Natural laboratories and Volcano Supersites

    NASA Astrophysics Data System (ADS)

    Vogfjörd, K. S.; Sigmundsson, F.; Hjaltadóttir, S.; Björnsson, H.; Arason, Ø.; Hreinsdóttir, S.; Kjartansson, E.; Sigbjörnsson, R.; Halldórsson, B.; Valsson, G.

    2012-04-01

    The back-bone of Icelandic geoscientific research infrastructure is the country's permanent monitoring networks, which have been built up to monitor seismic and volcanic hazard and deformation of the Earth's surface. The networks are mainly focussed around the plate boundary in Iceland, particularly the two seismic zones, where earthquakes of up to M7.3 have occurred in centuries past, and the rift zones with over 30 active volcanic systems where a large number of powerful eruptions have occurred, including highly explosive ones. The main observational systems are seismic, strong motion, GPS and bore-hole strain networks, with the addition of more recent systems like hydrological stations, permanent and portable radars, ash-particle counters and gas monitoring systems. Most of the networks are owned by a handful of Icelandic institutions, but some are operated in collaboration with international institutions and universities. The networks have been in operation for years to decades and have recorded large volumes of research quality data. The main Icelandic infrastructures will be networked in the European Plate Observing System (EPOS). The plate boundary in the South Iceland seismic zone (SISZ) with its book-shelf tectonics and repeating major earthquakes sequences of up to M7 events, has the potential to be defined a natural laboratory within EPOS. Work towards integrating multidisciplinary data and technologies from the monitoring infrastructures in the SISZ with other fault regions has started in the FP7 project NERA, under the heading of Networking of Near-Fault Observatories. The purpose is to make research-quality data from near-fault observatories available to the research community, as well as to promote transfer of knowledge and techical know-how between the different observatories of Europe, in order to create a network of fault-monitoring networks. The seismic and strong-motion systems in the SISZ are also, to some degree, being networked nationally to

  14. The national response for preventing healthcare-associated infections: infrastructure development.

    PubMed

    Mendel, Peter; Siegel, Sari; Leuschner, Kristin J; Gall, Elizabeth M; Weinberg, Daniel A; Kahn, Katherine L

    2014-02-01

    In 2009, the US Department of Health and Human Services (HHS) launched the Action Plan to Prevent Healthcare-associated Infections (HAIs). The Action Plan adopted national targets for reduction of specific infections, making HHS accountable for change across the healthcare system over which federal agencies have limited control. This article examines the unique infrastructure developed through the Action Plan to support adoption of HAI prevention practices. Interviews of federal (n=32) and other stakeholders (n=38), reviews of agency documents and journal articles (n=260), and observations of interagency meetings (n=17) and multistakeholder conferences (n=17) over a 3-year evaluation period. We extract key progress and challenges in the development of national HAI prevention infrastructure--1 of the 4 system functions in our evaluation framework encompassing regulation, payment systems, safety culture, and dissemination and technical assistance. We then identify system properties--for example, coordination and alignment, accountability and incentives, etc.--that enabled or hindered progress within each key development. The Action Plan has developed a model of interagency coordination (including a dedicated "home" and culture of cooperation) at the federal level and infrastructure for stimulating change through the wider healthcare system (including transparency and financial incentives, support of state and regional HAI prevention capacity, changes in safety culture, and mechanisms for stakeholder engagement). Significant challenges to infrastructure development included many related to the same areas of progress. The Action Plan has built a foundation of infrastructure to expand prevention of HAIs and presents useful lessons for other large-scale improvement initiatives.

  15. GNSS Monitoring of Deformation within heavy civil infrastructure

    NASA Astrophysics Data System (ADS)

    Montillet, Jean-Philippe; Melbourne, Timothy; Szeliga, Walter; Schrock, Gavin

    2015-04-01

    The steady increase in precision simultaneous with the decreasing of continuous GPS monitoring has enabled the deployment of receivers for a host of new activities. Here we discuss the precision obtained from several multi-station installations operated over a five-year period on several heavy civil-engineered structures, including two earthen-fill dams and subsiding highway overpass damaged by seismic shaking. In the past 5 years, the Cascadia Hazards Institute (Pacific Northwest Geodetic Array) at Central Washington University together with the Washington department of public utilities (Land Survey) have been monitoring several structures around Seattle area including two dams (Howard Hansen and Tolt). One aim of this study is to test the use of continuous GNSS in order to detect any deformations due to rapid pool level rises or to monitor the safety of a structure when an Earthquake strikes it. In this study, data is processed using Real Time Kinematic GPS with short baseline (d < 500 m) and GPS daily position (PPP). However, multipath is the most limiting factor on accuracy for very precise positioning applications with GPS. It is very often present indoors and outdoors, especially in narrow valleys with a limited view of the sky. As a result, multipath can amount to an error of a few centimetres. Unfortunately, the accuracy requirements of precision deformation monitoring are generally at the sub centimetre level, which is presently a big challenge on an epoch-by-epoch basis with regular, carrier phase techniques. Thus, it needs to be properly mitigated. In this study, several stations are set up on the dams (4 stations on the Tolt reservoir and 10 stations on the Howard Hansen dam), and spatial filtering can then be used to mitigate multipath. In addition, several signal processing techniques are also investigated (i.e. Empirical mode decomposition, sidereal filtering, adaptive filtering). RTK GPS should allow to monitor rapid deformations, whereas GPS daily

  16. Damage assessment of bridge infrastructure subjected to flood-related hazards

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open

  17. People at risk - nexus critical infrastructure and society

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    -learning and cross-comparison of, for example rural and urban areas, and different scales. Correspondingly, scale-specific resilience indicators and metrics will be developed to tailor methods to specific needs according to the scale of assessment (micro/local and macro/regional) and to the type of infrastructure. The traditional indicators normally used in structural analysis are not sufficient to understand how events happening on the networks can have cascading consequences. Moreover, effects have multidimensional (technical, economic, organizational and human), multiscale (micro and macro) and temporal characteristics (short- to long-term incidence). These considerations will guide to different activities: 1) computation of classic structural analysis indicators on the case studies in order to obtain an identity of the transport infrastructure and; 2) development of a set of new measures of resilience. To mitigate natural hazard risk a large amount of protection measures of different typology have been constructed following inhomogeneous reliability standards. The focus of this case study will be on resilience issues and decision making in the context of a large scale sectorial approach focused on transport infrastructure network.

  18. Lowering Entry Barriers for Multidisciplinary Cyber(e)-Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2012-04-01

    Multidisciplinarity is more and more important to study the Earth System and address Global Changes. To achieve that, multidisciplinary cyber(e)-infrastructures are an important instrument. In the last years, several European, US and international initiatives have been started to carry out multidisciplinary infrastructures, including: the Spatial Information in the European Community (INSPIRE), the Global Monitoring for Environment and Security (GMES), the Data Observation Network for Earth (DataOne), and the Global Earth Observation System of Systems (GEOSS). The majority of these initiatives are developing service-based digital infrastructures asking scientific Communities (i.e. disciplinary Users and data Producers) to implement a set of standards for information interoperability. For scientific Communities, this has represented an entry barrier which has proved to be high, in several cases. In fact, both data Producers and Users do not seem to be willing to invest precious resources to become expert on interoperability solutions -on the contrary, they are focused on developing disciplinary and thematic capacities. Therefore, an important research topic is lowering entry barriers for joining multidisciplinary cyber(e)-Infrastructures. This presentation will introduce a new approach to achieve multidisciplinary interoperability underpinning multidisciplinary infrastructures and lowering the present entry barriers for both Users and data Producers. This is called the Brokering approach: it extends the service-based paradigm by introducing a new a Brokering layer or cloud which is in charge of managing all the interoperability complexity (e.g. data discovery, access, and use) thus easing Users' and Producers' burden. This approach was successfully experimented in the framework of several European FP7 Projects and in GEOSS.

  19. Establishment of the International Power Institute. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julius E. Coles

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  20. Information Infrastructure Technology and Applications (IITA) Program: Annual K-12 Workshop

    NASA Technical Reports Server (NTRS)

    Hunter, Paul; Likens, William; Leon, Mark

    1995-01-01

    The purpose of the K-12 workshop is to stimulate a cross pollination of inter-center activity and introduce the regional centers to curing edge K-1 activities. The format of the workshop consists of project presentations, working groups, and working group reports, all contained in a three day period. The agenda is aggressive and demanding. The K-12 Education Project is a multi-center activity managed by the Information Infrastructure Technology and Applications (IITA)/K-12 Project Office at the NASA Ames Research Center (ARC). this workshop is conducted in support of executing the K-12 Education element of the IITA Project The IITA/K-12 Project funds activities that use the National Information Infrastructure (NII) (e.g., the Internet) to foster reform and restructuring in mathematics, science, computing, engineering, and technical education.

  1. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  2. International Development of e-Infrastructures and Data Management Priorities for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gurney, R. J.

    2015-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations to the Belmont Forum collaboration of national science funding agencies and others on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: adoption of data principles that promote a global, interoperable e-infrastructure establishment of information and data officers for coordination of global data management and e-infrastructure efforts promotion of effective data planning determination of best practices development of a cross-disciplinary training curriculum on data management and curation The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. The international collaborative process that went into forming these recommendations is contributing to national governments and funding agencies and international bodies working together to execute them.

  3. A Neighborhood-Scale Green Infrastructure Retrofit: Experimental Results, Model Simulations, and Resident Perspectives

    NASA Astrophysics Data System (ADS)

    Jefferson, A.; Avellaneda, P. M.; Jarden, K. M.; Turner, V. K.; Grieser, J.

    2016-12-01

    Distributed green infrastructure approaches to stormwater management that can be retrofit into existing development are of growing interest, but questions remain about their effectiveness at the watershed-scale. In suburban northeastern Ohio, homeowners on a residential street with 55% impervious surface were given the opportunity for free rain barrels, rain gardens, and bioretention cells. Of 163 parcels, only 22 owners (13.5%) chose to participate, despite intense outreach efforts. After pre-treatment monitoring, 37 rain barrels, 7 rain gardens, and 16 street-side bioretention cells were installed in 2013-2014. Using a paired watershed approach, a reduction in up to 33% of peak flow and 40% of total runoff volume per storm was measured in the storm sewer. Using the monitoring data, a calibrated and validated SWMM model was built to explore the long-term effectiveness of the green infrastructure against a wider range of hydrological conditions. Model results confirm the effectiveness of green infrastructure in reducing surface runoff and increasing infiltration and evaporation. Based on 20 years of historical precipitation data, the model shows that the green infrastructure is capable of reducing flows by >40% at the 1, 2, and 5 year return period, suggesting some resilience to projected increases in precipitation intensity in a changing climate. Further, in this project, more benefit is derived from the street-side bioretention cells than from the rain barrels and gardens that treat rooftop runoff. Substantial hydrological gains were achieved despite low homeowner participation. Surveys indicate that many residents viewed stormwater as the city's problem and had negative perceptions of green infrastructure, despite slightly pro-environment values generally. Overall, this study demonstrates green infrastructure's hydrological effectiveness but raises challenging questions about overcoming social barriers retrofits at the neighborhood scale.

  4. Enabling end-user network monitoring via the multicast consolidated proxy monitor

    NASA Astrophysics Data System (ADS)

    Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew

    2001-07-01

    The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.

  5. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 3. Technical Report # 09-02

    ERIC Educational Resources Information Center

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  6. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 5. Technical Report # 09-01

    ERIC Educational Resources Information Center

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  7. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 4. Technical Report # 09-03

    ERIC Educational Resources Information Center

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  8. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 8. Technical Report # 09-04

    ERIC Educational Resources Information Center

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  9. IT Infrastructure for Biomedical Research in North-West Germany.

    PubMed

    Seeger, Insa; Zeleke, Atinkut; Freitag, Michael; Röhrig, Rainer

    2017-01-01

    The efficient use of routine data for biomedical research presupposes an IT infrastructure designed for health care facilities. The objective of this study was to analyse which IT infrastructure is used in hospitals and by general practitioners' (GP) practices in the region Oldenburg-Bremen and to examine how well this supports research projects. To this end, IT managers and GPs were interviewed. The usage of hospital information systems (HIS) and data warehouse systems (DWS) in hospitals is of major importance for the study. Over 90 % use DWS for administration, 42 % for clinical research. None of the hospitals implemented consent for the use of routine data for research. Only a third of the GPs have participated in studies. The GPs' offices based EHR systems in use offer virtually no support for research projects. The study results demonstrate that technical and organisational measures are required for the further usage of routine data in the region.

  10. [No exchange of information without technology : modern infrastructure in radiology].

    PubMed

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  11. Technical Efficiency of Automotive Industry Cluster in Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-07-01

    Chennai is also called as Detroit of India due to its automotive industry presence producing over 40 % of the India's vehicle and components. During 2001-2002, diagnostic study was conducted on the Automotive Component Industries (ACI) in Ambattur Industrial Estate, Chennai and in SWOT analysis it was found that it had faced problems on infrastructure, technology, procurement, production and marketing. In the year 2004-2005 under the cluster development approach (CDA), they formed Chennai auto cluster, under public private partnership concept, received grant from Government of India, Government of Tamil Nadu, Ambattur Municipality, bank loans and stake holders. This results development in infrastructure, technology, procurement, production and marketing interrelationships among ACI. The objective is to determine the correlation coefficient, regression equation, technical efficiency, peer weights, slack variables and return to scale of cluster before and after the CDA. The methodology adopted is collection of primary data from ACI and analyzing using data envelopment analysis (DEA) of input oriented Banker-Charnes-Cooper model. There is significant increase in correlation coefficient and the regression analysis reveals that for one percent increase in employment and net worth, the gross output increases significantly after the CDA. The DEA solver gives the technical efficiency of ACI by taking shift, employment, net worth as input data and quality, gross output and export ratio as output data. From the technical score and ranking of ACI, it is found that there is significant increase in technical efficiency of ACI when compared to CDA. The slack variables obtained clearly reveals the excess employment and net worth and no shortage of gross output. To conclude there is increase in technical efficiency of not only Chennai auto cluster in general but also Chennai auto components industries in particular.

  12. Opto-Technical Monitoring - a Standardized Methodology to Assess the Treatment of Historical Stone Surfaces

    NASA Astrophysics Data System (ADS)

    Rahrig, M.; Drewello, R.; Lazzeri, A.

    2018-05-01

    Monitoring is an essential requirement for the planning, assessment and evaluation of conservation measures. It should be based on a standardized and reproducible observation of the historical surface. For many areas and materials suitable methods for long-term monitoring already exist. But hardly any non-destructive testing methods have been used to test new materials for conservation of damaged stone surfaces. The Nano-Cathedral project, funded by the European Union's Horizon 2020 research and innovation program, is developing new materials and technologies for preserving damaged stone surfaces of built heritage. The prototypes developed are adjusted to the needs and problems of a total of six major cultural monuments in Europe. In addition to the testing of the materials under controlled laboratory conditions, the products have been applied to trial areas on the original stone surfaces. For a location-independent standardized assessment of surface changes of the entire trial areas a monitoring method based on opto-technical, non-contact and non-destructive testing methods has been developed. This method involves a three-dimensional measurement of the surface topography using Structured-Light-Scanning and the analysis of the surfaces in different light ranges using high resolution VIS photography, as well as UV-A-fluorescence photography and reflected near-field IR photography. The paper will show the workflow of this methodology, including a detailed description of the equipment used data processing and the advantages for monitoring highly valuable stone surfaces. Alongside the theoretical discussion, the results of two measuring campaigns on trial areas of the Nano-Cathedral project will be shown.

  13. MOEMS industrial infrastructure

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    Forecasters and analysts predict the market size for microsystems and microtechnologies to be in the order of 68 billion by the year 2005 (NEXUS Market Study 2002). In essence, the market potential is likely to double in size from its 38 billion status in 2002. According to InStat/MDR the market for MOEMS (Micro Optical Electro Mechanical Systems) in optical communication will be over $1.8 billion in 2006 and WTC states that the market for non telecom MOEMS will be even larger. Underpinning this staggering growth will be an infrastructure of design houses, foundries, package/assembly providers and equipment suppliers to cater for the demand in design, prototyping, and (mass-) production. This infrastructure is needed to provide an efficient route to commercialisation. Foundries, which provide the infrastructure to prototype, fabricate and mass-produce the designs emanating from the design houses and other companies. The reason for the customers to rely on foundries can be diverse: ranging from pure economical reasons (investments, cost-price) to technical (availability of required technology). The desire to have a second source of supply can also be a reason for outsourcing. Foundries aim to achieve economies of scale by combining several customer orders into volume production. Volumes are necessary, not only to achieve the required competitive cost prices, but also to attain the necessary technical competence level. Some products that serve very large markets can reach such high production volumes that they are able to sustain dedicated factories. In such cases, captive supply is possible, although outsourcing is still an option, as can be seen in the magnetic head markets, where captive and non-captive suppliers operate alongside each other. The most striking examples are: inkjet heads (>435 million heads per year) and magnetic heads (>1.5 billion heads per year). Also pressure sensor and accelerometer producers can afford their own facilities to produce the

  14. Intermodal transportation infrastructure interactions : utilizing acoustic emission and other non-destructive evaluation technologies.

    DOT National Transportation Integrated Search

    2014-09-01

    This project studied application of acoustic emission (AE) technology to perform structural : health monitoring of highway bridges. Highway bridges are a vital part of transportation : infrastructure and there is need for reliable non-destructive met...

  15. Data distribution service-based interoperability framework for smart grid testbed infrastructure

    DOE PAGES

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    2016-03-02

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  16. Modernization of the NASA scientific and technical information program

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Hunter, Judy F.; Ostergaard, K.

    1993-01-01

    The NASA Scientific and Technical Information Program utilizes a technology infrastructure assembled in the mid 1960s to late 1970s to process and disseminate its information products. When this infrastructure was developed it placed NASA as a leader in processing STI. The retrieval engine for the STI database was the first of its kind and was used as the basis for developing commercial, other U.S., and foreign government agency retrieval systems. Due to the combination of changes in user requirements and the tremendous increase in technological capabilities readily available in the marketplace, this infrastructure is no longer the most cost-effective or efficient methodology available. Consequently, the NASA STI Program is pursuing a modernization effort that applies new technology to current processes to provide near-term benefits to the user. In conjunction with this activity, we are developing a long-term modernization strategy designed to transition the Program to a multimedia, global 'library without walls.' Critical pieces of the long-term strategy include streamlining access to sources of STI by using advances in computer networking and graphical user interfaces; creating and disseminating technical information in various electronic media including optical disks, video, and full text; and establishing a Technology Focus Group to maintain a current awareness of emerging technology and to plan for the future.

  17. Green Infrastructure

    EPA Pesticide Factsheets

    To promote the benefits of green infrastructure, help communities overcome barriers to using GI, and encourage the use of GI to create sustainable and resilient water infrastructure that improves water quality and supports and revitalizes communities.

  18. TECHNICAL RESOURCE DOCUMENT ON MONITORED NATURAL RECOVERY

    EPA Science Inventory

    In 2005, the United States Environmental Protection Agency (EPA) published a document entitled Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (EPA, 2005), which provides technical and policy guidance for project managers and teams making risk manageme...

  19. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  20. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  1. Development of structural health monitoring techniques using dynamics testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, G.H. III

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments inmore » four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.« less

  2. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace

  3. Ice-tethered measurement platforms in the Arctic Ocean: a contribution by the FRAM infrastructure program

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel

    2016-04-01

    The Arctic Ocean has been in the focus of many studies during recent years, investigating the state, the causes and the implications of the observed rapid transition towards a thinner and younger sea-ice cover. However, consistent observational datasets of sea ice, ocean and atmosphere are still sparse due to the limited accessibility and harsh environmental conditions. One important tool to fill this gap has become more and more feasible during recent years: autonomous, ice-tethered measurement platforms (buoys). These drifting instruments independently transmit their data via satellites, and enable observations over larger areas and over longer time periods than manned expeditions, even throughout the winter. One aim of the newly established FRAM (FRontiers in Arctic marine Monitoring) infrastructure program at the Alfred-Wegener-Institute is to realize and maintain an interdisciplinary network of buoys in the Arctic Ocean, contributing to an integrated, Arctic-wide observatory. The additional buoy infrastructure, ship-time, and developments provided by FRAM are critical elements in the ongoing international effort to fill the large data gaps in a rapidly changing Arctic Ocean. Our focus is the particularly underrepresented Eurasian Basin. Types of instruments range from snow depth beacons and ice mass balance buoys for monitoring ice growth and snow accumulation, over radiation and weather stations for energy budget estimates, to ice-tethered profiling systems for upper ocean monitoring. Further, development of new bio-optical and biogeochemical buoys is expected to enhance our understanding of bio-physical processes associated with Arctic sea ice. The first set of FRAM buoys was deployed in September 2015 from RV Polarstern. All datasets are publicly available on dedicated web portals. Near real time data are reported into international initiatives, such as the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). The

  4. Independent technical review, handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less

  5. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  6. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected

  7. Monitoring and Reporting Tools of the International Data Centre and International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lastowka, L.; Anichenko, A.; Galindo, M.; Villagran Herrera, M.; Mori, S.; Malakhova, M.; Daly, T.; Otsuka, R.; Stangel, H.

    2007-05-01

    The Comprehensive Test-Ban Treaty (CTBT) which prohibits all nuclear explosions was opened for signature in 1996. Since then, the Preparatory Commission for the CTBT Organization has been working towards the establishment of a global verification regime to monitor compliance with the ban on nuclear testing. The International Monitoring System (IMS) comprises facilities for seismic, hydroacoustic, infrasound and radionuclide monitoring, and the means of communication. This system is supported by the International Data Centre (IDC), which provides objective products and services necessary for effective global monitoring. Upon completion of the IMS, 321 stations will be contributing to both near real-time and reviewed data products. Currently there are 194 facilities in IDC operations. This number is expected to increase by about 40% over the next few years, necessitating methods and tools to effectively handle the expansion. The requirements of high data availability as well as operational transparency are fundamental principals of IMS network operations, therefore, a suite of tools for monitoring and reporting have been developed. These include applications for monitoring Global Communication Infrastructure (GCI) links, detecting outages in continuous and segmented data, monitoring the status of data processing and forwarding to member states, and for systematic electronic communication and problem ticketing. The operation of the IMS network requires the help of local specialists whose cooperation is in some cases ensured by contracts or other agreements. The PTS (Provisional Technical Secretariat) strives to make the monitoring of the IMS as standardized and efficient as possible, and has therefore created the Operations Centre in which the use of most the tools are centralized. Recently the tasks of operations across all technologies, including the GCI, have been centralized within a single section of the organization. To harmonize the operations, an ongoing State

  8. Building the Synergy between Public Sector and Research Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Craglia, Massimo; Friis-Christensen, Anders; Ostländer, Nicole; Perego, Andrea

    2014-05-01

    INSPIRE is a European Directive aiming to establish a EU-wide spatial data infrastructure to give cross-border access to information that can be used to support EU environmental policies, as well as other policies and activities having an impact on the environment. In order to ensure cross-border interoperability of data infrastructures operated by EU Member States, INSPIRE sets out a framework based on common specifications for metadata, data, network services, data and service sharing, monitoring and reporting. The implementation of INSPIRE has reached important milestones: the INSPIRE Geoportal was launched in 2011 providing a single access point for the discovery of INSPIRE data and services across EU Member States (currently, about 300K), while all the technical specifications for the interoperability of data across the 34 INSPIRE themes were adopted at the end of 2013. During this period a number of EU and international initiatives has been launched, concerning cross-domain interoperability and (Linked) Open Data. In particular, the EU Open Data Portal, launched in December 2012, made provisions to access government and scientific data from EU institutions and bodies, and the EU ISA Programme (Interoperability Solutions for European Public Administrations) promotes cross-sector interoperability by sharing and re-using EU-wide and national standards and components. Moreover, the Research Data Alliance (RDA), an initiative jointly funded by the European Commission, the US National Science Foundation and the Australian Research Council, was launched in March 2013 to promote scientific data sharing and interoperability. The Joint Research Centre of the European Commission (JRC), besides being the technical coordinator of the implementation of INSPIRE, is also actively involved in the initiatives promoting cross-sector re-use in INSPIRE, and sustainable approaches to address the evolution of technologies - in particular, how to support Linked Data in INSPIRE and

  9. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize

  10. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    PubMed

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  11. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  12. Time Talk: On Small Changes That Enact Infrastructural Mentoring for Undergraduate Women in Technical Fields

    ERIC Educational Resources Information Center

    Sullivan, Patricia; Moore, Kristen

    2013-01-01

    This article brings together the communication needs and positioning of women in technical areas, and asks "how can technical communication classes contribute to the mentoring of young women engineers at a time when many of those women want to be identified as engineers instead of being spotlighted as women in engineering?" Incorporating…

  13. The 3D Elevation Program and America's infrastructure

    USGS Publications Warehouse

    Lukas, Vicki; Carswell, Jr., William J.

    2016-11-07

    Infrastructure—the physical framework of transportation, energy, communications, water supply, and other systems—and construction management—the overall planning, coordination, and control of a project from beginning to end—are critical to the Nation’s prosperity. The American Society of Civil Engineers has warned that, despite the importance of the Nation’s infrastructure, it is in fair to poor condition and needs sizable and urgent investments to maintain and modernize it, and to ensure that it is sustainable and resilient. Three-dimensional (3D) light detection and ranging (lidar) elevation data provide valuable productivity, safety, and cost-saving benefits to infrastructure improvement projects and associated construction management. By providing data to users, the 3D Elevation Program (3DEP) of the U.S. Geological Survey reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data. The size and breadth of improvements for the Nation’s infrastructure and construction management needs call for an efficient, systematic approach to acquiring foundational 3D elevation data. The 3DEP approach to national data coverage will yield large cost savings over individual project-by-project acquisitions and will ensure that data are accessible for other critical applications.

  14. Novel method for fog monitoring using cellular networks infrastructures

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  15. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  16. Development of CMS monitoring procedures : technical summary.

    DOT National Transportation Integrated Search

    1998-04-01

    This research study is concerned with the development of a set of procedures for monitoring congestion using GPS and GIS. These procedures are meant to be used more as a planning tool than for everyday traffic monitoring. Under this assumption, a ser...

  17. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areasmore » of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at

  18. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  19. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  20. The MED-SUV Multidisciplinary Interoperability Infrastructure

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; D'Auria, Luca; Reitano, Danilo; Papeschi, Fabrizio; Roncella, Roberto; Puglisi, Giuseppe; Nativi, Stefano

    2016-04-01

    In accordance with the international Supersite initiative concept, the MED-SUV (MEDiterranean SUpersite Volcanoes) European project (http://med-suv.eu/) aims to enable long-term monitoring experiment in two relevant geologically active regions of Europe prone to natural hazards: Mt. Vesuvio/Campi Flegrei and Mt. Etna. This objective requires the integration of existing components, such as monitoring systems and data bases and novel sensors for the measurements of volcanic parameters. Moreover, MED-SUV is also a direct contribution to the Global Earth Observation System of Systems (GEOSS) as one the volcano Supersites recognized by the Group on Earth Observation (GEO). To achieve its goal, MED-SUV set up an advanced e-infrastructure allowing the discovery of and access to heterogeneous data for multidisciplinary applications, and the integration with external systems like GEOSS. The MED-SUV overall infrastructure is conceived as a three layer architecture with the lower layer (Data level) including the identified relevant data sources, the mid-tier (Supersite level) including components for mediation and harmonization , and the upper tier (Global level) composed of the systems that MED-SUV must serve, such as GEOSS and possibly other global/community systems. The Data level is mostly composed of existing data sources, such as space agencies satellite data archives, the UNAVCO system, the INGV-Rome data service. They share data according to different specifications for metadata, data and service interfaces, and cannot be changed. Thus, the only relevant MED-SUV activity at this level was the creation of a MED-SUV local repository based on Web Accessible Folder (WAF) technology, deployed in the INGV site in Catania, and hosting in-situ data and products collected and generated during the project. The Supersite level is at the core of the MED-SUV architecture, since it must mediate between the disparate data sources in the layer below, and provide a harmonized view to

  1. IP Infrastructure Geolocation

    DTIC Science & Technology

    2015-03-01

    unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art

  2. Tank waste remediation system privatization infrastructure program, configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.

  3. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10

  4. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipriani, Ralph J.

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  5. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  6. Depleted Uranium: Technical Brief

    EPA Pesticide Factsheets

    This technical brief provides accepted data and references to additional sources for radiological and chemical characteristics, health risks and references for both the monitoring and measurement, and applicable treatment techniques for depleted uranium.

  7. SIMON: A Simple Instructional Monitor. Technical Report.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace; And Others

    An instructional monitor is a program which tries to detect, diagnose, and possibly help overcome a student's learning difficulties in the course of solving a problem or performing a task. In one approach to building an instructional monitor, the student uses a special task- or problem-oriented language expressly designed around some particular…

  8. The non-technical skills used by anaesthetic technicians in critical incidents reported to the Australian Incident Monitoring System between 2002 and 2008.

    PubMed

    Rutherford, J S; Flin, R; Irwin, A

    2015-07-01

    The outcome of critical incidents in the operating theatre has been shown to be influenced by the behaviour of anaesthetic technicians (ATs) assisting anaesthetists, but the specific non-technical skills involved have not been described. We performed a review of critical incidents (n=1433) reported to the Australian Incident Monitoring System between 2002 and 2008 to identify which non-technical skills were used by ATs. The reports were assessed if they mentioned anaesthetic assistance or had the boxes ticked to identify "inadequate assistance" or "absent supervision or assistance". A total of 90 critical incidents involving ATs were retrieved, 69 of which described their use of non-technical skills. In 20 reports, the ATs ameliorated the critical incident, whilst in 46 they exacerbated the critical incident, and three cases had both positive and negative non-technical skills described. Situation awareness was identified in 39 reports, task management in 23, teamwork in 21 and decision-making in two, but there were no descriptions of issues related to leadership, stress or fatigue management. Situation awareness, task management and teamwork appear to be important non-technical skills for ATs in the development or management of critical incidents in the operating theatre. This analysis has been used to support the development of a non-technical skills taxonomy for anaesthetic assistants.

  9. Technical literature review.

    PubMed

    Nußbeck, Gunnar; Gök, Murat

    2013-01-01

    This review gives a comprehensive overview on the technical perspective of personal health monitoring. It is designed to build a mutual basis for the project partners of the PHM-Ethics project. A literature search was conducted to screen pertinent literature databases for relevant publications. All review papers that were retrieved were analyzed. The increasing number of publications that are published per year shows that the field of personal health monitoring is of growing interest in the research community. Most publications deal with telemonitoring, thus forming the core technology of personal health monitoring. Measured parameters, fields of application, participants and stakeholders are described. Moreover an outlook on information and communication technology that foster the integration possibilities of personal health monitoring into decision making and remote monitoring of individual people's health is provided. The removal of the technological barriers opens new perspectives in health and health care delivery using home monitoring applications.

  10. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  11. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  12. Organisational aspects of spatial information infrastructure in Poland

    NASA Astrophysics Data System (ADS)

    Bielecka, Elzbieta; Zwirowicz-Rutkowska, Agnieszka

    2013-06-01

    One of the more important elements of spatial information infrastructure is the organisational structure defining the obligations and dependencies between stakeholders that are responsible for the infrastructure. Many SDI practitioners and theoreticians emphasise that its influence on the success or failure of activities undertaken is significantly greater than that of technical aspects. Being aware of the role of the organisational structure in the creating, operating and maintenance of spatial information infrastructure (SII), Polish legislators placed appropriate regulations in the Spatial Information Infrastructure Act, being the transposition of the INSPIRE Directive into Polish Law. The principal spatial information infrastructure stakeholders are discussed in the article and also the scope of cooperation between them. The tasks and relationships between stakeholders are illustrated in UML, in both the use case and the class diagram. Mentioned also are the main problems and obstructions resulting from imprecise legal regulations. Jednym z istotniejszych komponentów infrastruktury informacji przestrzennej (IIP) jest struktura organizacyjna określająca m.in. zależności pomiędzy organizacjami tworzącymi infrastrukturę. Wielu praktyków i teoretyków SDI podkreśla, że wpływ aspektów organizacyjnych na sukces lub porażkę SDI jest dużo większy niż elementów technicznych. Mając świadomość znaczącej roli struktury organizacyjnej w tworzeniu, funkcjonowaniu i zarządzaniu infrastrukturą przestrzenną w Polsce, legislatorzy umieścili odpowiednie zapisy w ustawie z dnia 4 marca 2010 r. o infrastrukturze informacji przestrzennej, będącej transpozycją dyrektywy INSPIRE do prawa polskiego. W artykule omówiono strukturę organizacyjną IIP w Polsce, podając (m.in. w postaci diagramów UML) obowiązki poszczególnych organów administracji zaangażowanych w jej budowę i rozwój, a także omówiono zależności i zakres współpracy pomi

  13. Critical infrastructure protection.

    PubMed

    Deitz, Kim M

    2012-01-01

    Current government policies for protecting the nation's critical infrastructure are described in this article which focuses on hospital disaster planning and incident management and the significant role of Security in infrastructure protection

  14. Deploying Server-side File System Monitoring at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselton, Andrew

    2009-05-01

    The Franklin Cray XT4 at the NERSC center was equipped with the server-side I/O monitoring infrastructure Cerebro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of instantaneous data rates during file system testing, file system behavior during regular production time, and long-term average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million observations sent to the LMT database from August 2008 to February 2009.

  15. Integration of implant planning workflows into the PACS infrastructure

    NASA Astrophysics Data System (ADS)

    Gessat, Michael; Strauß, Gero; Burgert, Oliver

    2008-03-01

    The integration of imaging devices, diagnostic workstations, and image servers into Picture Archiving and Communication Systems (PACS) has had an enormous effect on the efficiency of radiology workflows. The standardization of the information exchange between the devices with the DICOM standard has been an essential precondition for that development. For surgical procedures, no such infrastructure exists. With the increasingly important role computerized planning and assistance systems play in the surgical domain, an infrastructure that unifies the communication between devices becomes necessary. In recent publications, the need for a modularized system design has been established. A reference architecture for a Therapy Imaging and Model Management System (TIMMS) has been proposed. It was accepted by the DICOM Working Group 6 as the reference architecture for DICOM developments for surgery. In this paper we propose the inclusion of implant planning systems into the PACS infrastructure. We propose a generic information model for the patient specific selection and positioning of implants from a repository according to patient image data. The information models are based on clinical workflows from ENT, cardiac, and orthopedic surgery as well as technical requirements derived from different use cases and systems. We show an exemplary implementation of the model for application in ENT surgery: the selection and positioning of an ossicular implant in the middle ear. An implant repository is stored in the PACS. It makes use of an experimental implementation of the Surface Mesh Module that is currently being developed as extension to the DICOM standard.

  16. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automatedmore » dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data

  17. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  18. Understanding critical barriers to implementing a clinical information system in a nursing home through the lens of a socio-technical perspective.

    PubMed

    Or, Calvin; Dohan, Michael; Tan, Joseph

    2014-09-01

    This paper addresses key barriers to implementing a clinical information system (CIS) in a Hong Kong nursing home setting, from a healthcare specific socio-technical perspective. Data was collected through field observations (n = 12) and semi-structured individual interviews (n = 18) of CIS stakeholders in a Hong Kong nursing home, and analyzed using the immersion/crystallization approach. Complex interactions relevant to our case were contextualized and interpreted within the perspective of the Sittig-Singh Healthcare Socio-Technical Framework (HSTF). Three broad clusters of implementation barriers from the eight HSTF dimensions were identified: (a) Infrastructure-based barriers, which relate to conflict between government regulations and system functional needs of users; lack of financial support; inconsistency between workflow, work policy, and procedures; and inadequacy of hardware-software infrastructural and technical support; (b) Process-based barriers, which relate to mismatch between the technology, existing work practice and workflow, and communication; low system speed, accessibility, and stability; deficient computer literacy; more experience in health care profession; clinical content inadequacy and unavailability; as well as poor system usefulness and user interface design; and (c) Outcome-based barriers, which relate to the lack of measurement and monitoring of system effectiveness. Two additional dimensions underlining the importance of the ability of a CIS to change are proposed to extend the Sittig-Singh HSTF. First, advocacy would promote the articulation and influence of changes in the system and subsequent outcomes by CIS stakeholders, and second, adaptability would ensure the ability of the system to adjust to emerging needs. The broad set of discovered implementation shortcomings expands prior research on why CIS can fail in nursing home settings. Moreover, our investigation offers a knowledge base and recommendations that can serve

  19. The Role of Social Media in the Civic Co-Management of Urban Infrastructure Resilience

    NASA Astrophysics Data System (ADS)

    Turpin, E.; Holderness, T.; Wickramasuriya, R.

    2014-12-01

    As cities evolve to become increasingly complex systems of people and interconnected infrastructure the impacts of extreme events and long term climatological change are significantly heightened (Walsh et al. 2011). Understanding the resilience of urban systems and the impacts of infrastructure failure is therefore key to understanding the adaptability of cities to climate change (Rosenzweig 2011). Such information is particularly critical in developing nations which are predicted to bear the brunt of climate change (Douglas et al., 2008), but often lack the resources and data required to make informed decisions regarding infrastructure and societal resilience (e.g. Paar & Rekittke 2011). We propose that mobile social media in a people-as-sensors paradigm provides a means of monitoring the response of a city to cascading infrastructure failures induced by extreme weather events. Such an approach is welcomed in developing nations where crowd-sourced data are increasingly being used as an alternative to missing or incomplete formal data sources to help solve infrastructure challenges (Holderness 2014). In this paper we present PetaJakarta.org as a case study that harnesses the power of social media to gather, sort and display information about flooding for residents of Jakarta, Indonesia in real time, recuperating the failures of infrastructure and monitoring systems through a web of social media connections. Our GeoSocial Intelligence Framework enables the capture and comprehension of significant time-critical information to support decision-making, and as a means of transparent communication, while maintaining user privacy, to enable civic co-management processes to aid city-scale climate adaptation and resilience. PetaJakarta empowers community residents to collect and disseminate situational information about flooding, via the social media network Twitter, to provide city-scale decision support for Jakarta's Emergency Management Team, and a neighbourhood

  20. 40 CFR 58.11 - Network technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Network technical requirements. 58.11... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.11 Network technical requirements. (a)(1... A to this part when operating the SLAMS networks. (2) Beginning January 1, 2009, State and local...

  1. 40 CFR 58.11 - Network technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Network technical requirements. 58.11... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.11 Network technical requirements. (a)(1... A to this part when operating the SLAMS networks. (2) Beginning January 1, 2009, State and local...

  2. Technical Assistance and Program Support; DOD Historical Black Colleges and Universities and Minority Institutions Program.

    DTIC Science & Technology

    2000-04-01

    AD Award Number: DAMD17-98-2-8012 TITLE: Technical Assistance and Program Support; DOD Historical Black Colleges and Universities and Minority...2000 3. REPORT TYPE AND DATES COVERED Annual (1 May 99 - 30 Apr 00): 4. TITLE AND SUBTITLE Technical Assistance and Program Support; DOD...UNCF’s Infrastructure Development Assistance Program (IDAP) has been involved myriad of tasks to support the Department of Defense’s interest to

  3. VERCE, Virtual Earthquake and Seismology Research Community in Europe, a new ESFRI initiative integrating data infrastructure, Grid and HPC infrastructures for data integration, data analysis and data modeling in seismology

    NASA Astrophysics Data System (ADS)

    van Hemert, Jano; Vilotte, Jean-Pierre

    2010-05-01

    Research in earthquake and seismology addresses fundamental problems in understanding Earth's internal wave sources and structures, and augment applications to societal concerns about natural hazards, energy resources and environmental change. This community is central to the European Plate Observing System (EPOS)—the ESFRI initiative in solid Earth Sciences. Global and regional seismology monitoring systems are continuously operated and are transmitting a growing wealth of data from Europe and from around the world. These tremendous volumes of seismograms, i.e., records of ground motions as a function of time, have a definite multi-use attribute, which puts a great premium on open-access data infrastructures that are integrated globally. In Europe, the earthquake and seismology community is part of the European Integrated Data Archives (EIDA) infrastructure and is structured as "horizontal" data services. On top of this distributed data archive system, the community has developed recently within the EC project NERIES advanced SOA-based web services and a unified portal system. Enabling advanced analysis of these data by utilising a data-aware distributed computing environment is instrumental to fully exploit the cornucopia of data and to guarantee optimal operation of the high-cost monitoring facilities. The strategy of VERCE is driven by the needs of data-intensive applications in data mining and modelling and will be illustrated through a set of applications. It aims to provide a comprehensive architecture and framework adapted to the scale and the diversity of these applications, and to integrate the community data infrastructure with Grid and HPC infrastructures. A first novel aspect is a service-oriented architecture that provides well-equipped integrated workbenches, with an efficient communication layer between data and Grid infrastructures, augmented with bridges to the HPC facilities. A second novel aspect is the coupling between Grid data analysis and

  4. [Attributes of forest infrastructure].

    PubMed

    Gao, Jun-kai; Jin, Ying-shan

    2007-06-01

    This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.

  5. Scaling Agile Infrastructure to People

    NASA Astrophysics Data System (ADS)

    Jones, B.; McCance, G.; Traylen, S.; Barrientos Arias, N.

    2015-12-01

    When CERN migrated its infrastructure away from homegrown fabric management tools to emerging industry-standard open-source solutions, the immediate technical challenges and motivation were clear. The move to a multi-site Cloud Computing model meant that the tool chains that were growing around this ecosystem would be a good choice, the challenge was to leverage them. The use of open-source tools brings challenges other than merely how to deploy them. Homegrown software, for all the deficiencies identified at the outset of the project, has the benefit of growing with the organization. This paper will examine what challenges there were in adapting open-source tools to the needs of the organization, particularly in the areas of multi-group development and security. Additionally, the increase in scale of the plant required changes to how Change Management was organized and managed. Continuous Integration techniques are used in order to manage the rate of change across multiple groups, and the tools and workflow for this will be examined.

  6. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  7. Advances in Spatial Data Infrastructure, Acquisition, Analysis, Archiving and Dissemination

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuran K.; Rochon, Gilbert L.; Duerr, Ruth; Rank, Robert; Nativi, Stefano; Stocker, Erich Franz

    2010-01-01

    The authors review recent contributions to the state-of-thescience and benign proliferation of satellite remote sensing, spatial data infrastructure, near-real-time data acquisition, analysis on high performance computing platforms, sapient archiving, multi-modal dissemination and utilization for a wide array of scientific applications. The authors also address advances in Geoinformatics and its growing ubiquity, as evidenced by its inclusion as a focus area within the American Geophysical Union (AGU), European Geosciences Union (EGU), as well as by the evolution of the IEEE Geoscience and Remote Sensing Society's (GRSS) Data Archiving and Distribution Technical Committee (DAD TC).

  8. MFC Communications Infrastructure Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Cannon; Terry Barney; Gary Cook

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.more »   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.« less

  9. A framework to support human factors of automation in railway intelligent infrastructure.

    PubMed

    Dadashi, Nastaran; Wilson, John R; Golightly, David; Sharples, Sarah

    2014-01-01

    Technological and organisational advances have increased the potential for remote access and proactive monitoring of the infrastructure in various domains and sectors - water and sewage, oil and gas and transport. Intelligent Infrastructure (II) is an architecture that potentially enables the generation of timely and relevant information about the state of any type of infrastructure asset, providing a basis for reliable decision-making. This paper reports an exploratory study to understand the concepts and human factors associated with II in the railway, largely drawing from structured interviews with key industry decision-makers and attachment to pilot projects. Outputs from the study include a data-processing framework defining the key human factors at different levels of the data structure within a railway II system and a system-level representation. The framework and other study findings will form a basis for human factors contributions to systems design elements such as information interfaces and role specifications.

  10. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  11. A Constructive Approach to Infrastructure: Infrastructure "Breakdowns" and the Cultivation of Rhetorical Wisdom

    ERIC Educational Resources Information Center

    Clifton, Jennifer; Loveridge, Jordan; Long, Elenore

    2016-01-01

    It is not typically the bent of infrastructure to be continually responsive in a way that is expansive and inclusive; instead, for newcomers or those with alternative histories, aims, vision, values, and perspectives, the inertia of infrastructure is more likely to be experienced as infrastructural breakdowns. We ask: "What might wisdom look…

  12. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  13. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    delivery and surface power generation, in partnership with industry; 2) incentivize industry to establish economical and sustainable lunar infrastructure services to support NASA missions and initiate lunar commerce; and 3) encourage creation of new space markets for economic growth and benefit. A phased-development approach was also studied to allow for incremental development and demonstration of capabilities needed to build a lunar infrastructure. This paper will describe the Lunar COTS concept goals, objectives and approach for building an economical and sustainable lunar infrastructure. It will also describe the technical challenges and advantages of developing and operating each infrastructure element. It will also describe the potential benefits and progress that can be accomplished in the initial phase of this Lunar COTS approach. Finally, the paper will also look forward to the potential of a robust lunar industrialization environment and its potential effect on the next 50 years of space exploration.

  14. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  15. A data infrastructure for the assessment of health care performance: lessons from the BRIDGE-health project.

    PubMed

    Bernal-Delgado, Enrique; Estupiñán-Romero, Francisco

    2018-01-01

    The integration of different administrative data sources from a number of European countries has been shown useful in the assessment of unwarranted variations in health care performance. This essay describes the procedures used to set up a data infrastructure (e.g., data access and exchange, definition of the minimum common wealth of data required, and the development of the relational logic data model) and, the methods to produce trustworthy healthcare performance measurements (e.g., ontologies standardisation and quality assurance analysis). The paper ends providing some hints on how to use these lessons in an eventual European infrastructure on public health research and monitoring. Although the relational data infrastructure developed has been proven accurate, effective to compare health system performance across different countries, and efficient enough to deal with hundred of millions of episodes, the logic data model might not be responsive if the European infrastructure aims at including electronic health records and carrying out multi-cohort multi-intervention comparative effectiveness research. The deployment of a distributed infrastructure based on semantic interoperability, where individual data remain in-country and open-access scripts for data management and analysis travel around the hubs composing the infrastructure, might be a sensible way forward.

  16. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  17. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration

  18. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.

  19. The Role of Transformative Leadership, ICT-Infrastructure and Learning Climate in Teachers' Use of Digital Learning Materials during Their Classes

    ERIC Educational Resources Information Center

    Vermeulen, Marjan; Kreijns, Karel; van Buuren, Hans; Van Acker, Frederik

    2017-01-01

    This study investigated whether school organizational variables (ie, transformative leadership (TL), ICT-infrastructure (technical and social) and organizational learning climate were related to teachers' dispositional variables (ie, attitude, perceived norm and perceived behavior control [PBC]). The direct and indirect influences of the…

  20. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, andmore » Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.« less

  1. Surgical volume-to-outcome relationship and monitoring of technical performance in pediatric cardiac surgery.

    PubMed

    Kalfa, David; Chai, Paul; Bacha, Emile

    2014-08-01

    A significant inverse relationship of surgical institutional and surgeon volumes to outcome has been demonstrated in many high-stakes surgical specialties. By and large, the same results were found in pediatric cardiac surgery, for which a more thorough analysis has shown that this relationship depends on case complexity and type of surgical procedures. Lower-volume programs tend to underperform larger-volume programs as case complexity increases. High-volume pediatric cardiac surgeons also tend to have better results than low-volume surgeons, especially at the more complex end of the surgery spectrum (e.g., the Norwood procedure). Nevertheless, this trend for lower mortality rates at larger centers is not universal. All larger programs do not perform better than all smaller programs. Moreover, surgical volume seems to account for only a small proportion of the overall between-center variation in outcome. Intraoperative technical performance is one of the most important parts, if not the most important part, of the therapeutic process and a critical component of postoperative outcome. Thus, the use of center-specific, risk-adjusted outcome as a tool for quality assessment together with monitoring of technical performance using a specific score may be more reliable than relying on volume alone. However, the relationship between surgical volume and outcome in pediatric cardiac surgery is strong enough that it ought to support adapted and well-balanced health care strategies that take advantage of the positive influence that higher center and surgeon volumes have on outcome.

  2. Green Infrastructure 101

    EPA Science Inventory

    Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)

  3. Socio-technical systems and interaction design - 21st century relevance.

    PubMed

    Maguire, Martin

    2014-03-01

    This paper focuses on the relationship between the socio-technical system and the user-technology interface. It looks at specific aspects of the organisational context such as multiple user roles, job change, work processes and workflows, technical infrastructure, and the challenges they present for the interaction designer. The implications of trends such as more mobile and flexible working, the use of social media, and the growth of the virtual organisation, are also considered. The paper also reviews rapidly evolving technologies such as pervasive systems and artificial intelligence, and the skills that workers will need to engage with them. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour.

    PubMed

    Heesch, Kristiann C; Langdon, Michael

    2016-02-01

    Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.

  5. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  6. The future of infrastructure security :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concludedmore » with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.« less

  7. The Natural Hospital Environment: a Socio-Technical-Material perspective.

    PubMed

    Fernando, Juanita; Dawson, Linda

    2014-02-01

    This paper introduces two concepts into analyses of information security and hospital-based information systems-- a Socio-Technical-Material theoretical framework and the Natural Hospital Environment. The research is grounded in a review of pertinent literature with previously published Australian (Victoria) case study data to analyse the way clinicians work with privacy and security in their work. The analysis was sorted into thematic categories, providing the basis for the Natural Hospital Environment and Socio-Technical-Material framework theories discussed here. Natural Hospital Environments feature inadequate yet pervasive computer use, aural privacy shortcomings, shared workspace, meagre budgets, complex regulation that hinders training outcomes and out-dated infrastructure and are highly interruptive. Working collaboratively in many cases, participants found ways to avoid or misuse security tools, such as passwords or screensavers for patient care. Workgroup infrastructure was old, architecturally limited, haphazard in some instances, and was less useful than paper handover sheets to ensure the quality of patient care outcomes. Despite valiant efforts by some participants, they were unable to control factors influencing the privacy of patient health information in public hospital settings. Future improvements to hospital-based organisational frameworks for e-health can only be made when there is an improved understanding of the Socio-Technical-Material theoretical framework and Natural Hospital Environment contexts. Aspects within control of clinicians and administrators can be addressed directly although some others are beyond their control. An understanding and acknowledgement of these issues will benefit the management and planning of improved and secure hospital settings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  9. Practical example of the infrastructure protection against rock fall

    NASA Astrophysics Data System (ADS)

    Jirásko, Daniel; Vaníček, Ivan

    2017-09-01

    The protection of transport infrastructures against rock falls represents for the Czech Republic one of the sensitive questions. Rock falls, similarly as other typical geo-hazards for the Czech Republic, as landslides and floods, can have negative impact on safety and security of these infrastructures. One practical example how to reduce risk of rock fall is described in the paper. Great care is devoted to the visual inspection enabling to indicate places with high potential to failure. With the help of numerical modelling the range of rock fall negative impact is estimated. Protection measures are dealing with two basic ways. The first one utilize the results of numerical modelling for the optimal design of protection measures and the second one is focused on the monitoring of the rock blocks with high potential of instability together with wire-less transfer of measured results. After quick evaluation, e.g. comparison with warning values, some protection measures, mostly connected with closure of the potential sector, can be recommended.

  10. Women in EPOS: the role of women in a large pan-European Research Infrastructure for Solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Freda, Carmela; Baracchi, Laura

    2017-04-01

    Women are outnumbered by men in geosciences senior research positions, but what is the situation if we consider large pan-European Research Infrastructures? With this contribution we want to show an analysis of the role of women in the implementation of the European Plate Observing System (EPOS): a planned research infrastructure for European Solid Earth sciences, integrating national and transnational research infrastructures to enable innovative multidisciplinary research. EPOS involves 256 national research infrastructures, 47 partners (universities and research institutes) from 25 European countries and 4 international organizations. The EPOS integrated platform demands significant coordination between diverse solid Earth disciplinary communities, national research infrastructures and the policies and initiatives they drive, geoscientists and information technologists. The EPOS architecture takes into account governance, legal, financial and technical issues and is designed so that the enterprise works as a single, but distributed, sustainable research infrastructure. A solid management structure is vital for the successful implementation and sustainability of EPOS. The internal organization relies on community-specific Working Packages (WPs), Transversal WPs in charge of the overall EPOS integration and implementation, several governing, executive and advisory bodies, a Project Management Office (PMO) and the Project Coordinator. Driven by the timely debate on gender balance and commitment of the European Commission to promote gender equality in research and innovation, we decided to conduct a mapping exercise on a project that crosses European national borders and that brings together diverse geoscience disciplines under one management structure. We present an analysis of women representation in decision-making positions in each EPOS Working Package (WP Leader, proxy, legal, financial and IT contact persons), in the Boards and Councils and in the PMO

  11. Towards Social Radiology as an Information Infrastructure: Reconciling the Local With the Global

    PubMed Central

    2014-01-01

    The current widespread use of medical images and imaging procedures in clinical practice and patient diagnosis has brought about an increase in the demand for sharing medical imaging studies among health professionals in an easy and effective manner. This article reveals the existence of a polarization between the local and global demands for radiology practice. While there are no major barriers for sharing such studies, when access is made from a (local) picture archive and communication system (PACS) within the domain of a healthcare organization, there are a number of impediments for sharing studies among health professionals on a global scale. Social radiology as an information infrastructure involves the notion of a shared infrastructure as a public good, affording a social space where people, organizations and technical components may spontaneously form associations in order to share clinical information linked to patient care and radiology practice. This article shows however, that such polarization establishes a tension between local and global demands, which hinders the emergence of social radiology as an information infrastructure. Based on an analysis of the social space for radiology practice, the present article has observed that this tension persists due to the inertia of a locally installed base in radiology departments, for which common teleradiology models are not truly capable of reorganizing as a global social space for radiology practice. Reconciling the local with the global signifies integrating PACS and teleradiology into an evolving, secure, heterogeneous, shared, open information infrastructure where the conceptual boundaries between (local) PACS and (global) teleradiology are transparent, signaling the emergence of social radiology as an information infrastructure. PMID:25600710

  12. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  13. Engineering the System and Technical Integration

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  14. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  15. Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2005-01-01

    This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

  16. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...

  17. Integrating sea floor observatory data: the EMSO data infrastructure

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Azzarone, Adriano; Carval, Thierry; Doumaz, Fawzi; Giovanetti, Gabriele; Marinaro, Giuditta; Rolin, Jean-Francois; Beranzoli, Laura; Waldmann, Christoph

    2013-04-01

    The European research infrastructure EMSO is a European network of fixed-point, deep-seafloor and water column observatories deployed in key sites of the European Continental margin and Arctic. It aims to provide the technological and scientific framework for the investigation of the environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere and for a sustainable management by long-term monitoring also with real-time data transmission. Since 2006, EMSO is on the ESFRI (European Strategy Forum on Research Infrastructures) roadmap and has entered its construction phase in 2012. Within this framework, EMSO is contributing to large infrastructure integration projects such as ENVRI and COOPEUS. The EMSO infrastructure is geographically distributed in key sites of European waters, spanning from the Arctic, through the Atlantic and Mediterranean Sea to the Black Sea. It is presently consisting of thirteen sites which have been identified by the scientific community according to their importance respect to Marine Ecosystems, Climate Changes and Marine GeoHazards. The data infrastructure for EMSO is being designed as a distributed system. Presently, EMSO data collected during experiments at each EMSO site are locally stored and organized in catalogues or relational databases run by the responsible regional EMSO nodes. Three major institutions and their data centers are currently offering access to EMSO data: PANGAEA, INGV and IFREMER. In continuation of the IT activities which have been performed during EMSOs twin project ESONET, EMSO is now implementing the ESONET data architecture within an operational EMSO data infrastructure. EMSO aims to be compliant with relevant marine initiatives such as MyOceans, EUROSITES, EuroARGO, SEADATANET and EMODNET as well as to meet the requirements of international and interdisciplinary projects such as COOPEUS and ENVRI, EUDAT and iCORDI. A major focus is therefore set on standardization and

  18. Infrastructure Systems for Advanced Computing in E-science applications

    NASA Astrophysics Data System (ADS)

    Terzo, Olivier

    2013-04-01

    In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate

  19. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  20. New challenges and opportunities in the eddy-covariance methodology for long-term monitoring networks

    NASA Astrophysics Data System (ADS)

    Papale, Dario; Fratini, Gerardo

    2013-04-01

    Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under

  1. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  2. Coordinated bird monitoring: Technical recommendations for military lands

    USGS Publications Warehouse

    Bart, Jonathan; Manning, Ann; Fischer, Richard; Eberly, Chris

    2012-01-01

    The Department of Defense (DoD) is subject to several rules and regulations establishing responsibilities for monitoring migratory birds. The Sikes Act requires all military installations with significant natural resources to prepare and implement Integrated Natural Resources Management Plans (INRMPs). These plans guide the conservation and long-term management of natural resources on military lands in a manner that is compatible with and sustains the military mission. An INRMP also supports compliance with all legal requirements and guides the military in fulfilling its obligation to be a good steward of public land.The management and conservation of migratory birds is addressed in installation INRMPs. The National Environmental Policy Act (NEPA) requires federal agencies to evaluate and disclose the potential environmental impacts of their proposed actions. More recently, DoD signed an MOU (http://www.dodpif.org/downloads/EO13186_MOU-DoD.pdf) for migratory birds, under Executive Order 13186, with the US Fish and Wildlife Service (USFWS) in July 2006 and a Migratory Bird Rule (http://www.dodpif.org/downloads/MigBirdFINALRule_FRFeb2007.pdf) was passed by Congress in February 2007. The Migratory Bird Rule addresses the potential impacts of military readiness activities on populations of migratory birds and establishes a process to implement conservation measures if and when a military readiness activity is expected to have a significant adverse impact on a population of migratory bird species (as determined through the NEPA process). The MOU states that for nonmilitary readiness activities, prior to initiating any activity likely to affect populations of migratory birds DoD shall (1) identify the migratory bird species likely to occur in the area of the proposed action and determine if any species of concern could be affected by the activity, and (2) assess and document, using NEPA when applicable, the effect of the proposed action on species of concern. By

  3. Monitoring Artificial Pancreas Trials Through Agent-based Technologies

    PubMed Central

    Scarpellini, Stefania; Di Palma, Federico; Toffanin, Chiara; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo

    2014-01-01

    The increase in the availability and reliability of network connections lets envision systems supporting a continuous remote monitoring of clinical parameters useful either for overseeing chronic diseases or for following clinical trials involving outpatients. We report here the results achieved by a telemedicine infrastructure that has been linked to an artificial pancreas platform and used during a trial of the AP@home project, funded by the European Union. The telemedicine infrastructure is based on a multiagent paradigm and is able to deliver to the clinic any information concerning the patient status and the operation of the artificial pancreas. A web application has also been developed, so that the clinic staff and the researchers involved in the design of the blood glucose control algorithms are able to follow the ongoing experiments. Albeit the duration of the experiments in the trial discussed in the article was limited to only 2 days, the system proved to be successful for monitoring patients, in particular overnight when the patients are sleeping. Based on that outcome we can conclude that the infrastructure is suitable for the purpose of accomplishing an intelligent monitoring of an artificial pancreas either during longer trials or whenever that system will be used as a routine treatment. PMID:24876570

  4. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  5. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  6. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned bymore » Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.« less

  7. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

    2010-12-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between

  8. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  9. Climate Action Benefits: Infrastructure

    EPA Pesticide Factsheets

    This page provides background on the relationship between infrastructure and climate change and describes what the CIRA Infrastructure analyses cover. It provides links to the subsectors Bridges, Roads, Urban Drainage, and Coastal Property.

  10. Transport Infrastructure in the Process of Cataloguing Brownfields

    NASA Astrophysics Data System (ADS)

    Kramářová, Zuzana

    2017-10-01

    To begin with, the identification and follow-up revitalisation of brownfields raises a burning issue in territorial planning as well as in construction engineering. This phenomenon occurs not only in the Czech Republic and Europe, but also world-wide experts conduct its careful investigation. These issues may be divided into several areas. First, it is identifying and cataloguing single territorial localities; next, it means a complex process of locality revitalisation. As a matter of fact, legislative framework represents a separate area, which is actually highly specific in individual countries in accordance with the existing law, norms and regulations (it concerns mainly territorial planning and territory segmentation into appropriate administrative units). Legislative base of the Czech Republic was analysed in an article at WMCAUS in 2016. The solution of individual identification and following cataloguing of brownfields is worked out by Form of Regional Studies within the Legislation of the Czech Republic. Due to huge the scale of issues to be tackled, their content is only loosely defined in regard to Building Act and its implementing regulations, e.g. examining the layout of future construction in the area, locating architecturally or otherwise interesting objects, transport or technical infrastructure management, tourism, socially excluded localities etc. Legislative base does not exist, there is no common method for identifying and cataloguing brownfields. Therefore, individual catalogue lists are subject to customer’s requirements. All the same, the relevant information which the database contains may be always examined. One of them is part about transport infrastructure. The information may be divided into three subareas - information on transport accessibility of the locality, information on the actual infrastructure in the locality and information on the transport accessibility of human resources.

  11. A Socio-Technical Approach to Preventing, Mitigating, and Recovering from Ransomware Attacks.

    PubMed

    Sittig, Dean F; Singh, Hardeep

    2016-01-01

    Recently there have been several high-profile ransomware attacks involving hospitals around the world. Ransomware is intended to damage or disable a user's computer unless the user makes a payment. Once the attack has been launched, users have three options: 1) try to restore their data from backup; 2) pay the ransom; or 3) lose their data. In this manuscript, we discuss a socio-technical approach to address ransomware and outline four overarching steps that organizations can undertake to secure an electronic health record (EHR) system and the underlying computing infrastructure. First, health IT professionals need to ensure adequate system protection by correctly installing and configuring computers and networks that connect them. Next, the health care organizations need to ensure more reliable system defense by implementing user-focused strategies, including simulation and training on correct and complete use of computers and network applications. Concomitantly, the organization needs to monitor computer and application use continuously in an effort to detect suspicious activities and identify and address security problems before they cause harm. Finally, organizations need to respond adequately to and recover quickly from ransomware attacks and take actions to prevent them in future. We also elaborate on recommendations from other authoritative sources, including the National Institute of Standards and Technology (NIST). Similar to approaches to address other complex socio-technical health IT challenges, the responsibility of preventing, mitigating, and recovering from these attacks is shared between health IT professionals and end-users.

  12. A Socio-Technical Approach to Preventing, Mitigating, and Recovering from Ransomware Attacks

    PubMed Central

    Singh, Hardeep

    2016-01-01

    Summary Recently there have been several high-profile ransomware attacks involving hospitals around the world. Ransomware is intended to damage or disable a user’s computer unless the user makes a payment. Once the attack has been launched, users have three options: 1) try to restore their data from backup; 2) pay the ransom; or 3) lose their data. In this manuscript, we discuss a socio-technical approach to address ransomware and outline four overarching steps that organizations can undertake to secure an electronic health record (EHR) system and the underlying computing infrastructure. First, health IT professionals need to ensure adequate system protection by correctly installing and configuring computers and networks that connect them. Next, the health care organizations need to ensure more reliable system defense by implementing user-focused strategies, including simulation and training on correct and complete use of computers and network applications. Concomitantly, the organization needs to monitor computer and application use continuously in an effort to detect suspicious activities and identify and address security problems before they cause harm. Finally, organizations need to respond adequately to and recover quickly from ransomware attacks and take actions to prevent them in future. We also elaborate on recommendations from other authoritative sources, including the National Institute of Standards and Technology (NIST). Similar to approaches to address other complex socio-technical health IT challenges, the responsibility of preventing, mitigating, and recovering from these attacks is shared between health IT professionals and end-users. PMID:27437066

  13. SensorWeb Hub infrastructure for open access to scientific research data

    NASA Astrophysics Data System (ADS)

    de Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2015-04-01

    The sharing of research data is a new challenge for the scientific community that may benefit from a large amount of information to solve environmental issues and sustainability in agriculture and urban contexts. Prerequisites for this challenge is the development of an infrastructure that ensure access, management and preservation of data, technical support for a coordinated and harmonious management of data that, in the framework of Open Data Policies, should encourages the reuse and the collaboration. The neogeography and the citizen as sensors approach, highlight that new data sources need a new set of tools and practices so to collect, validate, categorize, and use / access these "crowdsourced" data, that integrate the data sets produced in the scientific field, thus "feeding" the overall available data for analysis and research. When the scientific community embraces the dimension of collaboration and sharing, access and re-use, in order to accept the open innovation approach, it should redesign and reshape the processes of data management: the challenges of technological and cultural innovation, enabled by web 2.0 technologies, bring to the scenario where the sharing of structured and interoperable data will constitute the unavoidable building block to set up a new paradigm of scientific research. In this perspective the Institute of Biometeorology, CNR, whose aim is contributing to sharing and development of research data, has developed the "SensorWebHub" (SWH) infrastructure to support the scientific activities carried out in several research projects at national and international level. It is designed to manage both mobile and fixed open source meteorological and environmental sensors, in order to integrate the existing agro-meteorological and urban monitoring networks. The proposed architecture uses open source tools to ensure sustainability in the development and deployment of web applications with geographic features and custom analysis, as requested

  14. A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring

    NASA Technical Reports Server (NTRS)

    White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.

    2017-01-01

    With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.

  15. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  16. Novel Multisensor Probe for Monitoring Bladder Temperature During Locoregional Chemohyperthermia for Nonmuscle-Invasive Bladder Cancer: Technical Feasibility Study

    PubMed Central

    Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans

    2013-01-01

    Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045

  17. Transport infrastructure monitoring: A ground based optical displacement monitoring system, field tests on a bridge, the Musmeci's bridge in Potenza, Italy.

    NASA Astrophysics Data System (ADS)

    Hagene, J. K.

    2012-04-01

    A gound based optical displacement monitoring system, "NIODIM", is being developed by Norsk Elektro Optikk in the framework of the activities of the European project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), funded in the 7th Framework Programme (FP7/2007-2013). The optical displacement monitoring system has now participated in two real life field campaigns one in Switzerland and one in Italy. The latter, the tests in Potenza, Italy, will be presented in the following. The NIODIM system has undergone some development during the last year to adopt it for use in a somewhat higher frequency domain by changing the camera sensor part. This to make it more useful for monitoring of structures with oscillation frequencies tens of Hz. The original system was intended to a large extent to monitor land slides, quick clay and rock slides and similar phenomena typically having a relatively slow time response. The system has been significantly speeded up from the original 12 Hz. Current tests have been performed at a frame rate of 64 Hz i.e., the camera part and data processing unit have been running on 64Hz. In connection with the tests in Italy the data processing has been upgraded to include sub-pixel resolution i.e., the measurement results are no longer limited by pixel borders or single pixels. The main part of the NIODIM system is a camera capable of operating at a sufficiently high frame rate. This camera will typically be mounted on firm ground and will depict and monitor a reference point, typically a light emitting diode, LED, which will be mounted on the object susceptible to move. A processing unit will acquire the images from the camera part and find the position of the LED in the image and compare that to threshold values and if required raise a warning or an alarm. The NIODIM system can either be a standalone system or be an integrated part of the overall ISTIMES system, the ISTIMES system

  18. 75 FR 67989 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ..., National Protection and Programs Directorate, Office of Infrastructure Protection (IP), will submit the... manner.'' DHS designated IP to lead these efforts. Given that the vast majority of the Nation's critical infrastructure and key resources in most sectors are privately owned or controlled, IP's success in achieving the...

  19. Collaborative Development of e-Infrastructures and Data Management Practices for Global Change Research

    NASA Astrophysics Data System (ADS)

    Samors, R. J.; Allison, M. L.

    2016-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is being organized under the auspices of the Belmont Forum consortium of national science funding agencies to accelerate the pace of science to address 21st century global change research challenges. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. The five action themes adopted by the Belmont Forum: 1. Adopt and make enforceable Data Principles that establish a global, interoperable e-infrastructure. 2. Foster communication, collaboration and coordination between the wider research community and Belmont Forum and its projects through an e-Infrastructure Coordination, Communication, & Collaboration Office. 3. Promote effective data planning and stewardship in all Belmont Forum agency-funded research with a goal to make it enforceable. 4. Determine international and community best practice to inform Belmont Forum research e-infrastructure policy through identification and analysis of cross-disciplinary research case studies. 5. Support the development of a cross-disciplinary training curriculum to expand human capacity in technology and data-intensive analysis methods. The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. In 2016, members of the 23-nation Belmont Forum began a collaborative implementation phase. Four multi-national teams are undertaking Action Themes based on the recommendations above. Tasks include mapping the landscape, identifying and documenting existing data management plans, and scheduling a series of workshops that analyse trans-disciplinary applications of existing Belmont Forum

  20. Green Infrastructure Modeling Toolkit

    EPA Pesticide Factsheets

    EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.

  1. Critical Infrastructure Interdependencies Assessment

    DOE PAGES

    Petit, Frederic; Verner, Duane

    2016-11-01

    Throughout the world there is strong recognition that critical infrastructure security and resilience needs to be improved. In the United States, the National Infrastructure Protection Plan (NIPP) provides the strategic vision to guide the national effort to manage risk to the Nation’s critical infrastructure.”1 The achievement of this vision is challenged by the complexity of critical infrastructure systems and their inherent interdependencies. The update to the NIPP presents an opportunity to advance the nation’s efforts to further understand and analyze interdependencies. Such an important undertaking requires the involvement of public and private sector stakeholders and the reinforcement of existing partnershipsmore » and collaborations within the U.S. Department of Homeland Security (DHS) and other Federal agencies, including national laboratories; State, local, tribal, and territorial governments; and nongovernmental organizations.« less

  2. A new vision of the post-NIST civil infrastructure program: the challenges of next-generation construction materials and processes

    NASA Astrophysics Data System (ADS)

    Wu, H. Felix; Wan, Yan

    2014-03-01

    Our nation's infrastructural systems are crumbling. The deteriorating process grows over time. The physical aging of these vital facilities and the remediation of their current critical state pose a key societal challenge to the United States. Current sensing technologies, while well developed in controlled laboratory environments, have not yet yielded tools for producing real-time, in-situ data that are adequately comprehensible for infrastructure decision-makers. The need for advanced sensing technologies is national because every municipality and state in the nation faces infrastructure management challenges. The need is critical because portions of infrastructure are reaching the end of their life-spans and there are few cost-effective means to monitor infrastructure integrity and to prioritize the renovation and replacement of infrastructure elements. New advanced sensing technologies that produce cost-effective inspection and real-time monitoring data, and that can also help or aid in meaningful interpretation of the acquired data, therefore will enhance the safety in regard to the public on structural integrity by issuing timely and accurate alert data for effective maintenance to avoid disasters happening. New advanced sensing technologies also allow more informed management of infrastructural investments by avoiding premature replacement of infrastructure and identifying those structures in need of immediate action to prevent from catastrophic failure. Infrastructure management requires that once a structural defect is detected, an economical and efficient repair be made. Advancing the technologies of repairing infrastructure elements in contact with water, road salt, and subjected to thermal changes requires innovative research to significantly extend the service life of repairs, lower the costs of repairs, and provide repair technologies that are suitable for a wide range of conditions. All these new technologies will provide increased lifetimes

  3. Working towards a European Geological Data Infrastructure

    NASA Astrophysics Data System (ADS)

    van der Krogt, Rob; Hughes, Richard; Pedersen, Mikael; Serrano, Jean-Jacques; Lee, Kathryn A.; Tulstrup, Jørgen; Robida, François

    2013-04-01

    ; what can we conclude and what is the way forward? • The project has evaluated relevant existing interoperable infrastructures revealing a typology of infrastructures that may be useful models for the EGDI; • Planning for the EGDI also need to be integrated with other relevant international initiatives and programs such as GMES, GEO and EPOS, and with legally binding regulations like INSPIRE. The outcomes of these relevant evaluations and activities will contribute to the implementation plan for the EGDI including the prioritization of relevant datasets and the most important functional, technical (design, use of standards), legal and organizational requirements.

  4. Internal dosimetry technical basis manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less

  5. Developing Your Evaluation Plans: A Critical Component of Public Health Program Infrastructure.

    PubMed

    Lavinghouze, S Rene; Snyder, Kimberly

    A program's infrastructure is often cited as critical to public health success. The Component Model of Infrastructure (CMI) identifies evaluation as essential under the core component of engaged data. An evaluation plan is a written document that describes how to monitor and evaluate a program, as well as how to use evaluation results for program improvement and decision making. The evaluation plan clarifies how to describe what the program did, how it worked, and why outcomes matter. We use the Centers for Disease Control and Prevention's (CDC) "Framework for Program Evaluation in Public Health" as a guide for developing an evaluation plan. Just as using a roadmap facilitates progress on a long journey, a well-written evaluation plan can clarify the direction your evaluation takes and facilitate achievement of the evaluation's objectives.

  6. Publication of sensor data in the long-term environmental monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Klump, J. F.

    2014-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the online research data publication platform DataCite. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The GFZ data management tool kit panMetaDocs is used to register Digital Object Identifiers (DOI) and preserve file based datasets. In addition to DOI, the International Geo Sample Numbers (IGSN) is used to uniquely identify research specimens.

  7. Developing translational research infrastructure and capabilities associated with cancer clinical trials.

    PubMed

    Hall, Jacqueline A; Brown, Robert

    2013-09-27

    The integration of molecular information in clinical decision making is becoming a reality. These changes are shaping the way clinical research is conducted, and as reality sets in, the challenges in conducting, managing and organising multi-disciplinary research become apparent. Clinical trials provide a platform to conduct translational research (TR) within the context of high quality clinical data accrual. Integrating TR objectives in trials allows the execution of pivotal studies that provide clinical evidence for biomarker-driven treatment strategies, targeting early drug development trials to a homogeneous and well defined patient population, supports the development of companion diagnostics and provides an opportunity for deepening our understanding of cancer biology and mechanisms of drug action. To achieve these goals within a clinical trial, developing translational research infrastructure and capabilities (TRIC) plays a critical catalytic role for translating preclinical data into successful clinical research and development. TRIC represents a technical platform, dedicated resources and access to expertise promoting high quality standards, logistical and operational support and unified streamlined procedures under an appropriate governance framework. TRIC promotes integration of multiple disciplines including biobanking, laboratory analysis, molecular data, informatics, statistical analysis and dissemination of results which are all required for successful TR projects and scientific progress. Such a supporting infrastructure is absolutely essential in order to promote high quality robust research, avoid duplication and coordinate resources. Lack of such infrastructure, we would argue, is one reason for the limited effect of TR in clinical practice beyond clinical trials.

  8. Connecting the Empire: New Research Perspectives on Infrastructures and the Environment in the (Post)Colonial World.

    PubMed

    van der Straeten, Jonas; Hasenöhrl, Ute

    2016-12-01

    In the academic debate on infrastructures in the Global South, there is a broad consensus that (post)colonial legacies present a major challenge for a transition towards more inclusive, sustainable and adapted modes of providing services. Yet, relatively little is known about the emergence and evolution of infrastructures in former colonies. Until a decade ago, most historical studies followed Daniel Headrick's (1981) "tools of empire" thesis, painting-with broad brush strokes-a picture of infrastructures as instruments for advancing the colonial project of exploitation and subordination of non-European peoples and environments. This paper explores new research perspectives beyond this straightforward, 'diffusionist' perspective on technology transfer. In order to do so, it presents and discusses more recent studies which focus on interactive transfer processes as well as mechanisms of appropriation, and which increasingly combine approaches from imperial history, environmental history, and history of technology.There is much to gain from unpacking the changing motives and ideologies behind technology transfer; tracing the often contested and negotiated flows of ideas, technologies and knowledge within multilayered global networks; investigating the manifold ways in which infrastructures reflected and (re)produced colonial spaces and identities; critically reflecting on the utility of large (socio)technical systems (LTS) for the Global South; and approaching infrastructures in the (post)colonial world through entangled histories of technology and the environment. Following David Arnold's (2005) plea for a "more interactive, culturally-nuanced, multi-sited debate" on technology in the non-Western world, the paper offers fresh insights for a broader debate about how infrastructures work within specific parameters of time, place and culture.

  9. Green Infrastructure Fact Sheet

    EPA Science Inventory

    We briefly describe the environmental issues associated with stormwater runoff, describe the purpose of green infrastructure and key techniques used. We also highlight environmental and economic benefits of green infrastructure through text and tables, as well as provide US wate...

  10. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  11. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  12. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  13. Environmental Research Infrastructures providing shared solutions for science and society (ENVRIplus)

    NASA Astrophysics Data System (ADS)

    Kutsch, Werner Leo; Asmi, Ari; Laj, Paolo; Brus, Magdalena; Sorvari, Sanna

    2016-04-01

    ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth System Research Infrastructures, projects and networks together with technical specialist partners to create a more coherent, interdisciplinary and interoperable cluster of Environmental Research Infrastructures (RIs) across Europe. The objective of ENVRIplus is to provide common solutions to shared challenges for these RIs in their efforts to deliver new services for science and society. To reach this overall goal, ENVRIplus brings together the current ESFRI roadmap environmental and associate fields RIs, leading I3 projects, key developing RI networks and specific technical specialist partners to build common synergic solutions for pressing issues in RI construction and implementation. ENVRIplus will be organized along 6 main objectives, further on called "Themes": 1) Improve the RI's abilities to observe the Earth System, particularly in developing and testing new sensor technologies, harmonizing observation methodologies and developing methods to overcome common problems associated with distributed remote observation networks; 2) Generate common solutions for shared information technology and data related challenges of the environmental RIs in data and service discovery and use, workflow documentation, data citations methodologies, service virtualization, and user characterization and interaction; 3) Develop harmonized policies for access (physical and virtual) for the environmental RIs, including access services for the multidisciplinary users; 4) Investigate the interactions between RIs and society: Find common approaches and methodologies how to assess the RIs' ability to answer the economical and societal challenges, develop ethics guidelines for RIs and investigate the possibility to enhance the use Citizen Science approaches in RI products and services; 5) Ensure the cross-fertilisation and knowledge transfer of new technologies, best practices, approaches and policies of the

  14. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori

    2016-04-01

    Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected

  15. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana

    2013-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.

  16. Developing an infrastructure index : phase I.

    DOT National Transportation Integrated Search

    2010-04-01

    Over the past decade the American Society of Civil Engineers has used the Infrastructure Report : Card to raise awareness of infrastructure issues. Aging and deteriorating infrastructure has : recently been highlighted in the popular media. However, ...

  17. LIST/BMI Turbines Instrumentation and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,PERRY L.; SUTHERLAND,HERBERT J.; NEAL,BYRON A.

    2001-06-01

    In support of two major SNL programs, the Long-term Inflow and Structural Test (LIST) program and the Blade Manufacturing Initiative (BMI), three Micon 65/13M wind turbines have been erected at the USDA Agriculture Research Service (ARS) center in Bushland, Texas. The inflow and structural response of these turbines are being monitored with an array of 60 instruments: 34 to characterize the inflow, 19 to characterize structural response and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. Primary characterization of the structuralmore » response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data are sampled at a rate of 30 Hz using a newly developed data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these turbines and their inflow.« less

  18. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  19. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  20. Strategy-Based Technical Instruction: Development and Evaluation

    DTIC Science & Technology

    1988-08-01

    scripts dependant on target tasks and the outcomes desired, and to the use of node-link knowledge maps as communications props. In addition, we have...information "on the job" - communicate with others in the task environment; - monitor, diagnose, and correct problems associated with critical tasks... communicated . Technical Training Goals The individual in a technical training scenario is expected to achieve a wide variety of goals. These goals can

  1. Geographic Hotspots of Critical National Infrastructure.

    PubMed

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-12-01

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  2. Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.

    The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supportingmore » sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE

  3. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  4. Fuel cells for transport: can the promise be fulfilled? Technical requirements and demands from customers

    NASA Astrophysics Data System (ADS)

    Klaiber, Thomas

    The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.

  5. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    NASA Astrophysics Data System (ADS)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  6. Performance results from Small- and Large-Scale System Monitoring and green Infrastructure in Kansas City - slides

    EPA Science Inventory

    In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, structural controls. KCMO installed 130 GI storm co...

  7. EPOS: Integrating seismological Research Infrastructures within Europe

    NASA Astrophysics Data System (ADS)

    Eck Van, Torild; Clinton, John; Haslinger, Florian; Michelini, Alberto

    2013-04-01

    Seismological data, products and models are currently produced in Europe within individual countries or research organizations, and with the contribution of coordinating organizations like ORFEUS and EMSC. In spite of these partly scattered resources, significant scientific results are obtained, excellent monitoring and information systems are operational and a huge amount of research quality data is being archived and disseminated. The seismological community, however, realizes that an effective European-scale integration of seismological and related geophysical data, products and models, combined with broad and easy access, is needed to facilitate future top level geoscience, for example, to appropriately harness the technological advancements enabling large scale and near-real time data processing. Here we present the technical concepts and developments within European seismology that will build the next generation of integrated services. Within the EPOS initiative and a number of related projects, where seismology infrastructure and IT developments are merging, in depth discussions are on-going on how to realize an effective integration. Concepts and visions addressing the obviously complex challenges resulting from the current highly distributed facilities and resources in Europe are emerging and are already partly being implemented. We will provide an overview of developments within key EU projects (NERA, VERCE, COOPEUS, EUDAT, REAKT, COMMIT, etc) and demonstrate how these are in coherence with EPOS and other on-going global initiatives. Within seismology current focus is on addressing IT related challenges to a) organize distributed data archives, develop metadata attributes for improved data searching, specifically including quality indicators, and define products from data and/or models, and b) define and create(on-line) monitoring, data access and processing tools. While developments to meet those challenges originate partly from within the community

  8. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the

  9. Vibration Monitoring of Power Distribution Poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less

  10. The role of non-technical skills in surgery

    PubMed Central

    Agha, Riaz A.; Fowler, Alexander J.; Sevdalis, Nick

    2015-01-01

    Non-technical skills are of increasing importance in surgery and surgical training. A traditional focus on technical skills acquisition and competence is no longer enough for the delivery of a modern, safe surgical practice. This review discusses the importance of non-technical skills and the values that underpin successful modern surgical practice. This narrative review used a number of sources including written and online, there was no specific search strategy of defined databases. Modern surgical practice requires; technical and non-technical skills, evidence-based practice, an emphasis on lifelong learning, monitoring of outcomes and a supportive institutional and health service framework. Finally these requirements need to be combined with a number of personal and professional values including integrity, professionalism and compassionate, patient-centred care. PMID:26904193

  11. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  12. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  13. Next-generation wireless bridge weigh-in-motion (WIM) system integrated with nondestructive evaluation (NDE) capability for transportation infrastructure safety.

    DOT National Transportation Integrated Search

    2014-05-01

    This project seeks to develop a rapidly deployable, low-cost, and wireless system for bridge : weigh-in-motion (BWIM) and nondestructive evaluation (NDE). The system is proposed to : assist in monitoring transportation infrastructure safety, for the ...

  14. Strategies for monitoring terrestrial animals and habitats

    Treesearch

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  15. The Resilient Infrastructure Initiative

    DOE PAGES

    Clifford, Megan

    2016-10-01

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  16. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    NASA Astrophysics Data System (ADS)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  17. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  18. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  19. A Cross-Platform Infrastructure for Scalable Runtime Application Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack Dongarra; Shirley Moore; Bart Miller, Jeffrey Hollingsworth

    2005-03-15

    The purpose of this project was to build an extensible cross-platform infrastructure to facilitate the development of accurate and portable performance analysis tools for current and future high performance computing (HPC) architectures. Major accomplishments include tools and techniques for multidimensional performance analysis, as well as improved support for dynamic performance monitoring of multithreaded and multiprocess applications. Previous performance tool development has been limited by the burden of having to re-write a platform-dependent low-level substrate for each architecture/operating system pair in order to obtain the necessary performance data from the system. Manual interpretation of performance data is not scalable for large-scalemore » long-running applications. The infrastructure developed by this project provides a foundation for building portable and scalable performance analysis tools, with the end goal being to provide application developers with the information they need to analyze, understand, and tune the performance of terascale applications on HPC architectures. The backend portion of the infrastructure provides runtime instrumentation capability and access to hardware performance counters, with thread-safety for shared memory environments and a communication substrate to support instrumentation of multiprocess and distributed programs. Front end interfaces provides tool developers with a well-defined, platform-independent set of calls for requesting performance data. End-user tools have been developed that demonstrate runtime data collection, on-line and off-line analysis of performance data, and multidimensional performance analysis. The infrastructure is based on two underlying performance instrumentation technologies. These technologies are the PAPI cross-platform library interface to hardware performance counters and the cross-platform Dyninst library interface for runtime modification of executable images. The Paradyn and KOJAK

  20. Permafrost and infrastructure in the usa Basin (Northeast European Russia): possible impacts of global warming.

    PubMed

    Mazhitova, Galina; Karstkarel, Nanka; Oberman, Naum; Romanovsky, Vladimir; Kuhry, Peter

    2004-08-01

    The relationship between permafrost conditions and the distribution of infrastructure in the Usa Basin, Northeast European Russia, is analyzed. About 75% of the Basin is underlain by permafrost terrain with various degrees of continuity (isolated patches to continuous permafrost). The region has a high level of urban and industrial development (e.g., towns, coal mines, hydrocarbon extraction sites, railway, pipelines). GIS-analyses indicate that about 60% of all infrastructure is located in the 'high risk' permafrost area, here defined as the zones of isolated to discontinuous permafrost (3-90% coverage) with 'warm' ground temperatures (0 to -2 degrees C). Ground monitoring, aerial photo interpretation, and permafrost modeling suggest a differential response to future global warming. Most of the permafrost-affected terrain will likely start to thaw within a few decades to a century. This forecast poses serious challenges to permafrost engineering and calls for long-term investments in adequate infrastructure that will pay back overtime.

  1. The biobanking research infrastructure BBMRI_CZ: a critical tool to enhance translational cancer research.

    PubMed

    Holub, P; Greplova, K; Knoflickova, D; Nenutil, R; Valik, D

    2012-01-01

    We introduce the national research biobanking infrastructure, BBMRI_CZ. The infrastructure has been founded by the Ministry of Education and became a partner of the European biobanking infrastructure BBMRI.eu. It is designed as a network of individual biobanks where each biobank stores samples obtained from associated healthcare providers. The biobanks comprise long term storage (various types of tissues classified by diagnosis, serum at surgery, genomic DNA and RNA) and short term storage (longitudinally sampled patient sera). We discuss the operation workflow of the infrastructure that needs to be the distributed system: transfer of the samples to the biobank needs to be accompanied by extraction of data from the hospital information systems and this data must be stored in a central index serving mainly for sample lookup. Since BBMRI_CZ is designed solely for research purposes, the data is anonymised prior to their integration into the central BBMRI_CZ index. The index is then available for registered researchers to seek for samples of interest and to request the samples from biobank managers. The paper provides an overview of the structure of data stored in the index. We also discuss monitoring system for the biobanks, incorporated to ensure quality of the stored samples.

  2. Blurred digital mammography images: an analysis of technical recall and observer detection performance.

    PubMed

    Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-03-01

    Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.

  3. Blurred digital mammography images: an analysis of technical recall and observer detection performance

    PubMed Central

    Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-01-01

    Objective: Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. Methods: 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. Results: The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. Conclusion: According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. PMID:28134567

  4. Monitoring Business Activity

    DTIC Science & Technology

    2006-03-01

    AFRL-IF-RS-TR-2006-88 Final Technical Report March 2006 MONITORING BUSINESS ACTIVITY New York University...REPORT DATE MARCH 2006 3. REPORT TYPE AND DATES COVERED Final Sep 01 – Oct 05 4. TITLE AND SUBTITLE MONITORING BUSINESS ACTIVITY 6. AUTHOR(S...Accepted to Journal of Machine Learning Research, pending revisions. CeDER Working Paper #CeDER-04-08, Stern School of Business , New York University

  5. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  6. Green Infrastructure Checklists and Renderings

    EPA Pesticide Factsheets

    Materials and checklists for Denver, CO to review development project plans for green infrastructure components, best practices for inspecting and maintaining installed green infrastructure. Also includes renderings of streetscape projects.

  7. Localizer Flight Technical Error Measurement and Uncertainty

    DOT National Transportation Integrated Search

    2011-09-18

    Recent United States Federal Aviation Administration (FAA) wake turbulence research conducted at the John A. Volpe National Transportation Systems Center (The Volpe Center) has continued to monitor the representative localizer Flight Technical Error ...

  8. Body Area Network BAN--a key infrastructure element for patient-centered medical applications.

    PubMed

    Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas

    2002-01-01

    The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.

  9. An introduction to structural health monitoring.

    PubMed

    Farrar, Charles R; Worden, Keith

    2007-02-15

    The process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). Here, damage is defined as changes to the material and/or geometric properties of these systems, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance. A wide variety of highly effective local non-destructive evaluation tools are available for such monitoring. However, the majority of SHM research conducted over the last 30 years has attempted to identify damage in structures on a more global basis. The past 10 years have seen a rapid increase in the amount of research related to SHM as quantified by the significant escalation in papers published on this subject. The increased interest in SHM and its associated potential for significant life-safety and economic benefits has motivated the need for this theme issue. This introduction begins with a brief history of SHM technology development. Recent research has begun to recognize that the SHM problem is fundamentally one of the statistical pattern recognition (SPR) and a paradigm to address such a problem is described in detail herein as it forms the basis for organization of this theme issue. In the process of providing the historical overview and summarizing the SPR paradigm, the subsequent articles in this theme issue are cited in an effort to show how they fit into this overview of SHM. In conclusion, technical challenges that must be addressed if SHM is to gain wider application are discussed in a general manner.

  10. Development of Bioinformatics Infrastructure for Genomics Research.

    PubMed

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  11. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  12. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  13. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  14. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  15. Technical structure of the global nanoscience and nanotechnology literature

    NASA Astrophysics Data System (ADS)

    Kostoff, Ronald N.; Koytcheff, Raymond G.; Lau, Clifford G. Y.

    2007-10-01

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The ˜400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list.

  16. Environmental engineering of navigation infrastructure: a survey of existing practices, challenges, and potential opportunities.

    PubMed

    Fredette, Thomas J; Foran, Christy M; Brasfield, Sandra M; Suedel, Burton C

    2012-01-01

    Navigation infrastructure such as channels, jetties, river training structures, and lock-and-dam facilities are primary components of a safe and efficient water transportation system. Planning for such infrastructure has until recently involved efforts to minimize impacts on the environment through a standardized environmental assessment process. More recently, consistent with environmental sustainability concepts, planners have begun to consider how such projects can also be constructed with environmental enhancements. This study examined the existing institutional conditions within the US Army Corps of Engineers and cooperating federal agencies relative to incorporating environmental enhancements into navigation infrastructure projects. The study sought to (1) investigate institutional attitudes towards the environmental enhancement of navigation infrastructure (EENI) concept, (2) identify potential impediments to implementation and solutions to such impediments, (3) identify existing navigation projects designed with the express intent of enhancing environmental benefit in addition to the primary project purpose, (4) identify innovative ideas for increasing environmental benefits for navigation projects, (5) identify needs for additional technical information or research, and (6) identify laws, regulations, and policies that both support and hinder such design features. The principal investigation tool was an Internet-based survey with 53 questions. The survey captured a wide range of perspectives on the EENI concept including ideas, concerns, research needs, and relevant laws and policies. Study recommendations included further promotion of the concept of EENI to planners and designers, documentation of existing projects, initiation of pilot studies on some of the innovative ideas provided through the survey, and development of national goals and interagency agreements to facilitate implementation. Copyright © 2011 SETAC.

  17. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring.

    PubMed

    Azzam, Rimon Sobhi; Sallum, Rubens A A; Brandão, Jeovana Ferreira; Navarro-Rodriguez, Tomás; Nasi, Ary

    2012-01-01

    Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. Early capsule detachment occurred in one (4%) case and there were no technical failures with the catheter pH monitoring (P = 0.463). Percentages of reflux time (total, upright and supine) were higher with the wireless pH monitoring (P < 0.05). Pathological gastroesophageal reflux occurred in 16 (64%) patients submitted to catheter and in 19 (76%) to the capsule (P = 0.355). The symptom index was positive in 12 (48%) patients with catheter pH monitoring and in 13 (52%) with wireless pH monitoring (P = 0.777). 1) No significant differences were reported between the two methods of pH monitoring (capsule vs catheter), in regard to relevant technical failures; 2) Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3) The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  18. Parallel Infrastructure Modeling and Inversion Module for E4D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-10-09

    Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurfacemore » conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases

  19. Linear infrastructure impacts on landscape hydrology.

    PubMed

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  20. A socio-technical model to explore urban water systems scenarios.

    PubMed

    de Haan, Fjalar J; Ferguson, Briony C; Deletic, Ana; Brown, Rebekah R

    2013-01-01

    This article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity. The urban water system is parameterised with vectors of the relative influence of each servicing solution. The model is a software implementation of the Multi-Pattern Approach, a theory on societal systems, like urban water systems, and how these develop and go through transitions under various internal and external conditions. Acknowledging that social dynamics comes with severe and non-reducible uncertainties, the model is set up to be exploratory, meaning that for any initial condition several possible future scenarios are produced. This article gives a concise overview of the necessary theoretical background, the model architecture and some initial test results using a drainage example.

  1. Energy Transmission and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; •more » enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as

  2. DAG telescope site studies and infrastructure for possible international co-operations

    NASA Astrophysics Data System (ADS)

    Yerli, Sinan K.; Yeşilyaprak, Cahit; Keskin, Onur; Alis, Sinan

    2016-07-01

    The selected site for the 4 m DAG (Eastern Anatolian Observatory in Turkish) telescope is at "Karakaya Ridge", at 3170 m altitude (3150 m after summit management). The telescope's optical design is performed by the DAG technical team to allow infrared observation at high angular resolution, with its adaptive optics system to be built in Turkey. In this paper; a brief introduction about DAG telescope design; planned instrumentation; the meteorological data collected from 2008, clear night counts, short-term DIMM observations; current infrastructure to hold auxiliary telescopes; auxiliary buildings to assist operations; the observatory design; and coating unit plans will be presented along with possible collaboration possibilities in terms of instrumentation and science programs.

  3. Participatory environmental governance of infrastructure projects affecting reindeer husbandry in the Arctic.

    PubMed

    Landauer, Mia; Komendantova, Nadejda

    2018-06-22

    Several infrastructure projects are under development or already operational across the Arctic region. Often the deployment of such projects creates benefits at the national, regional, or global scales. However, local communities can experience negative impacts due to the requirements for extensive land areas, which cause pressure on traditional land use. Public participation in environmental planning such as Environmental Impact Assessment (EIA) enables local communities to provide feedback on the environmental, social, and economic challenges of infrastructure projects. Ideally, participation can improve the means of social learning for all involved parties and help to co-develop sustainable solutions. The subject of our research is reindeer herders' participation in EIA procedures of mines and wind farms in Finland because these types of projects affect reindeer husbandry. We study empirically how stakeholders involved in the EIAs perceive the participation of reindeer herders in the planning and implementation of infrastructure projects, and how these differ from the perceptions of the reindeer herders who are affected by the infrastructure projects. Our qualitative data is based on in-depth semi-structured interviews (N = 31) with members of the industry sector, consultants, governmental authorities, and representatives of local communities; in this study, the reindeer herders. The results show that herders' level of participation in the EIAs and the benefits and challenges of participation are perceived differently. Furthermore, the regulatory framework does not adequately ensure that the developer carries social and environmental responsibilities throughout the infrastructure project's lifetime, and that regular communication with herders will also be maintained after the EIAs. Herders' expertise should be used throughout the project lifetime. For example, more attention should be paid to both negotiating possible options for compensation and monitoring

  4. An operational data access infrastructure for accessing integrated environmental and socio-economic data from the Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    De Bruin, T.

    2012-12-01

    The Wadden Sea, an UNESCO World Heritage Site along the Northern coasts of The Netherlands, Germany and Denmark, is a very valuable, yet also highly vulnerable tidal flats area. Knowledge is key to the sustainable management of the Wadden Sea. This knowledge should be reliable, founded on promptly accessible information and sufficiently broad to integrate both ecological and economic analyses. The knowledge is gained from extensive monotoring of both ecological and socio-economic parameters. Even though many organisations, research institutes, government agencies and NGOs carry out monitoring, there is no central overview of monitoring activities, nor easy access to the resulting data. The 'Wadden Sea Long-Term Ecosystem Research' (WaLTER) project (2011-2015) aims to set-up an integrated monitoring plan for the main environmental and management issues relevant to the Wadden Sea, such as sea-level rise, fisheries management, recreation and industry activities. The WaLTER data access infrastructure will be a distributed system of data providers, with a centralized data access portal. It is based on and makes use of the existing data access infrastructure of the Netherlands National Oceanographic Data Committee (NL-NODC), which has been operational since early 2009. The NL-NODC system is identical to and in fact developed by the European SeaDataNet project, furthering standardisation on a pan-European scale. The presentation will focus on the use of a distributed data access infrastructure to address the needs of different user groups such as policy makers, scientists and the general public.

  5. caCORE: a common infrastructure for cancer informatics.

    PubMed

    Covitz, Peter A; Hartel, Frank; Schaefer, Carl; De Coronado, Sherri; Fragoso, Gilberto; Sahni, Himanso; Gustafson, Scott; Buetow, Kenneth H

    2003-12-12

    Sites with substantive bioinformatics operations are challenged to build data processing and delivery infrastructure that provides reliable access and enables data integration. Locally generated data must be processed and stored such that relationships to external data sources can be presented. Consistency and comparability across data sets requires annotation with controlled vocabularies and, further, metadata standards for data representation. Programmatic access to the processed data should be supported to ensure the maximum possible value is extracted. Confronted with these challenges at the National Cancer Institute Center for Bioinformatics, we decided to develop a robust infrastructure for data management and integration that supports advanced biomedical applications. We have developed an interconnected set of software and services called caCORE. Enterprise Vocabulary Services (EVS) provide controlled vocabulary, dictionary and thesaurus services. The Cancer Data Standards Repository (caDSR) provides a metadata registry for common data elements. Cancer Bioinformatics Infrastructure Objects (caBIO) implements an object-oriented model of the biomedical domain and provides Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. caCORE has been used to develop scientific applications that bring together data from distinct genomic and clinical science sources. caCORE downloads and web interfaces can be accessed from links on the caCORE web site (http://ncicb.nci.nih.gov/core). caBIO software is distributed under an open source license that permits unrestricted academic and commercial use. Vocabulary and metadata content in the EVS and caDSR, respectively, is similarly unrestricted, and is available through web applications and FTP downloads. http://ncicb.nci.nih.gov/core/publications contains links to the caBIO 1.0 class diagram and the caCORE 1.0 Technical Guide, which provide detailed information on the present caCORE architecture

  6. The Hollin Hill Landslide Observatory - a decade of geophysical characterization and monitoring

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Wilkinson, P. B.; Meldrum, P.; Smith, A.; Dixon, N.; Merritt, A.; Swift, R. T.; Whiteley, J.; Gunn, D.; Chambers, J. E.

    2017-12-01

    Landslides are major and frequent natural hazards. They shape the Earth's surface, and endanger communities and infrastructure worldwide. Within the last decade, landslides caused more than 28,000 fatalities and direct damage exceeding $1.8 billion. Climate change, causing more frequent weather extremes, is likely to increase occurrences of shallow slope failures worldwide. Thus, there is a need to improve our understanding of these shallow, rainfall-induced landslides. In this context, integrated geophysical characterization and monitoring can play a crucial role by providing volumetric data that can be linked to the hydrological and geotechnical conditions of a slope. This enables understanding of the complex hydrological processes most-often being associated with landslides. Here we present a review of a decade of characterizing and monitoring a complex, inland, clayey landslide - forming the "Hollin Hill Landslide Observatory". Within the last decade, this landslide has experienced different activity characteristics, including creep, flow, and rotational failures - thereby providing an excellent testbed for the development of geophysical and geotechnical monitoring instrumentation and methodologies. These include developments of 4D geoelectrical monitoring techniques to estimate electrode positions from the resistivity data, incorporating these into a time-lapse inversion, and imaging moisture dynamics that control the landslide behaviour. Other developments include acoustic emission monitoring, and active and passive seismic monitoring. This work is underpinned by detailed characterization of the landslide, using geomorphological and geological mapping, geotechnical investigations, and a thorough geoelectrical and seismic characterization of the landslide mass. Hence, the data gained from the Hollin Hill landslide observatory has improved our understanding of the shallow landslide dynamics in response to climate change, their mechanics and evolution. The

  7. Downscaling seasonal to centennial simulations on distributed computing infrastructures using WRF model. The WRF4G project

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.

    2013-12-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models

  8. The Need for Consumer Relations in Technical Education.

    ERIC Educational Resources Information Center

    Isberner, Fred R.; Armstrong, Connie

    1995-01-01

    Technical education curricula should include the topical area of customer relations. Students need to learn how to listen to customers, handle complaints, monitor quality, and understand customer satisfaction. (SK)

  9. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  10. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  11. School-based travel : a mobility assessment

    DOT National Transportation Integrated Search

    2011-02-01

    This project contributes to developing a technical infrastructure to support the Safe Routes to School (SRTS) Program, : specifically to monitor its growth and to evaluate its effectiveness. Since its inception in 2005, the SRTS program : mandated by...

  12. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  13. Possibilities of Use of UAVS for Technical Inspection of Buildings and Constructions

    NASA Astrophysics Data System (ADS)

    Banaszek, Anna; Banaszek, Sebastian; Cellmer, Anna

    2017-12-01

    In recent years, Unmanned Aerial Vehicles (UAVs) have been used in various sectors of the economy. This is due to the development of new technologies for acquiring and processing geospatial data. The paper presents the results of experiments using UAV, equipped with a high resolution digital camera, for a visual assessment of the technical condition of the building roof and for the inventory of energy infrastructure and its surroundings. The usefulness of digital images obtained from the UAV deck is presented in concrete examples. The use of UAV offers new opportunities in the area of technical inspection due to the detail and accuracy of the data, low operating costs and fast data acquisition.

  14. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  16. Technical Support for Contaminated Sites | Science Inventory ...

    EPA Pesticide Factsheets

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo

  17. Comparison of WinSLAMM Modeled Results with Monitored Bioinfiltration Data during Kansas City Green Infrastructure Demonstration Project

    EPA Science Inventory

    The Water Services Department (WSD) in Kansas City, Missouri (KCMO) has conducted extensive modeling and economic studies of its combined sewer system (CSS) over the last several years. A number of green infrastructure (GI) solutions were identified and constructed to reduce dis...

  18. Nested barriers to low-carbon infrastructure investment

    NASA Astrophysics Data System (ADS)

    Granoff, Ilmi; Hogarth, J. Ryan; Miller, Alan

    2016-12-01

    Low-carbon, 'green' economic growth is necessary to simultaneously improve human welfare and avoid the worst impacts of climate change and environmental degradation. Infrastructure choices underpin both the growth and the carbon intensity of the economy. This Perspective explores the barriers to investing in low-carbon infrastructure and some of the policy levers available to overcome them. The barriers to decarbonizing infrastructure 'nest' within a set of barriers to infrastructure development more generally that cause spending on infrastructure--low-carbon or not--to fall more than 70% short of optimal levels. Developing countries face additional barriers such as currency and political risks that increase the investment gap. Low-carbon alternatives face further barriers, such as commercialization risk and financial and public institutions designed for different investment needs. While the broader barriers to infrastructure investment are discussed in other streams of literature, they are often disregarded in literature on renewable energy diffusion or climate finance, which tends to focus narrowly on the project costs of low- versus high-carbon options. We discuss how to overcome the barriers specific to low-carbon infrastructure within the context of the broader infrastructure gap.

  19. Green infrastructure.

    DOT National Transportation Integrated Search

    2014-06-01

    The transportation industry has increasingly recognized the vital role sustainability serves in promoting and : protecting the transportation infrastructure of the nation. Many state Departments of Transportation have : correspondingly increased effo...

  20. EFAB Report: Green Infrastructure Operations and Maintenance Finance

    EPA Pesticide Factsheets

    In this report, EFAB defines green infrastructure, outlines the benefits of green infrastructure, introduces green infrastructure operations and maintenance costs, and identifies and evaluates diverse ways to fund/finance green infrastructure O&M costs.

  1. Data-driven planning of distributed energy resources amidst socio-technical complexities

    NASA Astrophysics Data System (ADS)

    Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram

    2017-08-01

    New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.

  2. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  3. Multiple species inventory and monitoring technical guide

    Treesearch

    P.N. Manley; B. Van Horne; J.K. Roth; W.J. Zielinski; M.M. McKenzie; T.J. Weller; F.W. Weckerly; C. Vojta

    2006-01-01

    The National Forest Management Act (1976) recognizes the importance of maintaining species and community diversity on National Forest System (NFS) lands as a critical component of our ecological and cultural heritage. Monitoring is required of land management to assess the success of management activities in meeting legal, regulatory, and policy objectives, including...

  4. Understanding the state of health information in Ireland: A qualitative study using a socio-technical approach.

    PubMed

    Craig, Sarah; Kodate, Naonori

    2018-06-01

    The objective of this paper is to add to the broader literature on socio-technical theory and its value and/or relevance to health information in Ireland. The paper focuses on three factors that can impact on health information; those of policy, infrastructure and people (PIP) and examines how Ireland compares with other countries in relation to these factors. Qualitative methods (documentary analysis and semi-structured interviews) were used. Key policy and strategy documents, and original research articles from Australia, Canada, Ireland, the UK and the US were analysed from a comparative perspective. The dimensions of policy, infrastructure and people were then explored through semi-structured interviews with health information experts in Ireland. Their perceptions were compared with and contrasted against the findings from the documentary analysis, and examined thematically. The views of health information experts support the findings of the review of Ireland's development in this area compared with other countries and that Ireland lags behind others in policy and practice terms. The paper concludes that the three dimensions of policy, infrastructure and people do indeed help to frame the understanding of health information in Ireland and that a socio-technical perspective, combined with a comparative approach, can also help both policy makers and practitioners in identifying the scope for improvement in health information. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  6. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. © 2016 The Author(s).

  7. Monitoring Colonias along the United States-Mexico border

    USGS Publications Warehouse

    Norman, Laura M.; Parcher, Jean W.; Lam, Alven H.

    2004-01-01

    The Colonias Monitoring Program provides a publicly accessible, binational, GIS database to enable civic leaders and c itizens to inventory, analyze, and monitor growth, housing, and infrastructure in border communities. High-technology tools are provided to support planning efforts and development along the border, using a sustainable and comprehensive approach. The collective information can be used by nongovernmental organizations in preparing grant and loan applications for community-improvement projects.

  8. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  9. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  10. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  11. Design and Implementation Aspects of the Geological Data Infrastructure for European Society

    NASA Astrophysics Data System (ADS)

    van der Krogt, Rob; Pedersen, Mikael; Tulstrup, Jørgen; Robida, François; Serrrano, Jean-Jacques; Grellet, Sylvain; Lee, Kathryn; Harrison, Matthew; Demicheli, Luca; Delfini, Claudia; Hugelier, Sara; van Daalen, Tirza

    2014-05-01

    policy, academia and industry. These exchanges have contributed to the description of relevant use cases. Prioritization of relevant datasets: Connected to relevant use cases, and the availability of datasets through the European survey organizations, from European projects and INSPIRE, a number of datasets (including associated derived information, tools and services) has been prioritized for the implementation phase. Technical design: Based on user requirements as well as specific technical requirements principles and preferred options for the technical design of the infrastructure have been described. Legal aspects: based on inventories and analyses of national and international legal frameworks, and connected to the objectives and requirements of the EGDI conclusions have been drawn with regard to the applicability of certain legal frameworks. Governance and funding aspects: A strategy and roadmap have been developed for appropriate governance structures for the several development stages of the EGDI, including cost estimates and options for funding from diverse programs at national and international levels.

  12. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  13. Rwandan surgical and anesthesia infrastructure: a survey of district hospitals.

    PubMed

    Notrica, Michelle R; Evans, Faye M; Knowlton, Lisa Marie; Kelly McQueen, K A

    2011-08-01

    In low-income countries, unmet surgical needs lead to a high incidence of death. Information on the incidence and safety of current surgical care in low-income countries is limited by the paucity of data in the literature. The aim of this survey was to assess the surgical and anesthesia infrastructure in Rwanda as part of a larger study examining surgical and anesthesia capacity in low-income African countries. A comprehensive survey tool was developed to assess the physical infrastructure of operative facilities, education and training for surgical and anesthesia providers, and equipment and medications at district-level hospitals in sub-Saharan Africa. The survey was administered at 21 district hospitals in Rwanda using convenience sampling. There are only nine Rwandan anesthesiologists and 17 Rwandan surgeons providing surgical care for a population of more than 10 million. The specialty-trained Rwandan surgeons and anesthesiologists are practicing almost exclusively at referral hospitals, leaving surgical care at district hospitals to the general practice physicians and nurses. All of the district hospitals reported some lack of surgical infrastructure including limited access to oxygen, anesthesia equipment and medications, monitoring equipment, and trained personnel. This survey provides strong evidence of the need for continued development of emergency and essential surgical services at district hospitals in Rwanda to improve health care and to comply with World Health Organization recommendations. It has identified serious deficiencies in both financial and human resources-areas where the international community can play a role.

  14. 48 CFR 642.271 - Government Technical Monitor (GTM).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Services 642.271 Government..., or because of special skills or knowledge necessary for monitoring the contractor's work. The...

  15. 48 CFR 642.271 - Government Technical Monitor (GTM).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Services 642.271 Government..., or because of special skills or knowledge necessary for monitoring the contractor's work. The...

  16. 48 CFR 642.271 - Government Technical Monitor (GTM).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Services 642.271 Government..., or because of special skills or knowledge necessary for monitoring the contractor's work. The...

  17. Infrastructure Task Force Sustainable Infrastructure Goals and Concepts Document

    EPA Pesticide Factsheets

    This document outlines the concepts of appropriate infrastructure and sustainable management entities to guide the coordinated federal efforts to achieve greater sustainable access to safe drinking water and basic sanitation.

  18. Integrating smart container technology into existing shipping and law enforcement infrastructure

    NASA Astrophysics Data System (ADS)

    Ferriere, Dale; Pysareva, Khrystyna; Rucinski, Andrzej

    2006-05-01

    While there has been important research and development in the area of smart container technologies, no system design methodologies have yet emerged for integrating this technology into the existing shipping and law enforcement infrastructure. A successful deployment of smart containers requires a precise understanding of how to integrate this new technology into the existing shipping and law enforcement infrastructure, how to establish communication interoperability, and how to establish procedures and protocols related to the operation of smart containers. In addition, this integration needs to be seamless, unobtrusive to commerce, and cost-effective. In order to address these issues, we need to answer the following series of questions: 1) Who will own and operate the smart container technology; 2) Who will be responsible for monitoring the smart container data and notifying first responders; 3) What communication technologies currently used by first responders might be adopted for smart container data transmission; and 4) How will existing cargo manifest data be integrated into smart container data. In short, we need to identify the best practices for smart container ownership and operation. In order to help provide answers to these questions, we have surveyed a sample group of representatives from law enforcement, first responder, regulatory, and private sector organizations. This paper presents smart container infrastructure best practices recommendations obtained from the results of the survey.

  19. A technical guide for monitoring wildlife habitat

    Treesearch

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  20. Forest health monitoring: 2003 national technical report

    Treesearch

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling; William D. Smith

    2005-01-01

    The Forest Health Monitoring Program’s annual national reports present results from forest health data analyses focusing on a national perspective. The Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests are used as a reporting framework. This report has five main sections. The first contains introductory material....

  1. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  2. The Infrastructure of Academic Research.

    ERIC Educational Resources Information Center

    Davey, Ken

    1996-01-01

    Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…

  3. Effects of the Strategic Prevention Framework State Incentives Grant (SPF SIG) on state prevention infrastructure in 26 states.

    PubMed

    Orwin, Robert G; Stein-Seroussi, Alan; Edwards, Jessica M; Landy, Ann L; Flewelling, Robert L

    2014-06-01

    The Strategic Prevention Framework State Incentive Grant (SPF SIG) program is a national public health initiative sponsored by the U.S. Substance Abuse and Mental Health Services Administration's Center for Substance Abuse Prevention to prevent substance abuse and its consequences. State grantees used a data-driven planning model to allocate resources to 450 communities, which in turn launched over 2,200 intervention strategies to target prevention priorities in their respective populations. An additional goal was to build prevention capacity and infrastructure at the state and community levels. This paper addresses whether the state infrastructure goal was achieved, and what contextual and implementation factors were associated with success. The findings are consistent with claims that, overall, the SPF SIG program met its goal of increasing prevention capacity and infrastructure across multiple infrastructure domains, though the mediating effects of implementation were evident only in the evaluation/monitoring domain. The results also show that an initiative like the SPF SIG, which could easily have been compartmentalized within the states, has the potential to permeate more broadly throughout state prevention systems.

  4. HiCAT Software Infrastructure: Safe hardware control with object oriented Python

    NASA Astrophysics Data System (ADS)

    Moriarty, Christopher; Brooks, Keira; Soummer, Remi

    2018-01-01

    High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.

  5. TEODOOR, a blueprint for distributed terrestrial observation data infrastructures

    NASA Astrophysics Data System (ADS)

    Kunkel, Ralf; Sorg, Jürgen; Abbrent, Martin; Borg, Erik; Gasche, Rainer; Kolditz, Olaf; Neidl, Frank; Priesack, Eckart; Stender, Vivien

    2017-04-01

    the dis-tributed spatial data infrastructure TEODOOR (TEreno Online Data RepOsitORry) has been build-up. The individual observatories are connected via OGC-compliant web-services, while the TERENO Data Discovery Portal (DDP) enables data discovery, visualization and data ac-cess. Currently, free access to data from more than 900 monitoring stations is provided.

  6. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... infrastructure investment. 35.35 Section 35.35 Conservation of Power and Water Resources FEDERAL ENERGY... AND TARIFFS Transmission Infrastructure Investment Provisions § 35.35 Transmission infrastructure investment. (a) Purpose. This section establishes rules for incentive-based (including performance-based...

  7. Microoptomechanical sensor for intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Andreeva, A. V.; Luchinin, V. V.; Lutetskiy, N. A.; Sergushichev, A. N.

    2014-12-01

    The main idea of this research is the development of microoptomechanical sensor for intracranial pressure monitoring. Currently, the authors studied the scientific and technical knowledge in this field, as well as develop and test a prototype of microoptomechanical sensor for intracranial pressure (ICP) monitoring.

  8. Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Dong, Jing; Greene, David L

    2013-01-01

    Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.Withmore » a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.« less

  9. Site Characterization and Monitoring Technical Support Center FY16 Report

    EPA Science Inventory

    SCMTSC’s primary goal is to provide technical assistance to regional programs on complex hazardous waste site characterization issues. This annual report illustrates the range and extent of projects that SCMTSC supported in FY 2016. Our principal audiences are site project manage...

  10. National Satellite Forest Monitoring systems for REDD+

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  11. Landslide databases to compare regional repair and mitigation strategies of transportation infrastructure

    NASA Astrophysics Data System (ADS)

    Wohlers, Annika; Damm, Bodo

    2017-04-01

    Regional data of the Central German Uplands are extracted from the German landslide database in order to understand the complex interactions between landslide risks and public risk awareness considering transportation infrastructure. Most information within the database is gathered by means of archive studies from inventories of emergency agencies, state, press and web archives, company and department records as well as scientific and (geo)technical literature. The information includes land use practices, repair and mitigation measures with resultant costs of the German road network as well as railroad and waterway networks. It therefore contains valuable information of historical and current landslide impacts, elements at risk and provides an overview of spatiotemporal changes in social exposure and vulnerability to landslide hazards over the last 120 years. On a regional scale the recorded infrastructure damages, and consequential repair or mitigation measures were categorized and classified, according to relevant landslide types, processes and types of infrastructure. In a further step, the data of recent landslides are compared with historical and modern repair and mitigation measures and are correlated with socioeconomic concepts. As a result, it is possible to identify some complex interactions between landslide hazard, risk perception, and damage impact, including time lags and intensity thresholds. The data reveal distinct concepts of repairing respectively mitigating landslides on different types of transportation infrastructure, which are not exclusively linked to higher construction efforts (e.g. embankments on railroads and channels), but changing levels of economic losses and risk perception as well. In addition, a shift from low cost prevention measures such as the removal of loose rock and vegetation, rock blasting, and catch barriers towards expensive mitigation measures such as catch fences, soil anchoring and rock nailing over time can be noticed

  12. Forest health monitoring: 2001 national technical report

    Treesearch

    Barbara L. Conkling; John W. Coulston; Mark J. Ambrose

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national report uses FHM data, as well as data from a variety of other programs, to provide an overview of forest health based on the criteria and indicators of sustainable forestry framework of the Santiago Declaration. It presents information about the status of and trends in various forest health indicators...

  13. Development of a lunar infrastructure

    NASA Astrophysics Data System (ADS)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  14. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan.

    PubMed

    Fujino, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author's experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author's past 30 years' experience of research on bridge dynamics.

  15. Big Wind Turbines Require Infrastructure Upgrades - Continuum Magazine |

    Science.gov Websites

    rapidly. To that end, NREL has been completing electrical infrastructure upgrades to accommodate utility in the fall of 2009 necessitated infrastructure upgrades. Now the NWTC's electrical infrastructure eastern-most row on site. Interconnecting these large turbines required major electrical infrastructure

  16. 76 FR 81956 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... through the Secretary of Homeland Security with advice on the security of the critical infrastructure... critical infrastructure as directed by the President. At this meeting, the committee will receive work from... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0117] National Infrastructure Advisory...

  17. 76 FR 36137 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0034] National Infrastructure Advisory...

  18. Managing water resources infrastructure in the face of different values

    NASA Astrophysics Data System (ADS)

    Mostert, Erik

    Water resources infrastructure (WRI) plays a key role in water management. It can serve or negatively affect some seven to ten different and sometimes conflicting values. WRI management is therefore not a purely technical issue. Economic analyses can help to some extent, but only for values related to current human use. Multi-criteria analysis can cover all values, but in the end WRI management is not an analytical issue, but a governance issue. Different governance paradigms exist: markets, hierarchies and “third alternatives”, such as common pool resources management and network management. This article presents social learning as the most promising paradigm. Positive experiences with social learning have been described and guidance on putting social learning into practice exists. Nonetheless, there are no magic solutions for managing WRI in the face of different values.

  19. Rapid deployment of internet-connected environmental monitoring devices

    USDA-ARS?s Scientific Manuscript database

    Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the ...

  20. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-criticalmore » monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).« less