Sample records for technical note time-resolved

  1. BASINS Technical Notes

    EPA Pesticide Factsheets

    EPA has developed several technical notes that provide in depth information on a specific function in BASINS. Technical notes can be used to answer questions users may have, or to provide additional information on the application of features in BASINS.

  2. Writing a technical note.

    PubMed

    Ng, K H; Peh, W C G

    2010-02-01

    A technical note is a short article giving a brief description of a specific development, technique or procedure, or it may describe a modification of an existing technique, procedure or device applicable to medicine. The technique, procedure or device described should have practical value and should contribute to clinical diagnosis or management. It could also present a software tool, or an experimental or computational method. Technical notes are variously referred to as technical innovations or technical developments. The main criteria for publication will be the novelty of concepts involved, the validity of the technique and its potential for clinical applications.

  3. Gamma Knife surgery for arteriovenous malformations in the brain: integration of time-resolved contrast-enhanced magnetic resonance angiography into dosimetry planning. Technical note.

    PubMed

    Taschner, Christian A; Le Thuc, Vianney; Reyns, Nicolas; Gieseke, Juergen; Gauvrit, Jean-Yves; Pruvo, Jean-Pierre; Leclerc, Xavier

    2007-10-01

    The aim of this study was to develop an algorithm for the integration of time-resolved contrast-enhanced magnetic resonance (MR) angiography into dosimetry planning for Gamma Knife surgery (GKS) of arteriovenous malformations (AVMs) in the brain. Twelve patients harboring brain AVMs referred for GKS underwent intraarterial digital subtraction (DS) angiography and time-resolved MR angiography while wearing an externally applied cranial stereotactic frame. Time-resolved MR angiography was performed on a 1.5-tesla MR unit (Achieva, Philips Medical Systems) using contrast-enhanced 3D fast field echo sequencing with stochastic central k-space ordering. Postprocessing with interactive data language (Research Systems, Inc.) produced hybrid data sets containing dynamic angiographic information and the MR markers necessary for stereotactic transformation. Image files were sent to the Leksell GammaPlan system (Elekta) for dosimetry planning. Stereotactic transformation of the hybrid data sets containing the time-resolved MR angiography information with automatic detection of the MR markers was possible in all 12 cases. The stereotactic coordinates of vascular structures predefined from time-resolved MR angiography matched with DS angiography data in all cases. In 10 patients dosimetry planning could be performed based on time-resolved MR angiography data. In two patients, time-resolved MR angiography data alone were considered insufficient. The target volumes showed a notable shift of centers between modalities. Integration of time-resolved MR angiography data into the Leksell GammaPlan system for patients with brain AVMs is feasible. The proposed algorithm seems concise and sufficiently robust for clinical application. The quality of the time-resolved MR angiography sequencing needs further improvement.

  4. Automated dredging and disposal alternatives management system (ADDAMS). Environmental effects of dredging. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This technical note describes the current capabilities and availability of the Automated Dredging and Disposal Alternatives Management System (ADDAMS). The technical note replaces the earlier Technical Note EEDP-06-12, which should be discarded. Planning, design, and management of dredging and dredged material disposal projects often require complex or tedious calculations or involve complex decision-making criteria. In addition, the evaluations often must be done for several disposal alternatives or disposal sites. ADDAMS is a personal computer (PC)-based system developed to assist in making such evaluations in a timely manner. ADDAMS contains a collection of computer programs (applications) designed to assist in managingmore » dredging projects. This technical note describes the system, currently available applications, mechanisms for acquiring and running the system, and provisions for revision and expansion.« less

  5. Time Value of Money and Its Applications in Corporate Finance: A Technical Note on Linking Relationships between Formulas

    ERIC Educational Resources Information Center

    Chen, Jeng-Hong

    2009-01-01

    Time Value of Money (TVM) is the most important chapter in the basic corporate finance course. It is imperative to understand TVM formulas because they imply important TVM concepts. Students who really understand TVM concepts and formulas can learn better in chapters of TVM applications. This technical note intends to present more complete TVM…

  6. Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography

    PubMed Central

    Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.

    2015-01-01

    Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598

  7. NOTES: a review of the technical problems encountered and their solutions.

    PubMed

    Mintz, Yoav; Horgan, Santiago; Cullen, John; Stuart, David; Falor, Eric; Talamini, Mark A

    2008-08-01

    Natural orifice translumenal endoscopic surgery (NOTES) is currently investigated and developed worldwide. In the past few years, multiple groups have confronted this challenge. Many technical problems are encountered in this technique due to the currently available tools for this approach. Some of the unique technical problems in NOTES include: blindly performed primary incisions; uncontrolled pneumoperitoneal pressure; no support for the endoscope in the abdominal cavity; inadequate vision; insufficient illumination; limited retraction and exposure; and the complexity of suturing and performing a safe anastomosis. In this paper, we review the problems encountered in NOTES and provide possible temporary solutions. Acute and survival studies were performed on 15 farm pigs. The hybrid technique approach (i.e., endoscopic surgery with the aid of laparoscopic vision) was performed in all cases. Procedures performed included liver biopsies, bilateral tubal ligation, oophprectomy, cholecystectomy, splenectomy and small bowel resection, and anastomosis. All attempted procedures were successfully performed. New methods and techniques were developed to overcome the technical problems. Closure of the gastrotomy was achieved by T-bar sutures and by stapler closure of the stomach incision. Small bowel anastomosis was achieved by the dual-lumen NOTES technique. The hybrid technique serves as a temporary approach to aid in developing the NOTES technique. A rectal or vaginal port of entry enables and facilitates gastrointestinal NOTES by using available laparoscopic instruments. The common operations performed today in the laparoscopic fashion could be probably performed in the NOTES approach. The safety of these procedures, however, is yet to be determined.

  8. NCAR CSM ocean model by the NCAR oceanography section. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order tomore » produce the NCAR CSM Ocean Model.« less

  9. Time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  10. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  11. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  12. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    PubMed

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  13. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  14. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  15. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  16. Spectral characteristics of time resolved magnonic spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etesami, S. R.; Chotorlishvili, L.; Berakdar, J.

    2015-09-28

    Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, whilemore » the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.« less

  17. Seventh international conference on time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities formore » time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.« less

  18. Environmental effects of dredging. Documentation of the dyecon module for ADDAMS: Determining the hydraulic retention and efficiency of confined disposal facilities. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.F.; Schroeder, P.R.; Engler, R.M.

    This technical note describes procedures for determining mean hydraulic retention time and efficiency of a confined disposal facility (CDF) from a dye tracer slug test. These parameters are required to properly design a CDF for solids retention and for effluent quality considerations. Detailed information on conduct and analysis of dye tracer studies can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. This technical note documents the DYECON computer program which facilitates the analysis of dye tracer concentration data and computes the hydraulic efficiency of a CDF as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  19. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  1. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    PubMed Central

    Chergui, Majed

    2016-01-01

    The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon. PMID:27376102

  2. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further

  3. Time-Resolved Measurements in Optoelectronic Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Kossakovski, Dmitri

    2003-01-01

    A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

  4. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  5. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  6. Environmental effects of dredging: Methods for the assessment of the genotoxic effects of environmental contaminants. Glossary and references. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.

    1995-07-01

    This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information inmore » these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.« less

  7. Analysing playing using the note-time playing path.

    PubMed

    de Graaff, Deborah L E; Schubert, Emery

    2011-03-01

    This article introduces a new method of data analysis that represents the playing of written music as a graph. The method, inspired by Miklaszewski, charts low-level note timings from a sound recording of a single-line instrument using high-precision audio-to-MIDI conversion software. Note onset times of pitch sequences are then plotted against the score-predicted timings to produce a Note-Time Playing Path (NTPP). The score-predicted onset time of each sequentially performed note (horizontal axis) unfolds in performed time down the page (vertical axis). NTPPs provide a visualisation that shows (1) tempo variations, (2) repetitive practice behaviours, (3) segmenting of material, (4) precise note time positions, and (5) time spent on playing or not playing. The NTPP can provide significant new insights into behaviour and cognition of music performance and may also be used to complement established traditional approaches such as think-alouds, interviews, and video coding.

  8. Time-resolved EPR spectroscopy in a Unix environment.

    PubMed

    Lacoff, N M; Franke, J E; Warden, J T

    1990-02-01

    A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.

  9. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    ERIC Educational Resources Information Center

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  10. [Technical notes on mastectomy performed as part of transsexualism F to M].

    PubMed

    Roffé, J-L

    2012-08-01

    Mastectomy in case of large breast should use a particular technique. The principle of mastectomy by periareolar flap or higher in MAP must be abandoned in favor of mastectomy by lower horizontal with the office of the WFP transformed by a tummy. Main technical note contains the plasty in MAP because the conventional mastectomy is well known. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Precision in robotic rectal surgery using the da Vinci Xi system and integrated table motion, a technical note.

    PubMed

    Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad

    2017-09-15

    Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.

  12. Technical notes published in BJOMS over a 2-year period--should we be doing it differently?

    PubMed

    Singh, M; Shekar, K; Shelley, M; Mackenzie, N; Spencer, H; Kiani, H; Brennan, P A

    2009-06-01

    Between January 2007 and December 2008, 44 technical notes or related publications (such as letters) were published in the British Journal of Oral and Maxillofacial Surgery (BJOMS). These covered most of the remit of the specialty and ranged from operative surgical techniques to the use of digital photographs to orientate surgical specimens. However, there would seem to be very little feedback on the value of these articles in everyday practice. We reviewed these technical notes and assessed readability, the value and use of illustrations, the possible expense and/or equipment required in their use, and finally the frequency that the techniques could be used. The anonymised publications were read and scored by a minimum of two dentally qualified senior house officers, two doubly qualified specialist registrars, an SAS grade and two consultants in oral and maxillofacial surgery. The six techniques that gained the highest mean average score are briefly discussed. Although we used a relatively small number of assessors who might not be representative of the whole BJOMS readership, this study would suggest that some sort of change in the way that these technical notes are published should be considered. Options might include inviting a commentary from the reviewers who have tried the technique and also encouraging colleagues to report their experiences of these techniques in the 'letters to the editor' section.

  13. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  14. Energetics and dynamics through time-resolved measurements in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lifshitz, Chava

    Results of recent work on time-resolved photoionization and electron ionization mass spectrometry carried out in Jerusalem are reviewed. Time-resolved photoionization mass spectrometry in the vacuum ultraviolet is applied to polycyclic aromatic hydrocarbons, for example naphthalene, pyrene and fluoranthene as well as to some bromo derivatives (bromonaphthalene and bromoanthracene). Time-resolved photoionization efficiency curves are modelled by Rice-Ramsperger-Kassel-Marcus QET rate-energy k ( E ) dependences of the unimolecular dissociative processes and by the rate process infrared radiative relaxation k . Experimental results are augmented by time-resolved photorad dissociation data for the same species, whenever available. Kinetic shifts, conventional and intrinsic (due to competition between dissociative and radiative decay), are evaluated. Activation parameters (activation energies and entropies) are deduced. Thermochemical information is obtained including bond energies and ionic heats of formation. Fullerenes, notably C , are studied by time-resolved electron ionization and a large intrinsic shift, due to competition with black-bodylike radiative decay in the visible is discussed.

  15. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  16. Technical Note for 8D Likelihood Effective Higgs Couplings Extraction Framework in the Golden Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Di Marco, Emanuele; Lykken, Joe

    2014-10-17

    In this technical note we present technical details on various aspects of the framework introduced in arXiv:1401.2077 aimed at extracting effective Higgs couplings in themore » $$h\\to 4\\ell$$ `golden channel'. Since it is the primary feature of the framework, we focus in particular on the convolution integral which takes us from `truth' level to `detector' level and the numerical and analytic techniques used to obtain it. We also briefly discuss other aspects of the framework.« less

  17. LUVOIR Tech Notes

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Shaklan, Stuart; Roberge, Aki; Rioux, Norman; Feinberg, Lee; Werner, Michael; Rauscher, Bernard; Mandell, Avi; France, Kevin; Schiminovich, David

    2016-01-01

    We present nine "tech notes" prepared by the Large UV/Optical/Infrared (LUVOIR) Science and Technology Definition Team (STDT), Study Office, and Technology Working Group. These tech notes are intended to highlight technical challenges that represent boundaries in the trade space for developing the LUVOIR architecture that may impact the science objectives being developed by the STDT. These tech notes are intended to be high-level discussions of the technical challenges and will serve as starting points for more in-depth analysis as the LUVOIR study progresses.

  18. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    NASA Astrophysics Data System (ADS)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  19. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  20. A New Approach to Time-Resolved 3D-PTV

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Troolin, Dan; Bjorkquist, Dan; TSI Inc Team

    2017-11-01

    Volumetric three-component velocimetry via particle tracking is a powerful alternative to TomoPIV. It has been thoroughly documented that compared to TomoPIV, particle tracking velocimetry (PTV) methods (whether 2D or 3D) better resolve regions of high velocity gradient, identify fewer ghost particles, and are less computationally demanding, which results in shorter processing times. Recently, 3D-PTV has seen renewed interest in the PIV community with the availability of time-resolved data. Of course, advances in hardware are partly to thank for that availability-higher speed cameras, more effective memory management, and higher speed lasers. But in software, algorithms that utilize time resolved data to improve 3D particle reconstruction and particle tracking are also under development and advancing (e.g. shake-the-box, neighbor tracking reconstruction, etc.). .In the current study, we present a new 3D-PTV method that incorporates time-resolved data. We detail the method, its performance in terms of particle identification and reconstruction error and their relation to varying seeding densities, as well as computational performance.

  1. Time resolved thermal lens in edible oils

    NASA Astrophysics Data System (ADS)

    Albuquerque, T. A. S.; Pedreira, P. R. B.; Medina, A. N.; Pereira, J. R. D.; Bento, A. C.; Baesso, M. L.

    2003-01-01

    In this work time resolved thermal lens spectrometry is applied to investigate the optical properties of the following edible oils: soya, sunflower, canola, and corn oils. The experiments were performed at room temperature using the mode mismatched thermal lens configuration. The results showed that when the time resolved procedure is adopted the technique can be applied to investigate the photosensitivity of edible oils. Soya oil presented a stronger photochemical reaction as compared to the other investigated samples. This observation may be relevant for future studies evaluating edible oils storage conditions and also may contribute to a better understanding of the physical and chemical properties of this important foodstuff.

  2. Intraarticular Sacroiliac Joint Injection Under Computed Tomography Fluoroscopic Guidance: A Technical Note to Reduce Procedural Time and Radiation Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Nam Chull, E-mail: pncspine@gmail.com

    2016-07-15

    PurposeA technique for computed tomography fluoroscopy (CTF)-guided intraarticular (IA) sacroiliac joint (SIJ) injection was devised to limit procedural time and radiation dose.MethodsOur Institutional Review Board approved this retrospective analysis and waived the requirement for informed consent. Overall, 36 consecutive diagnostic or therapeutic IA SIJ injections (unilateral, 20; bilateral, 16) performed in 34 patients (female, 18; male, 16) with a mean age of 45.5 years (range 20–76 years) under CTF guidance were analyzed, assessing technical success (i.e., IA contrast spread), procedural time, and radiation dose.ResultsAll injections were successful from a technical perspective and were free of serious complications. Respective median proceduralmore » times and effective doses of SIJ injection were as follows: unilateral, 5.28 min (range 3.58–8.00 min) and 0.11 millisievert (mSv; range 0.07–0.24 mSv); and bilateral, 6.72 min (range 4.17–21.17 min) and 0.11 mSv (range 0.09–0.51 mSv).ConclusionsGiven the high rate of technical success achieved in limited time duration and with little radiation exposure, CTF-guided IA SIJ injection is a practical and low-risk procedure.« less

  3. Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery.

    PubMed

    Kacprzak, Michal; Liebert, Adam; Staszkiewicz, Walerian; Gabrusiewicz, Andrzej; Sawosz, Piotr; Madycki, Grzegorz; Maniewski, Roman

    2012-01-01

    Recent studies have shown that time-resolved optical measurements of the head can estimate changes in the absorption coefficient with depth discrimination. Thus, changes in tissue oxygenation, which are specific to intracranial tissues, can be assessed using this advanced technique, and this method allows us to avoid the influence of changes to extracerebral tissue oxygenation on the measured signals. We report the results of time-resolved optical imaging that was carried out during carotid endarterectomy. This surgery remains the "gold standard" treatment for carotid stenosis, and intraoperative brain oxygenation monitoring may improve the safety of this procedure. A time-resolved optical imager was utilized within the operating theater. This instrument allows for the simultaneous acquisition of 32 distributions of the time-of-flight of photons at two wavelengths on both hemispheres. Analysis of the statistical moments of the measured distributions of the time-of-flight of photons was applied for estimating changes in the absorption coefficient as a function of depth. Time courses of changes in oxy- and deoxyhemoglobin of the extra- and intracerebral compartments during cross-clamping of the carotid arteries were obtained. A decrease in the oxyhemoglobin concentration and an increase in the deoxyhemoglobin concentrations were observed in a large area of the head. Large changes were observed in the hemisphere ipsilateral to the site of clamped carotid arteries. Smaller amplitude changes were noted at the contralateral site. We also found that changes in the hemoglobin signals, as estimated from intracerebral tissue, are very sensitive to clamping of the internal carotid artery, whereas its sensitivity to clamping of the external carotid artery is limited. We concluded that intraoperative multichannel measurements allow for imaging of brain tissue hemodynamics. However, when monitoring the brain during carotid surgery, a single-channel measurement may be sufficient.

  4. An inexpensive technique for the time resolved laser induced plasma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.

    We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less

  5. Time-resolved photon emission from layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

  6. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  7. Alignment of time-resolved data from high throughput experiments.

    PubMed

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  8. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  9. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  10. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  11. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  12. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  13. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  14. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  15. Feasibility experiments on time-resolved fluorosensing applied to oil slicks

    NASA Technical Reports Server (NTRS)

    Camagni, P.; Colombo, G.; Koechler, C.; Pedrini, A.; Omenetto, N.; Rossi, G.

    1986-01-01

    The introduction of time resolved observations can provide a very penetrating tool in the practice of laser fluorosensing. The investigations have demonstrated a relevance of multispectral, time resolved analysis for oil fingerprinting. By comparative studies on a variety of crude oils and their most significant fractions, it was found that the process of time decay in a composite oil is characterized by a few steps, which are associated with specific components in the medium light range. The average decay times of these pure fractions are markedly differentiated as to absolute values and spectral spread; as a consequence, the corresponding parameters in the resultant crude are quite sensitive to the particular mixture of these components. Measurements of the time response give then a finer discrimination between oil classes, depending on the relative content of certain fractions. Experiments were pursued with an improved fluorosensor facility, in order to test the application of time resolved fluorosensing to remote samples on water.

  16. Technical communication: Notes toward defining discipline

    NASA Technical Reports Server (NTRS)

    Rubens, P. M.

    1981-01-01

    In the field of technical communication, definitions posited in virtually any major text violate every major rule of definitions. The most popular method for defining the field is to state that technical writing is any writing that supports technology or technological activities. There is a need for a nice yardstick for measuring what "technology" is. Some ways in which the field can be defined in a tightly structured empirical way and some implications of technical communication for a humanistic education in a technological age are suggested.

  17. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.

    PubMed

    Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi

    2007-03-22

    Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.

  18. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  19. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-06-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  20. Spatially and time resolved kinetics of indirect magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur

    The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  1. Environmental effects of dredging. Documentation of the efqual module for ADDAMS: Comparison of predicted effluent water quality with standards. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palermo, M.R.; Schroeder, P.R.

    This technical note describes a technique for comparison of the predicted quality of effluent discharged from confined dredged material disposal areas with applicable water quality standards. This note also serves as documentation of a computer program called EFQUAL written for that purpose as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  2. Daylight time-resolved photographs of lightning.

    PubMed

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  3. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  4. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  5. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved

  6. Considerations in computer-aided design for inlay cranioplasty: technical note.

    PubMed

    Nout, Erik; Mommaerts, Maurice Y

    2018-03-01

    Cranioplasty is a frequently performed procedure that uses a variety of reconstruction materials and techniques. In this technical note, we present refinements of computer-aided design-computer-aided manufacturing inlay cranioplasty. In an attempt to decrease complications related to polyether-ether-ketone (PEEK) cranioplasty, we gradually made changes to implant design and cranioplasty techniques. These changes include under-contouring of the implant and the use of segmented plates for large defects, microplate fixation for small temporal defects, temporal shell implants to reconstruct the temporalis muscle, and perforations to facilitate the drainage of blood and cerebrospinal fluid and serve as fixation points. From June 2016 to June 2017, 18 patients underwent cranioplasty, and a total of 31 PEEK and titanium implants were inserted. All implants were successful. These changes to implant design and cranioplasty techniques facilitate the insertion and fixation of patient-specific cranial implants and improve esthetic outcomes.

  7. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  8. Development of a New Time-Resolved Laser-Induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2012-10-01

    We are developing a time-resolved laser-induced fluorescence (LIF) technique to interrogate the ion velocity distribution function (VDF) of EP thruster plumes down to the microsecond time scale. Better measurements of dynamic plasma processes will lead to improvements in simulation and prediction of thruster operation and erosion. We present the development of the new technique and results of initial tests. Signal-to-noise ratio (SNR) is often a challenge for LIF studies, and it is only more challenging for time-resolved measurements since a lock-in amplifier cannot be used with a long time constant. The new system uses laser modulation on the order of MHz, which enables the use of electronic filtering and phase-sensitive detection to improve SNR while preserving time-resolved information. Statistical averaging over many cycles to further improve SNR is done in the frequency domain. This technique can have significant advantages, including (1) larger spatial maps enabled by shorter data acquisition time and (2) the ability to average data without creating a phase reference by modifying the thruster operating condition with a periodic cutoff in discharge current, which can modify the ion velocity distribution.

  9. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  10. Filming the invisible - time-resolved visualization of compressible flows

    NASA Astrophysics Data System (ADS)

    Kleine, H.

    2010-04-01

    Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately

  11. Watching proteins function with time-resolved x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  12. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  13. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008

  14. Detection of colorectal cancer using time-resolved autofluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Kwek, Leong-Chuan; Chia, Teck-Chee; Lim, Chu-Sing; Tang, Choong-Leong; Ang, Wuan-Suan; Zhou, Miao-Chang; Loke, Po-Ling

    2006-04-01

    As we know Quantum mechanics is a mathematical theory that can describe the behavior of objects that are at microscopic level. Time-resolved autofluorescence spectrometer monitors events that occur during the lifetime of the excited state. This time ranges from a few picoseconds to hundreds of nanoseconds. That is an extremely important advance as it allows environmental parameters to be monitored in a spatially defined manner in the specimen under study. This technique is based on the application of Quantum Mechanics. This principle is applied in our project as we are trying to use different fluorescence spectra to detect biological molecules commonly found in cancerous colorectal tissue and thereby differentiate the cancerous and non-cancerous colorectal polyps more accurately and specifically. In this paper, we use Fluorescence Lifetime Spectrometer (Edinburgh Instruments FL920) to measure decay time of autofluorescence of colorectal cancerous and normal tissue sample. All specimens are from Department of Colorectal Surgery, Singapore General Hospital. The tissues are placed in the time-resolved autofluorescence instrument, which records and calculates the decay time of the autofluorescence in the tissue sample at the excitation and emission wavelengths pre-determined from a conventional spectrometer. By studying the decay time,τ, etc. for cancerous and normal tissue, we aim to present time-resolved autofluorescence as a feasible technique for earlier detection of malignant colorectal tissues. By using this concept, we try to contribute an algorithm even an application tool for real time early diagnosis of colorectal cancer for clinical services.

  15. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  16. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  17. Time-resolved rhodopsin activation currents in a unicellular expression system.

    PubMed Central

    Sullivan, J M; Shukla, P

    1999-01-01

    The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746

  18. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  19. Computer-assisted spinal osteotomy: a technical note and report of four cases.

    PubMed

    Fujibayashi, Shunsuke; Neo, Masashi; Takemoto, Mitsuru; Ota, Masato; Nakayama, Tomitaka; Toguchida, Junya; Nakamura, Takashi

    2010-08-15

    A report of 4 cases of spinal osteotomy performed under the guidance of a computer-assisted navigation system and a technical note about the use of the navigation system for spinal osteotomy. To document the surgical technique and usefulness of computer-assisted surgery for spinal osteotomy. A computer-assisted navigation system provides accurate 3-dimensional (3D) real-time surgical information during the operation. Although there are many reports on the accuracy and usefulness of a navigation system for pedicle screw placement, there are few reports on the application for spinal osteotomy. We report on 4 complex cases including 3 solitary malignant spinal tumors and 1 spinal kyphotic deformity of ankylosing spondylitis, which were treated surgically using a computer-assisted spinal osteotomy. The surgical technique and postoperative clinical and radiologic results are presented. 3D spinal osteotomy under the guidance of a computer-assisted navigation system was performed successfully in 4 patients. All malignant tumors were resected en bloc, and the spinal deformity was corrected precisely according to the preoperative plan. Pathologic analysis confirmed the en bloc resection without tumor exposure in the 3 patients with a spinal tumor. The use of a computer-assisted navigation system will help ensure the safety and efficacy of a complex 3D spinal osteotomy.

  20. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  1. Treatment and technical intervention time analysis of a robotic stereotactic radiotherapy system.

    PubMed

    Crop, F; Lacornerie, T; Szymczak, H; Felin, A; Bailleux, C; Mirabel, X; Lartigau, E

    2014-02-01

    The purpose of this study is to obtain a better operational knowledge of Stereotactic Body Radiotherapy (SBRT) treatments with CyberKnife(r). An analysis of both In-room Times (IRT) and technical interventions of 5 years of treatments was performed, during which more than 1600 patients were treated for various indications, including liver (21%), lung (29%), intracranial (13%), head and neck (11%) and prostate (7%). Technical interventions were recorded along with the time of the failure, time to the intervention, and the complexity and duration of the repair. Analyses of Time Between Failures (TBF) and Service Disrupting TBF(disr) were performed. Treatment time data and variability per indication and following different system upgrades were evaluated. Large variations of IRTs were found between indications, but also large variations for each indication. The combination of the time reduction Tool (using Iris(r)) and Improved Stop Handling was of major impact to shortening of treatment times. The first implementation of the Iris collimator alone did not lead to significantly shorter IRTs for us except during prostate treatments. This was mostly due to the addition at the same time of larger rotational compensation for prostate treatments (58 instead of 1.58). Significant differences of duration between the first fraction and following fractions of a treatment, representing the necessity of defining imaging parameters and explanation to patients, were found for liver (12 min) and lung treatments using Xsight(r) Spine (5 min). Liver and lung treatments represent the longest IRT's and involve the largest variability's in IRT. The malfunction rate of the system followed a Weibull distribution with the shape and scale parameters of 0.8 and 39.7. Mean TBF(disr) was 68 work hours. 60 to 80% of the service disrupting interventions were resolved within 30-60 min, 5% required external intervention and 30% occurred in the morning. The presented results can be applied in the

  2. Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components

    EPA Science Inventory

    Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...

  3. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinwei; Hurley, David H.

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less

  4. Watching proteins function with time-resolved x-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šrajer, Vukica; Schmidt, Marius

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in actionmore » and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  5. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  6. A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission

    ERIC Educational Resources Information Center

    McBane, George C.; Cannella, Christian; Schaertel, Stephanie

    2018-01-01

    A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…

  7. [Depressor anguli oris sign (DAO) in facial paresis. How to search it and release the smile (technical note)].

    PubMed

    Labbé, D; Bénichou, L; Iodice, A; Giot, J-P

    2012-06-01

    After facial paralysis recovery, it is common to note a co-contraction between depressor anguli oris (DAO) muscle and zygomatic muscles. This DAO co-contraction will "obstruct" the patient's smile. The purpose of this technical note is to show how to find the DAO sign and how to free up the smile. TECHNICAL: This co-contraction between the zygomatic muscles and DAO research is placing a finger on marionette line, asking the patient to smile: we perceive a rope under the skin corresponding to the abnormal contraction and powerful DAO. A diagnostic test with lidocaine injection into the DAO can be performed to confirm the diagnosis. The treatment of pathological DAO's contraction can be by injection of botulinum toxin in the DAO, or by surgical myectomy. In all cases, a speech therapy complete the treatment. The DAO sign is a semiological entity easy to find. His treatment releases smile without negative effect on the facial expression as the DAO is especially useful in the expression of disgust. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.

    2012-03-01

    Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  9. Watching proteins function with 150-ps time-resolved X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Anfinrud, Philip

    2007-03-01

    We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.

  10. Novel laser gain and time-resolved FTIR studies of photochemistry

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1990-01-01

    Several techniques are discussed which can be used to explore laboratory photochemical processes and kinetics relevant to planetary atmospheres; these include time-resolved laser gain-versus-absorption spectroscopy and time-resolved Fourier transform infrared (FTIR) emission studies. The laser gain-versus-absorption method employed tunable diode and F-center lasers to determine the yields of excited photofragments and their kinetics. The time-resolved FTIR technique synchronizes the sweep of a commercial FTIR with a pulsed source of light to obtain emission spectra of novel transient species in the infrared. These methods are presently being employed to investigate molecular photodissociation, the yields of excited states of fragments, their subsequent reaction kinetics, Doppler velocity distributions, and velocity-changing collisions of translationally fast atoms. Such techniques may be employed in future investigations of planetary atmospheres, for example to study polycyclic aromatic hydrocarbons related to cometary emissions, to analyze acetylene decomposition products and reactions, and to determine spectral features in the near infrared and infrared wavelength regions for planetary molecules and clusters.

  11. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    NASA Astrophysics Data System (ADS)

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  12. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU.

    PubMed

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  13. Rapid time-resolved diffraction studies of protein structures using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bartunik, Hans D.; Bartunik, Lesley J.

    1992-07-01

    The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.

  14. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  15. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includesmore » only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.« less

  16. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less

  17. Bibliography--Unclassified Technical Reports, Special Reports, and Technical Notes: FY 1982.

    DTIC Science & Technology

    1982-11-01

    in each category are listed in chronological order under seven areas: manpower management, personnel administration , organization management, education...7633). Technical reports listed that have unlimited distribution can also be obtained from the National Technical Information Service , 5285 Port Royal...simulations of manpower systems. This research exploits the technology of computer-managed large-scale data bases. PERSONNEL ADMINISTRATION The personnel

  18. Fiber-fed time-resolved photoluminescence for reduced process feedback time on thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, I. L.; Egaas, B.; Mansfield, L. M.

    2015-01-15

    Fiber-fed time-resolved photoluminescence is demonstrated as a tool for immediate process feedback after deposition of the absorber layer for CuIn{sub x}Ga{sub 1-x}Se{sub 2} and Cu{sub 2}ZnSnSe{sub 4} photovoltaic devices. The technique uses a simplified configuration compared to typical laboratory time-resolved photoluminescence in the delivery of the exciting beam, signal collection, and electronic components. Correlation of instrument output with completed device efficiency is demonstrated over a large sample set. The extraction of the instrument figure of merit, depending on both the initial luminescence intensity and its time decay, is explained and justified. Limitations in the prediction of device efficiency by thismore » method, including surface effect, are demonstrated and discussed.« less

  19. Notes on the Early History of Technical Higher

    NASA Astrophysics Data System (ADS)

    Teodorescu, Horia Nicolai

    We perform a brief analysis of the economical and political context of establishing the first technical higher school in Romania. We urge for a revision of the current point of view on the educational level in Yashi (Iaši) and Bucharest at the epoch, highlighting that these were, at the time, important academic centers we may not recognize or may not be aware of today. We also plead for a long due serious approach about the history of early modern education in Romania.

  20. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.

  1. Diagnosis of meningioma by time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura

    2010-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  2. Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung

    2015-09-01

    We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.

  3. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  4. Technical note: Improving modeling of coagulation, curd firming, and syneresis of sheep milk.

    PubMed

    Cipolat-Gotet, Claudio; Pazzola, Michele; Ferragina, Alessandro; Cecchinato, Alessio; Dettori, Maria L; Vacca, Giuseppe M

    2018-04-18

    The importance of milk coagulation properties for milk processing, cheese yield, and quality is widely recognized. The use of traditional coagulation traits presents several limitations for testing bovine milk and even more for sheep milk, due to its rapid coagulation and curd firming, and early syneresis of coagulum. The aim of this technical note is to test and improve model fitting for assessing coagulation, curd firming, and syneresis of sheep milk. Using milk samples from 87 Sarda ewes, we performed in duplicate lactodynamographic testing. On each of the 174 analyzed milk aliquots, using 180 observations from each aliquot (one every 15 s for 45 min after rennet addition), we compared 4 different curd firming models as a function of time (CF t , mm) using a nonlinear procedure. The most accurate and informative results were observed using a modified 4-parameter model, structured as follows: [Formula: see text] , where t is time, RCT eq (min) is the gelation time, CF P (mm) is the potential asymptotical CF at an infinite time, k CF (%/min) is the curd firming rate constant, and k SR (%/min) is the curd syneresis rate constant. To avoid nonconvergence and computational problems due to interrelations among the equation parameters, CF P was preliminarily defined as a function of maximum observed curd firmness (CF max , mm) recorded during the analysis. For this model, all the modeling equations of individual sheep milk aliquots were converging, with a negligible standard error of the estimates (coefficient of determination >0.99 for all individual sample equations). Repeatability of the modeled parameters was acceptable, also in the presence of curd syneresis during the lactodynamographic analysis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  6. Technical Note: High temporal resolution characterization of gating response time.

    PubMed

    Wiersma, Rodney D; McCabe, Bradley P; Belcher, Andrew H; Jensen, Patrick J; Smith, Brett; Aydogan, Bulent

    2016-06-01

    Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.

  7. Time-resolved explosion of intense-laser-heated clusters.

    PubMed

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  8. NOTES: Issues and Technical Details With Introduction of NOTES Into a Small General Surgery Residency Program

    PubMed Central

    Mirza, Brian; Horne, Walter; Moskowitz, Jesse B.

    2008-01-01

    Background and Objectives: Natural orifice translumenal endoscopic surgery (NOTES) is a development of recent origin. In 2004, Kalloo et al first described NOTES investigation in an animal model. Since then, several investigators have pursued NOTES study in animal survival and nonsurvival models. Our objectives for this project included studying NOTES intervention in a laboratory environment using large animal (swine) models and learning to do so in a safe, controlled manner. Ultimately, we intend to introduce NOTES methodology into our surgical residency training program. The expertise of an experienced laparoscopic surgeon, fellowship-trained laparoendoscopic surgeon, and veterinarian along with a senior surgical resident was utilized to bring the input of several disciplines to this study. The Institutional Animal Care and Use Committee (IACUC) of Northeastern Ohio Universities College of Medicine and Pharmacy (NEOUCOM/COP) approved this study. Methods: A series of 5 laboratory sessions using mixed breed farm swine varying in weight from 37 kg to 43.1 kg was planned for the initial phase of NOTES introduction into our residency program. Animals were not kept alive in this investigation. All animals were anesthetized using a standard swine protocol and euthanized following guidelines issued by the American Veterinary Medical Association Panel on Euthanasia. Equipment included a Fujinon EVE endoscope 0.8 cm in diameter with a suction/irrigation channel and one working channel. Initially, a US Endoscopy gastric overtube, 19.5 mm OD and 50 cm in length, was used to facilitate passage of the endoscope. However, this device was found to have insufficient length. Subsequently, commercially available 5/8” diameter clear plastic tubing, 70 cm to 80 cm in length, was adapted for use as an overtube. Standard endoscopic instruments included Boston Scientific biopsy forceps, needle-knife, papillotome, endoscopic clip applier, and Valley Lab electrosurgical unit. A Karl

  9. Technical Note: High temporal resolution characterization of gating response time

    PubMed Central

    Wiersma, Rodney D.; McCabe, Bradley P.; Belcher, Andrew H.; Jensen, Patrick J.; Smith, Brett; Aydogan, Bulent

    2016-01-01

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly. PMID:27277028

  10. Technical Note: High temporal resolution characterization of gating response time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu; McCabe, Bradley P.; Belcher, Andrew H.

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ONmore » and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.« less

  11. Development of a visible-light-sensitized europium complex for time-resolved fluorometric application.

    PubMed

    Jiang, Lina; Wu, Jing; Wang, Guilan; Ye, Zhiqiang; Zhang, Wenzhu; Jin, Dayong; Yuan, Jingli; Piper, James

    2010-03-15

    The time-resolved luminescence bioassay technique using luminescent lanthanide complexes as labels is a highly sensitive and widely used bioassay method for clinical diagnostics and biotechnology. A major drawback of the current technique is that the luminescent lanthanide labels require UV excitation (typically less than 360 nm), which can damage living biological systems and is holding back further development of time-resolved luminescence instruments. Herein we describe two approaches for preparing a visible-light-sensitized Eu(3+) complex in aqueous media for time-resolved fluorometric applications: a dissociation enhancement aqueous solution that can be excited by visible light for ethylenediaminetetraacetate (EDTA)-Eu(3+) detection and a visible-light-sensitized water-soluble Eu(3+) complex conjugated bovine serum albumin (BSA) for biolabeling and time-resolved luminescence bioimaging. In the first approach, a weakly acidic aqueous solution consisting of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-o-terphenyl (BHHT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), and Triton X-100 was prepared. This solution shows a strong luminescence enhancement effect for EDTA-Eu(3+) with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm) and a long luminescence lifetime (520 micros), to provide a novel dissociation enhancement solution for time-resolved luminescence detection of EDTA-Eu(3+). In the second approach, a ternary Eu(3+) complex, 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+)-DPBT, was covalently bound to BSA to form a water-soluble BSA-BHHCT-Eu(3+)-DPBT conjugate. This biocompatible conjugate is of the visible-light excitable feature in aqueous media with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm), a long luminescence lifetime (460 micros), and a higher

  12. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  13. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography

    DTIC Science & Technology

    2009-03-01

    polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination

  14. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  15. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  16. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    NASA Astrophysics Data System (ADS)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  17. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  18. Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Alberti, Nicolas, E-mail: nicoalbertibdx@gmail.com

    2015-02-15

    PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize themore » tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.« less

  19. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    PubMed

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  20. Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources.

    PubMed

    Schmidt, Marius

    2017-01-01

    Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.

  1. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  2. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  3. Technical note: GODESS - a profiling mooring in the Gotland Basin

    NASA Astrophysics Data System (ADS)

    Prien, Ralf D.; Schulz-Bull, Detlef E.

    2016-07-01

    This note describes a profiling mooring with an interdisciplinary suite of sensors taking profiles between 180 and 30 m depth. It consists of an underwater winch, moored below 180 m depth, and a profiling instrumentation platform. In its described setup it can take about 200 profiles at pre-programmed times or intervals with one set of batteries. This allows for studies over an extended period of time (e.g. two daily profiles over a time of 3 months). The Gotland Deep Environmental Sampling Station (GODESS) in the Eastern Gotland Basin of the Baltic Sea is aimed at investigations of redoxcline dynamics. The described system can be readily adapted to other research foci by changing the profiling instrumentation platform and its payload.

  4. Time Resolved Phonon Spectroscopy, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goett, Johnny; Zhu, Brian

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  5. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    PubMed

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  6. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  7. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  8. Technical note: The calibration of {sup 90}Y-labeled SIR-Spheresusing a nondestructive spectroscopic assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selwyn, R.; Micka, J.; DeWerd, L.

    2008-04-15

    {sup 90}Y-labeled SIR-Spheres are currently used to treat patients with hepatic metastases secondary to colorectal adenocarcinoma. In general, the prescribed activity is based on empirical data collected during clinical trials. The activity of the source vial is labeled by the manufacturer as 3.0 GBq{+-}10% and is not independently verified by the end user. This technical note shows that the results of a nondestructive spectroscopic assay of a SIR-Spheressample was 26% higher than the activity stated by the manufacturer. This difference should not impact the current empirical prescription method but may be problematic for patient-specific dosimetry applications, such as image-based dosimetry.

  9. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Allen, James; Devasher, Rebecca B.

    2011-06-01

    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  10. Time Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  11. Software defined photon counting system for time resolved x-ray experiments.

    PubMed

    Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J

    2007-01-01

    The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.

  12. Studies of Time-Resolved Fluorescence Spectroscopy and Resolved Absorption Spectra of Nucleic Acid Components.

    NASA Astrophysics Data System (ADS)

    Fu, Yingxian

    1993-01-01

    There is considerable uncertainty about dynamic aspects of the photophysics of the adenylyl chromophore, stemming from the discordant values reported for the room temperature fluorescence lifetimes (tau_1 = 5 ps, tau_2 = 330 ps for 9MeAde; tau_1 = 290 ps, tau_2 = 4.17 ns for ATP). Spectra reported in conjunction with these lifetimes create difficulties in assignment of emission. To clarify this situation I have investigated the fluorescence decay times and time -resolved emission spectra of adenylyl compounds under a variety of conditions (concentration, pH, solvent) using sub-ns laser excitation at 265 nm together with gated fast sampling (100 ps) detection and signal averaging. Multi -component decays and spectra are observed in aqueous solution. Major slow components (tau = 4.4 +/- 0.2 ns) with emission maxima at 380 nm are found for all components at pH 1.1 and for ATP at pH 4.4. At pH 7 a fast component (<100 ps) predominates. There is no marked evidence for a concentration dependence, the oscillator strengths are 10^ {-3}-10^{-5} and transitions must be classified as weakly forbidden. Single component emission is observed in acetonitrile and ethanol. The UV absorption spectra of biomolecules d(CG) and polyd(GC)cdotpolyd(GC) exhibit the different hypochromic effects due to different interactions between guanosine(G) and cytidine(C) in stacked form. The present work has been carried out to explain this quantitatively. To approach this problem the absorption spectra of G and C have been resolved into gaussian components using the PeakFit program. The absorption spectra (220-310 nm) of d(CG) and polyd(GC)cdotpolyd(GC) have been fitted with gaussian components of G and C (in the order of increasing energy, G1 and G2, and C1, C2 and C3, respectively), and the contribution to both spectra from individual gaussians is estimated in terms of oscillator strengths. The fitting results suggest that the small hypochromism in absorption spectrum of d(CG) may be attributed

  13. Investigation of RNA Hairpin Loop Folding with Time-Resolved Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stancik, Aaron Lee

    Ribonucleic acids (RNAs) are a group of functional biopolymers central to the molecular underpinnings of life. To complete the many processes they mediate, RNAs must fold into precise three-dimensional structures. Hairpin loops are the most ubiquitous and basic structural elements present in all folded RNAs, and are the foundation upon which all complex tertiary structures are built. A hairpin loop forms when a single stranded RNA molecule folds back on itself creating a helical stem of paired bases capped by a loop. This work investigates the formation of UNCG hairpin loops with the sequence 5'-GC(UNCG)GC-3' (N = A, U, G, or C) using both equilibrium infrared (IR) and time-resolved IR spectroscopy. Equilibrium IR melting data were used to determine thermodynamic parameters. Melting temperatures ranged from 50 to 60°C, and enthalpies of unfolding were on the order of 100 kJ/mol. In the time-resolved work, temperature jumps of up to 20°C at 2.5°C increments were obtained with transient relaxation kinetics spanning nanoseconds to hundreds of microseconds. The relaxation kinetics for all of the oligomers studied were fit to first or second order exponentials. Multiple vibrational transitions were probed on each oligomer for fully folded and partially denatured structures. In the time-resolved limit, in contrast to equilibrium melting, RNA does not fold according to two-state behavior. These results are some of the first to show that RNA hairpins fold according to a rugged energy landscape, which contradicts their relatively simple nature. In addition, this work has proven that time-resolved IR spectroscopy is a powerful and novel tool for investigating the earliest events of RNA folding, the formation of the hairpin loop.

  14. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  15. Documentation of the runqual module for ADDAMS: Comparison of predicted runoff water quality with standards. Environmental effects of dredging. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, P.R.; Gibson, A.C.; Dardeau, E.A.

    This technical note has a twofold purpose: to describe a technique for comparing the predicted quality of surface runoff from confined dredged material disposal areas with applicable water quality standards and to document a computer program called RUNQUAL, written for that purpose as a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  16. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  17. A novel multiplex absorption spectrometer for time-resolved studies

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  18. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  19. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  20. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  1. Eight-channel time-resolved tissue oximeter for functional muscle studies

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Biscotti, Giovanni; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Ferrari, Marco; Quaresima, Valentina

    2003-07-01

    A portable instrument for tissue oximetry based on time-resolved reflectance spectroscopy was developed. The output pulses of 2 laser diodes (683 and 785 nm, 80 MHz pulse repetition rate, 1 mW average power, 100 ps FWHM) are delayed and coupled into a multimode graded-index fiber (50/125 μm and injected into the tissue. The reflectance photons are collected by 8 independent 1 mm fibers and detected by a 16-anode photomultiplier. A time-correlated single photon counting PC board is used for the parallel acquisition of the curves. Simultaneous estimate of the transport scattering and absorption coefficients is achieved by best fitting of time-resolved reflectance curves with a standard model of Diffusion Theory. The performances of the system were tested on phantoms in terms of stability, reproducibility among channels, and accuracy in the determination of the optical properties. Preliminary in vivo measurements were performed on healthy volunteers to monitor spatial changes in calf (medical and lateral gastrocnemius) oxygen hemoglobin saturation and blood volume during dynamic plantar flexion exercise.

  2. Transient radical pairs studied by time-resolved EPR.

    PubMed

    Bittl, Robert; Weber, Stefan

    2005-02-25

    Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.

  3. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  4. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  5. Electroencephalographic changes using virtual reality program: technical note.

    PubMed

    Oliveira, Síria Monyelle Silva de; Medeiros, Candice Simões Pimenta de; Pacheco, Thaiana Barbosa Ferreira; Bessa, Nathalia Priscilla Oliveira Silva; Silva, Fernanda Gabrielle Mendonça; Tavares, Nathália Stéphany Araújo; Rego, Isabelle Ananda Oliveira; Campos, Tania Fernandes; Cavalcanti, Fabrícia Azevedo da Costa

    2018-03-01

    The aim of the study was to describe the technique of an electroencephalographic (EEG) assessment using the Emotiv EPOC® during the performance of a virtual reality motor task and compare theta, alpha, beta and gamma power frequencies between left and right hemispheres. This is technical note in which 9 healthy young subjects were submitted to an evaluation with Emotiv EPOC® during the Nintendo® Wii 'Basic Step' virtual game using the Wii Balance Board (WBB) on a support 13 centimeters high. The Wilcoxon statistical test was applied and pairing between the cerebral hemispheres was performed. Participants had a mean age of 22.55 ± 2.78 years, 77.8% were right-handed, and 22.8% had no experience with the selected virtual game. According to dominancy (right handed n = 7; and left handed n = 2), it was observed that the right-handed individuals showed significantly greater difference in the right hemisphere in the EEG in front region (gamma power in channels AF4, p = 0.028 and F4, p = 0.043) and parietal region (theta and beta power in P8 channel, p = 0.043), while alpha power showed a greater activity in the left hemisphere (P7 channel, p = 0.043). Considering the inter-hemispheric analysis, it was observed that the right hemisphere presented a higher activation potential in the frontal lobe for gamma waves (p = 0.038 for AF3-AF4 channels), and in the temporal lobe for beta and alpha waves (p = 0.021). This study showed that the virtual environment can provide distinct cortical activation patterns considering an inter-hemispheric analysis, highlighting greater activation potential in the right hemisphere.

  6. A time-resolved Langmuir double-probe method for the investigation of pulsed magnetron discharges

    NASA Astrophysics Data System (ADS)

    Welzel, Th.; Dunger, Th.; Kupfer, H.; Richter, F.

    2004-12-01

    Langmuir probes are important means for the characterization of plasma discharges. For measurements in plasmas used for the deposition of thin films, the Langmuir double probe is especially suited. With the increasing popularity of pulsed deposition discharges, there is also an increasing need for time-resolved characterization methods. For Langmuir probes, several single-probe approaches to time-resolved measurements are reported but very few for the double probe. We present a time-resolved Langmuir double-probe technique, which is applied to a pulsed magnetron discharge at several 100 kHz used for MgO deposition. The investigations show that a proper treatment of the current measurement is necessary to obtain reliable results. In doing so, a characteristic time dependence of the charge-carrier density during the "pulse on" time containing maximum values of almost 2•1011cm-3 was found. This characteristic time dependence varies with the pulse frequency and the duty cycle. A similar time dependence of the electron temperature is only observed when the probe is placed near the magnesium target.

  7. New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.

    2003-04-01

    Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.

  8. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note.

    PubMed

    LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi

    2017-04-01

    Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.

  9. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device.

    PubMed

    Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M

    2014-01-01

    Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.

  10. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less

  11. 1. On note taking.

    PubMed

    Plaut, Alfred B J

    2005-02-01

    In this paper the author explores the theoretical and technical issues relating to taking notes of analytic sessions, using an introspective approach. The paper discusses the lack of a consistent approach to note taking amongst analysts and sets out to demonstrate that systematic note taking can be helpful to the analyst. The author describes his discovery that an initial phase where as much data was recorded as possible did not prove to be reliably helpful in clinical work and initially actively interfered with recall in subsequent sessions. The impact of the nature of the analytic session itself and the focus of the analyst's interest on recall is discussed. The author then describes how he modified his note taking technique to classify information from sessions into four categories which enabled the analyst to select which information to record in notes. The characteristics of memory and its constructive nature are discussed in relation to the problems that arise in making accurate notes of analytic sessions.

  12. Time-Resolved SEDs of Blazars Flares

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Dorner, D.; Kadler, M.; Beuchert, T.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Mannheim, K.; Wilms, J.

    2017-10-01

    The origin of very-high-energy gamma rays in active galactic nuclei is still under debate. While snapshots of spectral energy distributions (SEDs) can usually be explained with simple competing models, the true emission mechanisms may be revealed from dynamic SED studies during exceptional source states. Based on the FACT monitoring program, we have set up a multiwavelength target-of-opportunity program which allows us to measure time-resolved SEDs during blazar flares. While the FACT and Fermi measurements cover the high energy peak continuously, X-ray observations with INTEGRAL and XMM-Newton are triggered in case of a bright flare. To distinguish orphan flares from time lags between the energy bands, this is combined with an X-ray monitoring with the Swift satellite. In December 2015, observations of the X-ray telescopes Swift and INTEGRAL were triggered during a moderately-high flux state of the TeV blazar Mrk 421. Pre- and post observations in X-rays are available from Swift-XRT. In this presentation, the results from the Mrk 421 ToO observations will be summarized.

  13. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  14. Teaching Notes

    NASA Astrophysics Data System (ADS)

    2001-03-01

    If you would like to contribute a teaching note for any of these sections please contact ped@iop.org. Contents: PHYSICS ON A SHOESTRING: Demonstrating resolution Magnetic tea patterns LET'S INVESTIGATE: Conducting foam TECHNICAL TRIMMINGS: Polarimeter Old experiments on air-tracks gain new fans MY WAY: Newton's laws ON THE MAP: The International School of Lusaka CURIOSITY: Inflation theory PHYSICS ON A SHOESTRING

  15. Highly sensitive time-resolved thermography and multivariate image analysis of the cerebral cortex for intrasurgical diagnostics

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald

    2013-03-01

    Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.

  16. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  17. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  18. Naval Training Device Center Index of Technical Reports.

    ERIC Educational Resources Information Center

    Walker, Lemuel E.

    Published Naval Training Device Center technical reports and some technical notes (those available through the Defense Documentation Center-DDC) which have resulted from basic research, exploratory development, and advanced development type projects are listed. The reports are indexed by technical note number, by title, and by contractor code. The…

  19. Detecting beta-amyloid aggregation from time-resolved emission spectra

    NASA Astrophysics Data System (ADS)

    Alghamdi, A.; Vyshemirsky, V.; Birch, D. J. S.; Rolinski, O. J.

    2018-04-01

    The aggregation of beta-amyloids is one of the key processes responsible for the development of Alzheimer’s disease. Early molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new intervention therapies. Our previous studies on the changes in beta-amyloid’s single tyrosine intrinsic fluorescence response during aggregation demonstrated a four-exponential fluorescence intensity decay, and the ratio of the pre-exponential factors indicated the extent of the aggregation in the early stages of the process before the beta-sheets were formed. Here we present a complementary approach based on the time-resolved emission spectra (TRES) of amyloid’s tyrosine excited at 279 nm and fluorescence in the window 240-450 nm. TRES have been used to demonstrate sturctural changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state spectra. We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show very fast dielectric relaxation, and its oligomers display a substantial spectral shift due to dielectric relaxation, which gradually decreases when the oligomers become larger.

  20. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  1. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  2. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  3. Time-resolved SERS for characterizing extracellular vesicles

    NASA Astrophysics Data System (ADS)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  4. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    NASA Astrophysics Data System (ADS)

    Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel

    2018-04-01

    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

  5. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  6. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  7. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  8. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  9. Improving time-delay cosmography with spatially resolved kinematics

    NASA Astrophysics Data System (ADS)

    Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano

    2018-01-01

    Strongly gravitational lensed quasars can be used to measure the so-called time-delay distance DΔt, and thus the Hubble constant H0 and other cosmological parameters. Stellar kinematics of the deflector galaxy play an essential role in this measurement by: (i) helping break the mass-sheet degeneracy; (ii) determining in principle the angular diameter distance Dd to the deflector and thus further improving the cosmological constraints. In this paper we simulate observations of lensed quasars with integral field spectrographs and show that spatially resolved kinematics of the deflector enables further progress by helping break the mass-anisotropy degeneracy. Furthermore, we use our simulations to obtain realistic error estimates with current/upcoming instruments like OSIRIS on Keck and NIRSPEC on the James Webb Space Telescope for both distances (typically ∼6 per cent on DΔt and ∼10 per cent on Dd). We use the error estimates to compute cosmological forecasts for the sample of nine lenses that currently have well-measured time delays and deep Hubble Space Telescope images and for a sample of 40 lenses that is projected to be available in a few years through follow-up of candidates found in ongoing wide field surveys. We find that H0 can be measured with 2 per cent (1 per cent) precision from nine (40) lenses in a flat Λcold dark matter cosmology. We study several other cosmological models beyond the flat Λcold dark matter model and find that time-delay lenses with spatially resolved kinematics can greatly improve the precision of the cosmological parameters measured by cosmic microwave background data.

  10. Concept of proton radiography using energy resolved dose measurement.

    PubMed

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  11. Flip-flop resolving time test circuit

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Chaney, T. J.

    1982-01-01

    Integrated circuit (IC) flip-flop resolving time parameters are measured by wafer probing, without need of dicing or bonding, throught the incorporation of test structures on an IC together with the flip-flop to be measured. Several delays that are fabricated as part of the test circuit, including a voltage-controlled delay with a resolution of a few picosecs, are calibrated as part of the test procedure by integrating them into, and out of, the delay path of a ring oscillator. Each of the delay values is calculated by subtracting the period of the ring oscillator with the delay omitted from the period with the delay included. The delay measurement technique is sufficiently general for other applications. The technique is illustrated for the case of the flip-flop parameters of a 5-micron feature size NMOS circuit.

  12. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  14. Time-resolved observation of protein allosteric communication

    PubMed Central

    Buchenberg, Sebastian; Sittel, Florian; Stock, Gerhard

    2017-01-01

    Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed. PMID:28760989

  15. Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements

    DTIC Science & Technology

    2011-08-01

    With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of

  16. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, F.; Hedayat, H.; Dallera, C.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  17. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  18. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time

  19. Time Resolved X-Ray Diffraction Study of Acoustoelectrically Amplified Phonons.

    NASA Astrophysics Data System (ADS)

    Chapman, Leroy Dean

    X-rays diffracted by nearly perfect crystals of n-type InSb have been investigated in the presence of intense acoustoelectrically (A.E.) amplified phonons. The fact that these phonons are nearly monochromatic and have a well defined propagation and polarization direction presents an excellent opportunity to investigate the nature of x -ray photon-phonon scattering in a diffracting crystal. The Debye-Waller factor which accounts for the attenuation of diffracted x-ray intensities due to thermal phonons is reflection dependent owing to its sin (theta)/(lamda) dependence. We have performed experiments comparing the (004) and (008) anomalously transmitted intensities as a function of A.E. amplified flux. The attenuation of both reflections due to the amplified phonons was the same in direct contradiction to an expected sin (theta)/(lamda) dependence. Some possible reasons for this failure are discussed. In a Bragg reflection scattering geometry, the intense monochromatic amplified phonons give rise to satellite peaks symmetrically located about the central elastic Brag peak in a rocking profile. We report in this thesis on the first observation of satellites in a thin crystal Laue transmission geometry. We have theoretically simulated the rocking profiles with some success. The A.E. amplification process in InSb is strongly favored for {110} propagation fast transverse (FT) phonons. In earlier experiments it was found that non-{110} FT phonons were also produced during the amplification process. We have developed a time resolved x-ray counting system which, in conjunction with a spatially resolved x-ray beam and a localized, traveling A.E. phonon distribution, allow the time evolution of the amplified distribution to be followed. We report on time resolved measurements for both the symmetric Bragg and Laue geometries from which we can determine when and where non-{110 } FT flux is generated and restrict the possible mechanisms for its generation.

  20. Real-Time Eddy-Resolving Ocean Prediction in the Caribbean

    NASA Astrophysics Data System (ADS)

    Hurlburt, H. E.; Smedstad, O. M.; Shriver, J. F.; Townsend, T. L.; Murphy, S. J.

    2001-12-01

    A {1/16}o eddy-resolving, nearly global ocean prediction system has been developed by the Naval Research Laboratory (NRL), Stennis Space Center, MS. It has been run in real-time by the Naval Oceanographic Office (NAVO), Stennis Space Center, MS since 18 Oct 2000 with daily updates for the nowcast and 30-day forecasts performed every Wednesday. The model has ~8 km resolution in the Caribbean region and assimilates real-time altimeter sea surface height (SSH) data from ERS-2, GFO and TOPEX/POSEIDON plus multi-channel sea surface temperature (MCSST) from satellite IR. Real-time and archived results from the system can be seen at web site: http://www7320.nrlssc.navy.mil/global\

  1. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station.

    PubMed

    Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-12-01

    The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in

  2. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    NASA Astrophysics Data System (ADS)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  3. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  4. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  5. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging.

    PubMed

    Fischer, Michael A; Leidner, Bertil; Kartalis, Nikolaos; Svensson, Anders; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B

    2014-01-01

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. • Four-dimensional computed tomography is limited by motion artefacts and poor image quality. • Time-resolved-CT facilitates 4D-CT data visualisation, segmentation and analysis by condensing raw data. • Time-resolved CT demonstrates better image quality than raw data images. • Time-resolved CT improves detection of arterialised liver lesions in cirrhotic patients.

  6. Pulmonary Arteriovenous Malformations Embolized Using a Micro Vascular Plug System: Technical Note on a Preliminary Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatta, Emanuele, E-mail: emanuele.boatta@yahoo.it; Jahn, Christine, E-mail: christine.jahn@chru-strasbourg.fr; Canuet, Matthieu, E-mail: matthieu.canuet@chru-strasbourg.fr

    AIMTo report our preliminary experience using a Micro Vascular Plug (MVP) deployed through a 2.8Fr micro-catheter for the treatment of pulmonary arteriovenous malformations (PAVMs) in a cohort of patients affected by Hereditary Haemorrhagic Telangiectasia (HHT).Materials and MethodsFour consecutive female patients (mean age 38.0 years; range 25–55 years) with PAVMs diagnosed on echocardiogram/bubble test and contrast-enhanced CT (CECT) underwent MVP embolization. One patient was symptomatic with recent transient ischaemic attack. Follow-up was undertaken at 1-month post-procedure with CECT to assess PAVMs permeability and MVP positioning and at 1-, 6-, and 12-month post-procedure, with echocardiography/bubble test and standard neurological history, to confirm absence ofmore » right-to-left shunts and recurrent symptoms.ResultsEight PAVMs were treated in 4 patients over 5 interventional sessions (mean 1.6 PAVMs per session). All PAVMs were simple, with mean feeding artery diameter of 4.25 mm. Eight 6.5 mm MVPs were deployed in total (one per lesion). Technical success was 100%. Mean procedural time and patient dose per session were 70 min (range 40–70 min) and 53418 mGy.cm{sup 2} (range 6113–101628 mGy.cm{sup 2}), respectively. No signs of reperfusion neither of MPV migration were noted at 1-month CECT follow-up. At early follow-up (mean 3.75 months; range 1–12 months), clinical success was 100% with no evidence of recurrent right-to-left shunt, and no neurological symptoms. No immediate or late complications were observed.ConclusionsMVP embolization of PAVMs appears technically feasible, safe, and effective at early follow-up. Further prospective studies are required to confirm long-term safety and efficacy of this promising technique.« less

  7. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  8. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  9. Endovascular Treatment of Autogenous Radiocephalic Fistulas with the 'Eighth Note' Deformity for Hemodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng Meijui; Chen, Matt Chiung-Yu, E-mail: jjychen@gmail.co; Chi Wenche

    2010-02-15

    The purpose of this paper is to describe a unique 'eighth note' deformity of the autogenous radiocephalic fistula for hemodialysis and to retrospectively evaluate the efficacy and safety of its endovascular treatment. Over 3 years, a total of 808 patients and 558 autogenous radiocephalic fistulas were treated for vascular access dysfunction or thrombosis. These included 14 fistulas in 14 patients (9 men, 5 women; mean age, 58.2 {+-} 2.8 years; range 27-79 years) whose fistulograms before treatment resembled a musical note, the eighth note. Endovascular treatment sought to remodel the deformed vascular access to a classic radiocephalic fistula and increasemore » the number of cannulation sites available for hemodialysis. The technical and clinical success rates were each 92.8% (13/14). Fistula remodeling was successful in 13 patients. The postintervention primary patency was 100% at 90 days, 91.7 {+-} 0.8% at 120 days, 78.6 {+-} 13.9% at 180 days, 62.9 {+-} 17.9% at 360 days, 31.4 {+-} 24.0% at 540 days, and 0% at 720 days. The postintervention secondary patency was 100% at 90 days, 100% at 120 days, 100% at 180 days, 85.7 {+-} 13.2% at 360 days, and 85.7 {+-} 13.2% at 720 days. No major complications were noted. Minor complications were found in 71.4% of patients, all of which resolved spontaneously. In conclusion, endovascular treatment of fistulas with the eighth note deformity can effectively increase the number of available cannulation sites, facilitate fistula maturation, and facilitate thromboaspiration after fistula thrombosis.« less

  10. The time resolved SBS and SRS research in heavy water and its application in CARS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  11. Time-Resolved Photometry of V458 Vul

    NASA Astrophysics Data System (ADS)

    Bouzid, Samia; Garnavich, P.

    2011-01-01

    We observed V458 Vul (Nova Vul 2007) over four nights in June, 2010, nearly three years after its nova outburst. Time-resolved photometry was obtained at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona, covering 2 to 4 hour spans with a cadence of 30 sec. The first night of data shows a clear 20 minute periodicity with a 0.1 magnitude amplitude. On subsequent nights, power-spectral analysis continues to show variations with a time scale of 20 minutes, but the irregularity of the signal suggests that this is a quasi-periodic oscillation. The 98-minute orbital period is not evident in our observations. V458 Vul is the central star of a planetary nebula. Combining our CCD images suggests a light echo from the nova outburst is scattering off of material in the nebula to the northwest of the central star. Appreciation goes to the National Science Foundation for supporting this project through the Research Experience for Undergraduates program at Notre Dame.

  12. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO

    PubMed Central

    Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.

    2012-01-01

    In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647

  13. Wake losses from averaged and time-resolved power measurements at full scale wind turbines

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Becchetti, Matteo; Segalini, Antonio

    2017-05-01

    This work deals with the experimental analysis of wake losses fluctuations at full-scale wind turbines. The test case is a wind farm sited on a moderately complex terrain: 4 turbines are installed, having 2 MW of rated power each. The sources of information are the time-resolved data, as collected from the OPC server, and the 10-minutes averaged SCADA data. The objective is to compare the statistical distributions of wake losses for far and middle wakes, as can be observed through the “fast” lens of time-resolved data, for certain selected test-case time series, and through the “slow” lens of SCADA data, on a much longer time basis that allow to set the standards of the mean wake losses along the wind farm. Further, time-resolved data are used for an insight into the spectral properties of wake fluctuations, highlighting the role of the wind turbine as low-pass filter. Summarizing, the wind rose, the layout of the site and the structure of the data sets at disposal allow to study middle and far wake behavior, with a “slow” and “fast” perspective.

  14. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    NASA Astrophysics Data System (ADS)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP

  15. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    NASA Astrophysics Data System (ADS)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  17. TECHNICAL DESIGN NOTE: Picosecond resolution programmable delay line

    NASA Astrophysics Data System (ADS)

    Suchenek, Mariusz

    2009-11-01

    The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market.

  18. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  19. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  20. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  1. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  2. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    DOE PAGES

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...

    2016-08-22

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  3. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    PubMed Central

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg

    2016-01-01

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823

  4. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  5. Novel techniques of real-time blood flow and functional mapping: technical note.

    PubMed

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  6. A high-order time-accurate interrogation method for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Lynch, Kyle; Scarano, Fulvio

    2013-03-01

    A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In

  7. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less

  8. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Santra, Robin

    2013-04-01

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  9. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.

    PubMed

    Dixit, Gopal; Santra, Robin

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  10. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    NASA Astrophysics Data System (ADS)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  11. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  12. Novel Techniques of Real-time Blood Flow and Functional Mapping: Technical Note

    PubMed Central

    KAMADA, Kyousuke; OGAWA, Hiroshi; SAITO, Masato; TAMURA, Yukie; ANEI, Ryogo; KAPELLER, Christoph; HAYASHI, Hideaki; PRUECKL, Robert; GUGER, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies. PMID:25263624

  13. Imaging dental sections with polarization-resolved SHG and time-resolved autofluorescence

    NASA Astrophysics Data System (ADS)

    Chen, Jun Huang; Lin, Po-Yen; Hsu, Stephen C. Y.; Kao, Fu-Jen

    2009-02-01

    In this study, we are using two-photon (2-p) excited autofluorescence and second harmonic (SH) as imaging modalities to investigate dental sections that contains the enamel and the dentin. The use of near-infrared wavelengths for multiphoton excitation greatly facilitates the observation of these sections due to the hard tissue's larger index of refraction and highly scattering nature. Clear imaging can be achieved without feature altering preparation procedures of the samples. Specifically, we perform polarization resolving on SH and lifetime analysis on autofluorescence. Polarization resolved SH reflects the preferred orientation of collagen while very different autofluorescence lifetimes are observed from the dentin and the enamel. The origin of 2-p autofluorescence and SH signals are attributed to hydroxyapatite crystals and collagen fibrils, respectively. Hydroxyapatite is found to be present throughout the sections while collagen fibrils exist only in the dentin and dentinoenamel junctions.

  14. Ocean wavenumber estimation from wave-resolving time series imagery

    USGS Publications Warehouse

    Plant, N.G.; Holland, K.T.; Haller, M.C.

    2008-01-01

    We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.

  15. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a

  16. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    PubMed

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  17. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Mawet, Dimitri; Prato, Lisa, E-mail: ji.wang@caltech.edu

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of highmore » spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.« less

  18. Time-resolved X-ray excited optical luminescence using an optical streak camera

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Regier, T. Z.; Vogt, J. M.; Gordon, R. A.; Han, W.-Q.; Sham, T. K.

    2013-03-01

    We report the development of a time-resolved XEOL (TR-XEOL) system that employs an optical streak camera. We have conducted TR-XEOL experiments at the Canadian Light Source (CLS) operating in single bunch mode with a 570 ns dark gap and 35 ps electron bunch pulse, and at the Advanced Photon Source (APS) operating in top-up mode with a 153 ns dark gap and 33.5 ps electron bunch pulse. To illustrate the power of this technique we measured the TR-XEOL of solid-solution nanopowders of gallium nitride - zinc oxide, and for the first time have been able to resolve near-band-gap (NBG) optical luminescence emission from these materials. Herein we will discuss the development of the streak camera TR-XEOL technique and its application to the study of these novel materials.

  19. Time-resolved Spectroscopy of RS CVn Binaries and dMe Flare Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    One of the most striking feature of the first two years of EUVE spectroscopy is the frequent occurrence of largescale coronal variability, in the form of stellar flares and slower changes in activity level due to rotational modulation and evolution of active regions. We propose EUVE observations of a set of RS CVn and dMe star binaries, most with short (< 2 days) periods, to investigate the coronal conditions and physical processes associated with this variability. EUVE flare outbursts have mostly been long duration events lasting many satellite orbits and been readily studied using time-resolved spectroscopy. Our targets are the dMe binaries YY Gem, CC Eri and Gliese 2123, and the RS CVn systems EI Eri, AR Psc, and TY Pyx. YY Gem and TY Pyx are eclipsing systems and Deep Survey photometry will be used to investigate the size of the coronal emitting regions. Situated 73 arcmin from YY Gem is Castor (Alpha Gem) another X-ray source that can be observed (and spatially resolved) simultaneously. We shall use the DS lightcurve to guide our time resolved spectral analysis. Changes in the coronal emission measure as a function of temperature and possibly changes in coronal density will be used to constrain magnetic loop models.

  20. Femtosecond time-resolved MeV electron diffraction

    DOE PAGES

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  1. Time-resolved photoluminescence in Mobil Composition of Matter-48

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Lee, W. Z.; Shen, J. L.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F.

    2004-12-01

    Dynamical properties of Mobil Composition of Matter (MCM)-48 were studied by time-resolved photoluminescence (PL). The PL intensity exhibits a clear nonexponential profile, which can be fitted by a stretched exponential function. In the temperature range from 50to300K, the PL decay lifetime becomes thermally activated by a characteristic energy of 25meV, which is suggested to be an indication of the phonon-assisted nonradiative process. A model is proposed to explain the relaxation behavior of the PL in MCM-48.

  2. Time-resolved speckle effects on the estimation of laser-pulse arrival times

    NASA Technical Reports Server (NTRS)

    Tsai, B.-M.; Gardner, C. S.

    1985-01-01

    A maximum-likelihood (ML) estimator of the pulse arrival in laser ranging and altimetry is derived for the case of a pulse distorted by shot noise and time-resolved speckle. The performance of the estimator is evaluated for pulse reflections from flat diffuse targets and compared with the performance of a suboptimal centroid estimator and a suboptimal Bar-David ML estimator derived under the assumption of no speckle. In the large-signal limit the accuracy of the estimator was found to improve as the width of the receiver observational interval increases. The timing performance of the estimator is expected to be highly sensitive to background noise when the received pulse energy is high and the receiver observational interval is large. Finally, in the speckle-limited regime the ML estimator performs considerably better than the suboptimal estimators.

  3. Survey of Dust Issues for Lunar Seals and the RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Dempsey, Paula

    2006-01-01

    Lunar dust poses a technical challenge for sealing applications on the moon. A survey of seals used in Apollo lunar missions is presented as well as lunar soil characteristics and a description of the lunar environment. Seal requirements and technical challenges for the volatiles characterization oven and hydrogen reduction reaction chamber of the RESOLVE project are discussed. The purpose of the RESOLVE project is to find water or ice in lunar soil and demonstrate the ability to produce water, and hence oxygen and hydrogen, from lunar regolith for life support and propellants.

  4. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  5. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down

  6. Femtosecond-laser-driven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN.

    PubMed

    Onuma, T; Kagamitani, Y; Hazu, K; Ishiguro, T; Fukuda, T; Chichibu, S F

    2012-04-01

    A rear-excitation femtosecond-laser-driven photoelectron gun (PE-gun) is developed for measuring time-resolved cathodoluminescence (TRCL) spectrum of wide bandgap materials and structures such as semiconductors and phosphors. The maximum quantum efficiency of a 20-nm-thick Au photocathode excited using a frequency-tripled Al(2)O(3):Ti laser under a rear-excitation configuration is 3.6×10(-6), which is a reasonable value for a PE-gun. When the distance between the front edge of the PE-gun and the observation point is 10 mm, the narrowest electron-beam (e-beam) diameter is 19 μm, which corresponds to one tenth of the laser-beam diameter and is comparable to the initial e-beam diameter of a typical W hair-pin filament of thermionic electron-gun. From the results of TRCL measurements on the freestanding GaN grown by the ammonothermal method and a GaN homoepitaxial film grown by metalorganic vapor phase epitaxy, overall response time for the present TRCL system is estimated to be 8 ps. The value is the same as that of time-resolved photoluminescence measurement using the same excitation laser pulses, meaning that the time-resolution is simply limited by the streak-camera, not by the PE-gun performance. The result of numerical simulation on the temporal e-beam broadening caused by the space-charge-effect suggests that the present PE-gun can be used as a pulsed e-beam source for spatio-time-resolved cathodoluminescence, when equipped in a scanning electron microscope. © 2012 American Institute of Physics

  7. Femtosecond-laser-driven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Kagamitani, Y.; Hazu, K.; Ishiguro, T.; Fukuda, T.; Chichibu, S. F.

    2012-04-01

    A rear-excitation femtosecond-laser-driven photoelectron gun (PE-gun) is developed for measuring time-resolved cathodoluminescence (TRCL) spectrum of wide bandgap materials and structures such as semiconductors and phosphors. The maximum quantum efficiency of a 20-nm-thick Au photocathode excited using a frequency-tripled Al2O3:Ti laser under a rear-excitation configuration is 3.6×10-6, which is a reasonable value for a PE-gun. When the distance between the front edge of the PE-gun and the observation point is 10 mm, the narrowest electron-beam (e-beam) diameter is 19 μm, which corresponds to one tenth of the laser-beam diameter and is comparable to the initial e-beam diameter of a typical W hair-pin filament of thermionic electron-gun. From the results of TRCL measurements on the freestanding GaN grown by the ammonothermal method and a GaN homoepitaxial film grown by metalorganic vapor phase epitaxy, overall response time for the present TRCL system is estimated to be 8 ps. The value is the same as that of time-resolved photoluminescence measurement using the same excitation laser pulses, meaning that the time-resolution is simply limited by the streak-camera, not by the PE-gun performance. The result of numerical simulation on the temporal e-beam broadening caused by the space-charge-effect suggests that the present PE-gun can be used as a pulsed e-beam source for spatio-time-resolved cathodoluminescence, when equipped in a scanning electron microscope.

  8. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  9. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments.

    PubMed

    Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M

    2000-02-25

    The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.

  10. Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser

    PubMed Central

    MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.

    2011-01-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597

  11. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.

    PubMed

    Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J

    2018-03-01

    Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.

  12. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    NASA Astrophysics Data System (ADS)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  13. Analytical model of coincidence resolving time in TOF-PET

    NASA Astrophysics Data System (ADS)

    Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.

    2016-06-01

    The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.

  14. Prevention of neurological injuries during mandibular third molar surgery: technical notes

    PubMed Central

    La Monaca, Gerardo; Vozza, Iole; Giardino, Rita; Annibali, Susanna; Pranno, Nicola; Cristalli, Maria Paola

    2017-01-01

    Summary Surgery to the mandibular third molar is common, and injuries to the inferior alveolar nerve and the lingual nerve are well-recognized complications of this procedure. The aim of these technical notes is to describe operative measures for reducing neurological complications during mandibular third molar surgery. The following procedure should be used to prevent damage to the inferior alveolar nerve: a well-designed mucoperiosteal flap, to obtain appropriate access to the surgical area; a conservative ostectomy on the distal and distal-lingual side; tooth sectioning, to facilitate its removal by decreasing the retention zones; tooth dislocation in the path of withdrawal imposed by the curvature of the root apex; and careful socket debridement, when the roots of the extracted tooth are in intimate contact with the mandibular canal. To prevent injury to the lingual nerve, it is important (I) to assess the integrity of the mandibular inner cortex and exclude the presence of fenestration, which could cause the dislocation of the tooth or its fragment into the sublingual or submandibular space; (II) to avoid inappropriate or excessive dislocation proceedings, in order to prevent lingual cortex fracture; (III) to perform horizontal mesial-distal crown sectioning of the lingually inclined tooth; (IV) to protect the lingual flap with a retractor showing the cortical ridge; and (V) to pass the suture not too apically and from the inner side in a buccal-lingual direction in the retromolar area. PMID:29299188

  15. PLAY HANDS PROTECTIVE GLOVES: TECHNICAL NOTE ON DESIGN AND CONCEPT.

    PubMed

    Houston-Hicks, Michele; Lura, Derek J; Highsmith, M Jason

    2016-09-01

    Cerebral Palsy (CP) is the leading cause of childhood motor disability, with a global incidence of 1.6 to 2.5/1,000 live births. Approximately 23% of children with CP are dependent upon assistive technologies. Some children with developmental disabilities have self-injurious behaviors such as finger biting but also have therapeutic needs. The purpose of this technical note is to describe design considerations for a protective glove and finger covering that maintains finger dexterity for children who exhibit finger and hand chewing (dermatophagia) and require therapeutic range of motion and may benefit from sensory stimulation resulting from constant contact between glove and skin. Protecting Little and Adolescent Youth (PLAY) Hands are protective gloves for children with developmental disorders such as CP who injure themselves by biting their hands due to pain or sensory issues. PLAY Hands will be cosmetically appealing gloves that provide therapeutic warmth, tactile sensory feedback, range of motion for donning/ doffing, and protection to maximize function and quality of life for families of children with developmental disorders. The technology is either a per-finger protective orthosis or an entire glove solution designed from durable 3D-printed biodegradable/bioabsorbable materials such as thermoplastics. PLAY Hands represent a series of protective hand wear interventions in the areas of self-mutilating behavior, kinematics, and sensation. They will be made available in a range of protective iterations from single- or multi-digit finger orthoses to a basic glove design to a more structurally robust and protective iteration. To improve the quality of life for patients and caregivers, they are conceptualized to be cosmetically appealing, protective, and therapeutic.

  16. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    PubMed Central

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  17. Alteration of time-resolved autofluorescence properties of rat aorta, induced by diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Uherek, M.; Uličná, O.; Vančová, O.; Muchová, J.; Ďuračková, Z.; Šikurová, L.; Chorvát, D.

    2016-10-01

    Changes in autofluorescence properties of isolated rat aorta, induced by diabetes mellitus, were detected using time-resolved fluorescence spectroscopy with pulsed ultraviolet (UV) laser excitation. We demonstrated that time-resolved spectroscopy was able to detect changes in aorta tissues related to diabetes and unambiguously discriminate diabetic (τ 1 0.63  ±  0.05 ns, τ 2 3.66  ±  0.10 ns) samples from the control (τ 1 0.76  ±  0.03 ns, τ 2 4.48  ±  0.15 ns) group. We also report changes in the ratio of relative amplitudes of the two lifetime component in aorta tissue during diabetes, most likely related to the pseudohypoxic state with altered NADH homeostasis.

  18. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP.

    PubMed

    Masters, T A; Robinson, N A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment α 40 present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of α 40 to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both α 20 (quadrupolar) and α 40 transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  19. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  20. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

    PubMed Central

    Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura

    2011-01-01

    Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214

  1. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  2. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry.

    PubMed

    Lento, Cristina; Wilson, Derek J

    2017-05-21

    Many important chemical and biochemical phenomena proceed on sub-second time scales before entering equilibrium. In this mini-review, we explore the history and recent advancements of time-resolved mass spectrometry (TRMS) for the characterization of millisecond time-scale chemical reactions and biochemical processes. TRMS allows for the simultaneous tracking of multiple reactants, intermediates and products with no chromophoric species required, high sensitivity and temporal resolution. The method has most recently been used for the characterization of several short-lived reaction intermediates in rapid chemical reactions. Most of the reactions that occur in living organisms are accelerated by enzymes, with pre-steady state kinetics only attainable using time-resolved methods. TRMS has been increasingly used to monitor the conversion of substrates to products and the resulting changes to the enzyme during catalytic turnover. Early events in protein folding systems have also been elucidated, along with the characterization of dynamics and transient secondary structures in intrinsically disordered proteins. In this review, we will highlight representative examples where TRMS has been applied to study these phenomena.

  3. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  4. Resolving runaway electron distributions in space, time, and energy

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...

    2018-05-01

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  5. Resolving runaway electron distributions in space, time, and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  6. Resolving runaway electron distributions in space, time, and energy

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  7. Technical note: A device for obtaining time-integrated samples of ruminal fluid

    USGS Publications Warehouse

    Corley, R. N.; Murphy, M.R.; Lucena, J.; Panno, S.V.

    1999-01-01

    A device was adapted to allow for time-integrated sampling of fluid from the rumen via a cannula. The sampler consisted of a cup-shaped ceramic filter positioned in the ventral rumen of a cannulated cow and attached to a tube through which fluid entering the filter was removed continuously using a peristaltic pump. Rate of ruminal fluid removal using the device was monitored over two 36-h periods (at 6-h intervals) and was not affected (P > .05) by time, indicating that the system was not susceptible to clogging during this period. Two cows having ad libitum access to a totally mixed ration were used in a split-block design to evaluate the utility of the system for obtaining time-integrated samples of ruminal fluid. Ruminal fluid VFA concentration and pattern in samples collected in two replicated 8-h periods by the time-integrated sampler (at 1-h intervals) were compared with composite samples collected using a conventional suction-strainer device (at 30-min intervals). Each 8-h collection period started 2 h before or 6 h after feeding. Results indicated that total VFA concentration was not affected (P > .05) by the sampling method. Volatile fatty acid patterns were likewise unaffected (P > .05) except that acetate was 2.5% higher (P < .05) in samples collected 2 h before feeding and valerate was 5% higher (P < .05) in samples collected 6 h after feeding by the suction-strainer device. Although significant, these differences were not considered physiologically important. We concluded that use of the ceramic filter improved the sampling of ruminal fluid by simplifying the technique and allowing time-integrated samples to be obtained.

  8. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    DTIC Science & Technology

    2017-07-31

    Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email

  9. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  10. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    PubMed

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  11. Low Cost Technical Solutions to Jump Start an Insider Threat Program

    DTIC Science & Technology

    2016-05-11

    Low Cost Technical Solutions to Jump Start an Insider Threat Program George J. Silowash Derrick L. Spooner Daniel L. Costa Michael J...Albrethsen May 2016 TECHNICAL NOTE CMU/SEI-2016-TN-004 CERT Division http://www.sei.cmu.edu Copyright 2016 Carnegie Mellon University This... technical note will explore tools that may be suitable for satisfying the basic technical needs of an insider threat program, giving organizations a

  12. On the estimation of wall pressure coherence using time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio

    2013-07-01

    Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.

  13. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  14. Environmental effects of dredging. Documentation of the settle module for ADDAMS: Design of confined disposal facilities for solids retention and initial storage. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.F.; Schroeder, P.R.

    This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  15. Time-resolved ion velocity distribution in a cylindrical Hall thruster: heterodyne-based experiment and modeling.

    PubMed

    Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S

    2015-03-01

    Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF.

  16. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires.

    PubMed

    Prechtel, Leonhard; Padilla, Milan; Erhard, Nadine; Karl, Helmut; Abstreiter, Gerhard; Fontcuberta I Morral, Anna; Holleitner, Alexander W

    2012-05-09

    In order to clarify the temporal interplay of the different photocurrent mechanisms occurring in single GaAs nanowire based circuits, we introduce an on-chip photocurrent pump-probe spectroscopy with a picosecond time resolution. We identify photoinduced thermoelectric, displacement, and carrier lifetime limited currents as well as the transport of photogenerated holes to the electrodes. Moreover, we show that the time-resolved photocurrent spectroscopy can be used to investigate the drift velocity of photogenerated carriers in semiconducting nanowires. Hereby, our results are relevant for nanowire-based optoelectronic and photovoltaic applications.

  17. Optimal MRI sequence for identifying occlusion location in acute stroke: which value of time-resolved contrast-enhanced MRA?

    PubMed

    Le Bras, A; Raoult, H; Ferré, J-C; Ronzière, T; Gauvrit, J-Y

    2015-06-01

    Identifying occlusion location is crucial for determining the optimal therapeutic strategy during the acute phase of ischemic stroke. The purpose of this study was to assess the diagnostic efficacy of MR imaging, including conventional sequences plus time-resolved contrast-enhanced MRA in comparison with DSA for identifying arterial occlusion location. Thirty-two patients with 34 occlusion levels referred for thrombectomy during acute cerebral stroke events were consecutively included from August 2010 to December 2012. Before thrombectomy, we performed 3T MR imaging, including conventional 3D-TOF and gradient-echo T2 sequences, along with time-resolved contrast-enhanced MRA of the extra- and intracranial arteries. The 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA results were consensually assessed by 2 neuroradiologists and compared with prethrombectomy DSA results in terms of occlusion location. The Wilcoxon test was used for statistical analysis to compare MR imaging sequences with DSA, and the κ coefficient was used to determine intermodality agreement. The occlusion level on the 3D-TOF and gradient-echo T2 images differed significantly from that of DSA (P < .001 and P = .002, respectively), while no significant difference was observed between DSA and time-resolved contrast-enhanced MRA (P = .125). κ coefficients for intermodality agreement with DSA (95% CI, percentage agreement) were 0.43 (0.3%-0.6; 62%), 0.32 (0.2%-0.5; 56%), and 0.81 (0.6%-1.0; 88%) for 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA, respectively. The time-resolved contrast-enhanced MRA sequence proved reliable for identifying occlusion location in acute stroke with performance superior to that of 3D-TOF and gradient-echo T2 sequences. © 2015 by American Journal of Neuroradiology.

  18. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  19. Time resolving beam position measurement and analysis of beam unstable movement in PSR

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. V.

    2000-11-01

    Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.

  20. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    NASA Astrophysics Data System (ADS)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  1. Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight

    PubMed Central

    Diop, Mamadou; St. Lawrence, Keith

    2013-01-01

    Time-resolved (TR) techniques provide a means of discriminating photons based on their time-of-flight. Since early arriving photons have a lower probability of probing deeper tissue than photons with long time-of-flight, time-windowing has been suggested as a method for improving depth sensitivity. However, TR measurements also contain instrument contributions (instrument-response-function, IRF), which cause temporal broadening of the measured temporal point-spread function (TPSF) compared to the true distribution of times-of-flight (DTOF). The purpose of this study was to investigate the influence of the IRF on the depth sensitivity of TR measurements. TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved using a stable algorithm to recover the DTOFs. The microscopic Beer-Lambert law was applied to the TPSFs and DTOFs to obtain depth-resolved absorption changes. In contrast to the DTOF, the latest part of the TPSF was not the most sensitive to absorption changes in the lower layer, which was confirmed by computer simulations. The improved depth sensitivity of the DTOF was illustrated in a pig model of the adult human head. Specifically, it was shown that dynamic absorption changes obtained from the late part of the DTOFs recovered from TPSFs acquired by probes positioned on the scalp were similar to absorption changes measured directly on the brain. These results collectively demonstrate that this method improves the depth sensitivity of TR measurements by removing the effects of the IRF. PMID:23504445

  2. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    NASA Astrophysics Data System (ADS)

    Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.

    2013-04-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  3. EDJJ Notes. Volume 3, Number 3

    ERIC Educational Resources Information Center

    Gagnon, Joe, Ed.

    2004-01-01

    This issue of "EDJJ Notes" contains the following articles: (1) "In the News: Suspension, Race, and Disability in Maryland" (Michael Krezmien and Peter Leone); (2) "Establishing and Maintaining Quality Education Programs in Juvenile Corrections" (Lucky Mason); (3) "Resources for Parents: The Technical Assistance…

  4. Time-resolved photoluminescence of SiOx encapsulated Si

    NASA Astrophysics Data System (ADS)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  5. Arthroscopic all-inside repair for a tear of posterior root of the medial meniscus: a technical note.

    PubMed

    Choi, Nam-Hong; Son, Kyung-Mo; Victoroff, Brian N

    2008-09-01

    This technical note describes a new arthroscopic technique to repair a tear of posterior root of the medial meniscus. Cartilage at the insertion area of the posterior horn of the medial meniscus (PHMM) was removed using a curved curette inserted through an anteromedial portal. A metal anchor loaded with two FiberWires (Arthrex, Naples, FL) was placed at the insertion area of the PHMM through a high posteromedial portal. A PDS suture was passed the PHMM by curved suture hook through the anteromedial portal. Two limbs of the PDS were then used to pass two limbs of the FiberWire through the meniscus. The same procedure was repeated for the second FiberWire suture. The sutures were tied, achieving secure fixation of the posterior meniscal root at the anatomic insertion.

  6. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  7. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  8. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  9. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  10. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    PubMed

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  11. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less

  12. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  13. Notes from the beginning of time

    PubMed Central

    Sidman, Murray

    2002-01-01

    Some remembrances of things past, and their possible relevance to things now. These remembrances include notes about informality, research as a social process, student training and evaluation, research grants, thesis and dissertation proposals, and interdisciplinary collaboration. PMID:22478373

  14. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    PubMed

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  15. Space-time resolving vacuum ultraviolet spectrometer based on a rotating polyhedral mirror

    NASA Astrophysics Data System (ADS)

    Lin, Xiaodong; Xie, Jikang

    2000-05-01

    Using a rotating polyhedral mirror and a vacuum ultraviolet (VUV) monochromater, a space-time resolving VUV diagnostic system is developed. Measurement of the O VI (103.2 nm) radiation on the HT-6M tokamak shows that the time resolution of the system is better than 4 ms and the space resolution is better than 2 cm. Compared with traditional instruments, this system has improved measurement efficiency, and error from shot-to-shot discharge variations is avoided.

  16. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  17. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  18. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  19. Optimization for Guitar Fingering on Single Notes

    NASA Astrophysics Data System (ADS)

    Itoh, Masaru; Hayashida, Takumi

    This paper presents an optimization method for guitar fingering. The fingering is to determine a unique combination of string, fret and finger corresponding to the note. The method aims to generate the best fingering pattern for guitar robots rather than beginners. Furthermore, it can be applied to any musical score on single notes. A fingering action can be decomposed into three motions, that is, a motion of press string, release string and move fretting hand. The cost for moving the hand is estimated on the basis of Manhattan distance which is the sum of distances along fret and string directions. The objective is to minimize the total fingering costs, subject to fret, string and finger constraints. As a sequence of notes on the score forms a line on time series, the optimization for guitar fingering can be resolved into a multistage decision problem. Dynamic programming is exceedingly effective to solve such a problem. A level concept is introduced into rendering states so as to make multiple DP solutions lead a unique one among the DP backward processes. For example, if two fingerings have the same value of cost at different states on a stage, then the low position would be taken precedence over the high position, and the index finger would be over the middle finger.

  20. Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide-graphite oxide mesoporous composite

    NASA Astrophysics Data System (ADS)

    Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.

    2015-01-01

    Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.

  1. Picosecond time-resolved measurements of dense plasma line shifts

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; ...

    2017-06-13

    Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p–1s 2 transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He α complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing red shift for electron densities of 1 to 5 × 10 23 cm –3. Furthermore, the measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion sphere model.

  2. Picosecond time-resolved measurements of dense plasma line shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.

    Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p–1s 2 transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He α complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing red shift for electron densities of 1 to 5 × 10 23 cm –3. Furthermore, the measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion sphere model.

  3. First photon detection in time-resolved transillumination imaging: a theoretical evaluation.

    PubMed

    Behin-Ain, S; van Doorn, T; Patterson, J R

    2004-09-07

    First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.

  4. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less

  5. Time-resolved x-ray spectra from laser-generated high-density plasmas

    NASA Astrophysics Data System (ADS)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  6. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    NASA Astrophysics Data System (ADS)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  7. Thin film growth studies using time-resolved x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  8. Thin film growth studies using time-resolved x-ray scattering.

    PubMed

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  9. Physician Information Needs and Electronic Health Records (EHRs): Time to Reengineer the Clinic Note.

    PubMed

    Koopman, Richelle J; Steege, Linsey M Barker; Moore, Joi L; Clarke, Martina A; Canfield, Shannon M; Kim, Min S; Belden, Jeffery L

    2015-01-01

    Primary care physicians face cognitive overload daily, perhaps exacerbated by the form of electronic health record documentation. We examined physician information needs to prepare for clinic visits, focusing on past clinic progress notes. This study used cognitive task analysis with 16 primary care physicians in the scenario of preparing for office visits. Physicians reviewed simulated acute and chronic care visit notes. We collected field notes and document highlighting and review, and we audio-recorded cognitive interview while on task, with subsequent thematic qualitative analysis. Member checks included the presentation of findings to the interviewed physicians and their faculty peers. The Assessment and Plan section was most important and usually reviewed first. The History of the Present Illness section could provide supporting information, especially if in narrative form. Physicians expressed frustration with the Review of Systems section, lamenting that the forces driving note construction did not match their information needs. Repetition of information contained in other parts of the chart (eg, medication lists) was identified as a source of note clutter. A workflow that included a patient summary dashboard made some elements of past notes redundant and therefore a source of clutter. Current ambulatory progress notes present more information to the physician than necessary and in an antiquated format. It is time to reengineer the clinic progress note to match the workflow and information needs of its primary consumer. © Copyright 2015 by the American Board of Family Medicine.

  10. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  11. Time-resolved fluorescence microscopy to study biologically related applications using sol-gel derived and cellular media

    NASA Astrophysics Data System (ADS)

    Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham

    2011-03-01

    Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).

  12. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    PubMed

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  13. Time resolved photoluminescence on Cu(In, Ga)Se2 absorbers: Distinguishing degradation and trap states

    NASA Astrophysics Data System (ADS)

    Redinger, Alex; Levcenko, Sergiu; Hages, Charles J.; Greiner, Dieter; Kaufmann, Christian A.; Unold, Thomas

    2017-03-01

    Recent reports have suggested that the long decay times in time resolved photoluminescence (TRPL), often measured in Cu(In, Ga)Se2 absorbers, may be a result of detrapping from sub-bandgap defects. In this work, we show via temperature dependent measurements, that long lifetimes >50 ns can be observed that reflect the true minority carrier lifetime not related to deep trapping. Temperature dependent time resolved photoluminescence and steady state photoluminescence imaging measurements are used to analyze the effect of annealing in air and in a nitrogen atmosphere between 300 K and 350 K. We show that heating the Cu(In, Ga)Se2 absorber in air can irreversibly decrease the TRPL decay time, likely due to a deterioration of the absorber surface. Annealing in an oxygen-free environment yields a temperature dependence of the TRPL decay times in accordance with Schockley Read Hall recombination kinetics and weakly varying capture cross sections according to T0.6.

  14. CCD time-resolved photometry of faint cataclysmic variables. I

    NASA Technical Reports Server (NTRS)

    Howell, Steve; Szkody, Paula

    1988-01-01

    CCD time-resolved V and B differential light curves are presented for the dwarf novae AR And, FS Aur, TT Boo, UZ Boo, AF Cam, AL Com, AW Gem, X Leo, RZ Leo, CW Mon, SW UMa, and TW Vir. The time-series observations ranged from 2 to 6 hours and have accuracies of 0.025 mag or better for the majority of the runs. Except for AR And, X Leo, CW Mon, and TW Vir, the periods are below the cataclysmic-variable period gap (about 2 hours), and the systems are potential SU UMa stars. Photometric periods for five of the stars are the first such determinations, while those for the other seven generally confirm previous spectroscopic or photometric observations. In several cases, the photometric modulations are large amplitude (up to 0.5 mag). The results on AL Com and SW UMa indicate they may be magnetic variables.

  15. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    PubMed

    Zhang, Zhaowei; Tang, Xiaoqian; Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia

    2015-01-01

    Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  16. Rapid On-Site Sensing Aflatoxin B1 in Food and Feed via a Chromatographic Time-Resolved Fluoroimmunoassay

    PubMed Central

    Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia

    2015-01-01

    Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring. PMID:25874803

  17. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  18. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  19. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium

    NASA Astrophysics Data System (ADS)

    Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.

    2010-12-01

    We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.

  20. Time-resolved spectral analysis of Radachlorin luminescence in water

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  1. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  2. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  3. Resolving Peak Ground Displacements in Real-Time GNSS PPP Solutions

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K. M.; Mencin, D.; Mattioli, G. S.; Sievers, C.; Fox, O.

    2017-12-01

    The goal of early earthquake warning (EEW) systems is to provide warning of impending ground shaking to the public, infrastructure managers, and emergency responders. Shaking intensity can be estimated using Ground Motion Prediction Equations (GMPEs), but only if site characteristics, hypocentral distance and event magnitude are known. In recent years work has been done analyzing the first few seconds of the seismic P wave to derive event location and magnitude. While initial rupture locations seem to be sufficiently constrained, it has been shown that P-wave magnitude estimates tend to saturate at M>7. Regions where major and great earthquakes occur may therefore be vulnerable to an underestimation of shaking intensity if only P waves magnitudes are used. Crowell et al., (2013) first demonstrated that Peak Ground Displacement (PGD) from long-period surface waves recorded by GNSS receivers could provide a source-scaling relation that does not saturate with event magnitude. GNSS PGD derived magnitudes could improve the accuracy of EEW GMPE calculations. If such a source-scaling method were to be implemented in EEW algorithms it is critical that the noise levels in real-time GNSS processed time-series are low enough to resolve long-period surface waves. UNAVCO currently operates 770 real-time GNSS sites, most of which are located along the North American-Pacific Plate Boundary. In this study, we present an analysis of noise levels observed in the GNSS Precise Point Positioning (PPP) solutions generated and distributed in real-time by UNAVCO for periods from seconds to hours. The analysis is performed using the 770 sites in the real-time network and data collected through July 2017. We compare noise levels determined from various monument types and receiver-antenna configurations. This analysis gives a robust estimation of noise levels in PPP solutions because the solutions analyzed are those that were generated in real-time and thus contain all the problems observed

  4. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  5. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  6. TADS and Technical Assistance.

    ERIC Educational Resources Information Center

    Trohanis, Pascal L.

    1983-01-01

    Accomplishments of the Technical Assistance Development System (TADS) are cited, current challenges (including program development, and communication and coordination) are noted, and the mission mandated for TADS is outlined. (CL)

  7. BROADBAND TIME-RESOLVED E{sub p,i}-L{sub iso} CORRELATION IN GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frontera, F.; Guidorzi, C.; Amati, L.

    We report the results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras on board the BeppoSAX satellite and the BATSE experiment on board CGRO. In this first paper, we study the time-resolved dependence of the intrinsic peak energy E{sub p,i} of the E F(E) spectrum on the corresponding isotropic bolometric luminosity L{sub iso}. The E{sub p,i}-L{sub iso} relation or the equivalent relation between E{sub p,i} and the bolometric released energy E{sub iso}, derived using the time-averaged spectra of long GRBs with knownmore » redshift, is well established, but its physical origin is still a subject of discussion. In addition, some authors maintain that these relations are the result of instrumental selection effects. We find that not only a relation between the measured peak energy E{sub p} and the corresponding energy flux, but also a strong E{sub p,i} versus L{sub iso} correlation are found not only within each burst, but also are merging together the time-resolved data points from different GRBs. We do not expect significant instrumental selection effects that can affect the results obtained, apart from the fact that the GRBs in our sample are sufficiently bright to perform a time-resolved spectroscopy and that they have known redshift. If the fundamental physical process that gives rise to the GRB phenomenon does not depend on its brightness, we conclude that the E{sub p,i} versus L{sub iso} correlation found within each GRB is intrinsic to the emission process and that the correlations discovered by Amati et al. and Yonetoku et al. are likely not the result of selection effects. We also discuss the properties of the correlations found.« less

  8. Time-resolved two-window measurement of Wigner functions for coherent backscatter from a turbid medium

    NASA Astrophysics Data System (ADS)

    Reil, Frank; Thomas, John E.

    2002-05-01

    For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.

  9. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  11. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  12. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE PAGES

    Dennett, Cody A.; Short, Michael P.

    2017-05-23

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  13. Time-resolved second-harmonic generation from gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ferrara, D. W.; Tetz, K. A.; McMahon, M. D.; Haglund, R. F., Jr.

    2007-09-01

    We have studied the effects of planar inversion symmetry and particle-coupling of gold nanoparticle (NP) arrays by angle dependent second-harmonic generation (SHG). Time- and angle- resolved measurements were made using a mode-locked Ti:sapphire 800 nm laser onto gold NP arrays with plasmon resonance tuned to match the laser wavelength in order to produce maximum SHG signal. Finite-difference time domain simulations are used to model the near-field distributions for the various geometries and compared to experiment. The arrays were fabricated by focused ion-beam lithography and metal vapor deposition followed by standard lift-off protocols, producing NPs approximately 20nm high with various in-plane dimensions and interparticle gaps. Above a threshold fluence of ~ 7.3 × 10 -5 mJ/cm2 we find that the SHG scales with the third power of intensity, rather than the second, and atomic-force microscopy shows that the NPs have undergone a reshaping process leading to more nearly spherical shapes.

  14. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennett, Cody A.; Short, Michael P.

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  15. Euro-NOTES Status Paper: from the concept to clinical practice.

    PubMed

    Fuchs, K H; Meining, A; von Renteln, D; Fernandez-Esparrach, G; Breithaupt, W; Zornig, C; Lacy, A

    2013-05-01

    The concept of natural orifice transluminal endoscopic surgery (NOTES) consists of the reduction of access trauma by using a natural orifice access to the intra-abdominal cavity. This could possibly lead to less postoperative pain, quicker recovery from surgery, fewer postoperative complications, fewer wound infections, and fewer long-term problems such as hernias. The Euro-NOTES Foundation has organized yearly meetings to work on this concept to bring it safely into clinical practice. The aim of this Euro-NOTES status update is to assess the yearly scientific working group reports and provide an overview on the current clinical practice of NOTES procedures. After the Euro-NOTES meeting 2011 in Frankfurt, Germany, an analysis was started regarding the most important topics of the European working groups. All prospectively documented information was gathered from Euro-NOTES and D-NOTES working groups from 2007 to 2011. The top five topics were analyzed. The statements of the working group activities demonstrate the growing information and changing insights. The most important selected topics were infection issue, peritoneal access, education and training, platforms and new technology, closure, suture, and anastomosis. The focus on research topics changed over time. The principle of hybrid access has overcome the technical and safety limitations of pure NOTES. Currently the following NOTES access routes are established for several indications: transvaginal access for cholecystectomy, appendectomy and colon resections; transesophageal access for myotomy; transgastric access for full-thickness small-tumor resections; and transanal/transcolonic access for rectal and colon resections. NOTES and hybrid NOTES techniques have emerged for all natural orifices and were introduced into clinical practice with a good safety record. There are different indications for different natural orifices. Each technique has been optimized for the purpose of finding a safe and realistic

  16. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  17. 42 CFR 493.1411 - Standard; Technical consultant qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... training or experience to provide technical consultation for each of the specialties and subspecialties of... responsible. Note: The technical consultant requirements for “laboratory training or experience, or both” in... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Technical consultant qualifications. 493...

  18. Technical Writing across the Curriculum: Epics.

    ERIC Educational Resources Information Center

    Olds, Barbara M.

    Noting that technically competent graduates of professional schools need additional skills to function effectively in an increasingly complex and global society, this paper describes an innovative program in technical writing developed for undergraduate engineering students at the Colorado School of Mines. The paper first provides background…

  19. Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen.

    PubMed

    Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph

    2012-06-08

    Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.

  20. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  1. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  2. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    PubMed

    Roubani-Kalantzopoulou, Fani

    2009-03-06

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  3. Research Notes - An Introduction to Openness and Evolvability Assessment

    DTIC Science & Technology

    2016-08-01

    importance of different business and technical characteristics that combine to achieve an open solution. The complexity of most large-scale systems of...process characteristic)  Granularity of the architecture (size of functional blocks)  Modularity (cohesion and coupling)  Support for multiple...Description)  OV-3 (Operational Information Exchange Matrix)  SV-1 (Systems Interface Description)  TV-1 ( Technical Standards Profile). Note that there

  4. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  5. Time Domain Filtering of Resolved Images of Sgr A∗

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, Charles F.; Doeleman, Sheperd S.

    2017-09-01

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.

  6. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    NASA Astrophysics Data System (ADS)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  7. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  8. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    PubMed

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  9. In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy

    PubMed Central

    Marcu, Laura; Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.

    2007-01-01

    Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture. PMID:16039283

  10. In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, Laura; Fang, Qiyin; Jo, Javier A; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C

    2005-08-01

    Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture.

  11. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera.

    PubMed

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W L; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-07

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C 2 F 3 I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  12. Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.

    PubMed

    Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander

    2013-12-01

    Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  14. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption - a statistical approach

    NASA Astrophysics Data System (ADS)

    Kulikov, Mikhail Y.; Nechaev, Anton A.; Belikovich, Mikhail V.; Ermakova, Tatiana S.; Feigin, Alexander M.

    2018-05-01

    This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component's mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.

  15. Diagnosis of vulnerable atherosclerotic plaques by time-resolved fluorescence spectroscopy and ultrasound imaging.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L

    2006-01-01

    In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.

  16. Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi

    2017-11-01

    Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.

  17. Time-resolved visible/near-infrared spectrometric observations of the Galaxy 11 geostationary satellite

    NASA Astrophysics Data System (ADS)

    Bédard, Donald; Wade, Gregg A.

    2017-01-01

    Time-resolved spectrometric measurements of the Galaxy 11 geostationary satellite were collected on three consecutive nights in July 2014 with the 1.6-m telescope at the Observatoire du Mont-Mégantic in Québec, Canada. Approximately 300 low-resolution spectra (R ≈ 700 , where R = λ / Δλ) of the satellite were collected each night, covering a spectral range between 425 and 850 nm. The two objectives of the experiment were to conduct material-type identification from the spectra and to study how the spectral energy distribution inferred from these measurements varied as the illumination and observation geometry changed on nightly timescales. We present results that indicate the presence of a highly reflective aluminized surface corresponding to the solar concentrator arrays of the Galaxy 11 spacecraft. Although other material types could not be identified using the spectra, the results showed that the spectral energy distribution of the reflected sunlight from the Galaxy 11 spacecraft varied significantly, in a systematic manner, over each night of observation. The variations were quantified using colour indices calculated from the time-resolved spectrometric measurements.

  18. Time-resolvable fluorescent conjugates for the detection of pathogens in environmental samples containing autofluorescent material

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    Water is routinely monitored for environmental pathogens such a Cryptosporidium and Giardia using immunofluorescence microscopy (IFM). Autofluorescence can greatly diminish an operators capacity to resolve labeled pathogens from non-specific background. Naturally fluorescing components (autofluorophores) encountered in biological samples typically have fluorescent lifetimes (τ) of less than 100 nanoseconds and their emissions may be excluded through use of time-resolved fluorescence microscopy (TRFM). TRFM relies on the large differences in τ between autofluorescent molecules and long-lived lanthanide chelates. In TRFM, targets labeled with a time-resolvable fluorescent immunoconjugate are excited by an intense (UV) light pulse. A short delay is imposed to permit the decay of autofluorescence before capture of luminescence from the excited chelate using an image intensified CCD camera. In our experience, autofluorescence can be reduced to insignificant levels with a consequent 30-fold increase in target visibility using TRFM techniques. We report conjugation of a novel europium chelate to a monoclonal antibody specific for Giardia lamblia and use of the immunoconjugate for TRFM studies. Initial attempts to conjugate the same chelate to a monoclonal antibody directed against Cryptosporidium parvum led to poorly fluorescent constructs that were prone to denature and precipitate. We successfully conjugated BHHCT to anti-mouse polyvalent immunoglobulin and used this construct to overcome the difficulties in direct labeling of the anti-Cryptosporidium antibody. Both Giardia and Cryptosporidium were labeled using the anti-mouse protocol with a subsequent 20-fold and 6.6-fold suppression of autofluorescence respectively. A rapid protocol for conjugating and purifying the immunoconjugate was found and methods of quantifying the fluorescence to protein ratio determined. Performance of our TRFM was dependent on the quality and brightness of the immunoconjugate and

  19. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    PubMed

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Processing Time and Cognitive Effort of Longhand Note Taking When Reading and Summarizing a Structured or Linear Text

    ERIC Educational Resources Information Center

    Olive, Thierry; Barbier, Marie-Laure

    2017-01-01

    We examined longhand note taking strategies when reading and summarizing a source text that was formatted with bullets or that was presented in a single paragraph. We analyzed cognitive effort when reading the source text, when jotting notes, when reading the notes, and when composing the summary, as well as time spent in these activities and the…

  1. Sub-Millisecond Time Resolved X-ray Surface Diffraction During Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Larson, B. C.; Eres, Gyula; Rouleau, C. M.; Lowndes, D. H.; Yoon, M.; Zschack, P.

    2001-03-01

    The initial crystallization and evolution of the SrTiO3 (001) surface during homoeptaxial pulsed laser deposition growth of SrTiO3 was studied using time resolved surface x-ray diffraction with a time resolution down to 200 μ s. Measurements performed at the UNICAT undulator line at the Advanced Photon Source indicated prompt formation of epitaxial SrTiO3 bi-layers down to our limiting time resolution. The subsequent evolution of the surface occurred on a much greater time scale, and was studied both by measurements of surface truncation rod intensities and by measurements of diffuse scattering near the rod. The effect of temperature and correlation with in-plane order will also be discussed.

  2. Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.

    2017-12-01

    We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.

  3. Based on time and spatial-resolved SERS mapping strategies for detection of pesticides.

    PubMed

    Ma, Bingbing; Li, Pan; Yang, Liangbao; Liu, Jinhuai

    2015-08-15

    For the sensitive and convenient detection of pesticides, several sensing methods and materials have been widely explored. However, it is still a challenge to obtain sensitive, simple detection techniques for pesticides. Here, the simple and sensitive Time-resolved SERS mapping (T-SERS) and Spatial-resolved SERS mapping (S-SERS) are presented for detection of pesticides by using Au@Ag NPs as SERS substrate. The Time-resolved SERS mapping (T-SERS) is based on state translation nanoparticles from the wet state to the dry state to realize SERS measurements. During the SERS measurement, adhesive force drives the particles closer together and then average interparticle gap becomes smaller. Following, air then begins to intersperse into the liquid network and the particles are held together by adhesive forces at the solid-liquid-air interface. In the late stage of water evaporation, all particles are uniformly distributed. Thus, so called hotspots matrix that can hold hotspots between every two adjacent particles in efficient space with minimal polydispersity of particle size are achieved, accompanying the red-shift of surface plasmon peak and appearance of an optimal SPR resonated sharply with excitation wavelength. Here, we found that the T-SERS method exhibits the detection limits of 1-2 orders of magnitude higher than that of S-SERS. On the other hand, the T-SERS is very simple method with high detection sensitivity, better reproducibility (RSD=10.8%) and is beneficial to construction of a calibration curve in comparison with that of Spatial-resolved SERS mapping (S-SERS). Most importantly, as a result of its remarkable sensitivity, T-SERS mapping strategies have been applied to detection of several pesticides and the detect limit can down to 1nM for paraoxon, 0.5nM for sumithion. In short, T-SERS mapping measurement promises to open a market for SERS practical detection with prominent advantages. Copyright © 2015. Published by Elsevier B.V.

  4. Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals

    NASA Astrophysics Data System (ADS)

    Legrand, Mathieu; Nogueira, José; Lecuona, Antonio

    2011-10-01

    At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86-98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199-227, 2007b; Perrin et al. in Exp Fluids 43-2:341-355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.

  5. Ultrafast time-resolved photoemission of a metallic tip/substrate junction

    NASA Astrophysics Data System (ADS)

    Meng, Xiang; Jin, Wencan; Yang, Hao; Dadap, Jerry; Osgood, Richard; Camillone, Nicholas, III

    The strong near-field enhancement of metallic-tip nanostructures has attracted great interest in scanning microscopy techniques, such as surface-enhanced Raman scattering, near-field scanning optical microscopy and tip-enhanced nonlinear imaging. In this talk, we use a full vectorial 3D-FDTD method to investigate the spatial characteristics of the optical field confinement and localization between a tungsten nanoprobe and an infinite planar silver substrate, with two-color ultrafast laser excitation scheme. The degree of two-color excited field enhancement, geometry dependence, the exact mechanism of optical tip-substrate coupling and tip-substrate plasmon resonances are significant in understanding the electrodynamical responses at tip-substrate junction. The demonstrated measurements with subpicosecond time and subnanometer spatial resolution suggest a new approach to ultrafast time-resolved measurements of surface electron dynamics. DE-FG 02-90-ER-14104; DE-FG 02-04-ER-46157.

  6. Head and neck vascular malformations: time-resolved MR projection angiography.

    PubMed

    Ziyeh, S; Schumacher, M; Strecker, R; Rössler, J; Hochmuth, A; Klisch, J

    2003-10-01

    Extracranial vascular anomalies can be divided into haemangiomas and vascular malformations. The latter can be subdivided on the basis of the predominant type of vascular channels. Separation of high- and low-flow vascular malformations is of clinical importance. We report preliminary observations on time-resolved magnetic resonance projection angiography (MRPA) of vascular malformations of the head and neck. We examined eight patients with vascular anomalies of the head and neck. On MRPA the time between the early arterial phase and enhancement of the malformation could be used to distinguish high- and low-flow lesions. High-flow arteriovenous malformations showed early, intense enhancement. Venous malformations were either not visible on MRPA or showed late enhancement of veins. One patient was examined after embolisation of an arteriovenous fistula of the mandible. Normal MRPA was taken to indicate absence of a residual lesion.

  7. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    PubMed

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  8. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Time-Resolved Gravimetric Method To Assess Degassing of Roasted Coffee.

    PubMed

    Smrke, Samo; Wellinger, Marco; Suzuki, Tomonori; Balsiger, Franz; Opitz, Sebastian E W; Yeretzian, Chahan

    2018-05-30

    During the roasting of coffee, thermally driven chemical reactions lead to the formation of gases, of which a large fraction is carbon dioxide (CO 2 ). Part of these gases is released during roasting while part is retained inside the porous structure of the roasted beans and is steadily released during storage or more abruptly during grinding and extraction. The release of CO 2 during the various phases from roasting to consumption is linked to many important properties and characteristics of coffee. It is an indicator for freshness, plays an important role in shelf life and in packaging, impacts the extraction process, is involved in crema formation, and may affect the sensory profile in the cup. Indeed, and in view of the multiple roles it plays, CO 2 is a much underappreciated and little examined molecule in coffee. Here, we introduce an accurate, quantitative, and time-resolved method to measure the release kinetics of gases from whole beans and ground coffee using a gravimetric approach. Samples were placed in a container with a fitted capillary to allow gases to escape. The time-resolved release of gases was measured via the weight loss of the container filled with coffee. Long-term stability was achieved using a customized design of a semimicro balance, including periodic and automatic zero value measurements and calibration procedures. The novel gravimetric methodology was applied to a range of coffee samples: (i) whole Arabica beans and (ii) ground Arabica and Robusta, roasted to different roast degrees and at different speeds (roast air temperatures). Modeling the degassing rates allowed structural and mechanistic interpretation of the degassing process.

  10. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  11. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    PubMed

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

  12. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  13. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields.

    PubMed

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-21

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform's size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke's brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  14. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  15. Technical Secondary Education in Togo and Cameroon--Research Note.

    ERIC Educational Resources Information Center

    Paul, Jean-Jacques

    1990-01-01

    Evaluates technical secondary education in Togo and Cameroon from the market perspective, using tracer study data. To help overcome difficulties in finding employment after training, many individuals secure work in the low-paying informal sector. One solution is to stimulate and enhance the role of informal training through apprentice training…

  16. Time-resolved measurements of statistics for a Nd:YAG laser.

    PubMed

    Hubschmid, W; Bombach, R; Gerber, T

    1994-08-20

    Time-resolved measurements of the fluctuating intensity of a multimode frequency-doubled Nd:YAG laser have been performed. For various operating conditions the enhancement factors in nonlinear optical processes that use a fluctuating instead of a single-mode laser have been determined up to the sixth order. In the case of reduced flash-lamp excitation and a switched-off laser amplifier, the intensity fluctuations agree with the normalized Gaussian model for the fluctuations of the fundamental frequency, whereas strong deviations are found under usual operating conditions. The frequencydoubled light has in the latter case enhancement factors not so far from values of Gaussian statistics.

  17. Time-resolved ESR spectra of the α-hydroxybenzyl-amine complex

    NASA Astrophysics Data System (ADS)

    Kawai, Akio; Kobori, Yasuhiro; Obi, Kinichi

    1993-11-01

    Time-resolved ESR spectra of the α-hydroxybenzyl radical were measured in benzene and 2-propanol solutions by the photo-dissociation of benzoin. The hyperfine structure (hfs) of α-hydroxybenzyl depends on the solvents. In a benzene solution containing triethylamine, two species with different hyperfine structure appeared simultaneously. As the ratio of intensity for the two species depends on the concentration of triethylamine, one of them is assigned to the bare α-hydroxybenzyl and the other to the 1:1 complex of α-hydroxybenzyl and triethylamine. The equilibrium constant of complex formation was estimated to be about 450 M -1 from the analysis of CIDEP intensities.

  18. Sub-10 fs Time-Resolved Vibronic Optical Microscopy

    PubMed Central

    2016-01-01

    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055

  19. TECHNICAL NOTE: Actuation displacement performance change of pre-stressed piezoelectric actuators attached to a flat surface

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol

    2009-03-01

    Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.

  20. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  1. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGES

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  2. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  3. Viability estimation of pepper seeds using time-resolved photothermal signal characterization

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan

    2014-11-01

    We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.

  4. Building Science-Relevant Literacy with Technical Writing in High School

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girill, T R

    2006-06-02

    By drawing on the in-class work of an on-going literacy outreach project, this paper explains how well-chosen technical writing activities can earn time in high-school science courses by enabling underperforming students (including ESL students) to learn science more effectively. We adapted basic research-based text-design and usability techniques into age-appropriate exercises and cases using the cognitive apprenticeship approach. This enabled high-school students, aided by explicit guidelines, to build their cognitive maturity, learn how to craft good instructions and descriptions, and apply those skills to better note taking and technical talks in their science classes.

  5. Time-resolved laser-induced incandescence characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Sipkens, T. A.; Singh, N. R.; Daun, K. J.

    2017-01-01

    This paper presents a comparative analysis of time-resolved laser-induced incandescence measurements of iron, silver, and molybdenum aerosols. Both the variation of peak temperature with fluence and the temperature decay curves strongly depend on the melting point and latent heat of vaporization of the nanoparticles. Recovered nanoparticle sizes are consistent with ex situ analysis, while thermal accommodation coefficients follow expected trends with gas molecular mass and structure. Nevertheless, there remain several unanswered questions and unexplained behaviors: the radiative properties of laser-energized iron nanoparticles do not match those of bulk molten iron; the absorption cross sections of molten iron and silver at the excitation laser wavelength exceed theoretical predictions; and there is an unexplained feature in the temperature decay of laser-energized molybdenum nanoparticles immediately following the laser pulse.

  6. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  7. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  8. Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.

    PubMed

    Jaquith, Michael; Muller, Erik M; Marohn, John A

    2007-07-12

    Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.

  9. 75 FR 37738 - 1-Naphthaleneacetic Acid; Time-Limited Tolerance, Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ...-Naphthaleneacetic Acid; Time-Limited Tolerance, Technical Correction AGENCY: Environmental Protection Agency (EPA..., ethylene oxide, fenvalerate, et al.; tolerance actions. Today's rule restores the time-limited tolerance...-3) establishing a time-limited tolerance for residues of 1-naphthaleneacetic acid ethyl ester in or...

  10. Mandibular angle resection and masticatory muscle hypertrophy - a technical note and morphological optimization.

    PubMed

    Andreishchev, A R; Nicot, R; Ferri, J

    2014-11-01

    Mandibular angle resection is rarely used, but is a highly effective means of correcting facial defects. We report a mandibular angle resection technique associated with the removal of a part of hypertrophic masseter muscles and resection of buccal fat pad. Anatomical reminders: the most important entities are the facial artery and vein, crossing the lower margin of the jaw just in front of the anterior boarder of the masseter muscle and the temporomaxillary vein, passing through the temporomaxillary fossa; preoperative aspects: the preoperative examination included a radiological assessment of the shape and size of the mandibular angle; surgical technique: an intra-oral approach was usually used. The most effective and convenient method for the osteotomy was using a reciprocating saw. This technique allowed achieving a smooth contour of masseter muscles during masticatory movements or at rest. Eleven mandibular angle resections were performed from 2001 to 2009. The surgery was supplemented by remodeling the lower margin of the jaw for 5 other patients. No permanent facial palsy was noted. One patient presented a unilateral long-term loss of sensitivity of the lower lip and chin. This surgical technique if simple even requires using good technical equipment, and observing a set of rules. Using these principles allows simplifying the surgical technique, and decreasing its morbidity. A part of the masseter muscles and the buccal fat pad can sometimes be resected to improve the morphological results. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

    PubMed

    Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V

    2003-02-15

    Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.

  12. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  13. Time-resolved proton polarisation (TPP) images tyrosyl radical sites in bovine liver catalase.

    NASA Astrophysics Data System (ADS)

    Zimmer, Oliver; Jouve, Hélène M.; Stuhrmann, Heinrich B.

    2017-05-01

    A differentiation between dynamic polarised protons close to tyrosyl radical sites in catalase and those of the bulk is achieved by time-resolved polarised neutron scattering. Three radical sites, all of them being close to the molecular centre and the heme, appear to be equally possible. Among these is tyr-369 the radial site of which had previously been proven by EPR.

  14. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  15. Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Przyjalgowski, Milosz A.; Ryder, Alan G.; Feely, Martin; Glynn, Thomas J.

    2005-06-01

    Hydrocarbon-bearing fluid inclusions (HCFI) are microscopic cavities within rocks that are filled with petroleum oil, the composition of which may not have changed since the trapping event. Thus, the composition of that entrapped oil can provide information about the formation and evolution of the oil reservoir. This type of information is important to the petroleum production and exploration industries. Crude oil fluorescence originates from the presence of cyclic aromatic compounds and the nature of the emission is governed by the chemical composition of the oil. Fluorescence based methods are widely used for analysis of crude oil because they offer robust, non-contact and non-destructive measurement options. The goal of our group is the development of a non-destructive analytical method for HCFI using time-resolved fluorescence methods. In broad terms, crude oil fluorescence behavior is governed by the concentration of quenching species and the distribution of fluorophores. For the intensity averaged fluorescence lifetime, the best correlations have been found between polar or alkane concentrations, but these are not suitable for robust, quantitative analysis. We have recently started to investigate another approach for characterizing oils by looking at Time-resolved Emission Spectra (TRES). TRES are constructed from intensities sampled at discrete times during the fluorescence decay of the sample. In this study, TRES, from a series of 10 crude oils from the Middle East, have been measured at discrete time gates (0.5 ns, 1 ns, 2 ns, 4 ns) over the 450-700 nm wavelength range. The spectral changes in TRES, such as time gate dependent Stokes' shift and spectral broadening, are analyzed in the context of energy transfer rates. In this work, the efficacy of using TRES for fingerprinting individual oils and HCFI is also demonstrated.

  16. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  17. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    PubMed

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  18. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In

  19. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  20. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    PubMed

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  1. In-SITU, Time-resolved Raman Spectro-micro-topography of an Operating Lithium Ion Battery

    NASA Technical Reports Server (NTRS)

    Luo, Yu; Cai, Wen-Bin; Xing, Xue-Kun; Scherson, Daniel A.

    2003-01-01

    A Raman microscope has been coupled to a computer-controlled, two-dimensional linear translator attached to a custom-designed, sealed optical chamber to allow in situ acquisition of space-, and time-resolved spectra of an operating thin graphite/LiCoO2 Li-ion battery. This unique arrangement made it possible to collect continuously series of Raman spectra from a sharply defined edge of the battery exposing the anode (A), separator (S), and cathode (C), during charge and discharge, while the device was moved back and forth under the fixed focused laser beam along an axis normal to the layered A/S/C plane. Clear spectral evidence was obtained for changes in the amount of Li(+) within particles of graphite in the anode, and, to a lesser extent, of LiCoO2 in the cathode, during battery discharge both as a function of position and time. Analysis of time-resolved Raman spectro-micro-topography (SMT) measurements of the type described in this work are expected to open new prospects for assessing the validity of theoretical models aimed at simulating the flow of Li(+) within Li-ion batteries under operating conditions.

  2. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  3. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less

  4. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging.

    PubMed

    Tremsin, Anton S; Perrodin, Didier; Losko, Adrian S; Vogel, Sven C; Bourke, Mark A M; Bizarri, Gregory A; Bourret, Edith D

    2017-04-20

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

  5. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A. M.; Bizarri, Gregory A.; Bourret, Edith D.

    2017-04-01

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

  6. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    DOE PAGES

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; ...

    2017-04-20

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less

  7. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A.M.; Bizarri, Gregory A.; Bourret, Edith D.

    2017-01-01

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes. PMID:28425461

  8. Artifacts in time-resolved Kelvin probe force microscopy

    DOE PAGES

    Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.

    2018-04-24

    Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less

  9. Artifacts in time-resolved Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.

    Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less

  10. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    DOE PAGES

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  11. Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis

    PubMed Central

    Lin, Che-Hsin; Wang, Yao-Nan; Fu, Lung-Ming

    2012-01-01

    An integrated microfluidic chip is proposed for rapid DNA digestion and time-resolved capillary electrophoresis (CE) analysis. The chip comprises two gel-filled chambers for DNA enrichment and purification, respectively, a T-form micromixer for DNA/restriction enzyme mixing, a serpentine channel for DNA digestion reaction, and a CE channel for on-line capillary electrophoresis analysis. The DNA and restriction enzyme are mixed electroomostically using a pinched-switching DC field. The experimental and numerical results show that a mixing performance of 97% is achieved within a distance of 1 mm from the T-junction when a driving voltage of 90 V/cm and a switching frequency of 4 Hz are applied. Successive mixing digestion and capillary electrophoresis operation clearly present the changes on digesting φx-174 DNA in different CE runs. The time-resolved electropherograms show that the proposed device enables a φx-174 DNA sample comprising 11 fragments to be concentrated and analyzed within 24 min. Overall, the results presented in this study show that the proposed microfluidic chip provides a rapid and effective tool for DNA digestion and CE analysis applications. PMID:22662085

  12. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    PubMed

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Time-resolved Spectroscopy and Multi-color Photometry Of The Pulsating and Short-period Binary Subdwarf B Star Feige 48

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Baran, A.; O'Toole, S.

    2012-05-01

    Pulsating subdwarf B (sdB) stars can be used as probes of the helium fusing cores of horizontal branch stars. To probe these stars, asteroseismology must be able to observationally associate pulsation frequencies with modes. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining RV and multicolor measurements has also been shows as an effective means of constraining mode identifications. I will present results for Feige 48 using both time-resolved spectroscopy and multicolor photometry and attempts to constrain their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  14. Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura

    2015-02-01

    The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.

  15. Usefulness of free-breathing readout-segmented echo-planar imaging (RESOLVE) for detection of malignant liver tumors: comparison with single-shot echo-planar imaging (SS-EPI).

    PubMed

    Tokoro, Hirokazu; Fujinaga, Yasunari; Ohya, Ayumi; Ueda, Kazuhiko; Shiobara, Aya; Kitou, Yoshihiro; Ueda, Hitoshi; Kadoya, Masumi

    2014-10-01

    We aimed to clarify the usefulness of free-breathing readout-segmented echo-planar imaging (RESOLVE), which is multi-shot echo-planar imaging based on a 2D-navigator-based reacquisition technique, for detecting malignant liver tumor. In 77 patients with malignant liver tumors, free-breathing RESOLVE and respiratory-triggered single-shot echo-planar imaging (SS-EPI) at 3-T MR unit were performed. We set a scan time up to approximately 5 min (300s) before examination, measured actual scan time and assessed (1) susceptibility and (2) motion artifacts in the right and left liver lobes (3, no artifact; 1, marked), and (3) detectability of malignant liver tumors (3, good; 1, poor) using a 3-point scale. The median actual scan time of RESOLVE/SS-EPI was 365/423s. The median scores of each factor in RESOLVE/SS-EPI were as following in this order: (1) 3/2 (right lobe); 3/3 (left lobe), (2) 2/3 (right lobe); 1/2 (left lobe), and (3) 3/3, respectively. Significant differences were noted between RESOLVE and SS-EPI in all evaluated factors (P<0.05) except for susceptibility of left lobe and detectability of the lesions. Despite the effect of motion artifacts, RESOLVE provides a comparable detectability of the lesion and the advantage of reducing scanning time compared with SS-EPI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease.

    PubMed

    Mell, Matthew; Tefera, Girma; Thornton, Frank; Siepman, David; Turnipseed, William

    2007-03-01

    The diagnostic accuracy of magnetic resonance angiography (MRA) in the infrapopliteal arterial segment is not well defined. This study evaluated the clinical utility and diagnostic accuracy of time-resolved imaging of contrast kinetics (TRICKS) MRA compared with digital subtraction contrast angiography (DSA) in planning for percutaneous interventions of popliteal and infrapopliteal arterial occlusive disease. Patients who underwent percutaneous lower extremity interventions for popliteal or tibial occlusive disease were identified for this study. Preprocedural TRICKS MRA was performed with 1.5 Tesla (GE Healthcare, Waukesha, Wis) magnetic resonance imaging scanners with a flexible peripheral vascular coil, using the TRICKS technique with gadodiamide injection. DSA was performed using standard techniques in angiography suite with a 15-inch image intensifier. DSA was considered the gold standard. The MRA and DSA were then evaluated in a blinded fashion by a radiologist and a vascular surgeon. The popliteal artery and tibioperoneal trunk were evaluated separately, and the tibial arteries were divided into proximal, mid, and distal segments. Each segment was interpreted as normal (0% to 49% stenosis), stenotic (50% to 99% stenosis), or occluded (100%). Lesion morphology was classified according to the TransAtlantic Inter-Society Consensus (TASC). We calculated concordance between the imaging studies and the sensitivity and specificity of MRA. The clinical utility of MRA was also assessed in terms of identifying arterial access site as well as predicting technical success of the percutaneous treatment. Comparisons were done on 150 arterial segments in 30 limbs of 27 patients. When evaluated by TASC classification, TRICKS MRA correlated with DSA in 83% of the popliteal and in 88% of the infrapopliteal segments. MRA correctly identified significant disease of the popliteal artery with a sensitivity of 94% and a specificity of 92%, and of the tibial arteries with a

  17. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  18. HgCdTe APDS for time resolved space applications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.

    2017-09-01

    HgCdTe APDs have opened a new horizon in photon starved applications due to their exceptional performance in terms of high linear gain, low excess noise and high quantum efficiency. Both focal plane arrays (FPAs) and large array single element using HgCdTe (MCT) APDs have been developed at CEA/Leti and Sofradir and high performance devices are at present available to detect without deterioration the spatial and/or temporal information in photon fluxes with a low number of photon in each spatio-temporal bin. The enhancement in performance that can be achieved with MCT has subsequently been demonstrated in a wide scope of applications such as astronomical observations, active imaging, deep space telecommunications, atmospheric LIDAR and mid-IR (MIR) time resolved photoluminescence measurements. Most of these applications can be used in space borne platforms.

  19. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    PubMed Central

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  20. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  1. Describing Acupuncture: A New Challenge for Technical Communicators.

    ERIC Educational Resources Information Center

    Karanikas, Marianthe

    1997-01-01

    Considers acupuncture as an increasingly popular alternative medical therapy, but difficult to describe in technical communication. Notes that traditional Chinese medical explanations of acupuncture are unscientific, and that scientific explanations of acupuncture are inconclusive. Finds that technical communicators must translate acupuncture for…

  2. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    NASA Astrophysics Data System (ADS)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  3. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  4. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  5. Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boland, M. J.; School of Physics, University of Melbourne, Parkville, Victoria 3010; Rassool, R. P.

    2010-06-23

    Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill patternmore » in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.« less

  6. Time-resolved Ultrastructural Detection of Phosphatidylinositol 3-phosphate

    PubMed Central

    Stuffers, Susanne; Malerød, Lene; Schink, Kay Oliver; Corvera, Silvia; Stenmark, Harald; Brech, Andreas

    2010-01-01

    Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010) PMID:20713985

  7. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  8. Improving the accuracy and efficiency of time-resolved electronic spectra calculations: cellular dephasing representation with a prefactor.

    PubMed

    Zambrano, Eduardo; Šulc, Miroslav; Vaníček, Jiří

    2013-08-07

    Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of time correlation function known as fidelity amplitude, which, in turn, can be evaluated approximately and efficiently with the dephasing representation. Here we improve both the accuracy of this approximation-with an amplitude correction derived from the phase-space propagator-and its efficiency-with an improved cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. We demonstrate the advantages of the new methodology by computing dispersed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the original dephasing representation is more appropriate than either the cellular or prefactor-corrected methods.

  9. Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ray, Laura R.

    1991-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation.

  10. Quantitative analysis of time-resolved microwave conductivity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Moore, David T.; Li, Zhen

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  11. Quantitative analysis of time-resolved microwave conductivity data

    DOE PAGES

    Reid, Obadiah G.; Moore, David T.; Li, Zhen; ...

    2017-11-10

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  12. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  13. 75 FR 33989 - Export Administration Regulations: Technical Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... 0694-AE69 Export Administration Regulations: Technical Corrections AGENCY: Bureau of Industry and... section of Export Control Classification Number 2B001 and the other is in the Technical Note on Adjusted... language regarding certain performance criteria of turning machines covered by Export Control...

  14. Fiscal year 1981 scientific and technical reports, articles, papers, and presentations

    NASA Technical Reports Server (NTRS)

    Thacker, S. S. (Compiler)

    1981-01-01

    This bibliography lists approximately 503 formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY-1981. It also includes papers of MSFC contractors. Citations announced in the NASA scientific and technical information system are noted.

  15. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  16. Some technical notes on using UAV-based remote sensing for post disaster assessment

    NASA Astrophysics Data System (ADS)

    Rokhmana, Catur Aries; Andaru, Ruli

    2017-07-01

    Indonesia is located in an area prone to disasters, which are various kinds of natural disasters happen. In disaster management, the geoinformation data are needed to be able to evaluate the impact area. The UAV (Unmanned Aerial Vehicle)-Based remote sensing technology is a good choice to produce a high spatial resolution of less than 15 cm, while the current resolution of the satellite imagery is still greater than 50 cm. This paper shows some technical notes that should be considered when using UAV-Based remote sensing system in post disaster for rapid assessment. Some cases are Aceh Earthquake in years 2013 for seeing infrastructure damages, Banjarnegara landslide in year 2014 for seeing the impact; and Kelud volcano eruption in year 2014 for seeing the impact and volumetric material calculation. The UAV-Based remote sensing system should be able to produce the Orthophoto image that can provide capabilities for visual interpretation the individual damage objects, and the changes situation. Meanwhile the DEM (digital Elevation model) product can derive terrain topography, and volumetric calculation with accuracy 3-5 pixel or sub-meter also. The UAV platform should be able for working remotely and autonomously in dangerous area and limited infrastructures. In mountainous or volcano area, an unconventional flight plan should implemented. Unfortunately, not all impact can be seen from above such as wall crack, some parcel boundaries, and many objects that covered by others higher object. The previous existing geoinformation data are also needed to be able to evaluate the change detection automatically.

  17. Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase

    PubMed Central

    Esposito, Rosario; Ventura, Bartolomeo Della; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  18. Towards scar-free surgery: An analysis of the increasing complexity from laparoscopic surgery to NOTES

    PubMed Central

    Chellali, Amine; Schwaitzberg, Steven D.; Jones, Daniel B.; Romanelli, John; Miller, Amie; Rattner, David; Roberts, Kurt E.; Cao, Caroline G.L.

    2014-01-01

    Background NOTES is an emerging technique for performing surgical procedures, such as cholecystectomy. Debate about its real benefit over the traditional laparoscopic technique is on-going. There have been several clinical studies comparing NOTES to conventional laparoscopic surgery. However, no work has been done to compare these techniques from a Human Factors perspective. This study presents a systematic analysis describing and comparing different existing NOTES methods to laparoscopic cholecystectomy. Methods Videos of endoscopic/laparoscopic views from fifteen live cholecystectomies were analyzed to conduct a detailed task analysis of the NOTES technique. A hierarchical task analysis of laparoscopic cholecystectomy and several hybrid transvaginal NOTES cholecystectomies was performed and validated by expert surgeons. To identify similarities and differences between these techniques, their hierarchical decomposition trees were compared. Finally, a timeline analysis was conducted to compare the steps and substeps. Results At least three variations of the NOTES technique were used for cholecystectomy. Differences between the observed techniques at the substep level of hierarchy and on the instruments being used were found. The timeline analysis showed an increase in time to perform some surgical steps and substeps in NOTES compared to laparoscopic cholecystectomy. Conclusion As pure NOTES is extremely difficult given the current state of development in instrumentation design, most surgeons utilize different hybrid methods – combination of endoscopic and laparoscopic instruments/optics. Results of our hierarchical task analysis yielded an identification of three different hybrid methods to perform cholecystectomy with significant variability amongst them. The varying degrees to which laparoscopic instruments are utilized to assist in NOTES methods appear to introduce different technical issues and additional tasks leading to an increase in the surgical time. The

  19. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  20. Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications.

    PubMed

    Lassiter, S J; Stryjewski, W; Legendre, B L; Erdmann, R; Wahl, M; Wurm, J; Peterson, R; Middendorf, L; Soper, S A

    2000-11-01

    A compact time-resolved near-IR fluorescence imager was constructed to obtain lifetime and intensity images of DNA sequencing slab gels. The scanner consisted of a microscope body with f/1.2 relay optics onto which was mounted a pulsed diode laser (repetition rate 80 MHz, lasing wavelength 680 nm, average power 5 mW), filtering optics, and a large photoactive area (diameter 500 microns) single-photon avalanche diode that was actively quenched to provide a large dynamic operating range. The time-resolved data were processed using electronics configured in a conventional time-correlated single-photon-counting format with all of the counting hardware situated on a PC card resident on the computer bus. The microscope head produced a timing response of 450 ps (fwhm) in a scanning mode, allowing the measurement of subnano-second lifetimes. The time-resolved microscope head was placed in an automated DNA sequencer and translated across a 21-cm-wide gel plate in approximately 6 s (scan rate 3.5 cm/s) with an accumulation time per pixel of 10 ms. The sampling frequency was 0.17 Hz (duty cycle 0.0017), sufficient to prevent signal aliasing during the electrophoresis separation. Software (written in Visual Basic) allowed acquisition of both the intensity image and lifetime analysis of DNA bands migrating through the gel in real time. Using a dual-labeling (IRD700 and Cy5.5 labeling dyes)/two-lane sequencing strategy, we successfully read 670 bases of a control M13mp18 ssDNA template using lifetime identification. Comparison of the reconstructed sequence with the known sequence of the phage indicated the number of miscalls was only 2, producing an error rate of approximately 0.3% (identification accuracy 99.7%). The lifetimes were calculated using maximum likelihood estimators and allowed on-line determinations with high precision, even when short integration times were used to construct the decay profiles. Comparison of the lifetime base calling to a single

  1. Technical note: real-time web-based wireless visual guidance system for radiotherapy.

    PubMed

    Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho

    2017-06-01

    Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.

  2. Time-resolved emission studies of ArF-laser-produced microplasmas

    NASA Astrophysics Data System (ADS)

    Simeonsson, Josef B.; Miziolek, Andrzej W.

    1993-02-01

    ArF-laser-produced microplasmas in CO, CO2, methanol, and chloroform are studied by time-resolved emission measurements of the plasma decay. Electron densities are deduced from Stark broadening of the line profiles of atomic H, C, O, and Cl. Plasma ionization and excitation temperatures are determined from measurements of relative populations of ionic and neutral species produced in the plasmas. A discussion of the thermodynamic equilibrium status of ArF laser microplasmas is presented. In general, the ArF-laser-produced microplasma environment is found to be similar in all the gases studied, in terms of both temperature and electron density, despite the considerable differences observed in the breakdown thresholds and relative energies deposited in the various gases.

  3. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheps, Leonid; Chandler, David W.

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transientmore » reaction intermediates in a simple, inexpensive, and robust experimental package.« less

  4. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  5. Femtosecond Time-Resolved Photoelectron Imaging of Excited Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saladrigas, Catherine; Bacellar, Camila; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2017-04-01

    Helium nanodroplets are excellent matrices for high resolution spectroscopy and the study of ultracold chemistry. They are optically transparent. In their electronic ground state, interact very weakly with any atomic or molecular dopant. Electronically excited droplets, however, can strongly interact with dopants through a variety of relaxation mechanisms. Previously, these host-dopant interactions were studied in the energy domain, revealing Penning ionization processes enabled by energy transfer between the droplet host and atomic dopants. Using femtosecond time resolved XUV photoelectron imaging, we plan to perform complementary experiments in the time domain to gain deeper insight into the timescales of energy transfer processes and how they compete with internal droplet relaxation. First experiments will be performed using noble gas dopants, such as Kr and Ne, which will be compared to previous energy-domain studies. Femtosecond XUV pulses produced by high harmonic generation will be used to excite the droplets, IR and near-UV light will be used to monitor the relaxation dynamics. Using velocity map imaging, both photoelectron kinetic energies and angular distributions will be recorded as a function of time. Preliminary results and proposed experiments will be presented.

  6. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  7. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  8. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  9. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  10. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  11. Time-resolved confocal fluorescence microscopy: novel technical features and applications for FLIM, FRET and FCS using a sophisticated data acquisition concept in TCSPC

    NASA Astrophysics Data System (ADS)

    Koberling, Felix; Krämer, Benedikt; Kapusta, Peter; Patting, Matthias; Wahl, Michael; Erdmann, Rainer

    2007-05-01

    In recent years time-resolved fluorescence measurement and analysis techniques became a standard in single molecule microscopy. However, considering the equipment and experimental implementation they are typically still an add-on and offer only limited possibilities to study the mutual dependencies with common intensity and spectral information. In contrast, we are using a specially designed instrument with an unrestricted photon data acquisition approach which allows to store spatial, temporal, spectral and intensity information in a generalized format preserving the full experimental information. This format allows us not only to easily study dependencies between various fluorescence parameters but also to use, for example, the photon arrival time for sorting and weighting the detected photons to improve the significance in common FCS and FRET analysis schemes. The power of this approach will be demonstrated for different techniques: In FCS experiments the concentration determination accuracy can be easily improved by a simple time-gated photon analysis to suppress the fast decaying background signal. A more detailed analysis of the arrival times allows even to separate FCS curves for species which differ in their fluorescence lifetime but, for example, cannot be distinguished spectrally. In multichromophoric systems like a photonic wire which undergoes unidirectional multistep FRET the lifetime information complements significantly the intensity based analysis and helps to assign the respective FRET partners. Moreover, together with pulsed excitation the time-correlated analysis enables directly to take advantage of alternating multi-colour laser excitation. This pulsed interleaved excitation (PIE) can be used to identify and rule out inactive FRET molecules which cause interfering artefacts in standard FRET efficiency analysis. We used a piezo scanner based confocal microscope with compact picosecond diode lasers as excitation sources. The timing performance

  12. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  13. Technical Note: Response time evolution of XR-QA2 GafChromic™ film models.

    PubMed

    Aldelaijan, Saad; Tomic, Nada; Papaconstadopoulos, Pavlos; Schneider, James; Seuntjens, Jan; Shih, Shelley; Lewis, David; Devic, Slobodan

    2018-01-01

    To evaluate the response of the newest XR-QA2 GafChromic™ film model in terms of postexposure signal growth and energy response in comparison with the older XR-QA (Version 2) model. Pieces of film were irradiated to air kerma in air values up to 12 cGy with several beam qualities (5.3-8.25 mm Al) commonly used for CT scanning. Film response was scored in terms of net reflectance from scanned film images at various points in time postirradiation ranging from 1 to 7 days and 5 months postexposure. To reconstruct the measurement signal changes with postirradiation delay, we irradiated one film piece and then scanned it at different point times starting from 2" min and up to 3 days postexposure. For all beam qualities and dose range investigated, it appears that the XR-QA2 film signal completely saturated after 15 h. Compared to 15 h postirradiation scanning time, the observed variation in net reflectance were 3%, 2%, and 1% for film scanned 2" min, 20 min, and 3 h after exposure, respectively, which is well within the measurement uncertainty of the XR-QA2 based reference radiochromic film dosimetry system. A comparison between the XR-QA (Version 2) and the XR-QA2 film response after several months (relative to their responses after 24 h) show differences in up to 8% and 1% for each film model respectively. The replacement of cesium bromide in the older XR-QA (Version 2) film model with bismuth oxide in the newer XR-QA2 film, while keeping the same single sensitive layer structure, lead to a significantly more stable postexposure response. © 2017 American Association of Physicists in Medicine.

  14. Technical note: a novel method for routine genotyping of horse coat color gene polymorphisms.

    PubMed

    Royo, L J; Fernández, I; Azor, P J; Alvarez, I; Pérez-Pardal, L; Goyache, F

    2008-06-01

    The aim of this note is to describe a reliable, fast, and cost-effective real-time PCR method for routine genotyping of mutations responsible for most coat color variation in horses. The melanocortin-1 receptor, Agouti-signaling peptide, and membrane-associated transporter protein alleles were simultaneously determined using 2 PCR protocols. The assay described here is an alternative method for routine genotyping of a defined number of polymorphisms. Allelic variants are detected in real time and no post-PCR manipulations are required, therefore limiting costs and possible carryover contamination. Data can be copied to a Microsoft Excel spreadsheet for semiautomatic determination of the genotype using a macro freely available at http://www.igijon.com/personales/fgoyache/software_i.htm (last accessed February 26, 2007). The performance of the method is demonstrated on 156 Spanish Purebred horses.

  15. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  16. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  17. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  18. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  19. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    NASA Astrophysics Data System (ADS)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  20. Assessing Technical Training Needs.

    ERIC Educational Resources Information Center

    Schwaller, Anthony E.; Slipy, Dave

    1985-01-01

    Describes the results of a joint project of St. Cloud State University (Minnesota) and DeZURIK Corporation (a manufacturer and distributor of industrial valves) which developed and implemented a technical training needs questionnaire for use with the company's employees. Student involvement in the process is noted. (MBR)

  1. Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  2. Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  3. Time-resolved spectroscopyHiifill of the peculiar Hα variable Be star HD 76534

    NASA Astrophysics Data System (ADS)

    Oudmaijer, René D.; Drew, Janet E.

    1999-10-01

    We present time-resolved spectroscopy of the Be star HD 76534, which was observed to have an Hα outburst in 1995, when the line went from photospheric absorption to emission at a level of more than two times the continuum within 2.5 hours. To investigate the short-term behaviour of the spectrum of HD 76534 we have obtained 30 spectra within two hours real-time and searched for variations in the spectrum. Within the levels of statistical significance, no variability was found. Rather than periodic on short time scales, the Hα behaviour seems to be commonly episodic on longer (> 1 year) time scales, as an assessment of the existing data on the Hα line and the Hipparcos photometry suggests. HD 76534 underwent only 1 photometric outburst in the 3 year span that the star was monitored by the Hipparcos satellite.

  4. TECHNICAL BASIS FOR A CANDIDATE BUILDING MATERIALS RADIUM STANDARD

    EPA Science Inventory

    The report summarizes the technical basis for a candidate building materials radium standard. It contains the standard and a summary of the technical basis for the standard. (NOTE: The Florida Radon Research Program (FRRP), sponsored by the Environmental Protection Agency and the...

  5. Undocumented College Students, Taxation, and Financial Aid: A Technical Note

    ERIC Educational Resources Information Center

    Olivas, Michael A.

    2009-01-01

    A surprising amount of litigation and legislation has erupted over undocumented college students. Victims at the federal level are the DREAM Act and immigration reform. Financial aid raises technical issues for undocumented college applicants and for the citizen children of undocumented parents. Generally, the undocumented are ineligible for…

  6. Determination of atomic positions from time resolved high resolution transmission electron microscopy images.

    PubMed

    Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu

    2018-03-01

    For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved

  7. Time-resolved optical spectroscopy of oriented muscle fibers specifically and covalently labeled with extrinsic optical probes

    NASA Astrophysics Data System (ADS)

    Hayden, David Ward

    1997-11-01

    The protein myosin transforms chemical energy, in the form of ATP, into mechanical force in muscle. The rotational motions of myosin play a central role in all models of muscle contraction. I investigated the rotations of myosin in contracting muscle using time- resolved phosphorescence anisotropy (TPA), a technique sensitive to rotations on the microsecond time scale. I developed the hardware, software and theory for four- polarization TPA, which returns four time-resolved anisotropies in contrast to a single anisotropy for standard TPA. The additional anisotropies constrain the possible dye orientations and myosin head motions. Four- polarization TPA on oriented scallop muscle fibers with an extrinsic probe on the light chain shows that the rigor (no ATP, no calcium) anisotropies are consistent with a static distribution of rigid, but partially disordered molecules. Addition of ATP, in the presence or absence of calcium, induces microsecond rotational motion in a fraction of the myosin molecules, while the rest retain rigor-like orientation. This result is consistent with recently-published electron paramagnetic resonance (EPR) results and provides details of the microsecond motion that EPR is unable to detect. A method for simulation of time-resolved TPA spectra and determination of initial and final anisotropies allows testing of models of myosin rotations. The TPA spectra of several models, including restricted rotational diffusion and the Lymn-Taylor models are shown. To show the generality of the derived equations, I apply them to a comparison of EPR and fluorescence polarization spectroscopy on similar samples to investigate whether there is one model that could explain the results reported by the two techniques.

  8. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  9. Videoexoscopic real-time intraoperative navigation for spinal neurosurgery: a novel co-adaptation of two existing technology platforms, technical note.

    PubMed

    Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph

    2018-06-01

    Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and

  10. Multilinear analysis of Time-Resolved Laser-Induced Fluorescence Spectra of U(VI) containing natural water samples

    NASA Astrophysics Data System (ADS)

    Višňák, Jakub; Steudtner, Robin; Kassahun, Andrea; Hoth, Nils

    2017-09-01

    Natural waters' uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI) complexes mostly with carbonate (CO32- ) and bicarbonate (HCO3- ) and to lesser extend with sulphate (SO42- ), arsenate (AsO43- ), hydroxo (OH- ), nitrate (NO3- ) and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ ) will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2)(CO3)32n-4 (n ɛ {1; 2}). From species quenching the luminescence, Cl- and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the "Factor analysis of Time Series" (FATS) method) and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously). From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TD)DFT/B3LYP theoretical predictions to cross -check experimental data interpretation. Note to the reader: Several errors have been produced in the initial version of this article. This new version published on 23 October 2017 contains all the corrections.

  11. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  12. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Liu, Hsiou-Yuan; Hsu, Hsiang; Huang, Shaio-Chih; Chen, Jeson; Yee, Fu-Ghoul; Chang, Huan-Cheng; Chang, Ming-Shien

    2016-05-01

    Measuring thermal properties with nanoscale spatial resolution either at or far from equilibrium is gaining importance in many scientific and engineering applications. Although negatively charged nitrogen-vacancy (NV-) centers in diamond have recently emerged as promising nanometric temperature sensors, most previous measurements were performed under steady state conditions. Here we employ a three-point sampling method which not only enables real-time detection of temperature changes over +/-100 K with a sensitivity of 2 K/(Hz)1/2, but also allows the study of nanometer scale heat transfer with a temporal resolution of better than 1 μs with the use of a pump-probe-type experiment. In addition to temperature sensing, we further show that nanodiamonds conjugated with gold nanorods, as optically-activated dual-functional nanoheaters and nanothermometers, are useful for highly localized hyperthermia treatment. We experimentally demonstrated time-resolved fluorescence nanothermometry, and the validity of the measurements was verified with finite-element numerical simulations. The approaches provided here will be useful for probing dynamical thermal properties on nanodevices in operation.

  13. Technical Notes on the Multifactor Method of Elementary School Closing.

    ERIC Educational Resources Information Center

    Puleo, Vincent T.

    This report provides preliminary technical information on a method for analyzing the factors involved in the closing of elementary schools. Included is a presentation of data and a brief discussion bearing on descriptive statistics, reliability, and validity. An intercorrelation matrix is also examined. The method employs 9 factors that have a…

  14. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    PubMed

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  15. Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.; Han, Wei-Qiang; Walukiewicz, W.

    2004-01-21

    We report Raman and time-resolved photoluminescence spectroscopic studies of multiwalled BN and B{sub x}C{sub y}N{sub z} nanotubes. The Raman spectroscopy shows that the as-grown B{sub x}C{sub y}N{sub z} charge recombination, respectively. Comparison of the photoluminescence of BN nanotubes to that decay process is characterized by two time constants that are attributed to intra- and inter-BN sheet nanotubes as predicted by theory. nanotubes are radially phase separated into BN shells and carbon shells. The photoluminescence of hexagonal BN is consistent with the existence of a spatially indirect band gap in multi-walled BN.

  16. Sea Butterfly Swimming: Time-resolved Tomographic PIV measurements

    NASA Astrophysics Data System (ADS)

    Murphy, David; Zheng, Lingxiao; Mittal, Rajat; Webster, Donald; Yen, Jeannette

    2011-11-01

    The planktonic sea butterfly Limacina helicina swims by flapping its flexible, wing-like parapodia. The appendage stroke kinematics of this shell-bearing pteropod are three-dimensional and likely contain elements of both drag-based (rowing) and lift-based (flapping) propulsion. Unsteady lift-generating mechanisms such as clap-and-fling may also be present. Upstroke and downstroke motions both propel the animal upward and roll it forwards and backwards, resulting in a sawtooth trajectory. We present time-resolved, tomographic PIV measurements of flow generated by free-swimming pteropods (Limacina helicina) moving upwards with average swimming speeds of 5 - 17 mm/s. The pteropods beat their appendages with a stroke frequency of 4 - 5 Hz. With a size range of 1 - 2 mm, the animals filmed in this study operate in a viscous environment with a Reynolds number of 5 to 20. The volumetric flow measurements provide insight into the three dimensional nature of the flow and into the relative importance of drag- and lift-based propulsion at this low Reynolds number. Preliminary results from Navier-Stokes simulations of the flow associated with the swimming of this organism will also be presented.

  17. 42 CFR 493.1451 - Standard: Technical supervisor responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... testing samples; and (vi) Assessment of problem solving skills; and (9) Evaluating and documenting the... analysis and reporting of test results; (5) Resolving technical problems and ensuring that remedial actions...

  18. Resolving Molecular Clouds in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles J.; Forbrich, Jan

    2015-01-01

    We present results from our ongoing Submillimeter Array (SMA) survey in which we resolve Giant Molecular Clouds (GMCs) for the first time in the nearby (D = 1.9 Mpc) spiral galaxy NGC 300. We have conducted CO(2-1) and 1.3 mm dust continuum observations of several massive star-forming regions in NGC 300, following up on the Atacama Pathfinder Experiment (APEX) survey of Faesi et al. (2014). We find that the unresolved CO sources detected with APEX at ~250 pc resolution typically resolve into one dominant GMC in our SMA observations, which have a resolution of ~3.5' (30 pc). The majority of sources are significantly detected in CO, but only one exhibits dust continuum emission. Comparing with archival H-alpha, GALEX far-ultraviolet, and Spitzer 24 micron images, we note physical offsets between the young star clusters, warm dust, and ionized and molecular gas components in these regions. We recover a widely varying fraction -- between 30% and almost 100% -- of the full APEX single dish flux with our interferometric observations. This implies that the fraction of CO-emitting molecular gas that is in a diffuse state (i.e. with characteristic spatial scales > 100 pc) differs greatly amongst star forming regions in NGC 300. We investigate potential trends in the implied diffuse molecular gas fraction with GMC properties and star formation activity. We compute virial masses and analyze the velocity structure of these resolved extragalactic GMCs and compare to results from surveys of the Milky Way and other nearby galaxies.

  19. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhitao; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245; Banishev, Alexandr A.

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersedmore » in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.« less

  20. The stopped-drop method: a novel setup for containment-free and time-resolved measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Seifert, Soenke; Magerl, Andreas

    2016-03-01

    A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.

  1. Thermal and Denaturation Studies of the Time-Resolved Fluorescence Decay of Human Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Silva, Norberto De Jesus

    Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural

  2. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    NASA Astrophysics Data System (ADS)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  3. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less

  4. Modeling and optimization of a time-resolved proton radiographic imaging system for proton cancer treatment

    NASA Astrophysics Data System (ADS)

    Han, Bin

    This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.

  5. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  6. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  7. Time and size resolved Measurement of Mass Concentration at an Urban Site

    NASA Astrophysics Data System (ADS)

    Karg, E.; Ferron, G. A.; Heyder, J.

    2003-04-01

    Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the

  8. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    PubMed

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  9. Time-resolved spectrophotometry of the AM Herculis system E2003 + 225

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick; Bowyer, Stuart; Clarke, John T.

    1986-01-01

    Time-resolved, medium-resolution photometry is reported for the binary system E2003 + 225 over a complete orbital period in 1984. The object was 1.5-2 mag fainter than when viewed earlier in 1984. The fluxes, equivalent widths and full widths at FWHM for dominant lines are presented for four points in the cycle. A coincidence of emission lines and a 4860 A continuum line was observed for the faster component, which had a 500 km/sec velocity amplitude that was symmetric around the zero line. An aberrant emission line component, i.e., stationary narrow emission lines displaced about 9 A from the rest wavelengths, is modeled as Zeeman splitting of emission from material close to the primary.

  10. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    PubMed

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris

    1992-01-01

    The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820

  12. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  13. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  14. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less

  15. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy

    PubMed Central

    Yong, William H.; Butte, Pramod V.; Pikul, Brian K.; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith L.; Marcu, Laura

    2010-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved “normal” brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  17. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  18. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  19. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmerman, Dolev; Leshchev, Denis; Hsu, Darren J.

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combinationmore » of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.« less

  20. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  1. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  2. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.

    PubMed

    Cho, Hyun Sun; Dashdorj, Naranbaatar; Schotte, Friedrich; Graber, Timothy; Henning, Robert; Anfinrud, Philip

    2010-04-20

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02-2.5 A(-1), thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 A), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 A(3) volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume approximately 2 A(3) larger than MbCO within approximately 10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them.

  3. The Care of Our Hybrid Selves: Ethics in Times of Technical Mediation.

    PubMed

    Dorrestijn, Steven

    2017-01-01

    What can the art of living after Foucault contribute to ethics in relation to the mediation of human existence by technology? To develop the relation between technical mediation and ethics, firstly the theme of technical mediation is elaborated in line with Foucault's notion of ethical problematization. Every view of what technology does to us at the same time expresses an ethical concern about technology. The contemporary conception of technical mediation tends towards the acknowledgement of ongoing hybridization, not ultimately good or bad but ambivalent, which means for us the challenge of taking care of ourselves as hybrid beings. Secondly, the work of Foucault provides elements for imagining this care for our hybrid selves, notably his notions of freedom as a practice and of the care of the self. A conclusions about technical mediation and ethics is that whereas the approaches of the delegation of morality to technology by Latour and mediated morality by Verbeek see technical mediation of behavior and moral outlook as an answer in ethics, this should rather be considered the problem that ethics is about.

  4. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  5. Time-resolved scattering of a single photon by a single atom

    PubMed Central

    Leong, Victor; Seidler, Mathias Alexander; Steiner, Matthias; Cerè, Alessandro; Kurtsiefer, Christian

    2016-01-01

    Scattering of light by matter has been studied extensively in the past. Yet, the most fundamental process, the scattering of a single photon by a single atom, is largely unexplored. One prominent prediction of quantum optics is the deterministic absorption of a travelling photon by a single atom, provided the photon waveform matches spatially and temporally the time-reversed version of a spontaneously emitted photon. Here we experimentally address this prediction and investigate the influence of the photon's temporal profile on the scattering dynamics using a single trapped atom and heralded single photons. In a time-resolved measurement of atomic excitation we find a 56(11)% increase of the peak excitation by photons with an exponentially rising profile compared with a decaying one. However, the overall scattering probability remains unchanged within the experimental uncertainties. Our results demonstrate that envelope tailoring of single photons enables precise control of the photon–atom interaction. PMID:27897173

  6. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J.; Reininghaus, M.

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation ofmore » ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.« less

  7. Teaching Technical Report Writing

    ERIC Educational Resources Information Center

    De Pasquale, Joseph A.

    1977-01-01

    A high school electronics teacher describes the integration of technical report writing in the electronics program for trade and industrial students. He notes that the report writing rather than just recording data seemed to improve student laboratory experience but further improvements in the program are needed. A sample lab report is included.…

  8. Technical note: A simple rumen collection device for calves: An adaptation of a manual rumen drenching system.

    PubMed

    Klopp, R N; Oconitrillo, M J; Sackett, A; Hill, T M; Schlotterbeck, R L; Lascano, G J

    2018-07-01

    A limited amount of research is available related to the rumen microbiota of calves, yet there has been a recent spike of interest in determining the diversity and development of calf rumen microbial populations. To study the microbial populations of a calf's rumen, a sample of the rumen fluid is needed. One way to take a rumen fluid sample from a calf is by fistulating the animal. This method requires surgery and can be very stressful on a young animal that is trying to adapt to a new environment and has a depressed immune system. Another method that can be used instead of fistulation surgery is a rumen pump. This method requires a tube to be inserted into the rumen through the calf's esophagus. Once inside the rumen, fluid can be pumped out and collected in a few minutes. This method is quick, inexpensive, and does not cause significant stress on the animal. This technical note presents the materials and methodology used to convert a drenching system into a rumen pump and its respective utilization in 2 experiments using dairy bull calves. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Isocentric Navigation of Percutaneous Endoscopic Transforaminal Discectomy at the L5/S1 Level in Difficult Puncture Cases: A Technical Note.

    PubMed

    Fan, Guoxin; Wang, Teng; Hu, Shuo; Guan, Xiaofei; Gu, Xin; He, Shisheng

    2017-05-01

    Accurate puncture during percutaneous transforaminal endoscopic discectomy at the L5/S1 level in cases with high iliac crest and narrow foramen were difficult, even though the difficulties of foraminoplasty could be overcome by advanced instruments like reamers. The report aimed to describe an isocentric navigation technique with a definite pathway in difficult puncture cases at the L5/S1 level. Technical note. Difficult punctures were defined as over 10 punctures of the needle before obtaining an ideal puncture location by senior surgeons with experience of over 500 percutaneous endoscopic transforaminal discectomy (PETD) cases. A total of 124 punctures were recorded in 11 difficult puncture cases at the L5/S1 level. A definite pathway was created by an isocentric navigation theory, which was based on a surface locator and an arch-guided device. The surface locator was used to rapidly and accurately identify the puncture target with the recognition of the surrounding rods under fluoroscopy. The arch-guided device can ensure that the puncture target always remains at the center of a virtual sphere. We recorded the puncture times, fluoroscopy exposure times, radiation exposure time, operative time, visual analog scale (VAS) score, Japanese Orthopeadic Association (JOA) score, and patient satisfaction. The average puncture times were significantly reduced to 1.27 with the arch-guided device compared with conventional puncture methods (P < 0.05). The average operative time was 90.09 ± 11.00 minutes and the fluoroscopy times were 53.36 ± 5.85. The radiation exposure time was 50.91 ± 5.20 seconds. VAS score of leg and back pain, as well as JOA score, were all significantly improved after surgery (P < 0.05). The excellent and good rate of satisfaction was 90.91%. No major complications, including cerebral fluid leakage, surgical infection, and postoperative nerve root injury, were recorded in this small sample. This was a small-sample study with a short follow-up. The

  10. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.

    PubMed

    Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W

    2010-09-01

    Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.

  11. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  12. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  13. Null stream analysis of Pulsar Timing Array data: localisation of resolvable gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto

    2018-04-01

    Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.

  14. User-based representation of time-resolved multimodal public transportation networks.

    PubMed

    Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia

    2016-07-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.

  15. User-based representation of time-resolved multimodal public transportation networks

    PubMed Central

    Alessandretti, Laura; Gauvin, Laetitia

    2016-01-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773

  16. Time-resolved nonlinear optics in strongly correlated insulators

    NASA Astrophysics Data System (ADS)

    Dodge, J. Steven

    2000-03-01

    Transition metal oxides form the basis for much of our understanding of Mott insulators, and have enjoyed a renaissance of interest since the discovery of high temperature superconductivity in the cuprates. They are characterized by complex interactions among spin, lattice, orbital and charge degrees of freedom, which lead to dynamical behavior on time scales ranging from femtoseconds to microseconds. We have applied time resolved nonlinear optical spectroscopy to probe these dynamics. In one well-studied antiferromagnetic insulator, Cr_2O_3, we observed spin-wave dynamics on a picosecond time scale by performing pump-probe spectroscopy of the exciton-magnon transition(J. S. Dodge, et al.), Phys. Rev. Lett. 83, 4650 (1999).. At excitation densities ~ 10-3/Cr, a lineshape associated with the exciton-magnon absorption appears in the pump-probe spectrum. We assign this nonlinearity to a time-dependent renormalization of the magnon band structure, which in turn modifies the lineshape of the exciton-magnon transition. At long time delays, this assignment agrees semiquantitatively with calculations based on spin-wave theory. However, the initial population at the zone-boundary induces surprisingly little renormalization effect, indicating that spin-wave theory is insufficient to describe our observations in this regime. The renormalization lineshape grows on a time scale of ~ 50 ps, which we associate with the decay of the photoexcited, nonequilibrium population of zone-boundary spin-waves into a thermalized population of zone-center spin-waves. We have also performed a study of the linear and nonlinear optical properties of Sr_2CuO_2Cl_2, an insulating, two-dimensional cuprate. In the nonlinear optical experiments, we have performed pump-probe spectroscopy over a 1 eV spectral range, varying both the pump and the probe energy. We observe a pump-probe lineshape which varies considerably as a function of pump energy and temperature, and which differs sharply from those

  17. Monitoring tissue metabolism via time-resolved laser fluorescence

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe

    1999-05-01

    Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.

  18. Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells.

    PubMed

    Jafari, Mohammad Javad; Liu, Jiang; Engquist, Isak; Ederth, Thomas

    2017-01-25

    An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transform infrared (FTIR) microscopy is used to monitor anion density profile and polymer structure in situ and for time-resolved mapping of electrochemical doping in an LEC under bias. The results are in very good agreement with the electrochemical doping model with respect to ion redistribution and formation of a dynamic p-n junction in the active layer. We also physically slow ions by decreasing the working temperature and study frozen-junction formation and immobilization of ions in a fixed-junction LEC device by FTIR imaging. The obtained results show irreversibility of the ion redistribution and polymer doping in a fixed-junction device. In addition, we demonstrate that infrared microscopy is a useful tool for in situ characterization of electroactive organic materials.

  19. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  20. Time Domain Filtering of Resolved Images of Sgr A{sup ∗}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Hotaka; Doeleman, Sheperd S.; Gammie, Charles F.

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. Themore » mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.« less