Science.gov

Sample records for technology ect implant

  1. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  2. Emerging Communication Technologies (ECT) Phase 4 Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.

    2005-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.

  3. Emerging Communication Technologies (ECT) Phase 3 Final Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.

    2004-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  4. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  5. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  6. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  7. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  8. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  9. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  10. RFID technology for human implant devices

    NASA Astrophysics Data System (ADS)

    Aubert, Hervé

    2011-09-01

    This article presents an overview on Radio Frequency Identification (RFID) technology for human implants and investigates the technological feasibility of such implants for locating and tracking persons or for remotely controlling human biological functions. Published results on the miniaturization of implantable passive RFID devices are reported as well as a discussion on the choice of the transmission frequency in wireless communication between a passive RFID device implanted inside human body and an off-body interrogator. The two techniques (i.e., inductive coupling and electromagnetic coupling) currently used for wirelessly supplying power to and read data from a passive implantable RFID device are described and some documented biomedical and therapeutic applications of human RFID-implant devices are finally reported.

  11. On the Horizon: Cochlear Implant Technology.

    PubMed

    Roche, Joseph P; Hansen, Marlan R

    2015-12-01

    Cochlear implantation and cochlear implants (CIs) have a long history filled with innovations that have resulted in the high-performing device's currently available. Several promising technologies have been reviewed in this article, which hold the promise to drive performance even higher. Remote CI programming, totally implanted devices, improved neural health and survival through targeted drug therapy and delivery, intraneural electrode placement, electroacoustical stimulation and hybrid CIs, and methods to enhance the neural-prosthesis interface are evolving areas of innovation reviewed in this article. PMID:26443490

  12. Microsystem technologies for ophtalmological implants

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2003-01-01

    Due to the low power consumption CMOS electronics is ideal for the use in implanted systems. This paper presents two projects working on ophthalmological implants. Both systems are powered by an external RF-field. One system has been developed to measure the intraocular pressure continuously which is important for the therapy of glaucoma patients. The system consists of a micro coil and an integrated pressure transponder chip built into an artificial soft lens. A second example is a very complex system for epiretinal stimulation of the nerve cells of the retina. With such a system it might be possible to give blind people that are suffering from retinitis pigmentosa some visual contact to their surrounding.

  13. ECTS Users' Guide ECTS Users' Guide

    E-print Network

    Zürich, Universität

    to enhance the quality of higher education. ECTS was instituted in 1989, within the Erasmus........................................................................................... 10 Section 2 ECTS and the European Higher Education Area (EHEA).....................14 Section 3 ECTS and assessment ..........................................................26 3.6 Monitoring of credit allocation

  14. TOPICAL REVIEW: Microsystem technologies for implantable applications

    NASA Astrophysics Data System (ADS)

    Receveur, Rogier A. M.; Lindemans, Fred W.; de Rooij, Nicolaas F.

    2007-05-01

    Microsystem technologies (MST) have become the basis of a large industry. The advantages of MST compared to other technologies provide opportunities for application in implantable biomedical devices. This paper presents a general and broad literature review of MST for implantable applications focused on the technical domain. A classification scheme is introduced to order the examples, basic technological building blocks relevant for implantable applications are described and finally a case study on the role of microsystems for one clinical condition is presented. We observe that the microfabricated parts span a wide range for implantable applications in various clinical areas. There are 94 active and 67 commercial 'end items' out of a total of 142. End item refers to the total concept, of which the microsystem may only be a part. From the 105 active end items 18 (13% of total number of end items) are classified as products. From these 18 products, there are only two for chronic use. The number of active end items in clinical, animal and proto phase for chronic use is 17, 13 and 20, respectively. The average year of first publication of chronic end items that are still in the animal or clinical phase is 1994 (n = 7) and 1993 (n = 11), respectively. The major technology market combinations are sensors for cardiovascular, drug delivery for drug delivery and electrodes for neurology and ophthalmology. Together these form 51% of all end items. Pressure sensors form the majority of sensors and there is just one product (considered to be an implantable microsystem) in the neurological area. Micro-machined ceramic packages, glass sealed packages and polymer encapsulations are used. Glass to metal seals are used for feedthroughs. Interconnection techniques such as flip chip, wirebonding or conductive epoxy as used in the semiconductor packaging and assembly industry are also used for manufacturing of implantable devices. Coatings are polymers or metal. As an alternative to implantable primary batteries, rechargeable batteries were introduced or concepts in which energy is provided from the outside based on inductive coupling. Long-term developments aiming at autonomous power are, for example, based on electrostatic conversion of mechanical vibrations. Communication with the implantable device is usually done using an inductive link. A large range of materials commonly used in microfabrication are also used for implantable microsystems.

  15. Implanted : technology and connection in the deaf world

    E-print Network

    Calamia, Joseph Benjamin

    2010-01-01

    In 1984, the FDA approved a medical device called a cochlear implant for adult use in the United States. Unlike assistive hearing technologies that came before it, such as hearing aids, cochlear implants could offer wider ...

  16. Evaluating the Feasibility of Using Remote Technology for Cochlear Implants

    ERIC Educational Resources Information Center

    Goehring, Jenny L.; Hughes, Michelle L.; Baudhuin, Jacquelyn L.

    2012-01-01

    The use of remote technology to provide cochlear implant services has gained popularity in recent years. This article contains a review of research evaluating the feasibility of remote service delivery for recipients of cochlear implants. To date, published studies have determined that speech-processor programming levels and other objective tests…

  17. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  18. Digital technologies for dental implant treatment planning and guided surgery.

    PubMed

    Greenberg, Alex M

    2015-05-01

    Oral and maxillofacial surgeons now have extraordinary imaging, software planning, and guide fabrication technologies at their disposal to aid in their case selection, clinical decision making, and surgical procedures for dental implant placement. Cone beam CT has opened a new era of office-based diagnostic capability and responsibility. Improved clinical experiences and evidence-based superior outcomes can be provided with confidence to patients when CT-guided dental implant surgery is used. PMID:25951962

  19. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  20. WHAT IS ECT? DOES ECT WORK?

    E-print Network

    Oliver, Douglas L.

    . At the time of each treatment a patient is given general anesthesia and a muscle relaxant and electrodes. It involves a brief electrical stimulation of the brain while the patient is under anesthesia. A patient anesthesia, which is needed for ECT, are similar to the risks when anesthesia is used for other procedures

  1. The evolution of cochlear implant technology and its clinical relevance

    PubMed Central

    Hainarosie, M; Zainea, V; Hainarosie, R

    2014-01-01

    The article presents a brief history of the development of the cochlear implant, from its beginnings to the present day. After a short description of the device, it describes the evolution of the technology for three of the top manufacturing companies, from the first model marketed, to the latest. It presents the technological advancements from one model to the next, taking into account the exterior design, processing capabilities and functionality. PMID:25870662

  2. Optimal design of composite hip implants using NASA technology

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.

    1993-01-01

    Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.

  3. Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry

    SciTech Connect

    Tsukamoto, Katsuhiro; Kuroi, Takashi; Kawasaki, Yoji

    2011-01-07

    Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

  4. The power of disruptive technological innovation: Transcatheter aortic valve implantation.

    PubMed

    Berlin, David B; Davidson, Michael J; Schoen, Frederick J

    2015-11-01

    We sought to evaluate the principles of disruptive innovation, defined as technology innovation that fundamentally shifts performance and utility metrics, as applied to transcatheter aortic valve implantation (TAVI). In particular, we considered implantation procedure, device design, cost, and patient population. Generally cheaper and lower performing, classical disruptive innovations are first commercialized in insignificant markets, promise lower margins, and often parasitize existing usage, representing unattractive investments for established market participants. However, despite presently high unit cost, TAVI is less invasive, treats a "new," generally high risk, patient population, and is generally done by a multidisciplinary integrated heart team. Moreover, at least in the short-term TAVI has not been lower-performing than open surgical aortic valve replacement in high-risk patients. We conclude that TAVI extends the paradigm of disruptive innovation and represents an attractive commercial opportunity space. Moreover, should the long-term performance and durability of TAVI approach that of conventional prostheses, TAVI will be an increasingly attractive commercial opportunity. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1709-1715, 2015. PMID:25545639

  5. Cochlear Implants

    MedlinePLUS

    ... Arts A cochlear implant is a small, complex electronic device that can help to provide a sense ... that can answer questions and provide printed or electronic information on cochlear implants: Cochlear implants Assistive technology ...

  6. Science and technology of biocompatible thin films for implantable biomedical devices.

    SciTech Connect

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  7. Adaptation of NASA technology for the optimization of orthopedic knee implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Hopkins, D. A.

    1991-01-01

    The NASA technology originally developed for the optimization of composite structures (engine blades) is adapted and applied to the optimization of orthopedic knee implants. A method is developed enabling the tailoring of the implant for optimal interaction with the environment of the tibia. The shape of the implant components are optimized, such that the stresses in the bone are favorably controlled to minimize bone degradation and prevent failures. A pilot tailoring system is developed and the feasibility of the concept is elevated. The optimization system is expected to provide the means for improving knee prosthesis and individual implant tailoring for each patient.

  8. Applications of ion implantation in III-V device technology

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Ren, F.; Chu, S. N. G.; Hobson, W. S.; Abernathy, C. R.; Fullowan, T. R.; Lothian, J. R.; Elliman, R. G.; Jacobson, D. C.; Poate, J. M.

    1993-06-01

    The use of implantation for doping and isolation of a variety of electronic and photonic III-V compound semiconductor devices will be reviewed. Complex multilayer heterostructure devices like heterojunction bipolar transistors and strained InGaAs-GaAs quantum well lasers rely on keV or MeV isolation implants, requiring thick, easily removed masks and post-implant annealing treatments to achieve high isolation resistances ( ? 10 8 ? cm). The effectiveness of the implant isolation technique varies as a function of the bandgap and elemental composition of the semiconductor. Devices based on GaAs, Al xGa 1-xAs and InGaP are particularly suited to the implant isolation method. The prime dopant species for III-V materials are Si for n-type layers and Be for p-type layers, although there is increasing interest in the use of C as an acceptor because of its low diffusivity. In the latter case, a group III species must be co-implanted with the C + ion to enhance the occupation of the group V lattice site.

  9. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  10. [Transcatheter-based aortic valve implantation. Present and future technologies].

    PubMed

    Sack, Stefan; Schofer, Joachim

    2009-08-01

    The calcified aortic stenosis is the dominating valve disease. Patients affected are most common elderly people in the 8th or 9th decade of their life who often show associated comorbidities like reduced left ventricular function, impaired renal function, pulmonary hypertension, and further diseases (diabetes mellitus, stroke, chronic obstructive pulmonary disease). In many cases perioperative morbidity and mortality are too high for surgical valve replacement and patients are rejected. Nevertheless, prognosis of aortic stenosis is worse, if the typical symptoms like dyspnea on exertion, syncope, and angina occur. The transcatheter aortic valve implantation is an alternative treatment for this particular group of patients. The aortic valve bioprosthesis consists of a balloon-expandable stent or a self-expandable frame, in which a valve of bovine or porcine pericardium is incorporated. The implantation is performed by retrograde access via the femoral artery; the balloon-expandable prosthesis can also be implanted by transapical approach. Alternatively, the subclavian artery is chosen for access. More frequently, the implantation is performed in analgosedation with the patient awake that favors the transfemoral approach. A further reduction of the available prosthesis and new types of valves which are under current experimental tests and clinical evaluation contribute to this development. PMID:19711031

  11. Biofilm Disrupting Technology for Orthopedic Implants: What’s on the Horizon?

    PubMed Central

    Connaughton, Alexander; Childs, Abby; Dylewski, Stefan; Sabesan, Vani J.

    2014-01-01

    The use of orthopedic implants in joints has revolutionized the treatment of patients with many debilitating chronic musculoskeletal diseases such as osteoarthritis. However, the introduction of foreign material into the human body predisposes the body to infection. The treatment of these infections has become very complicated since the orthopedic implants serve as a surface for multiple species of bacteria to grow at a time into a resistant biofilm layer. This biofilm layer serves as a protectant for the bacterial colonies on the implant making them more resistant and difficult to eradicate when using standard antibiotic treatment. In some cases, the use of antibiotics alone has even made the bacteria more resistant to treatment. Thus, there has been surge in the creation of non-antibiotic anti-biofilm agents to help disrupt the biofilms on the orthopedic implants to help eliminate the infections. In this study, we discuss infections of orthopedic implants in the shoulder then we review the main categories of anti-biofilm agents that have been used for the treatment of infections on orthopedic implants. Then, we introduce some of the newer biofilm disrupting technology that has been studied in the past few years that may advance the treatment options for orthopedic implants in the future. PMID:25705632

  12. Science and technology of biocompatible thin films for implantable biomedical devices.

    PubMed

    Li, Wei; Kabius, Bernd; Auciello, Orlando

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: 1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye)-the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and 2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human bodynovel Al2O3/TiO2 nanolaminates exhibit abnormally high dielectric constant to enable super-capacitors with very high-capacitance. PMID:21097345

  13. Molecular dynamics study on splitting of hydrogen-implanted silicon in Smart-Cut® technology

    NASA Astrophysics Data System (ADS)

    Bing, Wang; Bin, Gu; Rongying, Pan; Sijia, Zhang; Jianhua, Shen

    2015-03-01

    Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut® technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most defects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed. Project supported by the National Natural Science Foundation of China (No. 11372261), the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province (No. 2013JQ0030), the Supporting Project of Department of Education of Sichuan Province (No. 2014zd3132), the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, Southwest University of Science and Technology-Ministry of Education (No. 12zxzk02), the Fund of Doctoral Research of Southwest University of Science and Technology (No. 12zx7106), and the Postgraduate Innovation Fund Project of Southwest University of Science and Technology (No. 14ycxjj0121).

  14. Ion Implant Technology for Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Olea, Javier; Pastor, David; Luque, María Toledano; Mártil, Ignacio; Díaz, Germán González

    This chapter describes the creation of an Intermediate Band (IB) on single crystal silicon substrates by means of high-dose Ti implantation and subsequent Pulsed Laser Melting (PLM). The Ti concentration over the Mott limit is confirmed by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) measurements and the recovery of the crystallinity after annealing by means of Glancing Incidence X Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM). Rutherford Backscattering Spectroscopy (RBS) measurements show that most of the atoms are located interstitially. Analysis of the sheet resistance and mobility measured using the van der Pauw geometry shows a temperature-dependent decoupling between the implanted layer and the substrate. This decoupling and the high laminated conductivity of the implanted layer could not be explained except if we assume that an IB has been formed in the semiconductor. A specific model for the bilayer electrical behaviour has been developed. The fitting of this model and also the simulation of the sheet resistance with the ATLAS code allow to determine that the IB energetic position is located around 0.36-0.38 eV below the conduction band. Carriers at the IB have a density very similar to the Ti concentration and behave as holes with mobilities as low as 0.4 cm2 Vs- 1.

  15. Evolution and acceptability of medical applications of RFID implants among early users of technology.

    PubMed

    Smith, Alan D

    2007-01-01

    RFID as a wireless identification technology that may be combined with microchip implants have tremendous potential in today's market. Although these implants have their advantages and disadvantages, recent improvements how allowed for implants designed for humans. Focus was given to the use of RFID tags and its effects on technology and CRM through a case study on VeriChip, the only corporation to hold the rights and the patent to the implantable chip for humans, and an empirically based study on working professionals to measure perceptions by early adopters of such technology. Through hypotheses-testing procedures, it was found that although some resistance to accept microchip implants was found in several applications, especially among gender, it was totally expected that healthcare and medical record keeping activities would be universally treated in a positive light and the use of authorities (namely governmental agencies) would be equally treated in a negative light by both sexes. Future trends and recommendations are presented along with statistical results collected through personal interviews. PMID:19042524

  16. VIISta Trident: New generation high current implant technology

    NASA Astrophysics Data System (ADS)

    Campbell, C.; Cucchetti, A.; Sinclair, F.; Kellerman, P.; Radovanov, S.; Falk, S.

    2012-11-01

    Recent developments in device architecture and the continuing search for tighter process control have driven the requirement for no energy contamination, high accuracy dose control, more precise angle control and peak dose rate control. The new high current VIISta Trident ion implanter has demonstrated the capability to meet the demanding process control requirements for these next generation devices, and to deliver the productivity necessary for high volume manufacturing. In this paper, we present the innovative elements of the VIISta Trident beam line, the advanced ion beam control capabilities and the impact of these unique features on process performance.

  17. Implanted pedestal-subcollector InP DHBT technology N. Parthasarathy1, 2

    E-print Network

    Rodwell, Mark J. W.

    anneal of the implants, prior to growth (Fig. 2). The active InP DHBT layers are grown by MBE. TLMImplanted pedestal-subcollector InP DHBT technology N. Parthasarathy1, 2 , Z.Griffith2 , M.Urteaga3 Continued scaling of InP based double heterojunction bipolar transistors (DHBTs) is required for their use

  18. Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo

    PubMed Central

    2013-01-01

    Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655

  19. Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies

    SciTech Connect

    Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt

    2012-11-06

    We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

  20. Status of p-on- n Arsenic-Implanted HgCdTe Technologies

    NASA Astrophysics Data System (ADS)

    Mollard, L.; Destefanis, G.; Bourgeois, G.; Ferron, A.; Baier, N.; Gravrand, O.; Barnes, J. P.; Papon, A. M.; Milesi, F.; Kerlain, A.; Rubaldo, L.

    2011-08-01

    In this paper recent developments made by the French Atomic Energies and Alternative Energies Commission (CEA) at the Electronics and Information Technology Laboratory (LETI) on the fabrication of planar p-on- n HgCdTe photodiodes are reported. Results obtained on long-wavelength infrared (LWIR) liquid-phase epitaxy (LPE) and mid- and short-wavelength infrared (MWIR/SWIR) molecular beam epitaxy (MBE) have been previously published. For these photodiodes, p-type doping is obtained by arsenic implantation followed by diffusion and activation under Hg-overpressure annealing. The active layer is n-type doped by indium incorporation during growth. Control of the p-on- n junctions is one of the key points of this technology, requiring good knowledge of the arsenic implantation and diffusion and the evolution of implantation-induced defects. Concerning implantation, the impact of dose (from 2 × 1014 at./cm2 to 2 × 1015 at./cm2) and energy (from 50 keV to 500 keV) on As profiles is considered. The profiles after implantation are modeled using Pearson IV moments. Realistic descriptions of arsenic distributions are obtained, and the evolution of moments with implantation conditions is fitted. In addition, implantation damage is examined by transmission electron microscopy (TEM) and the evolution of defects is studied depending on implantation conditions and Hg-overpressure annealing. Previous results obtained on 30- ?m-pitch LPE LWIR and MBE MWIR/SWIR showed state-of-the-art detector performance. Since these first results, progress has been made to decrease the pixel pitch to 15 ?m and increase the focal-plane array (FPA) format. In this way, 640 × 512 LPE LWIR FPAs have been processed and characterized. In addition we report results obtained on our first p-on- n very long-wavelength infrared (VLWIR) photodiode fabricated at CEA-LETI with ? c = 13.35 ?m at 50 K. These latest results demonstrate the viability of our technology and materials.

  1. A low-frequency versatile wireless power transfer technology for biomedical implants.

    PubMed

    Jiang, Hao; Zhang, Junmin; Lan, Di; Chao; Liou, Shyshenq; Shahnasser, Hamid; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2013-08-01

    Implantable biomedical sensors and actuators are highly desired in modern medicine. In many cases, the implant's electrical power source profoundly determines its overall size and performance . The inductively coupled coil pair operating at the radio-frequency (RF) has been the primary method for wirelessly delivering electrical power to implants for the last three decades . Recent designs significantly improve the power delivery efficiency by optimizing the operating frequency, coil size and coil distance . However, RF radiation hazard and tissue absorption are the concerns in the RF wireless power transfer technology (RF-WPTT) , . Also, it requires an accurate impedance matching network that is sensitive to operating environments between the receiving coil and the load for efficient power delivery . In this paper, a novel low-frequency wireless power transfer technology (LF-WPTT) using rotating rare-earth permanent magnets is demonstrated. The LF-WPTT is able to deliver 2.967 W power at  ? 180 Hz to an 117.1 ? resistor over 1 cm distance with 50% overall efficiency. Because of the low operating frequency, RF radiation hazard and tissue absorption are largely avoided, and the power delivery efficiency from the receiving coil to the load is independent of the operating environment. Also, there is little power loss observed in the LF-WPTT when the receiving coil is enclosed by non-magnetic implant-grade stainless steel. PMID:23893211

  2. The combination methodic of diffusion and implantation technologies for creating optic wave-guided layers in lithium niobate

    NASA Astrophysics Data System (ADS)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2015-04-01

    The implantation of copper into Lithium Niobate in the prohibited crystal zone forms a definite energetic level for optic transits. This paper examines conditions of optic wave-guided layers formation on Niobate Lithium due to the method of implantation copper ions with the next diffusion. Reflect Spectrum in consequences implantation is extended. The transfer of the optical power from the primary beam into the another beam was discovered and in reverse. Photo galvanic characteristics of implantation specimen identity of crystal by traditional technology and doping CuO manufacture.

  3. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  4. Immediate Implant Placement in Anterior Aesthetic Region and Assessment using Cone-Beam Computed Tomography Scan Technology

    PubMed Central

    Joshi, Vaibhav; Gupta, Shalini

    2015-01-01

    The esthetics and functional integrity of the periodontal tissues may be compromised by the dental loss. Dental implants have become an additional tool in the armamentarium of treatment options to offer the patient for the replacement of a missing tooth or teeth. Diagnosis and treatment planning is the key factors in achieving the successful outcome after placing and restoring implants placed immediately after tooth extraction. The introduction of cone-beam computed tomography (CBCT) for the maxillofacial region provides opportunities for dental practitioners to request multiplanar imaging. This case report demonstrates the use of CBCT scan technology in immediate implant placement in the maxillary anterior teeth region. PMID:26668494

  5. Making it stick: the role of structural design in implantable technologies.

    PubMed

    Lee, Wontae; Leask, Richard L; Moraes, Christopher

    2015-11-01

    Designing technologies that work within the human body requires innovation at the interface of biology, engineering, and material sciences. The human body presents a surprisingly hostile environment towards technologies designed to improve health, and recent approaches to these problems have leveraged the links between material form and function to improve implantable systems. The use of physical structure has emerged as a key design parameter in developing these systems, and has recently been applied to make significant progress in the field. Here, we highlight recent studies that demonstrate the innovative use of structure in the design of technologies meant to operate within the human body, with a specific focus on improving their biointegration, delivery, and functionality. PMID:26446511

  6. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  7. Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.

    PubMed

    Hughes, Mark A; Lourenço, Manon A; Carey, J David; Murdin, Ben; Homewood, Kevin P

    2014-12-01

    We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence. PMID:25606863

  8. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.

  9. Microarray Image Compression: SLOCO and the E ect of Information Loss

    E-print Network

    Yu, Bin

    of California, Berkeley Abstract Microarray image technology is a powerful tool for monitoring the expression. 4 The proven and potential scienti#12;c value of microarray image technology is enormousMicroarray Image Compression: SLOCO and the E#11;ect of Information Loss R. Jornsten a;1 W. Wang b

  10. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.

    PubMed

    Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori

    2003-01-01

    In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization. PMID:14598098

  11. Neurological asymmetries immediately after unilateral ECT.

    PubMed Central

    Kriss, A; Blumhardt, L D; Halliday, A M; Pratt, R T

    1978-01-01

    Twenty-nine right handed patients were examined neurologically before and immediately after each of 62 unilateral ECTs to the dominant and non-dominant hemispheres. Most convulsions were followed by signs of transitory neurological dysfunction referable to the treated hemisphere. These signs included deep tendon reflex asymmetry, hemiparesis, tactile and visual inattention, and homonymous hemianopia. After treatment to the right hemisphere some patients had left visuospatial neglect, while all patients who had dominant hemisphere ECT were transiently dysphasic. All neurological abnormalities tested resolved within 20 minutes of treatment. PMID:731257

  12. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Pelletier, J.; Lacoste, A.; Béchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

    2005-05-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

  13. Racial disparity and technology diffusion: the case of cardioverter defibrillator implants, 1996-2001.

    PubMed Central

    Stanley, Ava; DeLia, Derek; Cantor, Joel C.

    2007-01-01

    BACKGROUND: Although implantable cardioverter defibrillator (ICD) therapy is widely endorsed for preventing sudden cardiac death (SCD), prior research documented a large black-white disparity in ICD therapy among the elderly. No studies have examined this disparity among nonelderly adults or over time as ICD therapy became widely diffused. OBJECTIVE: This study compares disparity in use of ICD therapy for 1996-1998 to 1999-2001 between African Americans and other adults. METHODS: The National Hospital Discharge Survey is used to compare ICD utilization between black and other adults diagnosed with ventricular tachycardia, ventricular fibrillation or cardiac arrest. RESULTS: Adjusting for patient and hospital characteristics, ICD use per 100 at-risk patients rose from 11.0 to 27.3 among African Americans and from 24.0 to 37.5 among other adults between 1996-1998 and 1999-2001. Although the disparity was evident throughout the study period, it declined by 40%. Compared with their nonblack counterparts, black adults at risk for SCD were five years younger on average (p < 0.01) and more likely to be female (p < 0.01). CONCLUSIONS: As ICD therapy became more widely available, use of this technology increased faster for black versus other adults, and the disparity in use declined but was not eliminated. Policymakers and clinicians should focus on increasing access among underserved populations to promising new technologies. Research focusing only on the elderly may miss important racial disparities when there is a race difference in the age distribution of disease risk. Further research should explore the relationship of technology diffusion to disparities in health service use. PMID:17393943

  14. Representation of ion implantation projected range profiles by Pearson distribution curves for silicon technology

    NASA Astrophysics Data System (ADS)

    Bowyer, M. D. J.; Ashworth, D. G.; Oven, R.

    1992-08-01

    Several authors have reported difficulties in fitting Pearson curves to implants into amorphous targets. However, we show that accurate Pearson curve fitting to simulations of projected range profiles in amorphous targets is possible when implant profiles are available for which optimised moments can be generated. In previous literature few comparisons can be found between Pearson curve fits and the original implant profiles whereas, in the current paper, comparisons are made with high-resolution simulated profiles for B, P and As implanted into amorphous Si. These profiles were derived using Monte-Carlo simulations each of 1,000,000 ion trajectories. Fit coefficients that allow the regeneration of Pearson curves, optimised to fit Monte-Carlo implant profiles, are provided for the ions, B, P, As and Sb implanted, with energies in the range 25-300 keV, into targets of amorphous Si, silicon dioxide and silicon nitride. Comparisons of infinite and optimised moments, for B and P implants, show that the best fit moments (and corresponding Pearson type) can only be determined as part of an optimisation process, and not from infinite moments directly (such as moments from a backward Boltzmann transport equation solver).

  15. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  16. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy.

    PubMed

    Wu, Weigang; Zheng, Qixin; Guo, Xiaodong; Sun, Jianhua; Liu, Yudong

    2009-12-01

    In the world, bone tuberculosis is still very difficult to treat and presents a challenge to clinicians. In this study, we utilized 3D printing technology to fabricate a programmed release multi-drug implant for bone tuberculosis therapy. The construction of the drug implant was a multi-layered concentric cylinder divided into four layers from the center to the periphery. Isoniazid and rifampicin were distributed individually into the different layers in a specific sequence of isoniazid-rifampicin-isoniazid-rifampicin. The drug release assays in vitro and in vivo showed that isoniazid and rifampicin were released orderly from the outside to the center to form the multi-drug therapeutic alliance, and the peak concentrations of drugs were detected in sequence at 8 to 12 day intervals. In addition, no negative effect on the proliferation of rabbit bone marrow mesenchymal stem cells was detected during the cytocompatibility assay. Due to its ideal pharmacologic action and cytocompatibility, the programmed release multi-drug implant with a complex construction fabricated by 3D printing technology could be of interest in prevention and treatment of bone tuberculosis. PMID:19901446

  17. Developable BARC (DBARC) technology as a solution to today's implant lithography challenges

    NASA Astrophysics Data System (ADS)

    Cameron, James; Sung, Jin Wuk; Wong, Sabrina; Ware, Adam; Yamamoto, Yoshihiro; Kitaguchi, Hiroaki; Vyklicky, Libor; Holmes, Steve; Popova, Irene; Kwong, Ranee; Varanasi, Pushkara Rao

    2011-04-01

    As patterning of implant layers becomes increasingly challenging it is clear that the standard resist/Top Antireflective Coating (TARC) process may be soon be limited in terms of its ability to meet implant targets at future nodes. A particularly attractive solution for patterning implant levels is the use of a Developable Bottom Anti-Reflective Coating (DBARC). Similar to a conventional BARC, a DBARC controls reflectivity from the underlying substrate by absorbing the incident radiation thereby minimizing detrimental effects of reflected light. However, unlike a conventional Bottom Anti-Reflective Coating (BARC) which requires a BARC open etch step, the DBARC is developed with the resist in a single step leaving the substrate ready for implantation. These properties make DBARC very attractive for implant layers. In this paper, we report on the development of KrF and ArF DBARCs for implant applications. Our primary interest is in developing solutions for patterning Post-Gate implant levels. We briefly describe our fundamental design concepts and demonstrate the concepts are robust as we develop ARTM602 DBARC to address the criteria for a production worthy DBARC. This includes data on EBR performance, drain line compatibility, sublimation and footing coverage over topography. In terms of lithographic performance, we demonstrate improved capability over the incumbent SLR/TARC process in many key areas. This includes through pitch performance, process window and profile integrity over topography for both KrF and ArF DBARC solutions. Several strategies to enhance profile by resist/DBARC matching are also demonstrated. From a platform robustness standpoint, we show that AR602 DBARC is ready for high volume manufacturing in terms of batch to batch control and shelf life.

  18. Case report: transient left bundle branch block associated with ECT.

    PubMed

    Adams, Daniel A; Kellner, Charles H; Aloysi, Amy S; Majeske, Matthew F; Liebman, Lauren S; Ahle, Gabriella M; Bryson, Ethan O

    2014-01-01

    We present the first reported case of transient left bundle branch block (LBBB) occurring during electroconvulsive therapy (ECT). LBBB is an important clinical finding, as it is associated with a significant increase in mortality. Physicians providing ECT should be aware of the significance of new-onset LBBB; it may occur during treatment. PMID:25377155

  19. The Effect of Technology and Testing Environment on Speech Perception Using Telehealth with Cochlear Implant Recipients

    ERIC Educational Resources Information Center

    Goehring, Jenny L.; Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Valente, Daniel L.; McCreery, Ryan W.; Diaz, Gina R.; Sanford, Todd; Harpster, Roger

    2012-01-01

    Purpose: In this study, the authors evaluated the effect of remote system and acoustic environment on speech perception via telehealth with cochlear implant recipients. Method: Speech perception was measured in quiet and in noise. Systems evaluated were Polycom visual concert (PVC) and a hybrid presentation system (HPS). Each system was evaluated…

  20. MASTER : MASTER Master Sciences, Technologies, Sant, Mention Biologie et Sant, Spcialit Analyse du Risque Toxicologique pour le Consommateur finalit professionnelle

    E-print Network

    Brest, Université de

    Intitulé MASTER : MASTER Master Sciences, Technologies, Santé, Mention Biologie et SantéECTS) UE 3 : Biochimie de la transduction des signaux cellulaires (4ECTS) UE 4 : Biologie du Développement et différenciation cellulaire (4ECTS) UE 5 : Méthodologie ­ Outils de la biologie (4ECTS) UE 6

  1. Breast Implants

    MedlinePLUS

    ... ALCL) in women with breast implants. Outline the regulatory history of breast implants in the United States. ... Freedom of Information Requests More in Breast Implants Regulatory History of Breast Implants in the U.S. Saline- ...

  2. Electroconvulsive therapy (ECT) in literature: Sylvia Plath's The Bell Jar.

    PubMed

    Kellner, Charles H

    2013-01-01

    Sylvia Plath's well-known novel, The Bell Jar, recounts her experience of a severe depressive episode. In the novel, the protagonist is treated with electroconvulsive therapy (ECT), as was Plath in life. The first ECT is given in the now-obsolete "unmodified" form, without general anesthesia. Later in the story, she receives ECT again, this time with full general anesthesia and muscle relaxation, as is the standard of care today. This chapter examines how the novelistic descriptions of the treatment compare with actual clinical practice. PMID:24290484

  3. A method and technical equipment for an acute human trial to evaluate retinal implant technology

    NASA Astrophysics Data System (ADS)

    Hornig, Ralf; Laube, Thomas; Walter, Peter; Velikay-Parel, Michaela; Bornfeld, Norbert; Feucht, Matthias; Akguel, Harun; Rössler, Gernot; Alteheld, Nils; Lütke Notarp, Dietmar; Wyatt, John; Richard, Gisbert

    2005-03-01

    This paper reports on methods and technical equipment to investigate the epiretinal stimulation of the retina in blind human subjects in acute trials. Current is applied to the retina through a thin, flexible microcontact film (microelectrode array) with electrode diameters ranging from 50 to 360 µm. The film is mounted in a custom-designed surgical tool that is hand-held by the surgeon during stimulation. The eventual goal of the work is the development of a chronically implantable retinal prosthesis to restore a useful level of vision to patients who are blind with outer retinal degenerations, specifically retinitis pigmentosa and macular degeneration.

  4. Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices

    PubMed Central

    Sutanto, Jemmy; Anand, Sindhu; Sridharan, Arati; Korb, Robert; Zhou, Li; Baker, Michael S.; Okandan, Murat; Muthuswamy, Jit

    2013-01-01

    We report here a successful demonstration of a flip-chip packaging approach for a microelectromechanical systems (MEMS) device with in-plane movable microelectrodes implanted in a rodent brain. The flip-chip processes were carried out using a custom-made apparatus that was capable of the following: 1) creating Ag epoxy microbumps for first-level interconnect; 2) aligning the die and the glass substrate; and 3) creating non-hermetic encapsulation (NHE). The completed flip-chip package had an assembled weight of only 0.5 g significantly less than the previously designed wire-bonded package of 4.5 g. The resistance of the Ag bumps was found to be negligible. The MEMS micro-electrodes were successfully tested for its mechanical movement with microactuators generating forces of 450 ?N with a displacement resolution of 8.8 ?m/step. An NHE on the front edge of the package was created by patterns of hydrophobic silicone microstructures to prevent contamination from cerebrospinal fluid while simultaneously allowing the microelectrodes to move in and out of the package boundary. The breakdown pressure of the NHE was found to be 80 cm of water, which is significantly (4.5–11 times) larger than normal human intracranial pressures. Bench top tests and in vivo tests of the MEMS flip-chip packages for up to 75 days showed reliable NHE for potential long-term implantation. PMID:24431925

  5. The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report.

    PubMed

    Lanis, Alejandro; Álvarez Del Canto, Orlando

    2015-01-01

    The incorporation of virtual engineering into dentistry and the digitization of information are providing new perspectives and innovative alternatives for dental treatment modalities. The use of digital surface scanners with surgical planning software allows for the combination of the radiographic, prosthetic, surgical, and laboratory fields under a common virtual scenario, permitting complete digital treatment planning. In this article, the authors present a clinical case in which a guided implant surgery was performed based on a complete digital surgical plan combining the information from a cone beam computed tomography scan and the virtual simulation obtained from the 3Shape TRIOS intraoral surface scanner. The information was imported to and combined in the 3Shape Implant Studio software for guided implant surgery planning. A surgical guide was obtained by a 3D printer, and the surgical procedure was done using the Biohorizons Guided Surgery Kit and its protocol. PMID:25822304

  6. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  7. Survey of high-voltage pulse technology suitable for large-scale plasma source ion implantation processes

    SciTech Connect

    Reass, W.A. )

    1994-03-01

    Many new plasma processes ideas are finding their way from the research lab to the manufacturing plant floor. These require high voltage (HV) pulse power equipment, which must be optimized for application, system efficiency, and reliability. Although no single HV pulse technology is suitable for all plasma processes, various classes of high voltage pulsers may offer a greater versatility and economy to the manufacturer. Technology developed for existing radar and particle accelerator modulator power systems can be utilized to develop a modern large scale plasma source ion implantation (PSII) system. The HV pulse networks can be broadly defined by two classes of systems, those that generate the voltage directly, and those that use some type of pulse forming network and step-up transformer. This article will examine these HV pulse technologies and discuss their applicability to the specific PSII process. Typical systems that will be reviewed will include high power solid state, hard tube systems such as crossed-field hollow beam'' switch tubes and planar tetrodes, and soft'' tube systems with crossatrons and thyratrons. Results will be tabulated and suggestions provided for a particular PSII process.

  8. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.

  9. Cochlear implantation: a biomechanical prosthesis for hearing loss

    PubMed Central

    Yawn, Robert; Hunter, Jacob B.; Sweeney, Alex D.

    2015-01-01

    Cochlear implants are a medical prosthesis used to treat sensorineural deafness, and one of the greatest advances in modern medicine. The following article is an overview of cochlear implant technology. The history of cochlear implantation and the development of modern implant technology will be discussed, as well as current surgical techniques. Research regarding expansion of candidacy, hearing preservation cochlear implantation, and implantation for unilateral deafness are described. Lastly, innovative technology is discussed, including the hybrid cochlear implant and the totally implantable cochlear implant. PMID:26097718

  10. State of the art of IT-based high precision patch/implant system technology development for building/large structure safety management in Korea

    NASA Astrophysics Data System (ADS)

    Park, Ki-Tae; Yu, Young-Jun; Lee, Bomi; Lee, Jin-Hyung

    2012-04-01

    Damage to infrastructure is a real concern at present, caused primarily by worldwide climate anomalies, global warming, and natural disasters. Korea has begun research to develop a high precision patch/implant system using new IT as a basis, as critical element in building/large structure safety management, to adjust to this situation. Technologies which must be developed for this research are those which measure and evaluate the soundness and safety of structures based on the measurements of an attached sensor. During the research period, optical fiber sensor patches and wireless sensor capsule implants along with various sensor technologies, stress sensing and structure condition evaluation technologies, high durability sensors and low-power compact smart structure sensors will be developed effectively for network hardware technologies. Similarly high precision image processing for automatic crack extraction will be developed along with radiation sensor application technologies, combined management/control technologies for development systems, and practical technologies for building/large structure development systems. Through the results, we hope to acquire higher sensor system performance with a measurement scope (for precision, etc.) goal at least 200% better than conventional sensor systems. The goal is to attain safety management planning and commercialization for automatic and high technology buildings/large structures. If such research is successfully developed, groundbreaking developments for maintenance related facilities is expected.

  11. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  12. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  13. Materials processing towards development of rapid prototyping technology for manufacturing biomedical implants

    NASA Astrophysics Data System (ADS)

    Pekin, Senol

    2000-10-01

    Materials processing towards development of fused deposition of materials (FDM) method for manufacturing biomedical implants has been studied experimentally. Main processing steps consisted of thermoplastic binder development in the ethylene vinyl acetate (EVA)-microcrystalline wax system, feedstock extrusion, characterization and optimization of binder degradation, and sintering of calcium deficient hydroxyapatite. Differential scanning calorimetry (DSC) revealed that the melting index (MI) of the copolymer affects the temperature location of the solidification exotherm, whereas the effect on the temperature location of the melting endotherm was negligible. Nonisothermal measurement of viscosity of different blends as a function of VA content of the EVA component revealed that the microcrystalline wax is compatible with 25--14% VA-containing EVA grades. Further DSC analysis revealed that co-crystallization leads to compatible EVA-microcrystalline wax blends. A typical binder formulation that was developed in the present work has a viscosity of about 700 cP at 140°C, a compressive yield strength of 6 MPa and an elastic modulus of about 600 MPa, and contained 15--20% EVA and 80--85% microcrystalline wax. Various filaments with a nominal diameter of 1.8 mm were extruded by using such a binder, and calcium pyro-phosphate powder that had a distribution modulus of about 0.37. Measurement of physical dimensions of the filament revealed that fluid state can be achieved in the filaments. Simultaneous thermal analysis of degradation characteristics of the typical binder formulations revealed that degradation sequence is oxidation of the hydrocarbons, evaporation of the hydrocarbons, degradation of the vinyl acetate, and degradation of the ethylene chain. A rate controlled binder removal system was developed and used in order to optimize the binder removal schedule. Sintering of gel-cast calcium hydroxyapatite was studied by means of thermal analysis, XRD, mechanical testing, and SEM, both for sub-micron and the agglomerated powder type. Transformation temperatures of tri-calcium phosphate upon cooling were determined as 1475°C for (alpha' to alpha, 1190°C for alpha to beta, and 800--700°C range for beta to hydroxy-oxyapatite transformation. Dilatometry revealed that dimensional change reaches to saturation at 1200°C. Mechanical testing of the parts sintered at 1200--1500°C revealed that compressive strength in the 2--10 MPa range was achieved.

  14. Science and Technology of Bio-Inert Thin Films as Hermetic-Encapsulating Coatings for Implantable Biomedical Devices: Application to Implantable Microchip in the Eye for the Artificial Retina

    NASA Astrophysics Data System (ADS)

    Auciello, Orlando; Shi, Bing

    Extensive research has been devoted to the development of neuron prostheses and hybrid bionic systems to establish links between the nervous system and electronic or robotic prostheses with the main focus of restoring motor and sensory functions in blind patients. Artificial retinas, one type of neural prostheses we are currently working on, aim to restore some vision in blind patients caused by retinitis picmentosa or macular degeneration, and in the future to restore vision at the level of face recognition, if not more. Currently there is no hermetic microchip-size coating that provides a reliable, long-term (years) performance as encapsulating coating for the artificial retina Si microchip to be implanted inside the eye. This chapter focuses on the critical topics relevant to the development of a robust, long-term artificial retina device, namely the science and technology of hermetic bio-inert encapsulating coatings to protect a Si microchip implanted in the human eye from being attacked by chemicals existing in the eye's saline environment. The work discussed in this chapter is related to the development of a novel ultrananocrystalline diamond (UNCD) hermetic coating, which exhibited no degradation in rabbit eyes. The material synthesis, characterization, and electrochemical properties of these hermetic coatings are reviewed for application as encapsulating coating for the artificial retinal microchips implantable inside the human eye. Our work has shown that UNCD coatings may provide a reliable hermetic bio-inert coating technology for encapsulation of Si microchips implantable in the eye specifically and in the human body in general. Electrochemical tests of the UNCD films grown under CH4/Ar/H2 (1%) plasma exhibit the lowest leakage currents (˜7 × 10-7 A/cm2) in a saline solution simulating the eye environment. This leakage is incompatible with the functionality of the first-generation artificial retinal microchip. However, the growth of UNCD on top of the Si microchip passivated by a silicon nitride layer or the oxide layers is also under investigation in our group as introduced in this chapter. The electrochemically induced leakage will be reduced by at least one to three orders of magnitude to the range of 10-10 A/cm2, which is compatible with reliable, long-term implants.

  15. Introduction to Special Issue on Implantable Electronics With great advances in electronics and electrode technologies, it has become possible

    E-print Network

    Bhunia, Swarup

    systems in future. The next two articles describe implantable systems that interface with the brain as in Functional Electrical Stimulation (FES) to assist patients in grasping, standing, or urination. Deep brain issue of JETC presents several articles that highlight the state-of-the- art implantable electronics

  16. ECT in the Treatment of Organic Psychosis in Huntington's Disease.

    PubMed

    Evans, Dwight L.; Pedersen, Cort A.; Tancer, Manuel E.

    1987-01-01

    Huntington's disease (HD) is a progressive neurological disorder characterized by choreiform movements, dementia, and psychiatric symptoms. The psychiatric symptoms often lead to long-term psychiatric hospitalization. We report the case of a 49-year-old woman with HD of 1 year's duration who presented with an organic psychotic syndrome with voices telling her to kill herself or her children. The psychosis was refractory to neuroleptic treatment (up to 1,250 mg chlorpromazine equivalents per day). Depressive symptoms emerged but were neither of a magnitude nor of a duration to suggest a major affective disorder. Nonetheless, we treated the patient empirically with antidepressants, which had to be discontinued because of symptomatic orthostatic hypotension. Based on the persistent psychosis with suicidal and homicidal ideation and possible long-term state psychiatric hospitalization, we recommended electroconvulsive therapy (ECT). ECT was successful in treating the psychosis as well as the depressive symptoms. There was no worsening of the patient's dementia and only a slight progression in her choreiform movements. The authors question whether ECT may be of benefit in treating the psychosis of HD in the presence or absence of depressive symptoms and call for further research to determine if the use of ECT in HD patients with psychosis could prevent, or at least delay, placement in a long-term psychiatric hospital. PMID:11940907

  17. Scattering E#ects in the TESLA Colllimation Adriana Bungau

    E-print Network

    Scattering E#ects in the TESLA Colllimation System Adriana Bungau University of Manchester scattering angles and random output direction. In the TESLA TDR simulations, the collimation depth was set of the particles which strike the TESLA collima­ tors can not be possible without taking into consideration

  18. Color Appearance: The E ects of Illumination and Spatial Pattern

    E-print Network

    Wandell, Brian A.

    Color Appearance: The E ects of Illumination and Spatial Pattern Brian A. Wandell Psychology that the human eye is a very poor instrument for discriminating lights of di erent spectral power distributions. The two spectral power distributions shown in the gure have the same color appearance. One signal

  19. Child and Adolescent Clinical Psychology (Semester 3, 4 ECTS) Description

    E-print Network

    Karlsson, Brynjar

    Child and Adolescent Clinical Psychology (Semester 3, 4 ECTS) Description This course provides advanced study of child and adolescent clinical psychology, with reference to etiology, symptomology the developmental and systemic (i.e., family, school, community) contexts of child, adolescent, and family problems

  20. Current Implant Surface Technology: An Examination of Their Nanostructure and Their Influence on Fibroblast Alignment and Biocompatibility

    PubMed Central

    Barr, S.; Hill, E.; Bayat, A.

    2009-01-01

    Systematic reviews indicate that breast implant texture confers a protective effect on capsular contracture. Fibroblasts are affected by micro- and nanotopographies. Few previous studies have investigated the inherent topographies of existing breast implants and the surfaces with which body tissue is exposed. Aims: To examine currently available breast implant surfaces at high resolution and evaluate features within their surface that have been demonstrated to influence fibroblast alignment. Methods: Using scanning electron and light microscopy, 5 distinct smooth and textured silicone implants including the Mentor Siltex® (Mentor Corporation, Santa Barbara, Calif) and Allergan Biocell® (Allergan Medical Corporation, Santa Barbara, Calif) surfaces were investigated at high magnification to illustrate their intrinsic surface topographies. Results: The images obtained illustrate remarkable micro- and nanoscale topographies. Each surface produced a distinctive microenvironment capable of influencing cell shape and thus biointegration. These features are illustrated by our unique, high-magnification images. The smooth surface exhibits a shallow, regular, 5-µm period rippled texture that may explain higher reported contracture rates, while the Biocell and Siltex surfaces show 100- to 200-µm deep but random features that have been shown to anchor the implant to breast tissue and reduce contracture. Results allow a cell's eye view of these implants, with an explanation of why these types of topographies influence the success of these implants. Conclusions: We assessed commonly available silicone implants and offer a unique overview into their surface topographies and how they are manufactured. We conclude that these surfaces require modernization. Our findings provide further insight into potential interactions between cellular assemblies and artificial surfaces and may contribute to the development of improved implant surfaces. PMID:19606207

  1. Cochlear Implants

    MedlinePLUS

    A cochlear implant is a small, complex electronic device that can help to provide a sense of sound. People who are ... of-hearing can get help from them. The implant consists of two parts. One part sits on ...

  2. Cochlear implant

    MedlinePLUS

    ... antenna. This part of the implant receives the sound, converts the sound into an electrical signal, and sends it to ... implants allow deaf people to receive and process sounds and speech. However, it is important to understand ...

  3. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    PubMed

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. PMID:22750449

  4. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  5. Preventive implantations.

    PubMed

    Denissen, H W; Kalk, W

    1991-02-01

    Preventive implantology is concerned with the preservation of the alveolar ridge of the (edentulous) jaw. Maintaining the volume of the alveolar ridge is a major problem in the prevention of oral disease. Loss of teeth and tooth roots leads to resorption of residual ridges. This being so, it is a logical approach to substitute artificial analogues for lost tooth roots. Hydroxyapatite implants have been studied as submerged tooth root substitutes and shown to maintain the bulk of the alveolar ridge. A drawback of the implants is that the ridge maintenance depends solely on the physical presence of the hydroxyapatite implants. No physiological influence on bone preservation can be attributed to the implants. However, long term research indicates that 75 per cent of the implants survive under full lower dentures and 100 per cent of the implants under fixed partial dentures. PMID:1848531

  6. Oxygen implanter for simox

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Benveniste, V.; Ryding, G.; Douglas-Hamilton, D. H.; Reed, M.; Gagne, G.; Armstrong, A.; Mack, M.

    1985-01-01

    Interest in silicon or) insulator (SOI) technology has led to the development of several alternatives to silicon on sapphire. One of the most promising techniques makes use of an ion implanter to form a buried oxide layer directly in the silicon substrate. To have useful single crystalline silicon on top of the oxide layer, it is necessary to do the implant at high wafer temperatures and rely on solid phase epitaxy to maintain surface structure. A high current, 160 keV, Nova ion implanter has been adapted to provide the ability to perform oxygen implants at elevated temperatures. The operator is free to choose any temperature in the range between 400°C and 600°C. The system then preheats the wafers to the selected temperature before the implant begins. A novel technique for providing both heating and cooling capability to the end station is employed. An infrared signal from the wafers is monitored by a room temperature lead salt detector. This signal is then used by a servo-loop to control the heating of the end station and to maintain the wafer temperature to within ± 20°C during the implant. High doses of the type necessary to form a silicon dioxide buried layer require long lived, high current oxygen sources. An oxygen source has been specially developed, which provides as much as 10 mA of ion current. At a 6 mA output, source lifetimes in excess of 40 hours have been achieved. The implanter uses a specifically designed high temperature disk, which holds ten wafers, each of four inch diameter. A variety of implant angles lying between 0° and 15° is available. The beam is scanned mechanically and an electron flood gun can be used to prevent wafer charging. Special thermal barriers have been employed to protect the apparatus from extreme temperatures and to make the heating sequence more efficient and more rapid. Every effort has been made to avoid contamination of the implant. The implant disk, for example, is overcoated with silicon monoxide. Silicon apertures have also been designed for the machine. The implanter has been used to do a high current oxygen implant with a dose of 1.25 × 10 18/cm 2, at a temperature of 570°C. Preliminary analysis of the results is very promising.

  7. High Productivity Implantation ''PARTIAL IMPLANT''

    SciTech Connect

    Hino, Masayoshi; Miyamoto, Naoki; Sakai, Shigeki; Matsumoto, Takao

    2008-11-03

    The patterned ion implantation 'PARTIAL IMPLANT' has been developed as a productivity improvement tool. The Partial Implant can form several different ion dose areas on the wafer surface by controlling the speed of wafer moving and the stepwise rotation of twist axis. The Partial Implant system contains two implant methods. One method is 'DIVIDE PARTIAL IMPLANT', that is aimed at reducing the consumption of the wafer. The Divide Partial Implant evenly divides dose area on one wafer surface into two or three different dose part. Any dose can be selected in each area. So the consumption of the wafer for experimental implantation can be reduced. The second method is 'RING PARTIAL IMPLANT' that is aimed at improving yield by correcting electrical characteristic of devices. The Ring Partial Implant can form concentric ion dose areas. The dose of wafer external area can be selected to be within plus or minus 30% of dose of wafer central area. So the electrical characteristic of devices can be corrected by controlling dose at edge side on the wafer.

  8. PCB Conductor Dimension and Alignment Inspection with GMR Based ECT Probe

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Chomsuwan, K.; Iwahara, M.; Wakiwaka, H.; Shoji, S.

    2005-04-01

    Eddy current testing (ECT) probe consisted of spin-valve giant magneto-resistance (SV-GMR) sensor and meander type exciter coil applied to printed circuited board (PCB) conductor dimension and alignment inspection is proposed in this paper. High-frequency excitation up to 18 MHz is allowed to inspect the thin PCB conductor, less than 10 ?m. The proposed ECT probe characteristics and configuration were presented. The inspection results were shown that the proposed ECT probe will provide an accurate inspection.

  9. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Matveeva, V. A.; Meisner, S. N.; Matveev, A. L.

    2015-11-01

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  10. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    PubMed

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that ?-tubulin is PARylated during mitosis. PARylation of ?-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis. PMID:25486481

  11. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    PubMed

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary. PMID:20141573

  12. Mechanisms of action of ECT in Parkinson's disease: possible role of pineal melatonin.

    PubMed

    Sandyk, R

    1990-01-01

    Recent clinical studies have suggested that electroconvulsive therapy (ECT) may be efficacious in the therapy of Parkinson's disease (PD). However, the mechanisms of action of ECT in PD are largely unknown. PD may be associated with reduction in the secretory activity of pineal melatonin, and the therapeutic efficacy of ECT in PD may be associated with an effect on the secretory activity of pineal melatonin. Further studies involving analysis of plasma melatonin levels and circadian release prior to and following ECT are needed more precisely to determine the role of pineal melatonin in PD and in the therapeutic efficacy of ETC in PD. PMID:2269603

  13. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  14. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  15. Cochlear Implants

    MedlinePLUS

    ... or after the patient developed language skills The motivation of the patient and his or her family ... from a cochlear implant and will have the motivation to participate in the process. It is important ...

  16. Dental Implants

    MedlinePLUS Videos and Cool Tools

    Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful facts so you ... found in nature. What Happens When You Lose a Tooth? When you lose a tooth, especially a ...

  17. Cochlear Implants

    MedlinePLUS

    ... under the skin behind the ear, connected to electrodes that are inserted inside the cochlea. An external ... stimulator then sends the signals to the implanted electrodes in the cochlea. The electrodes? signals stimulate the ...

  18. [Cochlear implants].

    PubMed

    Gersdorff, M

    1997-01-01

    Cochlear implants aim at the rehabilitation of profound bilateral deafness. The cochlear implant is a prosthesis made out of surgically implanted cochlear electrodes connected to an external vocal processor. The external acoustic signals are converted into electrical signals coded by the vocal processor. They are then sent out, by a transcutaneous mode, to an internal receptor. This receptor transmits the information to the intracochlear electrodes. Initially, the cochlear implantation was recommended to patients totally deaf following a trauma, a degenerative disease of the inner ear, a meningitis or the use of ototoxic drugs. These patients could not gain from conventional hearing aids and were condemned to silence. More recently, the authors have been impressed by spectacular results with patients having lost their hearing during adulthood (postlingual). The challenge here is quite different, as its aim is to open up--and not to reopen--a child to a sensation that he has never perceived before. This allows the child to develop a coding, a recognition of the acoustic message. The first results are very encouraging. Scientifically, the implantation is also a research tool in various fields: surgical, neurophysiological, neuropsychological, speech therapy, social and cultural. The cochlear implant is an "avant-garde" project. It has changed our approach to profound deafness. It represents the only hope for the profoundly deaf person to reach a satisfactory rehabilitation and social integration. PMID:9532864

  19. DIS[subscript 2]ECT: A Framework for Effective Inclusive Science Instruction

    ERIC Educational Resources Information Center

    Spaulding, Lucinda S.; Flannagan, Jenny Sue

    2012-01-01

    The purpose of this article is to provide special education and general education teachers a framework (DIS[subscript 2]ECT) for teaching science in inclusive settings. DIS2ECT stands for Design (Backwards); Individualization; Scaffolding and Strategies; Experiential learning; Cooperative Learning; and Teamwork. This framework was derived from our…

  20. Shape Invariant Modelling of Circadian Rhythms with Random E#ects and

    E-print Network

    Wang, Yuedong

    Shape Invariant Modelling of Circadian Rhythms with Random E#ects and Smoothing Spline ANOVA dynamics such as circadian rhythms. Under the assumption that the expected response functions of all methods to a real data set to investigate disease e#ects on circadian rhythms of cortisol, a hormone

  1. Accounting for the E ects of Mutual Coupling in Adaptive Antennas Raviraj S. Adve

    E-print Network

    Adve, Raviraj

    Accounting for the E ects of Mutual Coupling in Adaptive Antennas Raviraj S. Adve Research Electronic Pkwy, Rome, NY 13441. Abstract This paper presents a method to account for the e ects of mutual coupling in least squared er- ror adaptive algorithms. The mutual coupling is quantized using the Method

  2. Elimination of the E ects of Mutual Coupling in an Adaptive Nulling System with a Look

    E-print Network

    Adve, Raviraj

    Elimination of the E ects of Mutual Coupling in an Adaptive Nulling System with a Look Direction, Syracuse, NY 13244. Introduction Gupta and Ksienski 1] demonstrate that the mutual coupling between (SINR). The mutual coupling also slows the response of the array. To compensate for the e ect of mutual

  3. The E ect of Barriers on The Tidal Range in Yong Ming Tang

    E-print Network

    interest in constructing tidal barrages, either to control the tide or to extract power. CorrespondinglyThe E ect of Barriers on The Tidal Range in Estuaries Yong Ming Tang Abstract Numerical simulations of the shallow water equations are used to study the e ect of topographic barriers on the tidal range

  4. Supporting Open Access to European Academic Courses: The ASK-CDM-ECTS Tool

    ERIC Educational Resources Information Center

    Sampson, Demetrios G.; Zervas, Panagiotis

    2013-01-01

    Purpose: This paper aims to present and evaluate a web-based tool, namely ASK-CDM-ECTS, which facilitates authoring and publishing on the web descriptions of (open) academic courses in machine-readable format using an application profile of the Course Description Metadata (CDM) specification, namely CDM-ECTS. Design/methodology/approach: The paper…

  5. A Vervaat-like path transformation for the re ected Brownian bridge

    E-print Network

    Henri Poincaré -Nancy-Université, Université

    A Vervaat-like path transformation for the re ected Brownian bridge conditioned on its local time transformation for the re ected Brownian bridge conditioned on its local time at 0: up to random shifts, this process equals the two processes constructed from a Brownian bridge and a Brownian excursion by adding

  6. Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models

    E-print Network

    Bath, University of

    Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models 1 Introduction The potential detrimental e#ects of ambient air pollution is a major issue in public (2004)). Large multi­city studies such as `Air pollution and health: a European approach' (APHEA

  7. CLNS 99/1605 Bounding the penguin e#ects in determinations of # from

    E-print Network

    CLNS 99/1605 Bounding the penguin e#ects in determinations of # from B 0 (t) # # + # - Dan Pirjol, 1999) Abstract In the absence of the QCD penguin contributions a measurement of the time­ dependent proposed in the literature on the magnitude of the penguin e#ects on this determination, the prototype

  8. LEVERAGING AUTOMATIC SPEECH RECOGNITION IN COCHLEAR IMPLANTS FOR IMPROVED SPEECH INTELLIGIBILITY UNDER REVERBERATION

    E-print Network

    Texas at Dallas, University of

    LEVERAGING AUTOMATIC SPEECH RECOGNITION IN COCHLEAR IMPLANTS FOR IMPROVED SPEECH INTELLIGIBILITY technology for cochlear implant (CI) devices, there still remains a significant gap between speech in reverberant envi- ronments. Index Terms-- Automatic speech recognition, cochlear implants, multi

  9. A Generic Method for Distribution and Transfer of ECTS and Other Norm-Referenced Grades within Student Cohorts

    ERIC Educational Resources Information Center

    Warfvinge, Per

    2008-01-01

    The ECTS grade transfer scale is an interface grade scale to help European universities, students and employers to understand the level of student achievement. Hence, the ECTS scale can be seen as an interface, transforming local scales to a common system where A-E denote passing grades. By definition, ECTS should distribute the passing students…

  10. Computerized implant-dentistry: Advances toward automation

    PubMed Central

    Gulati, Minkle; Anand, Vishal; Salaria, Sanjeev Kumar; Jain, Nikil; Gupta, Shilpi

    2015-01-01

    Advancements in the field of implantology such as three-dimensional imaging, implant-planning software, computer-aided-design/computer-aided-manufacturing (CAD/CAM) technology, computer-guided, and navigated implant surgery have led to the computerization of implant-dentistry. This three-dimensional computer-generated implant-planning and surgery has not only enabled accurate preoperative evaluation of the anatomic limitations but has also facilitated preoperative planning of implant positions along with virtual implant placement and subsequently transferring the virtual treatment plans onto the surgical phase via static (guided) or dynamic (navigated) systems aided by CAD/CAM technology. Computerized-implant-dentistry being highly predictable and minimally invasive in nature has also allowed implant placement in patients with medical comorbidities (e.g. radiation therapy, blood dyscrasias), in patients with complex problems following a significant alteration of the bony anatomy as a result of benign or malignant pathology of the jaws or trauma and in patients with other physical and emotional problems. With significant achievements accomplished in the field of computerized implant-dentistry, attempts are now been made toward complete automation of implant-dentistry. PMID:25810585

  11. Curso online del 6 al 22 de julio de 2015 2 crditos ECTS* Precio: 60 euros.

    E-print Network

    Escolano, Francisco

    Curso online del 6 al 22 de julio de 2015 ­ 2 créditos ECTS mediante entrega de ejercicios con Photoshop. Para realizar el curso es a extinguir. Curso organizado por el Departamento de Física, Ingeniería

  12. Further improving the cognitive effect profile of electroconvulsive therapy (ECT): the case for studying carbamylated erythropoietin.

    PubMed

    Kellner, C H; Adams, D A; Benferhat, A

    2015-03-01

    Electroconvulsive therapy (ECT) remains the most effective acute treatment for severe depression and several other psychiatric illnesses. However, its use has been limited by concerns about cognitive adverse effects. ECT may cause temporary cognitive impairment in some patients, typically anterograde amnesia for 1-2 weeks after a course of treatment, and circumscribed retrograde amnesia. These cognitive effects largely disappear within days to weeks after treatment. Efforts to find a pharmacological agent to reduce the cognitive effects of ECT have largely been unsuccessful, with the possible exception of thyroid hormone. We review the literature on pharmacological attempts to attenuate ECT's cognitive effects, and propose a novel neuroprotective and neurotrophic agent, carbamylated erythropoietin (CEPO), for this indication. PMID:25649853

  13. Accelerated Peri-Implant Soft Tissue Conditioning With Computer-Aided Design and Computer-Aided Manufacturing Technology and Surgical Intervention: A Case Report.

    PubMed

    Lee, Ju-Hyoung; Sohn, Dong-Seok

    2015-12-01

    The conventional soft tissue conditioning technique around implant demands time and effort for optimizing soft tissue contour. This article describes an alternative technique for achieving proper emergence profile with a custom-milled titanium abutment, interim restoration, and surgical intervention. With this technique, peri-implant soft tissue is conditioned and healed against a correct designed interim restoration without composite resin addition. PMID:26460740

  14. Hip Implant Systems

    MedlinePLUS

    ... Devices Products and Medical Procedures Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin ... devices available with different bearing surfaces. These are: Metal-on-Polyethylene: The ball is made of metal ...

  15. Historical development of active middle ear implants.

    PubMed

    Carlson, Matthew L; Pelosi, Stanley; Haynes, David S

    2014-12-01

    Active middle ear implants (AMEIs) are sophisticated technologies designed to overcome many of the shortcomings of conventional hearing aids, including feedback, distortion, and occlusion effect. Three AMEIs are currently approved by the US Food and Drug Administration for implantation in patients with sensorineural hearing loss. In this article, the history of AMEI technologies is reviewed, individual component development is outlined, past and current implant systems are described, and design and implementation successes and dead ends are highlighted. Past and ongoing challenges facing AMEI development are reviewed. PMID:25282038

  16. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  17. Electroconvulsive Therapy Part I: A Perspective on the Evolution and Current Practice of ECT

    PubMed Central

    Payne, Nancy A.; Prudic, Joan

    2010-01-01

    The concept of inducing convulsions, mainly through chemical means, to promote mental wellness has existed since the 16th century. In 1938, Italian scientists first applied electrically induced therapeutic seizures. Although electroconvulsive therapy (ECT) is employed in the treatment of several psychiatric disorders, it is most frequently used today to treat severe depressive episodes and remains the most effective treatment available for those disorders. Despite this, ECT continues to be the most stigmatized treatment available in psychiatry, resulting in restrictions on and reduced accessibility to a helpful and potentially life-saving treatment. The psychiatric and psychosocial ramifications of this stigmatization may include the exacerbation of the increasingly serious, global health problem of major depressive disorders as well as serious consequences for individual patients who may not be offered, or may refuse, a potentially beneficial treatment. The goal of this first article in this two-part series is to provide an overview of ECT's historical development and discuss the current state of knowledge about ECT, including technical aspects of delivery, patient selection, its side-effect profile, and factors that may contribute to underuse of ECT. PMID:19820553

  18. Outcome of ECT by Race in the CORE Multi-Site Study

    PubMed Central

    Williams, Mark; Rummans, Teresa; Sampson, Shirlene; Knapp, Rebecca; Mueller, Martina; Husain, Mustafa M.; Fink, Max; Rasmussen, Keith; O’Connor, Kevin; Smith, Glenn; Petrides, George; Kellner, Charles H.

    2014-01-01

    Objective The authors examine the differences in outcome between black and white patients receiving ECT as a part of the CORE multi-site study. Methods A total of 624 patients were enrolled in an NIMH-funded, randomized controlled ECT trial comparing the efficacy of continuation ECT versus continuation pharmacotherapy between 1997 and 2004. This analysis focuses on the 32 black and 483 white patients who participated in phase I of the study. The authors compared baseline demographic and clinical variables, and acute outcomes of these two groups. Results Compared to whites, far fewer blacks participated in the study. Those who did were less likely to have failed adequate medication trials and were more likely to have psychotic features. Their initial HAMD24 scores were higher than whites, and they showed a greater reduction in these HAMD24 scores by the end of the treatment period. While sample size limited the statistical significance of the findings, black patients also showed a higher rate of remission after an acute phase of ECT. Conclusions This study found that black and white patients with major depressive disorder had comparable outcomes. We also found that fewer black patients received ECT than whites, a difference that has been reported in other samples. PMID:18580553

  19. Students’ Factors Affecting Undergraduates’ Perceptions of their Teaching and Learning Process within ECTS Experience

    PubMed Central

    la Fuente, Jesús De; Cardelle-Elawar, María; Peralta, F. Javier; Sánchez, M. Dolores; Martínez-Vicente, José Manuel; Zapata, Lucía

    2010-01-01

    Introduction: In the present study, we investigated the potential factors that influenced the level of students satisfaction with the teaching–learning process (TLP), from the perspective of students participating in the European Credit Transfer System (ECTS) experience. Method: A total of 1490 students from the Universities of Almería and Granada (Spain) participated in an evaluation of their class discipline area. They completed the new revised protocol for evaluating the ECTS experience. Analyses of variance were carried out, taking the following factors as independent variables: student's grade average, year in school, study discipline, credit load in terms of ECTS credits assigned to a subject, the e-learning approach. Perception of the TLP was used as the dependent variable. Results: The data analyses showed variability of the degree of statistically significance among the factors that influenced students’ perceptions of the TLP. These factors included: Student's grade average (in favor of high performers), year in school (in favor of earlier years), ECTS load (in favor of subjects with a medium load of credits), and e-learning (in favor of its use). These research findings provided evidence to explore the delineation of a potential profile of factors that trigger a favorable perception of the TLP. Discussion and Conclusion: The present findings certainly have implications to deepen our understanding of the core beliefs, commitment, and the experience in shaping the implementation of the European Higher Education Area through the ECTS. PMID:21713171

  20. [Comperative study of implant surface characteristics].

    PubMed

    Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba

    2013-12-01

    The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation. PMID:24551957

  1. Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae

    SciTech Connect

    Ohtsuka, Jun; Nagata, Koji; Lee, Woo Cheol; Ono, Yusuke; Fukuda, Ryouichi; Ohta, Akinori; Tanokura, Masaru

    2006-10-01

    CTP:phosphoethanolamine cytidylyltransferase from S. cerevisiae has been expressed, purified and crystallized. CTP:phosphoethanolamine cytidylyltransferase (ECT) is the enzyme that catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine in the phosphatidylethanolamine-biosynthetic pathway (Kennedy pathway). ECT from Saccharomyces cerevisiae was crystallized by the sitting-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.88 Å resolution. The space group was assigned as primitive tetragonal, P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 66.3, c = 150.8 Å. The crystals contain one ECT molecule in the asymmetric unit (V{sub M} = 2.2 Å{sup 3} Da{sup ?1}), with a solvent content of 43%.

  2. Retrograde peri-implantitis

    PubMed Central

    Mohamed, Jumshad B.; Shivakumar, B.; Sudarsan, Sabitha; Arun, K. V.; Kumar, T. S. S.

    2010-01-01

    Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to) retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation. PMID:20922082

  3. Oral Implant Imaging: A Review

    PubMed Central

    GUPTA, Sarika; PATIL, Neelkant; SOLANKI, Jitender; SINGH, Ravinder; LALLER, Sanjeev

    2015-01-01

    Selecting an appropriate implant imaging technique has become a challenging task since the advent of advanced imaging modalities, and many of these are used for implant imaging. On imaging, the modality should not only consider the anatomy but should also provide dimensional accuracy. Many dentists use the conventional method, mostly orthopantograph (OPG), in their routine practice of implant placement. However, because of the drawbacks associated with OPG, higher technologies, such as computed tomography (CT) and cone beam computed tomography (CBCT), are better accepted. These help improve image sharpness and reduce distortion. These techniques are not used widely due to the cost effect. Therefore, to decide on the type of imaging technique, all associated advantages and disadvantages should be considered, which will be broadly discussed in this review. PMID:26715891

  4. Electronic Communications Technologies and the Transition to College: Links to Parent-Child Attachment and Adjustment

    ERIC Educational Resources Information Center

    Sarigiani, Pamela A.; Trumbell, Jill M.; Camarena, Phame M.

    2013-01-01

    Electronic communications technologies (ECTs) help college students and parents remain in contact. Because recent reports have emphasized a link between ECTs, helicopter parenting, and autonomy issues, this study focused on the significance of contact patterns for attachment and student adjustment. First-semester college students (199 female, 81…

  5. Esthetic Considerations for Reconstructing Implant Emergence Profile Using Titanium and Zirconia Custom Implant Abutments: Fifty Case Series Report.

    PubMed

    Kutkut, Ahmad; Abu-Hammad, Osama; Mitchell, Richard

    2015-10-01

    Titanium and zirconia custom implant abutments are now commonly used for esthetic implant dentistry. Custom implant abutments allow the clinician to improve an implant's emergence profile, to customize cervical margins in accordance with the anatomy of the natural root, and to compensate for poor implant angulation. All of these are essential for optimum esthetic outcomes. Computer-aided design/computer-aided machining (CAD/CAM) technology allows the clinician to design custom implant abutment configurations and create natural-looking superstructures that are in harmony with the adjacent dentition and soft tissue. The CAD/CAM technique provides precise fit, reduces the cost of the procedure, and eliminates dimensional inaccuracies inherent in the conventional waxing and casting technique. The aim of this report is to describe a simplified technique for reconstructing emergence profiles during implant restoration using milled titanium and zirconia custom implant abutments. The results of 50 consecutive cases are reported. PMID:24175922

  6. E ects of Shear Stress in Teletaction and Human Perception G. Moy and R.S. Fearing

    E-print Network

    Fearing, Ron

    E ects of Shear Stress in Teletaction and Human Perception G. Moy and R.S. Fearing Department of EE the e ect of shear stress information on perception of static stimuli. Wax gratings in two di erent ori- entations and various spatial frequencies were used as stimuli. Elastic layers, which represent the anti

  7. The role of APOE-?4 and beta amyloid in the differential rate of recovery from ECT: a review

    PubMed Central

    Sutton, T A; Sohrabi, H R; Rainey-Smith, S R; Bird, S M; Weinborn, M; Martins, R N

    2015-01-01

    Individual biological differences may contribute to the variability of outcomes, including cognitive effects, observed following electroconvulsive treatment (ECT). A narrative review of the research literature on carriage of the apolipoprotein E ?4 allele (APOE-?4) and the protein biomarker beta amyloid (A?) with ECT cognitive outcome was undertaken. ECT induces repeated brain seizures and there is debate as to whether this causes brain injury and long-term cognitive disruption. The majority of ECT is administered to the elderly (over age 65 years) with drug-resistant depression. Depression in the elderly may be a symptom of the prodromal stage of Alzheimer's disease (AD). Carriage of the APOE-?4 allele and raised cerebral A? are consistently implicated in AD, but inconsistently implicated in brain injury (and related syndromes) recovery rates. A paucity of brain-related recovery, genetic and biomarker research in ECT responses in the elderly was found: three studies have examined the effect of APOE-?4 allele carriage on cognition in the depressed elderly receiving ECT, and two have examined A? changes after ECT, with contradictory findings. Cognitive changes in all studies of ECT effects were measured by a variety of psychological tests, making comparisons of such changes between studies problematic. Further, psychological test data-validity measures were not routinely administered, counter to current testing recommendations. The methodological issues of the currently available literature as well as the need for well-designed, hypothesis driven, longitudinal studies are discussed. PMID:25826114

  8. Fabricating specialised orthopaedic implants using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Unwin, Paul

    2014-03-01

    It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.

  9. Top Ten Reasons a Graduate Student Should Apply to Be an ECT Foundation Intern

    ERIC Educational Resources Information Center

    York, Cindy S.

    2009-01-01

    In this article, the author encourages graduate students to apply for the ECT Foundation Internship. She presents a list of the top ten benefits the internship offers a graduate student's career: (1) It could change your life. It changed mine; (2) Networking; (3) Mentoring; (4) Leadership opportunities; (5) Behind the scenes pass; (6) Shadowing;…

  10. Some Remarks on the Delay Stabilizing E ect in SISO Silviu-Iulian Niculescu

    E-print Network

    Some Remarks on the Delay Stabilizing E#11;ect in SISO systems Silviu-Iulian Niculescu #3). Consider the following class of strictly proper SISO systems: H yu (s) = c T (sI n A) 1 b = P (s) Q(s) (1) #3; Corresponding author 1 #12; ((A; b; c T ) a state-space representation of the system, and deg

  11. An Assessment of the ECTS in Software Engineering: A Teaching Experience

    ERIC Educational Resources Information Center

    Salas-Morera, L.; Berral-Yeron, J.; Serrano-Gomez, I.; Martinez-Jimenez, P.

    2009-01-01

    Spain is currently implementing the regulatory modifications promulgated by the Declaration of Bologna, which should result in the updating of the structure of university degrees, and the inclusion of the European Credit Transfer and Accumulation System (ECTS) methodology. In some Spanish universities, the experimental adoption of this methodology…

  12. Resubmitted to Icarus journal Yarkovsky e ect on small near{Earth asteroids

    E-print Network

    Milani, Andrea

    Resubmitted to Icarus journal Yarkovsky e#11;ect on small near{Earth asteroids: Mathematical demonstrated in relation to the transport of material from the main asteroid belt (both to explain the origin of near{Earth asteroids and some properties of meteorites) and also in relation to the aging processes

  13. OIL IN THE OPEN WATER Oil in the open water may a ect the health of

    E-print Network

    OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals that form the basis of the oceanic food web. The eggs and larvae of shrimp, sh, and other commercially and recreationally important species are at risk, as are adult sh, sea turtles, marine mammals, and ocean-going birds

  14. Integrating Anatomical Priors in ECT Reconstruction via Joint Mixtures and Mutual Information 1

    E-print Network

    -region classification information in the anatomical and functional images. This allows us to express the possibility of maximizing the mutual information between the anatomical image and the evolving ECT reconstruction. Results Maximum likelihood (ML) tomographic reconstruction is hampered by the loss of information (due to noise

  15. E ects of the Driving Force on the Composition of Natural Gas Hydrates

    E-print Network

    Gudmundsson, Jon Steinar

    E ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure concept) (Gud- mundsson et al. 1998). Natural gas hydrate contains up to 182 Sm3 gas per m3 hydrate

  16. Detecting Pulsatile Hormone Secretions Using Nonlinear Mixed E#ects Partial Spline Models

    E-print Network

    Wang, Yuedong

    Detecting Pulsatile Hormone Secretions Using Nonlinear Mixed E#ects Partial Spline Models Yu signaling. The identification of episodic releases of hormonal pulse signals constitutes a major emphasis hormone concentration measurements is of critical importance in endocrinology. In this paper, we propose

  17. NOVA PhD Course Biodiversity Based Integrated Pest Management in Field Crops (3 ECTS)

    E-print Network

    NOVA PhD Course Biodiversity Based Integrated Pest Management in Field Crops (3 ECTS) August 31 of pest management role of biodiversity levels in controlling pests, diseases and weeds mechanisms of ecological interactions mediating the effects of biodiversity on pest management and ecosystem services

  18. A mobile robot sonar ring sensor measuring the bearing angle to the re ecting points

    E-print Network

    Ohya, Akihisa

    { 4 { A mobile robot sonar ring sensor measuring the bearing angle to the re ecting points { the 4'ichi : Univ. of Tsukuba A sonar ring sensor is widely used in research of mobile robots. In conventional and using the specular re ection for making a better sonar ring sensor. This paper present a system which

  19. Treatment of rapid cycling bipolar disorder in the acute and maintenance phase with ECT.

    PubMed

    Kho, King Han

    2002-09-01

    Literature on the treatment of rapid cycling bipolar disorder is scant. This report describes a case of rapid cycling bipolar disorder successfully treated with ECT. The patient showed a complex combination of pathologic features not unusual in clinical practice. PMID:12394535

  20. 7 CFR 985.31 - Research and development proj-ects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Research and development proj-ects. 985.31 Section 985.31 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF SPEARMINT...

  1. 7 CFR 985.31 - Research and development proj-ects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... development projects designed to assist, improve, or promote the marketing, distribution and consumption or... 7 Agriculture 8 2010-01-01 2010-01-01 false Research and development proj-ects. 985.31 Section 985.31 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...

  2. EXTRACTION DE CONNAISSANCES PARTIR DES DONNEES ET DES TEXTES (ECD ET ECT "DATA & TEXT MINING")

    E-print Network

    Spagnolo, Filippo

    1 EXTRACTION DE CONNAISSANCES � PARTIR DES DONNEES ET DES TEXTES (ECD ET ECT "DATA & TEXT MINING'Extraction de Connaissances à partir de Données (ECD, "Data Mining"). Le point fondamental qui distingue ces IN DATA AND TEXTS," defines Knowledge Discovery in Texts (KDT, or Text Mining, TM) as a continuation

  3. The role of Atlantic ocean-atmosphere coupling in a ecting North Atlantic Oscillation variability

    E-print Network

    Huck, Thierry

    The role of Atlantic ocean-atmosphere coupling in a#11;ecting North Atlantic Oscillation Abstract This chapter reviews the role of ocean - atmosphere interactions over the Atlantic sector in NAO Atlantic ocean as a heat reservoir 10 3.1 The reduced thermal damping argument

  4. Substituent and solvent e ects on photoexcited states of functionalized fullerene[60

    E-print Network

    Huang, Yanyi

    Substituent and solvent eþ ects on photoexcited states of functionalized fullerene[60] Chuping Luo and photophysical properties of fullerenes, such as and have been widely investigated in recentC 60 C 70 , years.1h6 in material and biological science.7h12 Fullerene chemistry has also been developed by the introduction

  5. Initial Results from a Study of the E ects of Meditation on Multitasking Performance

    E-print Network

    Wobbrock, Jacob O.

    Initial Results from a Study of the E ects of Meditation on Multitasking Performance MEDITATION CONTROL MEDITATION RELAXATION 8 weeks 8 weeks memorytask performance/strategy None of the groups showed the meditation group demonstrated a major change in multi- tasking strategy, namely, a marked tendency to spend

  6. Implantable hearing devices: the Ototronix MAXUM system.

    PubMed

    Pelosi, Stanley; Carlson, Matthew L; Glasscock, Michael E

    2014-12-01

    For many hearing-impaired individuals, the benefits of conventional amplification may be limited by acoustic feedback, occlusion effect, and/or ear discomfort. The MAXUM system and other implantable hearing devices have been developed as an option for patients who derive inadequate assistance from traditional HAs, but who are not yet candidates for cochlear implants. The MAXUM system is based on the SOUNDTEC Direct System technology, which has been shown to provide improved functional gain as well as reduced feedback and occlusion effect compared to hearing aids. This and other implantable hearing devices may have increasing importance as future aural rehabilitation options. PMID:25293787

  7. Pacemakers and Implantable Defibrillators

    MedlinePLUS

    ... a cardiac pacemaker or an implantable cardioverter defibrillator (ICD). They are devices that are implanted in your ... and coordinate the chambers of the heart. An ICD monitors heart rhythms. If it senses dangerous rhythms, ...

  8. Implantable Medical Devices

    MedlinePLUS

    ... High Blood Pressure Tools & Resources Stroke More Implantable Medical Devices Updated:Sep 15,2015 For Rhythm Control ... Lifestyle Changes Recovery FAQs Medications Surgical Procedures Implantable Medical Devices Healthy Heart Quizzes • Heart Attack Tools & Resources ...

  9. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-01-01

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway. PMID:25807302

  10. Physical understanding of cryogenic implant benefits for electrical junction stability

    SciTech Connect

    Adeni Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd

    2012-03-12

    We investigate the effect of cryogenic temperature implants on electrical junction stability for ultra shallow junction applications for sub-32 nm technology nodes and beyond. A comprehensive study was conducted to gain physical understanding of the impact of cryogenic temperature implants on dopant-defect interactions. Carborane (C{sub 2}B{sub 10}H{sub 12}) molecule, a potential alternative to monomer boron was implanted in carbon preamorphized silicon substrates at cryogenic implant temperatures. Results indicate implants at cryogenic temperatures increase dopant activation with reduced diffusion, resulting in lower sheet resistance for a lower junction depth. Further, this study emphasizes the benefits of co-implants performed at cryogenic temperatures as alternative to traditional preamorphizing implants.

  11. Master's degree programme (120 ECTS) Faculty Annual tuition fees (60 ECTS) Aesthetics and Culture Arts EURO 9,100

    E-print Network

    Arts EURO 9,100 Finance Business and Social Sciences EURO 10,000 Finance and International Business Arts EURO 9,100 Agrobiology (Animal Health and Welfare) Science and Technology Euro 15,300 Agrobiology and Welfare Anthropology Arts EURO 9,100 Anthropology Arts EURO 9,100 Anthropology (General Anthropology) Arts

  12. Master's degree programme (120 ECTS) Faculty Annual tuition fees (60 ECTS) Aesthetics and Culture Arts EURO 8,000

    E-print Network

    Economy Arts EURO 8,000 Finance Business and Social Sciences EURO 10,000 Finance and International Science Health EURO 15,300 History (International and Global History) Arts EURO 8,000 History of Ideas Arts EURO 8,000 Agrobiology (Animal Health and Welfare) Science and Technology EURO 13,500 Agrobiology

  13. Master's degree programme (120 ECTS) Faculty Annual tuition fees (60 ECTS) Aesthetics and Culture Arts EURO 9,100

    E-print Network

    Economy Arts EURO 9,100 Finance Business and Social Sciences EURO 10,000 Finance and International Science Health EURO 15,300 History (International and Global History) Arts EURO 9,100 History of Ideas Arts EURO 9,100 Agrobiology (Animal Health and Welfare) Science and Technology Euro 15,300 Agrobiology

  14. Cochlear Implants for Children.

    ERIC Educational Resources Information Center

    Hasenstab, M. Suzanne; Laughton, Joan

    1991-01-01

    The use of cochlear implants in children with profound bilateral hearing loss is discussed, focusing on how a cochlear implant works; steps in a cochlear implant program (evaluation, surgery, programing, and training); and rehabilitation procedures involved in auditory development and speech development. (JDD)

  15. Immediate postextraction implant placement using plasma rich in growth factors technology in maxillary premolar region: a new strategy for soft tissue management.

    PubMed

    Rosano, Gabriele; Taschieri, Silvio; Del Fabbro, Massimo

    2013-02-01

    Achieving an excellent aesthetic outcome in postextraction dental implant placement in the anterior maxilla is a challenging procedure for clinicians. In fact, there is an increased risk for soft tissue recession at the facial aspect which may require supplementary connective tissue grafts to accomplish the final aesthetic result. The aim of this case report is to describe a regenerative technique using autologous plasma rich in growth factors fibrin plug for preservation of soft tissue architecture around an implant immediately placed into an extraction site in the anterior maxilla. Such a procedure allowed for guided bone regeneration without the need for vertical releasing incisions and primary healing, thus showing a pleasant gingival contour at the facial aspect after a single stage surgery. Integrating this technique into common practice could provide important benefits for the patients regarding aesthetics, without any risk of infection or transmission of diseases. PMID:21767206

  16. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  17. Science Highlights from the RBSP-ECT Particle Instrument Suite on NASA's Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Spence, Harlan

    2014-05-01

    The NASA Van Allen Probes mission includes an instrument suite known as the Radiation Belt Storm Probes (RBSP) - Energetic Particle, Composition, and Thermal Plasma (ECT) suite. RBSP-ECT contains a well-proven complement of particle instruments to ensure the highest quality measurements ever made in the radiation belts and the inner magnetosphere. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state of-the-art theory and modeling, provide new understanding on the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Helium Oxygen Proton Electron (HOPE) spectrometer, the Magnetic Electron Ion Spectrometer (MagEIS), and the Relativistic Electron Proton Telescope (REPT). Collectively these three instrument types cover comprehensively the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts, then optimized to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. In this presentation, we summarize overall ECT science goals and then show scientific results derived from the ECT suite on the dual Van Allen Probes spacecraft to date. Mission operations began only in late October 2012, and we have now achieved significant results. Results presented here will include substantial progress toward resolving primary Van Allen Probes science targets, such as: the relative role of localized acceleration versus transport-generated particle acceleration; the role of plasma electron temperature anisotropies, whistler waves, and radiation belt electron variability; global characteristics of outer zone electron drift loss to the magnetopause; the role of storms, substorms, and ion composition in radiation belt dynamics, both in terms of sources and sinks; new physical perspectives on inner zone and slot protons and electrons; and, how plasmasphere properties control or influence radiation belt behavior.

  18. Insight: implantable medical devices.

    PubMed

    Meng, E; Sheybani, R

    2014-09-01

    Implantable electronic medical devices have achieved remarkable medical advances in the treatment of the most challenging conditions, starting with the introduction of the first implantable pacemaker in 1958. Increasing demand for innovation in existing and novel implantable devices is fuelled by the growing aging population and the increased prevalence of chronic diseases. This perspective article provides an overview of the implantable medical device ecosystem, highlights recent developments, and discusses challenges and opportunities for translation of new innovative implants enabled by microtechnologies and microfabrication. PMID:24903337

  19. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  20. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  1. Nanotechnology Approaches for Better Dental Implants

    PubMed Central

    Tomsia, Antoni P.; Launey, Maximilien E.; Lee, Janice S.; Mankani, Mahesh H.; Wegst, Ulrike G.K.; Saiz, Eduardo

    2011-01-01

    The combined requirements imposed by the enormous scale and overall complexity of designing new implants or complete organ regeneration are well beyond the reach of present technology in many dimensions, including nanoscale, as we do not yet have the basic knowledge required to achieve these goals. The need for a synthetic implant to address multiple physical and biological factors imposes tremendous constraints on the choice of suitable materials. There is a strong belief that nanoscale materials will produce a new generation of implant materials with high efficiency, low cost, and high volume. The nanoscale in materials processing is truly a new frontier. Metallic dental implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings and nanopatterning of dental implants. It also provides a general summary of the state of the art in dental implant science and describes possible advantages of nanotechnology for further improvements. The ultimate goal is to produce materials and therapies that will bring state-of-the-art technology to the bedside and improve quality of life and current standards of care. PMID:21464998

  2. E. E#ects On Time and Quality of Learning with Increasing the Number of Variables

    E-print Network

    Brown, Laura E.

    44 E. E#ects On Time and Quality of Learning with Increasing the Number of Variables E.1. Effect on Greedy Search of increasing the number of variables 0 100 200 300 400 500 600 10 -1 10 0 10 1 10 2 NumberFinder 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 Number of Variables in Network Norm. SHD of GS Norm. SHD

  3. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  4. eCT: THE B2C E-COMMERCE TOOLKIT for the WebComfort Platform

    E-print Network

    da Silva, Alberto Rodrigues

    eCT: THE B2C E-COMMERCE TOOLKIT for the WebComfort Platform Frederico de Carvalho Baptista, Jo introduces the eCT (the B2C e-commerce Toolkit for the WebComfort platform). Section 3 overviews of the e-commerce support, more specifically for Business-to-Consumer (B2C) business model. From a quick perspective, the e

  5. Nanotechnology and Dental Implants

    PubMed Central

    Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate. PMID:21253543

  6. MASTER : MASTER Master Sciences, Technologies, Sant, Mention Biologie et Sant, Spcialit Physiologie des Rgulations finalit recherche

    E-print Network

    Brest, Université de

    Intitulé MASTER : MASTER Master Sciences, Technologies, Santé, Mention Biologie et Santé, biologie moléculaire, biologie cellulaire, microbiologie, physiologie (humaine et animale), écophysiologie : Biochimie de la transduction des signaux cellulaires (4 ECTS) - UE4 : Biologie du développement et

  7. [The artificial lens implant].

    PubMed

    Cârstocea, B; Selaru, D; Filip, M; Sandu, E; Stefan, C; Isp??oiu, C; Banaeu, I

    1993-01-01

    The paper presents a short history of the cataract intervention, starting from the lens luxation in vitreum and going to the implant of artificial lens. From the three classes of artificial lenses, up-to-date options are the posterior chamber artificial lenses. Today, in 80% of the cases, artificial lens implant is done, 80% of the implanted lenses being posterior chamber lenses. The paper also exposes various operatorial techniques, post-operatorial evolution and the results obtained. PMID:8507623

  8. Diffusion of implanted nitrogen in silicon Lahir Shaik Adam, Mark E. Law, and Kevin S. Jonesa)

    E-print Network

    Florida, University of

    technologies today. Nitrogen implantation can be used to control gate oxide thicknesses. This article reports. For the 40 keV implants, nitrogen diffuses very rapidly and segregates at the silicon/silicon-oxide interface gate oxidation kinetics and thus can be used to grow thinner gate oxides.1,2 The nitrogen implantation

  9. [Silastic implant and synovitis].

    PubMed

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants. PMID:2678435

  10. Human pre-implantation embryo development

    PubMed Central

    Niakan, Kathy K.; Han, Jinnuo; Pedersen, Roger A.; Simon, Carlos; Pera, Renee A. Reijo

    2012-01-01

    Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals. PMID:22318624

  11. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  12. CenterforNanophotonics Erbium ion implantation

    E-print Network

    Polman, Albert

    CenterforNanophotonics Erbium ion implantation from planar amplifiers to nanophotonics Albert - 1989 optical communication, erbium-doped fiber amplifiers 1012 Hz 1.3 µm 1.55 µm Miya et al., Electron. Lett. 15, 108 (1979) #12;From optical fiber to planar technology Si high index low index #12;Erbium

  13. Improved medical implants comes from nanostructuring

    E-print Network

    of orthopedics. However, cobalt-chromium superalloys, stainless steels, and titanium alloys--the most commonly to develop a simple method to modify the internal structure of any metal at #12;- 2 - the nanoscale, the size in the development of three new BiotaniumTM dental implants lines, all made from the patented technology

  14. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  15. Micro- and nano-fabricated implantable drug-delivery systems

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2013-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted. PMID:23323562

  16. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  17. Maximizing cochlear implant patients' performance with advanced speech training procedures.

    PubMed

    Fu, Qian-Jie; Galvin, John J

    2008-08-01

    Advances in implant technology and speech processing have provided great benefit to many cochlear implant patients. However, some patients receive little benefit from the latest technology, even after many years' experience with the device. Moreover, even the best cochlear implant performers have great difficulty understanding speech in background noise, and music perception and appreciation remain major challenges. Recent studies have shown that targeted auditory training can significantly improve cochlear implant patients' speech recognition performance. Such benefits are not only observed in poorly performing patients, but also in good performers under difficult listening conditions (e.g., speech noise, telephone speech, music, etc.). Targeted auditory training has also been shown to enhance performance gains provided by new implant devices and/or speech processing strategies. These studies suggest that cochlear implantation alone may not fully meet the needs of many patients, and that additional auditory rehabilitation may be needed to maximize the benefits of the implant device. Continuing research will aid in the development of efficient and effective training protocols and materials, thereby minimizing the costs (in terms of time, effort and resources) associated with auditory rehabilitation while maximizing the benefits of cochlear implantation for all recipients. PMID:18295992

  18. A 2-D enlarged cell technique (ECT) for elastic wave modelling on a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhuang, Mingwei; Zhou, Jianyang; Liu, Qing Huo

    2015-04-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of the structured grid. This is similar to the situation for the FDTD method in electromagnetics when it is applied to model a curved perfect conductor surface, where the conformal FDTD methods have been recently developed to avoid this error. In this work a stable and second-order accurate 2-D FDTD method for elastic wave modelling on a curved free surface is presented based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the meantime, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability even for small irregular cells. This method is verified by several 2-D numerical examples. Results show that the method is second-order accurate and stable at the Courant stability limit for a regular FDTD grid.

  19. Annealing of PEEK, PET and PI implanted with Co ions at high fluencies

    NASA Astrophysics Data System (ADS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R. I.; Valeev, V. F.; Svorcik, V.; Slepicka, P.

    2013-07-01

    The properties of implanted polymers strongly depend on the implantation ion fluence and on the properties of the implanted atoms. The stability of synthesized nano-structures during further technological steps like annealing is of importance for their possible applications. Polyimide (PI), polyetheretherketone (PEEK), and polyethyleneterephtalate (PET) were implanted with 40 keV Co+ ions at room temperature at fluences ranging from 0.2 × 1016 cm-2 to 1.0 × 1017 cm-2 and annealed at a temperature of 200 °C. The implanted depth profiles of as-implanted and annealed samples, determined by the RBS method, were compared with the results of SRIM 2012 simulations. The structural and compositional changes of the implanted and subsequently annealed polymers were characterized by RBS and UV-vis spectroscopy. The surface morphology of as-implanted and annealed samples was examined by the AFM method and their electrical properties by sheet resistance measurement.

  20. Ion implantation at elevated temperatures

    SciTech Connect

    Lam, N.Q.; Leaf, G.K.

    1985-11-01

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al and Si ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.

  1. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  2. Risks of Breast Implants

    MedlinePLUS

    ... larger and longer than these conducted so far. Breastfeeding Some women who undergo breast augmentation can successfully ... breast implant silicone shell into breast milk during breastfeeding. Although there are currently no established methods for ...

  3. Effects of low-energy N(+)-beam implantation on root growth in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Qi, Wencai; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2016-02-01

    The effects of ion implantation on the morphology changes and biological responses of plants are dependent on implantation doses. Previous studies mainly focus on the application of ion-beam technology in genetic mutation. Our knowledge regarding the mechanism underlying the plant growth inhibition induced by ion implantation remains limited. In this study, we explore the responses of root growth to low-energy N(+)-beam implantation using implanted Arabidopsis seeds. Our results showed that the root and root tip length were obviously reduced by implantation with large doses of low-energy N(+) beam. The analysis of confocal images showed that ion implantation reduced the cell viability and cell division activity in root meristem. The production rate of superoxide radical (O2(•-)) and contents of hydrogen peroxide (H2O2) in roots under ion implantation were markedly higher than those of controls. Transcriptional expression analysis of selected genes revealed that Arabidopsis RBOH genes associated with reactive oxygen species (ROS) production were significantly up-regulated in roots in response to ion implantation. The activities of antioxidant enzymes were also induced by ion implantation. Moreover, ROS scavenging obviously enhanced cell viability and cell division in response to ion implantation and alleviated the root growth inhibition of the implanted seedlings. Our results suggest that the overproduction of ROS induced by ion implantation is involved in the inhibitory effect of low-energy ion beam on root growth by affecting the cell viability and cell division of root meristem in Arabidopsis seedlings. PMID:26479682

  4. Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate

    E-print Network

    Kukharchyk, Nadezhda; Probst, Sebastian; Xia, Kangwei; Becker, Hans-Werner; Pal, Shovon; Markmann, Sergej; Kolesov, Roman; Siyushev, Petr; Wrachtrup, Jörg; Ludwig, Arne; Ustinov, Alexey V; Wieck, Andreas D; Bushev, Pavel

    2015-01-01

    Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behaviour.

  5. Simple Implant Augmentation Rhinoplasty.

    PubMed

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  6. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  7. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Module A: Fundamentals of Marine Biology and Ecology (15 ECTS) Modul

    E-print Network

    Diekmann, Martin

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Module A: Fundamentals of Marine Biology and Ecology Biology and Biological Oceanography Principles of Marine Ecophysiology Experimental Design & Data Analysis: Advanced Studies in Marine Biology (18 ECTS) Module G: Project Development & Implementation (9 ECTS

  8. Feasibility and safety of electrochemotherapy (ECT) in the pancreas: a pre-clinical investigation

    PubMed Central

    Girelli, Roberto; Prejanò, Simona; Cataldo, Ivana; Corbo, Vincenzo; Martini, Lucia; Scarpa, Aldo; Claudio, Bassi

    2015-01-01

    Background. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease generally refractory to standard chemotherapeutic agents; therefore improvements in anticancer therapies are mandatory. A major determinant of therapeutic resistance in PDAC is the poor drug delivery to neoplastic cells, mainly due to an extensive fibrotic reaction. Electroporation can be used in vivo to increase cancer cells’ local uptake of chemotherapeutics (electrochemotherapy, ECT), thus leading to an enhanced tumour response rate. In the present study, we evaluated the in vivo effects of reversible electroporation in normal pancreas in a rabbit experimental model. We also tested the effect of electroporation on pancreatic cancer cell lines in order to evaluate their increased sensitivity to chemotherapeutic agents. Materials and methods. The application in vivo of the European Standard Operating Procedure of Electrochemotherapy (ESOPE) pulse protocol (1000 V/cm, 8 pulses, 100 ?s, 5 KHz) was tested on the pancreas of normal New Zealand White Rabbits and short and long-term toxicity were assessed. PANC1 and MiaPaCa2 cell lines were tested for in vitro electrochemotherapy experiments with and without electroporation. Levels of cell permeabilization were determined by flow cytometry, whereas cell viability and drug (cisplatin and bleomycin) sensitivity of pulsed cells were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Results. In healthy rabbits, neither systemic nor local toxic effects due to the electroporation procedure were observed, demonstrating the safety of the optimized electric parameters in the treatment of the pancreas in vivo. In parallel, we established an optimized protocol for ECT in vitro that determined an enhanced anti-cancer effect of bleomycin and cisplatin with respect to treatment without electroporation. Conclusions. Our data suggest that electroporation is a safe procedure in the treatment of PDAC because it does not affect normal pancreatic parenchyma, but has a potentiating effect on cytotoxicity of bleomycin in pancreatic tumour cell lines. Therefore, ECT could be considered as a valid alternative for the local control of non-resectable pancreatic cancer. PMID:26029026

  9. The Biolink Implantable Telemetry System

    NASA Technical Reports Server (NTRS)

    Betancourt-Zamora, Rafael J.

    1999-01-01

    Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS process. Measured phase noise for a 1.5mW, 200MHz ring oscillator VCO is -80dBc/Hz at 100KHZ offset, showing good agreement with the theory. We also propose a novel superregenerative receiver architecture for implementing the command receiver. The superregenerative receiver's simplicity, low cost, and low power consumption has made it the receiver of choice for short-distance data communications, remote control and home automation. We present the design of a superregenerative AM receiver implemented in a 0.5um CMOS technology that operates at 433.92MHz and dissipates only 300uW. Further work entails detailed transistor-level design of the FLL and superregenerative receiver and a monolithic implementation of an implantable transceiver in 0.5um CMOS technology.

  10. Ethical dimension of paediatric cochlear implantation.

    PubMed

    Nunes, R

    2001-08-01

    In congenitally or prelingually deaf children cochlear implantation is open to serious ethical challenge. The ethical dimension of this technology is closely related to both a social standard of quality of life and to the uncertainty of the overall results of cochlear implantation. Uncertainty with regards the acquisition of oral communicative skills. However, in the western world, available data suggest that deafness is associated with the lowest educational level and the lowest family income. Notwithstanding the existence of a Deaf-World, deafness should be considered as a handicap. Therefore, society should provide the means for the fulfilment of a deaf child's specific needs. For the time being there is no definitive answer with regard the best way to rehabilitate a particular deaf child. Therefore, communitarian values may be acceptable. If the deaf child parents' decide not to implant, their decision should be respected. Guardians are entitled to determine which standard of best interest to use in a specific circumstance. They are the proper judges of what (re)habilitation process is best for their deaf child. However, most deaf children are born to two hearing parents. Probably, they will not be acculturated in the Deaf-World. It follows that cochlear implantation is a welcomed (re)habilitation technology. If auditory (re)habilitation will in the future provide the necessary communicative skills, in particular oral language acquisition, customs, values and attitudes of the hearing world should be regarded as necessary to accomplish a deaf child's right to an open future. If cochlear implantation technology will provide all deaf children with the capacity to develop acceptable oral communicative skills--whatever the hearing status of the family and the cultural environment--then auditory (re)habilitation will be an ethical imperative. PMID:11680526

  11. Maxillary Overdentures Supported by Four Splinted Direct Metal Laser Sintering Implants: A 3-Year Prospective Clinical Study

    PubMed Central

    Mangano, Francesco; Shibli, Jamil Awad; Anil, Sukumaran

    2014-01-01

    Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results. PMID:25580124

  12. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    PubMed Central

    Hannan, Mahammad A.; Abbas, Saad M.; Samad, Salina A.; Hussain, Aini

    2012-01-01

    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices. PMID:22368470

  13. DATE : NVLAP LAB CODE: ECT INSTRUCTIONS FOR RENEWAL APPLICATIONS (2009-10-06) PAGE 1 OF 1

    E-print Network

    DATE : NVLAP LAB CODE: ECT INSTRUCTIONS FOR RENEWAL APPLICATIONS (2009-10-06) PAGE 1 OF 1 will be reduced. Please list by NVLAP test method code (12/xxx) the test methods to be removed from the scope to Expand or Reduce Scope" file. d. Complete this form. The NVLAP test method codes can be found

  14. Rounding E#ects in Record Statistics G. Wergen, 1 D. Volovik, 2 S. Redner, 2 and J. Krug 1

    E-print Network

    Redner, Sidney

    of global warming in the occurrence of record­ breaking temperatures [4--9]. While the record statisticsRounding E#ects in Record Statistics G. Wergen, 1 D. Volovik, 2 S. Redner, 2 and J. Krug 1 1, 06.20.Dk, 02.50.­r The statistics of record­breaking events have been widely studied in many contexts

  15. Schedule GEOM06, Metamorphic Petrology and Structural Geology, 15 hp (15 ECTS credits) VT-1 (winter-spring) 2015

    E-print Network

    .15-15 Lecture 3: Graphical analysis of metamorphic mineral assemblages. Metamorphic facies and mafic rocks readings A B 236 236 - LT LT Fri 23/1 10.15-12 Lecture 4: Metapelitic rocks and metamorphic zones. AssignedSchedule GEOM06, Metamorphic Petrology and Structural Geology, 15 hp (15 ECTS credits) VT-1 (winter

  16. E ects of Position, Angle and Energy Beam O sets on Spoilers in the TESLA-BDS

    E-print Network

    E#11;ects of Position, Angle and Energy Beam O#11;sets on Spoilers in the TESLA-BDS Roger Barlow correspond to the TESLA design as of November, 2001 [4]. Spoiler x y ESPOI 4 20 XYSPOI 3 1 COLX 3.9 0.6 COLY

  17. Fast Particle Finite Orbit Width and Larmor Radius E ects on Low-n Toroidicity induced Alfv en Eigenmode Excitation

    E-print Network

    radius FLR of fast particles on the stability of low-n toroidicity-induced Alfv en eigenmodes TAE that both FOW and FLR e ects are typically stabilizing: the TAE growth rate can be reduced by as much radius FLR comparable to the TAE mode scale length. A large radial displacement of particle orbit may

  18. Degree Course Degree course in Civil engineering [L-7] D. M. 270/2004 ECTS code 906

    E-print Network

    Sambucini, Anna Rita

    Degree Course Degree course in Civil engineering [L-7] D. M. 270/2004 ECTS code 906 Type Basic - Department of Civil Engineering DICA Work placement Room F #12; and operational aspects of the course and ability to use this knowledge in order to describe and solve engineering

  19. Finite Correlation Time E#ects in Kinematic Dynamo Problem Alexander A. Schekochihin # and Russell M. Kulsrud

    E-print Network

    Finite Correlation Time E#ects in Kinematic Dynamo Problem Alexander A. Schekochihin # and Russell in time advecting velocity field are studied. A perturbation expansion in the ratio of the velocity correlation time to the dynamo growth time is constructed in the spirit of the Kliatskin­Tatarskii functional

  20. PUBLISHED ONLINE: 26 JANUARY 2015 | DOI: 10.1038/NPHYS3203 Valley Zeeman e ect in elementary optical

    E-print Network

    Loss, Daniel

    valleys in the presence of B represents a valley analogue of the spin-Zeeman effect. Optical absorption or emission experiments would allow a direct determination of this valley Zeeman effect as the valley indexLETTERS PUBLISHED ONLINE: 26 JANUARY 2015 | DOI: 10.1038/NPHYS3203 Valley Zeeman e ect

  1. ECTS Users' Guide More information on the European Union is available on the Internet (http://europa.eu).

    E-print Network

    ECTS Users' Guide #12;More information on the European Union is available on the Internet (http is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 of the European Communities, 2009 ISBN 978-92-79-09728-7 © European Communities, 2009 Reproduction is authorised

  2. Aberrant CYP2D6 metabolizer phenotypes do not show increased frequency in patients undergoing ECT after antidepressant therapy.

    PubMed

    Mirzakhani, Hooman; van Dormolen, Juliët; van der Weide, Karen; Guchelaar, Henk-Jan; van Noorden, Martijn S; Swen, Jesse

    2015-10-01

    We investigated the accumulation of aberrant CYP2D6 genotypes and predicted metabolizer phenotypes (ultrarapid metabolizer, intermediate metabolizer and poor metabolizer) potentially affecting the antidepressant treatment response in depressive patients indicated for electroconvulsive therapy (ECT) compared with patients with a single episode of depression. Seventy-six Dutch White patients with unipolar or bipolar treatment-resistant depression who underwent ECT were genotyped using the Amplichip CYP450 Test for CYP2D6. Two hundred and eight patients with a single episode of unipolar or bipolar depression were used as controls. No difference was observed in the prevalence of CYP2D6 phenotypes (poor metabolizer, intermediate metabolizer, extensive metabolizer and ultrarapid metabolizer) between the ECT and the control patients (5.3, 38.7, 56.0 and 0.0% vs. 6.4, 51.0, 42.6 and 0.0%, respectively). The types of depression (odds ratio = 0.33, P = 0.018) and age (odds ratio = 1.55 for a 10-year increase, P < 0.001), but not CYP2D6 phenotype or activity score were associated with the response to antidepressant treatment. In conclusion, preemptive genotyping for CYP2D6 currently appears to have no clinical implications in treatment-resistant depressive patients indicated for ECT. PMID:26230381

  3. Classi cation of the E ects of F-actin Under Treatment of drugs in Endothelial Cells

    E-print Network

    Louisville, University of

    cells with di erent treatment of drugs. These drugs or agonists cause increase in permeability permeability in the endothelial cell. This increase in permeability is associated with shape changesClassi cation of the E ects of F-actin Under Treatment of drugs in Endothelial Cells Kamal J

  4. The use of ion implantation for materials processing

    NASA Astrophysics Data System (ADS)

    Smidt, F. A.

    1986-03-01

    This report is the sixth in a series of Progress Reports on work conducted at the Naval Research Laboratory (NRL) to investigate the use of ion implantation for materials processing. The objective of the program is to develop the capabilities of ion implantation and ion beam activated deposition for new and improved surface treatment techniques of interest to Navy and DOD applications. Attainment of this objective requires both fundamental research to provide an understanding of the physical and metallurgical changes taking place in the implanted region of a material and applications oriented research to demonstrate the benefits of ion implantation. The purpose of this report is to make available from one source the results of all studies at NRL related to the use of ion implantation for materials processing so as to provide a more comprehensive picture of the scope and interrelationship of the research and to expedite technology transfer to the civilian industrial sector. The report consists of four sections describing the research and a cummulative bibliography of published papers and reports. This report describes the important factors in ion implantation science and technology and reports progress in the use of ion implantation to modify friction, wear, fatigue, corrosion, optical and magnetic properties of materials.

  5. Ethical implications of implantable radiofrequency identification (RFID) tags in humans.

    PubMed

    Foster, Kenneth R; Jaeger, Jan

    2008-08-01

    This article reviews the use of implantable radiofrequency identification (RFID) tags in humans, focusing on the VeriChip (VeriChip Corporation, Delray Beach, FL) and the associated VeriMed patient identification system. In addition, various nonmedical applications for implanted RFID tags in humans have been proposed. The technology offers important health and nonhealth benefits, but raises ethical concerns, including privacy and the potential for coercive implantation of RFID tags in individuals. A national discussion is needed to identify the limits of acceptable use of implantable RFID tags in humans before their use becomes widespread and it becomes too late to prevent misuse of this useful but ethically problematic technology. PMID:18802863

  6. Cochlear implantation for children: opening doors to opportunity.

    PubMed

    Teagle, Holly F B

    2012-06-01

    Cochlear implantation has altered the life-course of thousands of children who have significant hearing loss. Since the United States Food and Drug Administration approved multichannel cochlear implants for children in 1989, growing numbers of parents are choosing this option for their offspring and seeking opportunities to integrate them into the hearing world of our society. When paired with appropriate habilitation, cochlear implantation removes barriers for children who are deaf. This technology affords them the ability to circumvent the effects of deafness and participate academically, socially, culturally, and vocationally with their hearing family and peers. PMID:22496120

  7. Controlled Delivery of Chemopreventive Agents by Polymeric Implants.

    PubMed

    Aqil, Farrukh; Gupta, Ramesh C

    2016-01-01

    The clinical development of cancer chemopreventive agents has been hampered by poor oral bioavailability issue. Several compounds have low aqueous solubility and undergo extensive first pass metabolism following oral dosing. To overcome this limitation, we developed polymeric implants from biodegradable ?-polycaprolactone (PCL) that can deliver both lipophilic as well as hydrophilic compounds. Implants furnish controlled release of compounds for long duration and provide dose-dependent release. The rate of release in vitro correlated well with the in vivo release. The polymeric implant technology thus overcomes the oral bioavailability issues, lowers the total required dose and minimizes or eliminates toxicity generally associated with high doses. PMID:26608285

  8. Implant isotopy (II).

    PubMed

    Muratori, G

    1995-01-01

    Because nature has given humans from 14 to 16 teeth per arch, the author maintains that an implantologist ought to replace each missing tooth with an implant and calls this philosophical creed "implant isotopy". Three different prosthetic solutions are suggested for the cases of either complete or partially edentulous arches, where from 12 to 14 abutments are emerging from the gingiva. The first type consists of parallel protruding posts. The second type is a modification of the first method through the connection of all the posts (although they are not perfectly parallel) via a titanium wire-drawn bar to be welded via endoral welding. Finally, the third type consists of a laboratory cast titanium denture composed of different sections that can be connected to one another and to the implant abutments via endoral welding. PMID:7473871

  9. Dental Implant Complications.

    PubMed

    Liaw, Kevin; Delfini, Ronald H; Abrahams, James J

    2015-10-01

    Dental implants have increased in the last few decades thus increasing the number of complications. Since many of these complications are easily diagnosed on postsurgical images, it is important for radiologists to be familiar with them and to be able to recognize and diagnose them. Radiologists should also have a basic understanding of their treatment. In a pictorial fashion, this article will present the basic complications of dental implants which we have divided into three general categories: biomechanical overload, infection or inflammation, and other causes. Examples of implant fracture, loosening, infection, inflammation from subgingival cement, failure of bone and soft tissue preservation, injury to surround structures, and other complications will be discussed as well as their common imaging appearances and treatment. Lastly, we will review pertinent dental anatomy and important structures that are vital for radiologists to evaluate in postoperative oral cavity imaging. PMID:26589696

  10. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry validation. Equipments and fundings for this project were provided by Philips Medical.

  11. The Reverse Zygomatic Implant: A New Implant For Maxillofacial Reconstruction.

    PubMed

    Dawood, Andrew; Collier, Jonathan; Darwood, Alastair; Tanner, Susan

    2015-01-01

    This case report describes the rehabilitation of a patient who had been treated with a hemimaxillectomy, reconstruction with a latissimus dorsi vascularized free flap, and radiotherapy for carcinoma of the sinus some years previously. Limited jaw opening, difficult access through the flap to the bony site, and the very small amount of bone available in which to anchor the implant inspired the development and use of a new "reverse zygomatic" implant. For this treatment, site preparation and implant insertion were accomplished using an extraoral approach. The implant was used along with two other conventional zygomatic implants to provide support for a milled titanium bar and overdenture to rehabilitate the maxilla. Two years later, the patient continues to enjoy a healthy reconstruction. The reverse zygomatic implant appears to show promise as a useful addition to the implant armamentarium for the treatment of the patient undergoing maxillectomy. PMID:26574864

  12. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  13. Allergy to Surgical Implants.

    PubMed

    Pacheco, Karin A

    2015-01-01

    Surgical implants have a wide array of therapeutic uses, most commonly in joint replacements, but also in repair of pes excavatum and spinal disorders, in cardiac devices (stents, patches, pacers, valves), in gynecological implants, and in dentistry. Many of the metals used are immunologically active, as are the methacrylates and epoxies used in conjunction with several of these devices. Allergic responses to surgical components can present atypically as failure of the device, with nonspecific symptoms of localized pain, swelling, warmth, loosening, instability, itching, or burning; localized rash is infrequent. Identification of the specific metal and cement components used in a particular implant can be difficult, but is crucial to guide testing and interpretation of results. Nickel, cobalt, and chromium remain the most common metals implicated in implant failure due to metal sensitization; methacrylate-based cements are also important contributors. This review will provide a guide on how to assess and interpret the clinical history, identify the components used in surgery, test for sensitization, and provide advice on possible solutions. Data on the pathways of metal-induced immune stimulation are included. In this setting, the allergist, the dermatologist, or both have the potential to significantly improve surgical outcomes and patient care. PMID:26362550

  14. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  15. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  16. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  17. Salvaging the Exposed Cochlear Implant.

    PubMed

    Seo, Bommie Florence; Park, Sang Wook; Han, Hyun Ho; Moon, Suk-Ho; Oh, Deuk Young; Rhie, Jong Won

    2015-11-01

    Cochlear implant exposure is an uncommon occurrence that may imperil the fate of the implant. Insertion of this costly device is a delicate procedure, and reimplantation with another implant after removal is expensive and emotionally stressful for patients. Salvage of the original implant can be quite successful with a fully vascularized scalp-nape of the neck rotation flap. The authors review the literature and report their experience in salvaging exposed implants in 2 patients, who had risk factors that compromised healing. PMID:26594996

  18. Potentially implantable miniature batteries.

    PubMed

    Heller, Adam

    2006-06-01

    All presently used batteries contain reactive, corrosive or toxic components and require strong cases, usually made of steel. As a battery is miniaturized, the required case dominates its size. Hence, the smallest manufactured batteries are about 50 mm3 in size, much larger then the integrated circuits or sensors of functional analytical packages, as exemplified by implantable glucose sensors for diabetes management. The status of the miniaturization of the power sources of such implantable packages is reviewed. Three microcells, consisting only of potentially harmless subcutaneously implantable anodes and cathodes, are considered. Because their electrolyte would be the subcutaneous interstitial fluid, the cells do not have a case. One potentially implantable cell has a miniature Nafion-coated Zn anode and a biocompatible hydrogel-shielded Ag/AgCl cathode. The core innovation on which the cell is based is the growth of a hopeite-phase Zn2+ conducting solid electrolyte film on the discharging anode. The film blocks the transport of O2 to the Zn, preventing its corrosion, while allowing the necessary transport of Zn2+. The second cell, with the same anode, would have a bioinert hydrogel-shielded wired bilirubin oxidase-coated carbon cathode, on which O2 dissolved in the subcutaneous fluid would be electroreduced to water. In the third cell, the glucose of the subcutaneous interstitial would be electrooxidized to gluconolactone at an implanted wired glucose anode, similar to that tested now for continuous glucose monitoring in diabetic people, and O2 in the subcutaneous fluid would be electroreduced to water on its wired bilirubin oxidase cathode. PMID:16538459

  19. The Development of the Nucleus® Freedom™ Cochlear Implant System

    PubMed Central

    Patrick, James F.; Busby, Peter A.; Gibson, Peter J.

    2006-01-01

    Cochlear Limited (Cochlear™) released the fourth-generation cochlear implant system, Nucleus® Freedom™, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance™ electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of SmartSound™ to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming. PMID:17172547

  20. A Threat to Autonomy? The Intrusion of Predictive Brain Implants

    PubMed Central

    Gilbert, Frederic

    2015-01-01

    The world's first-in-human clinical trial using invasive intelligent brain devices—devices that predict specific neuronal events directly to the implanted person—has been completed with significant success. Predicting brain activity before specific outcomes occur brings a raft of unprecedented applications, especially when implants offer advice on how to respond to the neuronal events forecasted. Although these novel predictive and advisory implantable devices offer great potential to positively affect patients following surgery by enhancing quality of life (e.g., provide control over symptoms), substantial ethical concerns remain. The invasive nature of these novel devices is not unique; however, the inclusion of predictive and advisory functionalities within the implants, involving permanent monitoring of brain activity in real time, raises new ethical issues to explore, especially in relation to concerns for patient autonomy. What might be the effects of ongoing monitoring of predictive and advisory brain technologies on a patient's postoperative sense of autonomy? The role played by predictive and advisory implantable brain devices on patient's feelings of autonomy following surgery is completely unknown. The first section of this article addresses this shortcoming by reporting on a pilot study that we conducted with one of the patients implanted with one of these novel brain devices. The second section examines how overreliance on predictive and advisory brain technologies may threaten patients' autonomy. The third section looks into ethical problems concerning how devices delivering automated therapeutic responses might, hypothetically speaking, be used to monitor and control individual's autonomy through inhibition of undesirable behaviors.

  1. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    SciTech Connect

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang; Huang, Wenrui

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

  2. SEM analysis of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Botha, A. J.; Friedland, E.; Hlatshwayo, T. T.; Kuhudzai, R. J.; Wendler, E.; Wesch, W.; Chakraborty, P.; da Silveira, E. F.

    2013-11-01

    SiC is a material used in two future energy production technologies, firstly as a photovoltaic layer to harness the UV spectrum in high efficient power solar cells, and secondly as a diffusion barrier material for radioactive fission products in the fuel elements of the next generation of nuclear power plants. For both applications, there is an interest in the implantation of reactive and non-reactive ions into SiC and their effects on the properties of the SiC. In this study 360 keV Ag+, I+ and Xe+ ions were separately implanted into 6H-SiC and in polycrystalline SiC at various substrate temperatures. The implanted samples were also annealed in vacuum at temperatures ranging from 900 °C to 1600 °C for various times. In recent years, there had been significant advances in scanning electron microscopy (SEM) with the introduction of an in-lens detector combined with field emission electron guns. This allows defects in solids, such as radiation damage created by the implanted ions, to be detected with SEM. Cross-sectional SEM images of 6H-SiC wafers implanted with 360 keV Ag+ ions at room temperature and at 600 °C and then vacuum annealed at different temperatures revealed the implanted layers and their thicknesses. A similar result is shown of 360 keV I+ ions implanted at 600 °C into 6H-SiC and annealed at 1600 °C. The 6H-SiC is not amorphized but remained crystalline when implanting at 600 °C. There are differences in the microstructure of 6H-SiC implanted with silver at the two temperatures as well as with reactive iodine ions. Voids (bubbles) are created in the implanted layers into which the precipitation of silver and iodine can occur after annealing of the samples. The crystallinity of the substrate via implantation temperature caused differences in the distribution and size of the voids. Implantation of xenon ions in polycrystalline SiC at 350 °C does not amorphize the substrate as is the case with room temperature heavy ion bombardment. Subsequent annealing of the implanted polycrystalline samples leads to increased thermal etching effects such as grain boundary grooving. Damage due to channelling (or non-channelling) in the different crystallites resulted also in differences in thermal etching in the crystallites.

  3. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  4. Remote patient management using implantable devices.

    PubMed

    Movsowitz, Colin; Mittal, Suneet

    2011-06-01

    Remote patient management utilizing the Internet is a milestone in the management of patients with an implantable cardiac device. Pacemakers and implantable cardioverter-defibrillators (ICDs) store diagnostic information about device and lead integrity, the occurrence of atrial and ventricular arrhythmias, and parameters that may reflect on a patient's heart failure status. Previously, these data could only be retrieved with a programmer at an in-person office visit. The introduction of remote follow-up and monitoring has changed the paradigm for the management of patients with implanted devices. Remote follow-up has been shown to be superior to traditional transtelephonic monitoring for the detection of clinically actionable events in pacemaker patients. Remote monitoring using ICDs with wireless technology has been demonstrated to result in detection of lead malfunction and atrial and ventricular arrhythmias while reducing the need for in-office evaluations without compromising patient safety. Studies are underway to evaluate the clinical utility of identification of atrial high-rate episodes and to identify patients at risk for exacerbation of heart failure. Remote monitoring technology has yet to be universally adopted by patients or physicians. Impediments to the implementation of remote monitoring including issues related to work flow and data management are explored. PMID:21328042

  5. Pediatric Cochlear Implantation: Why Do Children Receive Implants Late?

    PubMed Central

    Ham, Julia; Whittingham, JoAnne

    2015-01-01

    Objectives: Early cochlear implantation has been widely promoted for children who derive inadequate benefit from conventional acoustic amplification. Universal newborn hearing screening has led to earlier identification and intervention, including cochlear implantation in much of the world. The purpose of this study was to examine age and time to cochlear implantation and to understand the factors that affected late cochlear implantation in children who received cochlear implants. Design: In this population-based study, data were examined for all children who underwent cochlear implant surgery in one region of Canada from 2002 to 2013. Clinical characteristics were collected prospectively as part of a larger project examining outcomes from newborn hearing screening. For this study, audiologic details including age and severity of hearing loss at diagnosis, age at cochlear implant candidacy, and age at cochlear implantation were documented. Additional detailed medical chart information was extracted to identify the factors associated with late implantation for children who received cochlear implants more than 12 months after confirmation of hearing loss. Results: The median age of diagnosis of permanent hearing loss for 187 children was 12.6 (interquartile range: 5.5, 21.7) months, and the age of cochlear implantation over the 12-year period was highly variable with a median age of 36.2 (interquartile range: 21.4, 71.3) months. A total of 118 (63.1%) received their first implant more than 12 months after confirmation of hearing loss. Detailed analysis of clinical profiles for these 118 children revealed that late implantation could be accounted for primarily by progressive hearing loss (52.5%), complex medical conditions (16.9%), family indecision (9.3%), geographical location (5.9%), and other miscellaneous known (6.8%) and unknown factors (8.5%). Conclusions: This study confirms that despite the trend toward earlier implantation, a substantial number of children can be expected to receive their first cochlear implant well beyond their first birthday because they do not meet audiologic criteria of severe to profound hearing loss for cochlear implantation at the time of identification of permanent hearing loss. This study underscores the importance of carefully monitoring all children with permanent hearing loss to ensure that optimal intervention including cochlear implantation occurs in a timely manner. PMID:26035143

  6. Superior destabilization e ects of LiBH4 with the addition of nano-sized nickel ferrite NiFe2O4

    E-print Network

    Volinsky, Alex A.

    properties of LiBH4, processed by high energy ball milling, are studied. Non-isothermal desorption resultsSuperior destabilization e ects of LiBH4 with the addition of nano-sized nickel ferrite NiFe2O4 JunBH4. In this paper the e ects of nano-sized nickel ferrite (NiFe2O4) on the hydrogen storage

  7. Automatic Frequency Controller for Power Amplifiers Used in Bio-Implanted Applications: Issues and Challenges

    PubMed Central

    Hannan, Mahammad A.; Hussein, Hussein A.; Mutashar, Saad; Samad, Salina A.; Hussain, Aini

    2014-01-01

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices. PMID:25615728

  8. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.

    PubMed

    Hannan, Mahammad A; Hussein, Hussein A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-01-01

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices. PMID:25615728

  9. Paracrine dialogue in implantation.

    PubMed

    Dominguez, F; Pellicer, A; Simón, C

    2002-01-25

    We know that the implantation process requires a functionally normal embryo at the blastocyst stage and a receptive endometrium, but also a communication link between them is needed. This paracrine dialogue between the embryo, endometrium and the corpus luteum are known to occur in ruminants and primates, more specifically endometrial-embryonic interactions have been reported in rodents and primates but not in humans. This process is a highly regulated mechanism and many molecules take part in this cross-talk. Here, we present updated information in humans on the embryonic regulation of endometrial epithelial molecules such as chemokines, adhesion and anti-adhesion molecules, and leptin during the apposition and adhesion phases of human implantation. PMID:11900893

  10. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  11. Miniature implantable ultrasonic echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K. (inventor)

    1978-01-01

    A miniature echosonometer adapted for implantation in the interior of an animal for imaging the internal structure of a organ, tissue or vessel is presented. The echosonometer includes a receiver/transmitter circuit which is coupled to an ultrasonic transducer. Power is coupled to the echosonometer by electromagnetic induction through the animal's skin. Imaging signals from the echosonometer are electromagnetically transmitted through the animal's skin to an external readout apparatus.

  12. BF{sub 3} PIII modeling: Implantation, amorphisation and diffusion

    SciTech Connect

    Essa, Z.; Cristiano, F.; Spiegel, Y.; Boulenc, P.; Qiu, Y.; Quillec, M.; Taleb, N.; Burenkov, A.; Hackenberg, M.; Bedel-Pereira, E.; Mortet, V.; Torregrosa, Frank; Tavernier, C.

    2012-11-06

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF{sub 3} PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5 Multiplication-Sign 10{sup 15} cm{sup -2}), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF{sub 3} implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  13. The socially constructed breast: breast implants and the medical construction of need.

    PubMed Central

    Jacobson, N

    1998-01-01

    When silicone gel breast implants became the subject of a public health controversy in the early 1990s, the most pressing concern was safety. This paper looks at another, less publicized issue: the need for implants. Using a symbolic interactionist approach, the author explores the social construction of the need for implants by tracing the history of the 3 surgical procedures for which implants were used. Stakeholders in this history constructed need as legitimized individual desire, the form of which shifted with changes in the technological and social context. PMID:9702166

  14. The Evolution of Breast Implants.

    PubMed

    Gabriel, Allen; Maxwell, G Patrick

    2015-10-01

    Breast augmentation remains one of the most common procedures performed in the United States. However, shape, feel, safety, and longevity of the implants remain important areas of research. The data provided by manufacturers show the safety and efficacy of these medical devices. Clinicians should strive to provide ongoing data and sound science to continue to improve clinical outcomes in the future. This article explores the evolution of breast implants with special emphasis on the advancement of silicone implants. PMID:26408431

  15. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  16. Accuracy of computer-aided template-guided oral implant placement: a prospective clinical study

    PubMed Central

    2014-01-01

    Purpose The aim of the present study was to evaluate the in vivo accuracy of flapless, computer-aided implant placement by comparing the three-dimensional (3D) position of planned and placed implants through an analysis of linear and angular deviations. Methods Implant position was virtually planned using 3D planning software based on the functional and aesthetic requirements of the final restorations. Computer-aided design/computer-assisted manufacture technology was used to transfer the virtual plan to the surgical environment. The 3D position of the planned and placed implants, in terms of the linear deviations of the implant head and apex and the angular deviations of the implant axis, was compared by overlapping the pre- and postoperative computed tomography scans using dedicated software. Results The comparison of 14 implants showed a mean linear deviation of the implant head of 0.56 mm (standard deviation [SD], 0.23), a mean linear deviation of the implant apex of 0.64 mm (SD, 0.29), and a mean angular deviation of the long axis of 2.42° (SD, 1.02). Conclusions In the present study, computer-aided flapless implant surgery seemed to provide several advantages to the clinicians as compared to the standard procedure; however, linear and angular deviations are to be expected. Therefore, accurate presurgical planning taking into account anatomical limitations and prosthetic demands is mandatory to ensure a predictable treatment, without incurring possible intra- and postoperative complications. Graphical Abstract PMID:25177520

  17. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  18. Massachusetts Institute of Technology Center for Space Research

    E-print Network

    Massachusetts Institute of Technology Center for Space Research Cambridge, MA 02139 Room 37­521 mwb@space in an attempt to reproduce the e#ect of the September, 1999 room­ temperature bakeout of the flight ACIS of the ACIS flight detectors, an initial eight­hour bakeout to +30C produced a factor # 2.5 increase in charge

  19. A Lightweight Cryptographic System for Implantable Biosensors

    E-print Network

    De Micheli, Giovanni

    A Lightweight Cryptographic System for Implantable Biosensors Sara S. Ghoreishizadeh, Tolga Yalc presents a lightweight cryptographic system integrated onto a multi-function implantable biosensor--Lightweight encryption, Keccak hash function, Authentication, Privacy, Implantable biosensor. I. INTRODUCTION Recently

  20. Neutrophil Responses to Sterile Implant Materials

    E-print Network

    Jhunjhunwala, Siddharth

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, ...

  1. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350...ANIMAL DRUGS § 522.1350 Melatonin implant. (a) Specifications . The drug is a silicone rubber elastomer implant containing 2.7 milligrams of...

  2. Immediate loading and implant-bar overdenture.

    PubMed

    Chang, John; Millstein, Philip

    2014-10-01

    Immediate loaded implants may be used with an implant-bar overdenture to provide fixed splinting. This is a relatively new system that provides for immediate implant placement and restoration. PMID:24787132

  3. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Melatonin implant. 522.1350 Section 522...FORM NEW ANIMAL DRUGS § 522.1350 Melatonin implant. (a) Specifications ...implant containing 2.7 milligrams of melatonin. (b) Sponsor . See No....

  4. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522...FORM NEW ANIMAL DRUGS § 522.1350 Melatonin implant. (a) Specifications ...implant containing 2.7 milligrams of melatonin. (b) Sponsor . See No....

  5. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522...FORM NEW ANIMAL DRUGS § 522.1350 Melatonin implant. (a) Specifications ...implant containing 2.7 milligrams of melatonin. (b) Sponsor . See No....

  6. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522...FORM NEW ANIMAL DRUGS § 522.1350 Melatonin implant. (a) Specifications. ...implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No....

  7. Development of Implantable Medical Devices: From an Engineering Perspective

    PubMed Central

    2013-01-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  8. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  9. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  10. An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care

    E-print Network

    Elman, Noel

    We introduce the first implantable drug delivery system based on MEMS (Micro-Electro-Mechanical-Systems) technology specifically designed as a platform for treatment in ambulatory emergency care. The device is named ...

  11. Emergency delivery of Vasopressin from an implantable MEMS rapid drug delivery device

    E-print Network

    Ho Duc, Hong Linh, 1978-

    2009-01-01

    An implantable rapid drug delivery device based on micro-electro-mechanical systems (MEMS) technology was designed, fabricated and validated for the in vivo rapid delivery of vasopressin in a rabbit model. In vitro ...

  12. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2015-07-16

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  13. Additive manufacturing: From implants to organs.

    PubMed

    Douglas, Tania S

    2014-06-01

    Additive manufacturing (AM) constructs 3D objects layer by layer under computer control from 3D models. 3D printing is one example of this kind of technology. AM offers geometric flexibility in its products and therefore allows customisation to suit individual needs. Clinical success has been shown with models for surgical planning, implants, assistive devices and scaffold-based tissue engineering. The use of AM to print tissues and organs that mimic nature in structure and function remains an elusive goal, but has the potential to transform personalised medicine, drug development and scientific understanding of the mechanisms of disease.  PMID:25214247

  14. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  15. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for derivatizing the radiofullerenes for water-solubility and a method for removing exohedral radionuclides are reported. The methods and chemistry developed during this CRADA are the crucial first steps for the development of fullerenes as a method superior to existing technologies for in vivo transport of radionuclides.

  16. 2010/2011 SENIOR DESIGN PROJ ECTS 3 DEPARTMENT OF BIOMEDICAL ENGINEERING

    E-print Network

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bluetooth Stethoscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Implementation of InformationTechnology and Electronic Medical Records in Public vs. Private

  17. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.

  18. Anatomic consideration for preventive implantation.

    PubMed

    Denissen, H W; Kalk, W; Veldhuis, H A; van Waas, M A

    1993-01-01

    The aim of preventive implant therapy is to prevent or delay loss of alveolar ridge bone mass. For use in an anatomic study of 60 mandibles, resorption of the alveolar ridge was classified into four preventive stages: (1) after extraction of teeth; (2) after initial resorption; (3) when the ridge has atrophied to a knife-edge shape; and (4) when only basal bone remains. Implantation in stage 3 necessitates removal of the knife-edge ridge to create space for cylindrical implants. Therefore, implantation in stage 2 is advocated to prevent the development of stage 3. The aim of implantation in stage 4 is to prevent total loss of function of the atrophic mandible. PMID:8359876

  19. Ion implantation processing of III-V strained-layer semiconductors

    SciTech Connect

    Myers, D.R.

    1987-01-01

    Ion implantation has had a strong impact on the development of III-V strained-layer semiconductor (SLS) materials and device technologies. Implantation studies have helped delineate the present understanding of strained-layer stability and metastability limits. Resulting ion beam technologies have led to improvements in a variety of SLS discrete devices, including optoelectronic emitters, photodetectors, and field-effect transistors. Both SLS stability criteria and implanted SLS devices are reviewed with respect to future applications in optoelectronics. 36 refs., 2 figs.

  20. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    NASA Astrophysics Data System (ADS)

    Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba

    2014-07-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1,?2,…N and i ? j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries in general. This article was invited for the special feature on Imaging Systems and Techniques 2012, published in July 2013.

  1. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  2. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation

    PubMed Central

    Gui, Liqiong; Niklason, Laura E.

    2014-01-01

    Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics. PMID:24533306

  3. MEMS fabricated chip for an implantable drug delivery device.

    PubMed

    Sbiaa, Z

    2006-01-01

    We present a silicon-based implantable drug delivery system (IDDS) for the administration of compounds in vivo. The implanted device contains the drug-filled silicon microchip, control circuitry, telemetry capability, and a battery. At the heart of the IDDS is the drug-containing microchip, a MEMS (MicroElectroMechanical Systems)-based device. A process was developed for the fabrication of the silicon chip. MicroCHIPS' drug release technology has been successfully demonstrated in vitro and in vivo using the therapeutic peptide leuprolide as a model compound. PMID:17947154

  4. Ion implantation for high performance III-V JFETS and HFETS

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-06-01

    Ion implantation has been an enabling technology for realizing many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing for GaAs JFETs (joint field effect transistors), AlGaAs/GaAs HFETs (heterostructure field effect transistors), and InGaP or InAlP-barrier HFETs. The GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs are reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to absence of the deep donor level. An optimized P co- implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

  5. Novel micropatterns mechanically control fibrotic reactions at the surface of silicone implants.

    PubMed

    Majd, Hicham; Scherer, Saja S; Boo, Stellar; Ramondetti, Silvio; Cambridge, Elizabeth; Raffoul, Wassim; Friedrich, Michael; Pittet, Brigitte; Pioletti, Dominique; Hinz, Boris; Pietramaggiori, Giorgio

    2015-06-01

    Over the past decade, various implantable devices have been developed to treat diseases that were previously difficult to manage such diabetes, chronic pain, and neurodegenerative disorders. However, translation of these novel technologies into clinical practice is often difficult because fibrotic encapsulation and/or rejection impairs device function after body implantation. Ideally, cells of the host tissue should perceive the surface of the implant being similar to the normal extracellular matrix. Here, we developed an innovative approach to provide implant surfaces with adhesive protein micropatterns. The patterns were designed to promote adhesion of fibroblasts and macrophages by simultaneously suppressing fibrogenic activation of both cell types. In a rat model, subcutaneously implanted silicone pads provided with the novel micropatterns caused 6-fold lower formation of inflammatory giant cells compared with clinical grade, uncoated, or collagen-coated silicone implants. We further show that micropatterning of implants resulted in 2-3-fold reduced numbers of pro-fibrotic myofibroblast by inhibiting their mechanical activation. Our novel approach allows controlled cell attachment to implant surfaces, representing a critical advance for enhanced biointegration of implantable medical devices. PMID:25907047

  6. Cochlear Implantation in Extraordinary Cases

    PubMed Central

    Çelenk, Fatih; Cevizci, Ra?it; Alt?nyay, ?enay; Bayaz?t, Y?ld?r?m Ahmet

    2015-01-01

    Background: Although cochlear implantation has been almost a standard otological procedure worldwide, it may still create a dilemma for the surgeon in some unusual instances such as Seckel syndrome, aural atresia and posterior fossa arachnoid cyst. Case Report: Three extraordinary cases of cochlear implantation were reported. The first case was a case of Seckel syndrome with a cardiac pacemaker due to complete atrioventricular block. The second case had posterior fossa arachnoid cyst that had retrosigmoid cyst removal and cochlear implantation simultaneously. The last case had cochlear implantation in the ear with congenital aural atresia. All cases could be implanted successfully with full electrode insertion and good audiological outcome. Delayed facial paralysis that occurred in the patient with arachnoid cyst resolved spontaneously. Conclusion: This study addressed the efficiency of cochlear implantation in cases of Seckel syndrome, complete atrioventricular block managed with cardiac pacemaker, congenital aural atresia and posterior fossa arachnoid cyst. In addition, the retrosigmoid approach and cochlear implantation can be performed simultaneously. PMID:26167347

  7. Pediatric cochlear implantation: an update.

    PubMed

    Vincenti, Vincenzo; Bacciu, Andrea; Guida, Maurizio; Marra, Francesca; Bertoldi, Barbara; Bacciu, Salvatore; Pasanisi, Enrico

    2014-01-01

    Deafness in pediatric age can adversely impact language acquisition as well as educational and social-emotional development. Once diagnosed, hearing loss should be rehabilitated early; the goal is to provide the child with maximum access to the acoustic features of speech within a listening range that is safe and comfortable. In presence of severe to profound deafness, benefit from auditory amplification cannot be enough to allow a proper language development. Cochlear implants are partially implantable electronic devices designed to provide profoundly deafened patients with hearing sensitivity within the speech range. Since their introduction more than 30 years ago, cochlear implants have improved their performance to the extent that are now considered to be standard of care in the treatment of children with severe to profound deafness. Over the years patient candidacy has been expanded and the criteria for implantation continue to evolve within the paediatric population. The minimum age for implantation has progressively reduced; it has been recognized that implantation at a very early age (12-18 months) provides children with the best outcomes, taking advantage of sensitive periods of auditory development. Bilateral implantation offers a better sound localization, as well as a superior ability to understand speech in noisy environments than unilateral cochlear implant. Deafened children with special clinical situations, including inner ear malformation, cochlear nerve deficiency, cochlear ossification, and additional disabilities can be successfully treated, even thogh they require an individualized candidacy evaluation and a complex post-implantation rehabilitation. Benefits from cochlear implantation include not only better abilities to hear and to develop speech and language skills, but also improved academic attainment, improved quality of life, and better employment status. Cochlear implants permit deaf people to hear, but they have a long way to go before their performance being comparable to that of the intact human ear; researchers are looking for more sophisticated speech processing strategies as well as a more efficient coupling between the electrodes and the cochlear nerve with the goal of dramatically improving the quality of sound of the next generation of implants. PMID:25179127

  8. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.

  9. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review

    PubMed Central

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interest. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology-based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. PMID:20042326

  10. Deep Trench Doping by Plasma Immersion Ion Implantation in Silicon

    SciTech Connect

    Nizou, S.; Vervisch, V.; Etienne, H.; Torregrosa, F.; Roux, L.; Ziti, M.; Alquier, D.; Roy, M.

    2006-11-13

    The realization of three dimensional (3D) device structures remains a great challenge in microelectronics. One of the main technological breakthroughs for such devices is the ability to control dopant implantation along silicon trench sidewalls. Plasma Immersion Ion Implantation (PIII) has shown its wide efficiency for specific doping processing in semiconductor applications. In this work, we propose to study the capability of PIII method for large scale silicon trench doping. Ultra deep trenches with high aspect ratio were etched on 6'' N type Si wafers. Wafers were then implanted with a PIII Pulsion system using BF3 gas source at various pressures and energies. The obtained results evidence that PIII can be used and are of grateful help to define optimized processing conditions to uniformly dope silicon trench sidewalls through the wafers.

  11. Accidental Implant Screwdriver Ingestion: A Rare Complication during Implant Placement

    PubMed Central

    Jain, Anshul; Baliga, Shridhar D

    2014-01-01

    One of the complications during a routine dental implant placement is accidental ingestion of the implant instruments, which can happen when proper precautions are not taken. Appropriate radiographs should be taken to locate the correct position of foreign body; usually the foreign body passes asymptomatically from gastrointestinal tract but sometimes it may lead to intestinal obstruction, perforations and impactions. The aim of this article is to report accidental ingestion of 19 mm long screw driver by a senile patient. PMID:25628702

  12. A rationale for technology transfer

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1978-01-01

    Specific contributions of the NASA Technology Utilization Program are outlined, including: improved firefighting equipment, electrical implants for medical purposes, and improved methods of weather forecasting. Cooperation between NASA and other organizations in both the public and private sectors is stressed.

  13. Ion-implanted laser annealed silicon solar cells

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1980-01-01

    Development of low cost solar cells fabrication technology is being sponsored by NASA JPL as part of the Low Cost Solar Array Project (LSA). In conformance to Project requirements ion implantation and laser annealing were evaluated as junction formation techniques offering low cost-high throughput potential. Properties of cells fabricated utilizing this technology were analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicated the laser annealed substrates to be damage free and electrically active. Similar analysis of ion implanted furnace annealed substrates revealed the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibited improved spectral response and conversion efficiency in comparison to furnace annealed cells. An economic projection for LSA indicates a potential for considerable savings from laser annealing technology.

  14. The design and fabrication of fiber-reinforced implant prostheses.

    PubMed

    Freilich, Martin A; Duncan, Jacqueline P; Alarcon, E Karina; Eckrote, Kimberly A; Goldberg, A Jon

    2002-10-01

    The use of fiber composite technology in the creation of metal-free implant prostheses may solve many of the problems associated with a metal alloy substructure such as corrosion, toxicity, complexity of fabrication, high cost, and esthetic limitations. Laboratory and clinical research evaluating glass fiber-reinforced composite prostheses used to restore and replace teeth has shown that these materials exhibit excellent mechanical properties and can form a chemical bond to resin-based veneer materials such as those used in the fabrication of certain types of implant prostheses. Two different designs of fiber-reinforced composite implant prostheses have been developed and placed in human subjects. One design (screw-retained, retrievable prosthesis) is used with implant abutments that allow for screw-retained prostheses; the other design is used with abutments that retain prostheses with a luting material. Both designs are described in this article. The prostheses have functioned well in a small group of preliminary subjects, but clinical trials with larger subject populations are needed to more completely evaluate the potential of fiber-reinforced composites in implant prosthodontics. PMID:12447224

  15. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation

    PubMed Central

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12–30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  16. ANTIARRHYTHMICS VERSUS IMPLANTABLE DEFIBRILLATORS (AVID)

    EPA Science Inventory

    Evaluates whether use of an implantable cardiac defibrillator (ICD) results in reduction in total mortality, when compared with conventional pharmacological therapy, in patients resuscitated from sudden cardiac death who are otherwise at very high risk of mortality from arrhythmi...

  17. Complications in cochlear implant surgery

    PubMed Central

    Gheorghe, DC; Zamfir-Chiru-Anton, A

    2015-01-01

    For the last 6 years, cochlear implantation has become a standard practice in our department. The number of patients rose from 5 to 21/ year. Using multiple types of cochlear implants and indicating the surgery also to malformed inner ears led to the encounter of some complications. Objective: to present the surgical complications from our department. Material: all the patients admitted and operated in our clinic have been reviewed. Results: 9 complications (8,86%) have occurred: the impossibility of establishing a reliable cochleostomy (due to ossification), air in the cochlea through lack of sealing of the cochleostomy (exteriorization of the electrode array), cochlear implant postoperative migration from its bed, weak hearing discrimination due to “double electrodes” in the scala tympani, gusher. Conclusions: cochlear implanting needs to respect the technical steps of the surgery and the best technical/ tactical solution has to be found to whatever complications arise in complex or malformed cases! PMID:26351535

  18. Ciliary Sulcus Ahmed Valve Implantation

    PubMed Central

    Moon, Kun; Kim, Kwang Soo

    2007-01-01

    Purpose Ahmed glaucoma valves were implanted into the ciliary sulcus of two patients diagnosed with neovascular glaucoma with favorable outcomes. Methods The study patients presented to our hospital with ocular pain caused by increased intraocular pressure (IOP). A thorough history was taken, and an ophthalmic examination was performed. Results A 71-year-old male patient and a 57-year-old female patient visited our hospital for ocular pain and persistent, elevated IOP. Each were diagnosed with neovascular glaucoma and underwent an Ahmed glaucoma valve implantation to the sulcus. After surgery, the patients maintained stable IOPs without major complications. Conclusions The method of Ahmed glaucoma valve implantation into the ciliary sulcus could reduce complications caused by implantation to the anterior chamber. It is thought to be an efficient method for the maintenance of appropriate IOP after surgery. PMID:17592246

  19. Fabrication of implantable microshunt using

    E-print Network

    Bifano, Thomas

    Fabrication of implantable microshunt using a novel channel sealing technique Alioune Diouf microelectromechanical systems MEMS fabrication processes. The key features of our mi- croshunt fabrication process fabrication process suitable for mass production. These features were realized using electroplating

  20. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  1. Minimally invasive is the future of left ventricular assist device implantation

    PubMed Central

    Makdisi, George

    2015-01-01

    There have been many factors that have allowed for progressive improvement in outcomes and lower complication rates. These include the improvement in left ventricular assist device (LVAD) technologies, combined with better understanding of patient management, all these. Nowadays the numbers of LVAD implantations exceed the number of annual heart transplants worldwide. Minimally invasive procedures are shown to improve the surgical outcome in both LVAD insertion and replacement. These minimally invasive techniques can be grouped grossly into shifting from on-pump to off-pump implantation, alternative access for implantation other than sternotomy, and a combination of both, which should be the ultimate aim of minimally invasive LVAD implantation. Here we describe the alternative techniques and configurations of minimally invasive and sites of implantation. PMID:26543617

  2. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair.

    PubMed

    Agarwal, Rachit; García, Andrés J

    2015-11-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  3. Cochlear implantations in Northern Ireland: an overview of the first five years.

    PubMed Central

    John, G.; Toner, J. G.

    1999-01-01

    During the last few years cochlear implantation (CI) has made remarkable progress, developing from a mere research tool to a viable clinical application. The Centre for CI in the Northern Ireland was established in 1992 and has since been a provider of this new technology for rehabilitation of profoundly deaf patients in the region. Although individual performance with a cochlear implant cannot be predicted accurately, the overall success of CI can no longer be denied. Seventy one patients, 37 adults and 34 children, have received implants over the first five years of the Northern Ireland cochlear implant programme, which is located at the Belfast City Hospital. The complication rates and the post-implantation outcome of this centre compare favourably with other major centres which undertake the procedure. This paper aims to highlight the patient selection criteria, surgery, post-CI outcome, clinical and research developments within our centre, and future prospects of this recent modality of treatment. Images Fig 1 PMID:10489806

  4. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  5. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  6. Therapy using implanted organic bioelectronics

    PubMed Central

    Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn A.; Simon, Daniel T.; Linderoth, Bengt; Berggren, Magnus

    2015-01-01

    Many drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug’s spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient. We turned to electronically and ionically conducting polymers to design a device that could be implanted and used for local electrically controlled delivery of therapeutics. The conducting polymers in our device allow electronic pulses to be transduced into biological signals, in the form of ionic and molecular fluxes, which provide a way of interfacing biology with electronics. Devices based on conducting polymers and polyelectrolytes have been demonstrated in controlled substance delivery to neural tissue, biosensing, and neural recording and stimulation. While providing proof of principle of bioelectronic integration, such demonstrations have been performed in vitro or in anesthetized animals. Here, we demonstrate the efficacy of an implantable organic electronic delivery device for the treatment of neuropathic pain in an animal model. Devices were implanted onto the spinal cord of rats, and 2 days after implantation, local delivery of the inhibitory neurotransmitter ?-aminobutyric acid (GABA) was initiated. Highly localized delivery resulted in a significant decrease in pain response with low dosage and no observable side effects. This demonstration of organic bioelectronics-based therapy in awake animals illustrates a viable alternative to existing pain treatments, paving the way for future implantable bioelectronic therapeutics. PMID:26601181

  7. Auditory Midbrain Implant: A Review

    PubMed Central

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  8. Heavy Tails: The E ect of the Service Discipline ? S.C. Borst 1;2;3 , O.J. Boxma 1;2 , and R. N u~nez-Queija 1;2

    E-print Network

    Núñez-Queija, Rudesindo

    Heavy Tails: The E#11;ect of the Service Discipline ? S.C. Borst 1;2;3 , O.J. Boxma 1;2 , and R. N requirement distribution. It studies the e#11;ect of the service discipline on the tail behavior;erent tail behavior. The orientation of the paper is methodological: We outline three di#11;erent

  9. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...false Endosseous dental implant accessories. 872.3980...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are...

  10. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...false Endosseous dental implant accessories. 872.3980...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are...

  11. Optima XE Single Wafer High Energy Ion Implanter

    SciTech Connect

    Satoh, Shu; Ferrara, Joseph; Bell, Edward; Patel, Shital; Sieradzki, Manny

    2008-11-03

    The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowing the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.

  12. Si exfoliation by MeV proton implantation

    NASA Astrophysics Data System (ADS)

    Braley, Carole; Mazen, Frédéric; Tauzin, Aurélie; Rieutord, François; Deguet, Chrystel; Ntsoenzok, Esidor

    2012-04-01

    Proton implantation in silicon and subsequent annealing are widely used in the Smart Cut™ technology to transfer thin layers from a substrate to another. The low implantation energy range involved in this process is usually from a few ten to a few hundred of keV, which enables the separation of up to 2 ?m thick layers. New applications in the fields of 3D integration and photovoltaic wafer manufacturing raise the demand for extending this technology to higher energy in order to separate thicker layer from a substrate. In this work, we propose to investigate the effect of proton implantation in single crystalline silicon in the 1-3 MeV range which corresponds to a 15-100 ?m range for the hydrogen maximum concentration depth. We show that despites a considerably lower hydrogen concentration at Rp, the layer separation is obtained with fluence close to the minimum fluence required for low energy implantation. It appears that the fracture propagation in Si and the resulting surface morphology is affected by the substrate orientation. Defects evolution is investigated with Fourier Transform Infrared Spectroscopy. The two orientations reveal similar type of defects but their evolution under annealing appears to be different.

  13. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    PubMed Central

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(?-caprolactone) nanofibrous implant (from 700 ?m to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  14. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(?-caprolactone) nanofibrous implant (from 700 ?m to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  15. Biomechanical load analysis of cantilevered implant systems.

    PubMed

    Osier, J F

    1991-01-01

    Historically, dental implants have been placed in areas where quality bone exists. The maxillary sinus areas and mandibular canal proximities have been avoided. From these placements, various cantilevered prosthetic applications have emerged. This analysis uses static engineering principles to define the loads (i.e., forces) placed upon the implants. These principles make use of Newton's first and third laws of mechanics by summing the forces and moments to zero. These summations then generate mathematical equations and their algebraic solutions. Three implant systems are analyzed. The first is a two-implant system. The second is a three-implant cross-arch stabilized system usually found in mandibular replacements of lower full dentures. The third is a five-implant system which is identical to the three-implant cantilevered system but which uses implants in the first molar area, thereby negating the cantilevered load magnification of the three-implant design. These analyses demonstrate that, in a cantilevered application, the implant closest to the point of load application (usually the most posterior implant) takes the largest compressive load. Implants opposite the load application (generally the anterior implant) are in tension. These loads on the implants are normally magnified over the biting force and can easily reach 2 1/2 to five times the biting load. PMID:1942131

  16. [Biodeterioration and corrosion of metallic implants and prostheses].

    PubMed

    López, G D

    1993-01-01

    The use of surgical implants and prosthetic devices to replace the original function of different components of the human biological system is a well established tradition in the history of medicine. Currently, one of the most prevalent points of view in dealing with this subject, is that of biocompatibility of materials of construction and methods of fabrication of these devices, in order to avoid negative impacts on the patient due to failure of implants through degradation mechanisms such as corrosion. This article presents a current general review of the relationship between biocompatibility and deterioration of metallic implants and prosthetic devices, emphasizing the specific forms that corrosion adopts in biological media. The historical perspective shows the consolidation of a tendency towards a more systematic study of these phenomena in recent years, as opposed to trial and error practices that used to be common before the third decade of this century. The understanding of interactions between implants and biological tissue, thus led to some of the most promising current techniques, such as the use of powder metallurgy components to optimize skeletal fixation of implants by means of interstitial bone growth into porous metallic surfaces. The review of metals and alloys currently used for the fabrication of implants shows the amplitude of available technological alternatives, as well as the multiple criteria required to make a good selection for each specific case. Applications and pros and cons of stainless steel, Cr, Ni, Co and Ti alloys, and tantalum are briefly discussed. The introduction to basic concepts of corrosion, serves as a basis for the description of the typical forms that these phenomena adopt in biological media, including pitting, crevice corrosion, fatigue-corrosion, stress corrosion, fretting corrosion, galvanic corrosion, and intergranular corrosion. This review shows that the study of interactions between biological media and metallic implants has become a well established and specific field of science. As a result of this conclusion, an interdisciplinary treatment of the subject of biodeterioration of metallic implants and prosthetic devices is proposed. In practical terms, this proposal can be understood as the integration of an expert in materials science and engineering to the medical team. Thus, quality and reliability of the implant, as well as maximization of its useful life, would be achieved through the implementation of technical specifications, accepted standards, and pertinent testing as recommended by the above mentioned expert, who will be the person of the team more able to grasp the novelties that the dynamic field of biomaterials constantly offers. PMID:8114635

  17. Effectiveness of implant therapy analyzed in a Swedish population: early and late implant loss.

    PubMed

    Derks, J; Håkansson, J; Wennström, J L; Tomasi, C; Larsson, M; Berglundh, T

    2015-03-01

    Treatment outcomes in implant dentistry have been mainly assessed as implant survival rates in small, selected patient groups of specialist or university clinical settings. This study reports on loss of dental implants assessed in a large and randomly selected patient sample. The results were aimed at representing evaluation of effectiveness of implant dentistry. Using the national data register of the Swedish Social Insurance Agency, 4,716 patients were randomly selected. All had been provided with implant-supported restorative therapy in 2003. Patient files of 2,765 patients (11,311 implants) were collected from more than 800 clinicians. Information on patients, treatment procedures, and outcomes related to the implant-supported restorative therapy was extracted from the files. In total, 596 of the 2,765 subjects, provided with 2,367 implants, attended a clinical examination 9 y after therapy. Implant loss that occurred prior to connection of the supraconstruction was scored as an early implant loss, while later occurring loss was considered late implant loss. Early implant loss occurred in 4.4% of patients (1.4% of implants), while 4.2% of the patients who were examined 9 y after therapy presented with late implant loss (2.0% of implants). Overall, 7.6% of the patients had lost at least 1 implant. Multilevel analysis revealed higher odds ratios for early implant loss among smokers and patients with an initial diagnosis of periodontitis. Implants shorter than 10 mm and representing certain brands also showed higher odds ratios for early implant loss. Implant brand also influenced late implant loss. Implant loss is not an uncommon event, and patient and implant characteristics influence outcomes (ClinicalTrials.gov NCT01825772). PMID:25503901

  18. ReProTool Version 2.0: Re-Engineering Academic Curriculum Using Learning Outcomes, ECTS and Bologna Process Concepts

    ERIC Educational Resources Information Center

    Pouyioutas, Philippos; Gjermundrod, Harald; Dionysiou, Ioanna

    2012-01-01

    Purpose: The purpose of this paper is to present ReProTool Version 2.0, a software tool that is used for the European Credit Transfer System (ECTS) and the Bologna Process re-engineering of academic programmes. The tool is the result of an 18 months project (February 2012-July 2013) project, co-financed by the European Regional Development Fund…

  19. FINAL DRAFT, ACCEPTED BY THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. XX, NO. Y, MMMM 1995 1 Design and Control of a Force-Re ecting

    E-print Network

    Salcudean, Tim

    1995 1 Design and Control of a Force-Re ecting Teleoperation System with Magnetically Levitated Master and Wrist S.E. Salcudean, N.M. Wong and R. L. Hollis Abstract| A new approach to the design of teleoperation systems is presented. It is proposed that the teleoperation slave be a coarse- ne manipulator with a ne

  20. Combining Peer-Assessment with Negotiated Learning Activities on a Day-Release Undergraduate-Level Certificate Course (ECTS Level 3)

    ERIC Educational Resources Information Center

    McMahon, Tim

    2010-01-01

    Peer-assessment was used within a negotiated curriculum in a module on training and development at ECTS level 3. The students on the programme were exclusively day-release and all had a major responsibility for the management and delivery of work-based training programmes. Analysis of student evaluations, supplemented by those of university…

  1. Energy size e#ects of twodimensional Ising spin glasses I. A. Campbell, 1 Alexander K. Hartmann, 2 and Helmut G. Katzgraber 3

    E-print Network

    Hartmann, Alexander K.

    precise evaluations of size­e#ect corrections to scaling. In both Gaussian and bimodal disorder distributions, freezing occurs only at zero temperature, 10 i.e. T c = 0. For the Gaussian ISG as for any ISG temperature 11 S(T = 0) = 0.078(5)k B . In consequence the time averaged correlation function G(r) drops

  2. Learning What Is Relevant to the E ects of Actions for a Mobile Robot Matthew D. Schmill, Michael T. Rosenstein, Paul R. Cohen, and Paul Utgo

    E-print Network

    actions to changes in sensor readings. In general, the e ects of actions will de- pend on context on readings from a single sensor in context. For example, when the robot is jammed against an obstacle in decision trees, and the CODT contains one such tree learned for every action-sensor pair. Although CODTs

  3. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  4. A new method for Fourier analysis in ECG-gated cardiac blood pool emission computed tomography (ECT)

    SciTech Connect

    Ito, T.; Maeda, H.; Takeda, K.; Nakagawa, T.; Yamaguchi, N.; Konishi, T.; Ichikawa, T.

    1984-01-01

    An integrated technique for Fourier analysis in multigated blood pool ECT study has been developed. Following the administration of 15-20 mCi of Tc-99m RBC, ECG-gated cardiac blood pool data were acquired using an ECT system with dual opposed gamma cameras. Fundamental studies for data acquisition showed that acquisition time of 10 sec. for each projection, 14 divisions of one cardiac cycle and angular interval of 6/sup 0/ (60 projections over 360/sup 0/) were reasonable for clinical purpose. Total acquisition time was about 5 minutes under these conditions. Data were processed as follows: 1) Transaxial (TA) tomographic images in every phase of cardiac cycle were reconstructed by convolution algorithm; 2) TA images were rotated to construct sagittal (SAG) and short axial (S-A) oblique-angle tomography which are respectively parallel and perpendicular to the long axis of either of the ventricles; 3) Images covering the portion other than the purposed ventricle were eliminated from the series of SAG images in every phase of the cycle; 4) Images in the same phase were summed to construct a series of SAG and S-A planar images; and 5) Fourier analysis was made to construct phase and amplitude images. The advantages of this method are that the phase and amplitude images from arbitrary directions can be obtained, that the region of interest can be selected on a three dimensional basis, eliminating the overlapping activity of the other ventricle or neighbouring tissues, that the diseased areas can be easily and accurately localized even in small inferior wall myocardial infarction and that patient study can be finished within 5 minutes.

  5. Medical implants and methods of making medical implants

    SciTech Connect

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  6. Biostability of an implantable glucose sensor chip

    NASA Astrophysics Data System (ADS)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 ?m CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  7. [Complications of synthetic hair implantation].

    PubMed

    Lange-Ionescu, S; Frosch, P J

    1995-01-01

    Five men (average age 35 years) suffering from the sequelae of hair implants were examined in the course of claims for legal compensation. Polyether amide hair fibres had been implanted, 1000 per patient and session. In all cases the improved implantation technique with a fine needle and subcutaneous knotting had been used in a total of three institutions. Three patients developed bacterial folliculitis after 4-8 weeks; in the other two patients this developed later, after 3-6 months. In two patients the possible triggering event was the wearing of a motorcycle helmet and a vacation in a tropical climate respectively. In another patient the artificial hair curled considerably after he visited a sauna. The implanted hair had fallen out almost completely in all cases (100% in two patients after 9-12 months, 50-75% in three patients after 7 months to 2 years). All patients showed cosmetically disturbing small scars and pigmentary changes. Despite an apparently improved complication rate, the new technique of hair fibre implantation remains a doubtful procedure and cannot be recommended in view of possible permanent sequelae. PMID:7875965

  8. [Ossification of the collagen implant].

    PubMed

    Walter, M; Müller, J M; Keller, H W; Brenner, U

    1985-12-01

    Native collagen type I was studied morphologically and fluorescent-histologically after implantation in bony defects. As criteria for revitalisation we used depth and density of immigration, type of immigrated cells, revascularisation, formation of new cartilage and bone. Furthermore the deposition of fluorochromes was studied. The maximum of cellular immigration was reached after 8 weeks and remained at this level for the period of observation. The implants were impregnated only with fibroblasts and fibrocytes, developing into chondroblasts, chondrocytes, osteoblasts and osteocytes. Only in one case basophilic round-cells could be seen. The centres of the implants were after 6 weeks rarely, after 8 weeks fully revascularized. Formation of new cartilage and bone could be seen after 6 weeks, increasing in number and extension during the observation-period. Osteoneogenesis was performed both by desmal and enchondral ossification, enchondral ossification much more in evidence. The deposition of fluorochromes could be seen in each implant. After 8 weeks fluorochromes could only be seen at the bone-implant interface, after 12 and 16 weeks even the centres were well impregnated. In a single case reossification in a control-rib could be seen as well morphologically as fluorescent-histologically. PMID:2868614

  9. Clinical Validation of Percutaneous Cochlear Implant Surgery: Initial Report

    PubMed Central

    Labadie, Robert F.; Noble, Jack H.; Dawant, Benoit M.; Balachandran, Ramya; Majdani, Omid; Fitzpatrick, J. Michael

    2015-01-01

    Objective Percutaneous cochlear implant surgery consists of a single drill path from the lateral mastoid cortex to the cochlea via the facial recess. We sought to clinically validate this technique in patients undergoing traditional cochlear implant surgery. Study Design Prospective clinical trial. Methods After institutional regulatory board approved protocols, five ears were studied via the following steps. 1) In the clinic under local anesthesia, bone-implanted anchors were placed surrounding each mastoid. 2) Temporal-bone computed tomography (CT) scans were obtained. 3) On the CT scans, paths were planned from the lateral mastoid cortex, through the facial recess, to the basal turn of the cochlea both “manually” and “automatically” using computer software. 4) Customized microstereotactic frames were rapid-prototyped to serve as drill guides constraining the drill to follow the appropriate path. 5) During cochlear implant surgery, after drilling of the facial recess, drill guides were mounted on the bone-implanted anchors. 6) Accuracy of paths was assessed via intraoperative photodocumentation. Results All surgical paths successfully traversed the facial recess and hit the basal turn of the cochlea. Distance in millimeters (average SD) from the midpoint of the drill to the facial nerve was 1.18 ± 0.68 for the “manual” path and 1.24 ± 0.44 mm for the “automatic” path and for the chorda tympani 0.986 ± 0.48 for the “manual” path and 1.22 ± 0.62 for the “automatic” path. Conclusions Percutaneous cochlear implant access using customized drill guides based on preoperative CT scans and image-guided surgery technology can be safely accomplished. PMID:18401279

  10. Generator and Lead-Related Complications of Implantable Cardioverter Defibrillators

    PubMed Central

    Yaminisharif, Ahmad; Soofizadeh, Nader; Shafiee, Akbar; Kazemisaeid, Ali; Jalali, Arash; Vasheghani-Farahani, Ali

    2014-01-01

    Background: Increase in the number of patients treated with Implantable Cardioverter Defibrillator (ICD) requests more attention regarding its complications. Objectives: This study aimed to assess the generator- and lead-related complications at implantation and during follow-up in the patients who were treated with ICD for primary and secondary prevention reasons. Methods: We retrospectively reviewed 255 consecutive patients who underwent transvenous ICD implantation for the first time in a 7-year period and were followed-up for 3 years at Tehran Heart Center. The personal and clinical data of the patients as well as specific data on the ICD implantation were retrieved. The frequency of each of the complications was reported and the study variables were compared between the patients with and without complications using Student’s t-test and chi-square test where appropriate. P values less than 0.05 were considered as statistically significant. Results: Out of a total of 525 implanted leads and 255 implanted devices in 255 patients (mean age = 62.57 ± 13.50 years; male = 196 [76.9%]), complications leading to generator or lead replacement occurred in 32 patients (12.5%). The results revealed no significant difference between the patients with and without complications regarding gender and age (P = 0.206 and P = 0.824, respectively). Also, no significant difference was found between the two groups concerning the ejection fraction (P = 0.271). Lead fracture was the most frequent lead-related complication and was observed in 17 patients (6.6%). Besides, it was mainly observed in the RV leads. Generator-related complications leading to generator replacement were observed in 2 patients (0.7%). Conclusions: Despite considerable improvements in the ICD technology, the rate of the ICD complications leading to device replacement and surgical revision, especially those related to the leads, is still clinically important. PMID:24936484

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. A Paradigm for the Development and Evaluation of Novel Implant Topologies for Bone Fixation: In Vivo Evaluation

    PubMed Central

    Long, Jason P.; Hollister, Scott J.; Goldstein, Steven A.

    2012-01-01

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopaedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/ compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22N for 1000 cycles) was applied to one of each animal’s bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture. PMID:22951278

  13. The electroencephalographic pattern during electroconvulsive therapy: V. Observations on the origins of phase III delta energy and the mechanism of action of ECT.

    PubMed

    Staton, R D; Enderle, J D; Gerst, J W

    1988-10-01

    The generation of the spike-wave activity of Phase III of ECT seizures is attributed to the recurrence of synchronized, prolonged periods of intense inhibitory current flow (hyperpolarization), and associated rebound spike bursts, produced by the inhibitory circuit relationships and intrinsic electrophysiological properties of thalamic neurons. An anatomical and neurophysiological model of the development of generalized, synchronous 3-Hz spike-wave seizure activity is proposed which outlines the origin, maintenance, slowing, and termination of this fundamental seizure rhythm. Phase III inhibitory current flow (delta energy) and/or spike bursts may bring about therapeutic benefit by initiating a chain of agonist-independent and agonist-dependent events which results in long-term augmentation of serotonergic and noradrenergic neurotransmission and diminution of cholinergic neurotransmission in the forebrain. A specific anatomical and functional model of the mechanism of action of ECT is proposed, in which: (1) adrenergic and cholinergic pathways in the forebrain are assumed to be massively stimulated during ECT seizures, whereas serotonergic pathways are assumed to be inhibited during these seizures; (2) the beneficial effects of ECT are considered to be more dependent upon ECT-induced changes in 5-HT neurotransmission than upon alteration of noradrenergic function; (3) these beneficial effects involve up-regulation of 5-HT2 and down-regulation of M1- and M2-muscarinic receptor densities by both agonist-independent and agonist-dependent mechanisms, coupled with functional augmentation of noradrenergic neurotransmission; and (4) these effects may be brought about by Phase III inhibitory current flow- and/or spike burst-induced alteration of the function of second-messenger generator systems. PMID:3060288

  14. Radiofrequency energy ablation in a child with an implanted vagus nerve stimulator.

    PubMed

    Radolec, Mackenzy M; Beerman, Lee B; Arora, Gaurav

    2015-10-01

    An 8-year-old girl with supraventricular tachycardia and an implanted vagus nerve stimulator underwent radiofrequency ablation of her supraventricular tachycardia substrate. No known literature exists addressing the potential interaction of these two technologies, although there are reported cases of interaction between radiofrequency and other implanted stimulating devices such as pacemakers. The procedure was performed successfully without observed interaction, and the patient's family reported no significant change in frequency of seizure control. PMID:25599662

  15. PROPERTIES OF DEFECTS AND IMPLANTS IN Mg+ IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhu, Zihua; Varga, Tamas; Bowden, Mark E.; Manandhar, Sandeep; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2013-09-25

    As a candidate material for fusion reactor designs, silicon carbide (SiC) under high-energy neutron irradiation undergoes atomic displacement damage and transmutation reactions that create magnesium as one of the major metallic products. The presence of Mg and lattice disorder in SiC is expected to affect structural stability and degrade thermo-mechanical properties that could limit SiC lifetime for service. We have initiated a combined experimental and computational study that uses Mg+ ion implantation and multiscale modeling to investigate the structural and chemical effects in Mg implanted SiC and explore possible property degradation mechanisms.

  16. Behavior of AISI SAE 1020 Steel Implanted by Titanium and Exposed to Bacteria Sulphate Deoxidizer

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.; Garnica, Hernán; Dugar-Zhabon, Veleriy; Castillo, Genis

    2014-05-01

    A hybrid technology to treat solid surfaces with the pulse high voltage and electric arc discharges of low pressure with a three-dimensional ion implantation technique (3DII) is applied. This technology is used to protect AISI SAE 1020 steel against a microbiological corrosion. The titanium ion implanted steel samples (coupons) are subjected to a medium of bacteria sulphate deoxidizer (BSD) which are very typical of the hydrocarbon industry and are potentially harmful for structures when are in contact with petroleum and some of its derivatives. The used technology aims to find an effective hybrid procedure to minimize the harmful effects of bacteria on AISI SAE 1020 steel. The hybrid technology efficiency of superficial titanium implantation is estimated through the measurements of the point corrosion characteristics obtained after testing both the treated and non-treated coupons. The three-dimensional surface structures of the samples are reconstructed with help of a confocal microscope.

  17. Increasing size with penile implants.

    PubMed

    Montague, Drogo K; Angermeier, Kenneth W

    2008-11-01

    Penile prosthesis implantation is suitable treatment for men with erectile dysfunction when nonsurgical treatment options fail or are otherwise unsatisfactory. Three-piece inflatable penile prostheses closely approach the ideal of producing normal penile flaccidity and erection. Nevertheless, even in men with normal corpora cavernosa, many report their prosthetic erection is shorter than their former natural erection. This is due to the lack of glans tumescence and the use of penile cylinders, which only expand in girth. Using girth- and length-expanding cylinders can decrease the loss of penile length frequently seen with prosthesis implantation. Some penile prosthesis recipients have abnormal corpora following radical prostatectomy or after removal of an infected penile prosthesis, or as the result of Peyronie's disease, obesity, or ischemic priapism. In these men with abnormal corpora, associated penile-lengthening procedures can be combined with penile prosthesis implantation. However, experience is limited with these combined procedures. PMID:18947513

  18. The Aula EspaZio Gela and the Master of Space Science and Technology in the Universidad Del País Vasco (University of the Basque Country)

    ERIC Educational Resources Information Center

    Sánchez-Lavega, Agustín; Pérez-Hoyos, Santiago; Hueso, Ricardo; del Río-Gaztelurrutia, Teresa; Oleaga, Alberto

    2014-01-01

    We present the Aula EspaZio Gela, a facility dedicated to teaching Space Science and Technology at the master and doctorate level at the University of the Basque Country (Spain), and to promoting the development of this field in both public and private sectors. The one-year master's degree in Space Science and Technology (60 ECTS (European…

  19. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    NASA Astrophysics Data System (ADS)

    Anastasiou, Alexandros; Saatsakis, George

    2015-09-01

    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  20. Neutrophil Responses to Sterile Implant Materials

    PubMed Central

    Jhunjhunwala, Siddharth; Aresta-DaSilva, Stephanie; Tang, Katherine; Alvarez, David; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Veiseh, Omid; Doloff, Joshua C.; Bose, Suman; Vegas, Arturo; Ma, Minglin; Sahay, Gaurav; Chiu, Alan; Bader, Andrew; Langan, Erin; Siebert, Sean; Li, Jie; Greiner, Dale L.; Newburger, Peter E.; von Andrian, Ulrich H.; Langer, Robert; Anderson, Daniel G.

    2015-01-01

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30–500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices. PMID:26355958

  1. Physiological and molecular determinants of embryo implantation

    PubMed Central

    Zhang, Shuang; Lin, Haiyan; Kong, Shuangbo; Wang, Shumin; Wang, Hongmei; Wang, Haibin; Armant, D. Randall

    2014-01-01

    Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women. PMID:23290997

  2. Implanting Beef Calves and Stocker Cattle 

    E-print Network

    McCollum III, Ted

    1998-04-24

    Implanting beef calves offers one of the highest benefit-to-cost ratios of all the management practices available to cow/calf and stocker cattle producers. This publication offers advice on implant administration....

  3. Future hardware improvements in implantable hearing devices

    E-print Network

    Serdijn, Wouter A.

    the sensation of hearing to the deaf by electrical stimuli. CI's are implanted both in deaf- born babies decades, but not all have been successful. The design focus is now on devices that are fully implantable

  4. How Does an Implantable Cardioverter Defibrillator Work?

    MedlinePLUS

    ... on Twitter. How Does an Implantable Cardioverter Defibrillator Work? An implantable cardioverter defibrillator (ICD) has wires with ... tune the programming of your ICD so it works better to correct irregular heartbeats. The type of ...

  5. Educational Challenges for Children with Cochlear Implants.

    ERIC Educational Resources Information Center

    Chute, Patricia M.; Nevins, Mary Ellen

    2003-01-01

    This article addresses educational challenges for children with severe to profound hearing loss who receive cochlear implants. Despite the implants, these children face acoustic challenges, academic challenges, attention challenges, associative challenges, and adjustment challenges. (Contains references.) (Author/DB)

  6. Eleven-year study of hydroxyapatite implants.

    PubMed

    Denissen, H W; Kalk, W; Veldhuis, A A; van den Hooff, A

    1989-06-01

    An 11-year clinical research study was conducted with both unloaded bulk hydroxyapatite implants and loaded hydroxyapatite-coated titanium implants. A total of 102 submerged bulk hydroxyapatite implants were placed after extraction of teeth to maintain the volume of the residual alveolar ridge by their physical presence. All 21 implants under fixed partial dentures and 51 of 81 implants under lower complete dentures remained submucosal. A total of 71 hydroxyapatite-coated titanium implants were connected with permucosal superstructures by use of a two-stage method. Modifications in design and in implantation technique were required. This long-term research indicates that cylindrical hydroxyapatite implants are reliable devices as natural tooth root substitutes that bond directly to bone instead of simply being osseointegrated. PMID:2657029

  7. A low-power cochlear implant system

    E-print Network

    Baker, Michael W. (Michael Warren), 1977-

    2007-01-01

    Cochlear implants, or bionic ears, restore hearing to the profoundly deaf by bypassing missing inner-ear hair cells in the cochlea and electrically stimulating the auditory nerve. For miniaturized cochlear implants, including ...

  8. Maintenance and Monitoring of Dental Implants in General Dental Practice.

    PubMed

    Tarawali, Karifala

    2015-01-01

    A lot of effort has been directed towards developing dental implant surfaces which in turn have seen the increased success rate of osseointegration. Peri-implantitis and peri-implant mucositis are inflammatory conditions of implants that can lead to implant failure. Monitoring and maintaining implant restorations is aimed at preventing these complications. PMID:26506806

  9. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  10. Pediatric Auditory Brainstem Implant Surgery.

    PubMed

    Puram, Sidharth V; Lee, Daniel J

    2015-12-01

    Auditory brainstem implants (ABIs) provide auditory perception in patients with profound hearing loss who are not candidates for the cochlear implant (CI) because of anatomic constraints or failed CI surgery. Herein, the authors discuss (1) preoperative evaluation of pediatric ABI candidates, (2) surgical approaches, and (3) contemporary ABI devices and their use in the pediatric population. The authors also review the surgical and audiologic outcomes following pediatric ABI surgery. The authors' institutional experience and the nearly 200 cases performed in Europe and the United States indicate that ABI surgery in children can be safe and effective. PMID:26553310

  11. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  12. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    PubMed Central

    2011-01-01

    Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. Conclusions We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process. PMID:22014169

  13. Implants and Ethnocide: Learning from the Cochlear Implant Controversy

    ERIC Educational Resources Information Center

    Sparrow, Robert

    2010-01-01

    This paper uses the fictional case of the "Babel fish" to explore and illustrate the issues involved in the controversy about the use of cochlear implants in prelinguistically deaf children. Analysis of this controversy suggests that the development of genetic tests for deafness poses a serious threat to the continued flourishing of Deaf culture.…

  14. Radial {sup 32}P ion implantation using a coaxial plasma reactor: Activity imaging and numerical integration

    SciTech Connect

    Fortin, M.A.; Dufresne, V.; Paynter, R.; Sarkissian, A.; Stansfield, B.

    2004-12-01

    Beta-emitting biomedical implants are currently employed in angioplasty, in the treatment of certain types of cancers, and in the embolization of aneurysms with platinum coils. Radioisotopes such as {sup 32}P can be implanted using plasma-based ion implantation (PBII). In this article, we describe a reactor that was developed to implant radioisotopes into cylindrical metallic objects. The plasma first ionizes radioisotopes sputtered from a target, and then acts as the source of particles to be implanted into the biased biomedical device. The plasma therefore plays a major role in the ionization/implantation process. Following a sequence of implantation tests, the liners protecting the interior walls of the reactor were changed and the radioactivity on them measured. This study demonstrates that the radioactive deposits on these protective liners, adequately imaged by radiography, can indicate the distribution of the radioisotopes that are not implanted. The resulting maps give unique information about the activity distribution, which is influenced by the sputtering of the {sup 32}P-containing fragments, their ionization in the plasma, and also by the subsequent ion transport mechanisms. Such information can be interpreted and used to significantly improve the efficiency of the implantation procedure. Using a surface barrier detector, a comparative study established a relationship between the gray scale of radiographs of the liners, and activity measurements. An integration process allows the quantification of the activities on the walls and components of the reactor. Finally, the resulting integral of the {sup 32}P activity is correlated to the sum of the radioactivity amounts that were sputtered from radioactive targets inside the implanter before the dismantling procedure. This balance addresses the issue of security regarding PBII technology and confirms the confinement of the radioactivity inside the chamber.

  15. Radial 32P ion implantation using a coaxial plasma reactor: Activity imaging and numerical integration

    NASA Astrophysics Data System (ADS)

    Fortin, M. A.; Dufresne, V.; Paynter, R.; Sarkissian, A.; Stansfield, B.

    2004-12-01

    Beta-emitting biomedical implants are currently employed in angioplasty, in the treatment of certain types of cancers, and in the embolization of aneurysms with platinum coils. Radioisotopes such as 32P can be implanted using plasma-based ion implantation (PBII). In this article, we describe a reactor that was developed to implant radioisotopes into cylindrical metallic objects. The plasma first ionizes radioisotopes sputtered from a target, and then acts as the source of particles to be implanted into the biased biomedical device. The plasma therefore plays a major role in the ionization/implantation process. Following a sequence of implantation tests, the liners protecting the interior walls of the reactor were changed and the radioactivity on them measured. This study demonstrates that the radioactive deposits on these protective liners, adequately imaged by radiography, can indicate the distribution of the radioisotopes that are not implanted. The resulting maps give unique information about the activity distribution, which is influenced by the sputtering of the 32P-containing fragments, their ionization in the plasma, and also by the subsequent ion transport mechanisms. Such information can be interpreted and used to significantly improve the efficiency of the implantation procedure. Using a surface barrier detector, a comparative study established a relationship between the gray scale of radiographs of the liners, and activity measurements. An integration process allows the quantification of the activities on the walls and components of the reactor. Finally, the resulting integral of the 32P activity is correlated to the sum of the radioactivity amounts that were sputtered from radioactive targets inside the implanter before the dismantling procedure. This balance addresses the issue of security regarding PBII technology and confirms the confinement of the radioactivity inside the chamber.

  16. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  17. Nucleus Implant Parameters Significantly Change the Compressive

    E-print Network

    Karduna, Andrew

    Nucleus Implant Parameters Significantly Change the Compressive Stiffness of the Human Lumbar-mail: marcolms@drexel.edu Nucleus replacement by a synthetic material is a recent trend for treatment of lower back pain. Hydrogel nucleus implants were prepared with variations in implant modulus, height, and diam

  18. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  19. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  20. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  1. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  2. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  3. Gender Categorization in Cochlear Implant Users

    E-print Network

    JSLHR Article Gender Categorization in Cochlear Implant Users Zoé Massida,a,b Mathieu Marx: In this study, the authors examined the ability of subjects with cochlear implants (CIs) to discriminate voice the dissociation between recovery of speech recognition and voice feature perception after cochlear implantation

  4. NASA's Van Allen Probes RBSP-ECT Data Products and Access to Them: An Insider's Outlook on the Inner and Outer Belts (and We Don't Mean the Nation's Beltway...)

    NASA Astrophysics Data System (ADS)

    Smith, S. S.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B.; Reeves, G. D.; Spence, H. E.

    2014-12-01

    In this poster, we present a summary of access to the data products of the Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 1-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a summary of past publications, current studies, and opportunities for your future participation in RBSP-ECT science analyses.

  5. Iodine-Supported Hip Implants: Short Term Clinical Results

    PubMed Central

    Kabata, Tamon; Maeda, Toru; Kajino, Yoshitomo; Hasegawa, Kazuhiro; Inoue, Daisuke; Yamamoto, Takashi; Takagi, Tomoharu; Ohmori, Takaaki; Tsuchiya, Hiroyuki

    2015-01-01

    We developed a new povidone iodine coating technology for titanium hip implants and performed a clinical trial to assess its usefulness in suppressing postoperative infection. Results indicate that iodine-supported titanium has favorable antibacterial activity, biocompatibility, and no cytotoxicity. Thirty joints in 28 patients were treated using iodine-supported implants. Fourteen joints were revision total hip arthroplasty (THA) after periprosthetic infection, 13 were primary THA for immunosuppressive conditions or pyogenic arthritis, and 3 were conversions from hemiarthroplasty to THA for immunosuppressive conditions. Two examinations were conducted sequentially until final follow-up: white blood cell (WBC) and C-reactive protein (CRP) were measured pre- and postoperatively and thyroid hormone levels in the blood were examined. The mean follow-up period was 33 months (14–78). There were no signs of infection in any patient at the last follow-up. WBC and CRP levels returned to normal within several weeks. No abnormalities of thyroid gland function were detected. Loosening of the implants did not occur in any patient. Excellent bone ingrowth and ongrowth were found around prostheses. No cytotoxicity or adverse effects were detected. These results suggest that iodine-supported THA implants can be highly effective in preventing and treating postoperative infections. PMID:26583103

  6. Effects of a new implant abutment design on peri-implant soft tissues.

    PubMed

    Chien, Hua-Hong; Schroering, Robert L; Prasad, Hari S; Tatakis, Dimitris N

    2014-10-01

    The purpose of this study was to assess the effects of a modified implant abutment design on peri-implant soft and hard tissues in dogs. Three months after extraction of mandibular premolar teeth, 3 dental implants were placed in each side of the jaw using a 1-stage approach. Implants on one side of the mandible received standard abutments (control), and implants on the contralateral side received modified, patented, grooved abutments (test). Two months after implant placement, animals were euthanized and specimens were prepared for histologic and histomorphometric assessment. The linear distance (in micrometers) was measured from the implant shoulder (IS) to the following landmarks: gingival margin (GM; distance IS-GM), most apical position of the junctional epithelium (JE; distance IS-JE), and bone crest (BC; distance IS-BC). Percent of bone-to-implant contact was also measured. Histologic assessment revealed that all implants were osseointegrated and that interimplant gingival fibers between test abutments appeared to be more numerous and organized than control abutments. The IS-GM and IS-JE distances in test implants were greater than the corresponding distances in control implants (P = .024 and P = .015, respectively), whereas crestal bone loss (IS-BC) was greater for control implants than test implants (P = .037). There were no differences between control and test implants in bone-to-implant contact (P = .69), which averaged close to 50%. These results suggest that the modified groove design incorporated in standard abutments confers both soft and hard tissue benefits. PMID:23339331

  7. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    PubMed

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ?4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ?1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). PMID:26701919

  8. Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Bolton, M.; Bourdarie, S.; Chan, A. A.; Claudepierre, S. G.; Clemmons, J. H.; Cravens, J. P.; Elkington, S. R.; Fennell, J. F.; Friedel, R. H. W.; Funsten, H. O.; Goldstein, J.; Green, J. C.; Guthrie, A.; Henderson, M. G.; Horne, R. B.; Hudson, M. K.; Jahn, J.-M.; Jordanova, V. K.; Kanekal, S. G.; Klatt, B. W.; Larsen, B. A.; Li, X.; MacDonald, E. A.; Mann, I. R.; Niehof, J.; O'Brien, T. P.; Onsager, T. G.; Salvaggio, D.; Skoug, R. M.; Smith, S. S.; Suther, L. L.; Thomsen, M. F.; Thorne, R. M.

    2013-11-01

    The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

  9. Bioceramic Coatings for Orthopaedic Implants

    SciTech Connect

    Campbell, Allison A.

    2003-11-02

    During the past century, man-made materials and devices have been developed to the point at which they have been used successfully to replace and/or restore function to diseased or damaged tissues. In the field of orthopaedics, the use of metal implants has significantly improved the quality of life for countless individuals. Critical factors for implant success include proper design, material selection, and biocompatibility. While early research focused on the understanding biomechanical properties of the metal device, recent work has turned toward improving the biological properties of these devices. This has lead to the introduction of calcium phosphate (CaP) bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first calcium phosphate coatings where produced via vapor phase routes but more recently, there has been the emergence of solution based and biomimetic methods. While each approach has its own intrinsic materials and biological properties, in general CaP coatings have the promise to improve implant biocompatibility and ultimately implant longevity.

  10. Ion Implantation of Silicon Carbide

    SciTech Connect

    Hallen, Anders; Janson, Martin; Kuznetsov, A Y.; Aberg, A; Linnarsson, M K.; Svensson, B G.; Persson, P O.; Carlsson, FH C.; Stirasta, L; Bergman, J P.; Sridhara, S G.; Zhang, Yanwen

    2002-01-01

    Ion implantation is an important technique for a successful implementation of commercial SiC devices. Much effort has also been devoted to optimizing implantation and annealing parameters to improve the electrical device characteristics. However, there is a severe lack of understanding of the fundamental implantation process and the generation and annealing kinetics of point defects and defect complexes. Only very few of the most elementary intrinsic point defects have been unambiguously identified so far. To reach a deeper understanding of the basic mechanisms SiC samples have been implanted with a broad range of ions, energies, doses, etc., and the resulting defects and damage produced in the lattice have been studied with a multitude of characterization techniques. In this contribution we will review some of the results generated recently and also try to indicate where more research is needed. In particular, deep level transient spectroscopy (DLTS) has been used to investigate point defects at very low doses and transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) are used for studying the damage build-up at high doses.

  11. Contamination Control in Ion Implantation

    NASA Astrophysics Data System (ADS)

    Eddy, R.; Doi, D.; Santos, I.; Wriggins, W.

    2011-01-01

    The investigation and elimination or control of metallic contamination in ion implanters has been a leading, continuous effort at implanter OEMs and in fabs/IDMs alike. Much of the efforts have been in the area of control of sputtering through material and geometry changes in apertures, beamline and target chamber components. In this paper, we will focus on an area that has not, heretofore, been fully investigated or controlled. This is the area of lubricants and internal and external support material such as selected cleaning media. Some of these materials are designated for internal use (beamline/vacuum) only while others are for internal and/or external use. Many applications for selected greases, for example, are designated for or are used for platens, implant disks/wheels and for wafer handling components. We will present data from popular lubricants (to be unnamed) used worldwide in ion implanters. This paper will review elements of concern in many lubricants that should be tracked and monitored by all fabs. Proper understanding of the characteristics, risks and the control of these potential contaminants can provide for rapid return to full process capability following major PMs or parts changes. Using VPD-ICPMS, Glow Discharge Mass Spectrometry and Ion Chromatography (IC) data, we will review the typical cleaning results and correlation to "on wafer" contamination by elements of concern—and by some elements that are otherwise barred from the fab.

  12. Minimally Invasive Penile Implant Surgery

    MedlinePLUS

    MINIMALLY INVASIVE PENILE IMPLANT SURGERY CORAL GABLES HOSPITAL CORAL GABLES, FLORIDA March 26, 2007 00:00:10 ANNOUNCER: Over the next hour you’ll see a live ... from sunny Florida. We are live in the Coral Gables Hospital in beautiful Coral Gables, Florida. My ...

  13. Cortical Plasticity after Cochlear Implantation

    PubMed Central

    Petersen, B.; Gjedde, A.; Wallentin, M.; Vuust, P.

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050

  14. Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation.

    PubMed

    Bian, Weiguo; Li, Dichen; Lian, Qin; Zhang, Weijie; Zhu, Linzhong; Li, Xiang; Jin, Zhongmin

    2011-09-01

    Being a multi-etiological factors disease, osteonecrosis of the femoral head affects many young people, leading to the collapse of the femur head; eventually the hip arthroplasty is needed if not treated in time. Unfortunately, as yet, no satisfactory therapy to repair necrotic bone at an early stage is present. Novel implants with pre-set channels were designed for the treatment of early femoral head necrosis. Ceramic stereolithography was applied to fabricate the green part from ?-TCP powder. Other processes, such as dehydration, rinsing, drying and sintering, were processed successively. The final ceramic part remains the same as the engineered part in both shape and internal structure. No significant deformation or crack occurred. X-ray diffraction showed that no facies changed or chemical reaction occurred during the fabrication process. The chemical composition remains the same as that of the original ?-TCP powder. The compressive strength is 23.54 MPa, close to that of natural cancellous bone. Novel implants with a pre-set channel were designed and fabricated for blood vessel implantation. Bioceramic stereolithography technology based directly on the CAD model in this research shows advantages in accurate design, optimization of 3D scaffold and critical control of the fabrication process. This proposed implant shows promising clinical application in the restoration of early femoral head necrosis. PMID:21725148

  15. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  16. Evaluation of mini-implant sites in the posterior maxilla using traditional radiographs and cone-beam computed tomography

    PubMed Central

    Abbassy, Mona A.; Sabban, Hanady M.; Hassan, Ali H.; Zawawi, Khalid H.

    2015-01-01

    Objectives: To evaluate the accuracy of using routine 2-dimensional (2D) radiographs (panoramic and periapical) when evaluating the position of orthodontic temporary anchorage devices (mini-implants) in the maxilla, and to compare the results to 3-dimensional cone-beam computed tomography (CBCT). Methods: This cross-sectional study was conducted at King Abdulaziz University, Faculty of Dentistry, Jeddah, Kingdom of Saudi Arabia from February 2014 to January 2015. Panoramic and periapical radiographs were used to examine the position of mini-implants in relation to the adjacent roots. Rating of mini-implants position was performed by 82 dentists from different specialties, using 2 D images according to the following criteria: 1) away from the root; 2) mini-implant tip appears touching the lamina dura; and 3) mini-implant overlays the lamina dura. The results were compared with CBCT findings. Results: There was no difference between dentists from different specialties when rating the position of the mini-implants (Cronbach’s alpha=0.956). The accuracy of the periapical images was 45.1%, while the panoramic images 33.6%. However, both panoramic and periapical radiographs were significantly inaccurate when assessing the mini-implant position when compared with the CBCT findings (p=0.0001). Conclusion: Three-dimensional CBCT technology allows better visualization of mini-implant placement. The use of CBCT when assessing the position of mini-implants is recommended. PMID:26593168

  17. Breast fibromatosis associated with breast implants.

    PubMed

    Seo, Yoon Nae; Park, Young Mi; Yoon, Hye Kyoung; Lee, Sun Joo; Choo, Hye Jung; Ryu, Ji Hwa

    2015-09-01

    Fibromatosis refers to an extra-abdominal desmoid tumor or aggressive fibromatosis. Breast fibromatosis can develop in association with the capsule around a breast implant, although reports of cases of fibromatosis associated with breast implants are rare. As the demand for breast augmentation has increased, it is important to understand the diseases associated with breast implants. In the present report, we describe a case of breast fibromatosis that developed adjacent to a breast implant and demonstrated a relatively well-defined border even though it invaded the surrounding structures. We also explore the specific imaging features for diagnosing breast fibromatosis in association with implants by reviewing previous literature. PMID:26213262

  18. Peri-implant esthetics assessment and management

    PubMed Central

    Balasubramaniam, Aarthi S.; Raja, Sunitha V.; Thomas, Libby John

    2013-01-01

    Providing an esthetic restoration in the anterior region of the mouth has been the basis of peri-implant esthetics. To achieve optimal esthetics, in implant supported restorations, various patient and tooth related factors have to be taken into consideration. Peri-implant plastic surgery has been adopted to improve the soft tissue and hard tissue profiles, during and after implant placement. The various factors and the procedures related to enhancement of peri-implant esthetics have been discussed in this review article. PMID:23878557

  19. Characterization of Charging Control of a Single Wafer High Current Spot Beam Implanter

    SciTech Connect

    Schmeide, Matthias; Bukethal, Christoph

    2008-11-03

    This paper focuses on the characterization of charging control of an Axcelis Optima HD single wafer high current spot beam implanter using MOS capacitors with attached antennas of different size and shape. Resist patterns are implemented on Infineon Technologies own charging control wafers to investigate the influence of photo resist on charging damage. Compared to batch high current implanters the design of the beamline and the beam shape are comparable to single wafer high current spot beam implanters, however due to the different scanning architecture the dose rate of the single wafer high current spot beam implanters is significantly higher compared to the batch tools. Therefore, the risk of charging damage will be higher. The charging damage was studied as a function of the energy, the beam current and the most important plasma flood gun parameters. The results have shown that for very high antenna ratios the charging damage for single wafer implanters, even spot or ribbon beam implanters, is higher than for high current batch implanters.

  20. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  1. Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering.

    PubMed

    Popa, A C; Stan, G E; Enculescu, M; Tanase, C; Tulyaganov, D U; Ferreira, J M F

    2015-11-01

    Bioactive glasses are currently considered the suitable candidates to stir the quest for a new generation of osseous implants with superior biological/functional performance. In congruence with this vision, this contribution aims to introduce a reliable technological recipe for coating fairly complex 3D-shaped implants (e.g. dental screws) with uniform and mechanical resistant bioactive glass films by the radio-frequency magnetron sputtering method. The mechanical reliability of the bioactive glass films applied to real Ti dental implant fixtures has been evaluated by a procedure comprised of "cold" implantation in pig mandibular bone from a dead animal, followed by immediate tension-free extraction tests. The effects of the complex mechanical strains occurring during implantation were analysed by scanning electron microscopy coupled with electron dispersive spectroscopy. Extensive biocompatibility assays (MTS, immunofluorescence, Western blot) revealed that the bioactive glass films stimulated strong cellular adhesion and proliferation of human dental pulp stem cells, without promoting their differentiation. The ability of the implant coatings to conserve a healthy stem cell pool is promising to further endorse the fabrication of new osseointegration implant designs with extended lifetime. PMID:26282074

  2. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    PubMed Central

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  3. Optical waveguides in TiO? formed by He ion implantation.

    PubMed

    Bi, Zhuan-Fang; Wang, Lei; Liu, Xiu-Hong; Zhang, Shao-Mei; Dong, Ming-Ming; Zhao, Quan-Zhong; Wu, Xiang-Long; Wang, Ke-Ming

    2012-03-12

    We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO? crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO? are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 10¹? ions/cm² and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 10¹? ions/cm² at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown. PMID:22418555

  4. Ex vivo alendronate localization at the mesoporous titania implant/bone interface.

    PubMed

    Karlsson, Johan; Harmankaya, Necati; Allard, Stefan; Palmquist, Anders; Halvarsson, Mats; Tengvall, Pentti; Andersson, Martin

    2015-01-01

    An attractive approach in implant technology is local drug delivery, and design of efficient, safe and reliable treatments. Our hitherto strategy has been to coat Ti implants with a thin mesoporous TiO2 film that in turn is loaded with an osteoporosis drug, such as Alendronate (ALN) that is known to suppress osteoclastic activity. This system has proven highly successful and results in excellent osseointegration. However, more detailed information about drug-release and distribution at the bone/implant interface is needed. In this study, (14)C-ALN loaded titanium implants were placed up to 8 weeks into rat tibia and the spatial-temporal distribution of the drug was evaluated. Autoradiography data demonstrated a sustained release of (14)C-ALN and the released drug remained bound to bone in close vicinity, within 500 micrometers, of the implants. Liquid scintillation counting experiments confirmed that the distal transport of released (14)C-ALN was extremely low. The results are favorable as they show that ALN stays for a long time in the vicinity of the implant and may therefore improve for a long time the mechanical fixation of bone anchored implants. Moreover, these findings suggest due to the low systemic spreading a minimal risk of Alendronate related systemic side effects. PMID:25577217

  5. Hydroxyapatite motility implants in ocular prosthetics.

    PubMed

    Cowper, T R

    1995-03-01

    For the past 5 years, an increasing number of ophthalmologists have been using hydroxyapatite (HA) motility implants after uncomplicated enucleation or evisceration of the eye. Unlike previous implant materials, HA promotes fibrovascular ingrowth and seemingly true integration of the motility implant to the residual ocular structures. As a result, a more stable defect and greater movement of the overlying prosthesis is produced. In addition, the problems of long-term orbital implant migration and the vexing postenucleation socket syndrome are thought to be minimized. This article briefly reviews the history and development of orbital implants and HA implant surgical and prosthetic procedures. It is concluded that HA implant rehabilitation is indicated after most uncomplicated enucleations or eviscerations where there is small likelihood of complication. PMID:7760276

  6. Implant dentistry education for the practicing dentist.

    PubMed

    Caplanis, N; Kan, J Y; Lozada, J L

    2001-11-01

    Contemporary standards of care, as well as ethical and legal issues, dictate the incorporation of dental implants into the general dental practice. Given the simplicity of current implant systems, most general dentists already possess the clinical expertise necessary to provide basic implant restorative services to their patients. However, due to the restricted manner in which dental implant training was propagated in the United States, and perhaps due to its foreign origins, many competent dentists seem unaware of this greatly beneficial innovation. There are a variety of educational resources available for the uninitiated dentist to gain proficiency in basic implant dentistry. The ideal education in implant dentistry provides supervised hands-on clinical training on live patients as well as didactic instruction by recognized teachers in implant dentistry. Such education may or may not be devoid of commercial bias. This paper will describe many of these opportunities. PMID:11806054

  7. Early History and Challenges of Implantable Electronics

    PubMed Central

    KO, WEN H.

    2013-01-01

    Implantable systems for biomedical research and clinical care are now a flourishing field of activities in academia as well as industrial institutions. The broad field includes experimental explorations in electronics, mechanical, chemical, and biological components and systems, and the combination of all these. Today virtually all implants involve both electronic circuits and micro-electro-mechanical-systems (MEMS). This article offers a very brief glance back at the early history of implant electronics in the period from the 1950s to the 1970s, by employing selected examples from the author’s research. This short review also discusses the challenges of implantable electronics at present, and suggests some potentially important trends in the future research and development of implantable microsystems. It is aimed as an introduction of implantable/attached electronic systems to research engineers that are interested in implantable systems as a section of Biomedical Instrumentations. PMID:24791159

  8. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    NASA Astrophysics Data System (ADS)

    Dulcé M., Héctor J.; Rueda v., Alejandro; Dougar-Jabon, Valeri

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces.

  9. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    SciTech Connect

    Maendl, S.; Rauschenbach, B.

    2003-08-26

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 deg. C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry)

  10. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  11. The Educational Technology Centre: A Window to View the Progress of Chinese ICT-Based Higher Education

    ERIC Educational Resources Information Center

    Zhou, Rong; Xie, Baizhi

    2010-01-01

    In China, after many years, the current status and challenges of e-learning development in higher education have been gradually understood. The educational technology centre (ECT) serves as the key unit to promote e-learning initiatives, but the performance of some centres still trails their foreign counterparts. Under such conditions, the project…

  12. Cochlear implants: a remarkable past and a brilliant future

    PubMed Central

    Wilson, Blake S.; Dorman, Michael F.

    2013-01-01

    The aims of this paper are to (i) provide a brief history of cochlear implants; (ii) present a status report on the current state of implant engineering and the levels of speech understanding enabled by that engineering; (iii) describe limitations of current signal processing strategies and (iv) suggest new directions for research. With current technology the “average” implant patient, when listening to predictable conversations in quiet, is able to communicate with relative ease. However, in an environment typical of a workplace the average patient has a great deal of difficulty. Patients who are “above average” in terms of speech understanding, can achieve 100% correct scores on the most difficult tests of speech understanding in quiet but also have significant difficulty when signals are presented in noise. The major factors in these outcomes appear to be (i) a loss of low-frequency, fine structure information possibly due to the envelope extraction algorithms common to cochlear implant signal processing; (ii) a limitation in the number of effective channels of stimulation due to overlap in electric fields from electrodes, and (iii) central processing deficits, especially for patients with poor speech understanding. Two recent developments, bilateral implants and combined electric and acoustic stimulation, have promise to remediate some of the difficulties experienced by patients in noise and to reinstate low-frequency fine structure information. If other possibilities are realized, e.g., electrodes that emit drugs to inhibit cell death following trauma and to induce the growth of neurites toward electrodes, then the future is very bright indeed. PMID:18616994

  13. Dental implants with versus without peri-implant bone defects treated with guided bone regeneration

    PubMed Central

    Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria; Peñarrocha-Diago, Miguel

    2015-01-01

    Background The guided bone regeneration (GBR) technique is highly successful for the treatment of peri-implant bone defects. The aim was to determine whether or not implants associated with GBR due to peri-implant defects show the same survival and success rates as implants placed in native bone without defects. Material and Methods Patients with a minimum of two submerged dental implants: one suffering a dehiscence or fenestration defect during placement and undergoing simultaneous guided bone regeneration (test group), versus the other entirely surrounded by bone (control group) were treated and monitored annually for three years. Complications with the healing procedure, implant survival, implant success and peri-implant marginal bone loss were assessed. Statistical analysis was performed with non-parametric tests setting an alpha value of 0.05. Results Seventy-two patients and 326 implants were included (142 test, 184 control). One hundred and twenty-five dehiscences (average height 1.92±1.11) and 18 fenestrations (average height 3.34±2.16) were treated. At 3 years post-loading, implant survival rates were 95.7% (test) and 97.3% (control) and implant success rates were 93.6% and 96.2%, respectively. Mean marginal bone loss was 0.54 (SD 0.26 mm) for the test group and 0.43 (SD 0.22 mm) for the control group. No statistically significant differences between both groups were found. Conclusions Within the limits of this study, implants with peri-implant defects treated with guided bone regeneration exhibited similar survival and success rates and peri-implant marginal bone loss to implants without those defects. Large-scale randomized controlled studies with longer follow-ups involving the assessment of esthetic parameters and hard and soft peri-implant tissue stability are needed. Key words:Guided bone regeneration, peri-implant defects, dental implants, marginal bone level, success rate, survival rate. PMID:26330931

  14. Subgingival microbiome in patients with healthy and ailing dental implants

    PubMed Central

    Zheng, Hui; Xu, Lixin; Wang, Zicheng; Li, Lianshuo; Zhang, Jieni; Zhang, Qian; Chen, Ting; Lin, Jiuxiang; Chen, Feng

    2015-01-01

    Dental implants are commonly used to replace missing teeth. However, the dysbiotic polymicrobial communities of peri-implant sites are responsible for peri-implant diseases, such as peri-implant mucositis and peri-implantitis. In this study, we analyzed the microbial characteristics of oral plaque from peri-implant pockets or sulci of healthy implants (n?=?10), peri-implant mucositis (n?=?8) and peri-implantitis (n?=?6) sites using pyrosequencing of the 16S rRNA gene. An increase in microbial diversity was observed in subgingival sites of ailing implants, compared with healthy implants. Microbial co-occurrence analysis revealed that periodontal pathogens, such as Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, were clustered into modules in the peri-implant mucositis network. Putative pathogens associated with peri-implantitis were present at a moderate relative abundance in peri-implant mucositis, suggesting that peri-implant mucositis an important early transitional phase during the development of peri-implantitis. Furthermore, the relative abundance of Eubacterium was increased at peri-implantitis locations, and co-occurrence analysis revealed that Eubacterium minutum was correlated with Prevotella intermedia in peri-implantitis sites, which suggests the association of Eubacterium with peri-implantitis. This study indicates that periodontal pathogens may play important roles in the shifting of healthy implant status to peri-implant disease. PMID:26077225

  15. Distribution of Glenoid Implant Options for Correcting Deformities Using a Preoperative Planning Tool.

    PubMed

    Greene, Alexander; Jones, Richard B; Wright, Thomas W; Parsons, Ira M; Saadi, Paul; Cheung, Emilie V; Polakovic, Sandrine; Hamilton, Matthew A

    2015-12-01

    Preoperative planning tools in shoulder arthroplasty are a recently developing technology with the advantage of be - ing able to clearly assess patient anatomy and deformities before entering the OR. Addressing retroverted glenoids remains one of the most difficult aspects of primary shoul - der arthroplasty. In this study, five surgeons were provided with a preoperative planning tool with posterior augmented glenoid implant options (0°, 8°, and 16°) to treat 10 cadav - eric cases with a range of versions from 7.8° anteversion to 25.1° retroversion. Surgeons were able to remove less bone using 8° augmented implants over standard non-augmented implants (2.8° reamed vs. 6.4° reamed) and were able to cor - rect each case on average within ± 1.8° of neutral version. Slight glenoid vault perforation was observed in 18% of the plans. Eight degrees posterior augmented implants were used in scans averaging 9.0° retroversion, and 16° posterior augmented implants were used in scans averaging 20.6° retroversion. Results were then compared to 14 preoperative CT scans provided by one of the surgeons in which both 8° and 16° posterior augmented glenoid implants were used in actual patients, showing 8° posterior augmented implants were used in cases averaging 12.3° retroversion, and 16° posterior augmented implants were used in cases averag - ing 20.7° retroversion. The study shows that surgeons can effectively and predictably use a preoperative planning tool to correct glenoid abnormalities using augmented implant solutions while minimizing both scapular bone removal and vault perforation and maximizing version correction. PMID:26631197

  16. Cochlear implants: system design, integration, and evaluation.

    PubMed

    Zeng, Fan-Gang; Rebscher, Stephen; Harrison, William; Sun, Xiaoan; Feng, Haihong

    2008-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  17. Exposed Dental Implant? Local Autograft A Saviour!

    PubMed Central

    Rai, Raj; Punde, Prashant A; Suryavanshi, Harshal; Shree, Swetha

    2015-01-01

    Implant exposure due to faulty placement, posses as the most common reason for implant failure. The implant placed too close to buccal or lingual cortex have lead to such failure on numerous occasions. Also, anatomic variations like the thin buccolingual width of alveolar ridge predispose exposure of the implant. 25-year-old female patient had undergone surgical placement of implants in mandibular anterior region 2 months back in the private dental clinic. The clinician noted Grade I mobility in one of the implants placed. The case was referred to the author. Thin overlying gingiva depicted an entire buccal aspect of the implant, which suggested more than 90 % loss of buccal cortex. According to literature and review of similar case reports, the only way suggested was to surgically remove the implant and wait for 12-24 months for the bone to heal for subsequent placement. Rather than the removal of implants as suggested, the author followed a naval approach of reinforcing buccal cortex using an autogenous cortical block from mandibular symphysis. The reinforcement surgery had certainly saved patients time, money and most importantly limits a crucial period of edentulism, which may be enforced on a patient in case the implant was removed. PMID:26668490

  18. Implantation in the 1990s

    NASA Astrophysics Data System (ADS)

    Seidel, Thomas E.

    1991-04-01

    Requirements for implantation in the 1990s are being driven by both core and specialized processes. A review of these requirements includes difficult topography for deep-submicron MOS transistor structures (shadowing effects) and trench side-wall doping. The usual requirements on gate oxide integrity, contamination and high throughputs are to be maintained or improved. Equipment reliability and operational characteristics (source life) are being driven to more advanced performance levels.

  19. Implantable telemetry for small animals

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.

  20. Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses.

    PubMed

    Ogawa, T; Dhaliwal, S; Naert, I; Mine, A; Kronstrom, M; Sasaki, K; Duyck, Joke

    2010-07-01

    The purpose of this study is to evaluate axial forces and bending moments (BMs) on implants supporting a complete arch fixed implant supported prosthesis with respect to number and distribution of the implants and type of prosthesis material. Seven oral Brånemark implants with a diameter of 3.75 mm and a length of 13 and 7 mm (short distal implant) were placed in an edentulous composite mandible used as the experimental model. One all-acrylic, one fibre-reinforced acrylic, and one milled titanium framework prosthesis were made. A 50 N vertical load was applied on the extension 10 mm distal from the most posterior implant. Axial forces and BMs were measured by calculating signals from three strain gauges attached to each of the abutments. The load was measured using three different models with varying numbers of supporting implants (3, 4 and 5), three models with different implant distribution conditions (small, medium and large) and three models with different prosthesis materials (titanium, acrylic and fibre-reinforced acrylic). Maximum BMs were highest when prostheses were supported by three implants compared to four and five implants (P < 0.001). The BMs were significantly influenced by the implant distribution, in that the smallest distribution induced the highest BMs (P < 0.001). Maximum BMs were lowest with the titanium prosthesis (P < 0.01). The resultant forces on implants were significantly associated with the implant number and distribution and the prosthesis material. PMID:20236236

  1. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  2. Tunable retina encoders for retina implants: why and how

    NASA Astrophysics Data System (ADS)

    Eckmiller, Rolf; Neumann, Dirk; Baruth, Oliver

    2005-03-01

    Current research towards retina implants for partial restoration of vision in blind humans with retinal degenerative dysfunctions focuses on implant and stimulation experiments and technologies. In contrast, our approach takes the availability of an epiretinal multi-electrode neural interface for granted and studies the conditions for successful joint information processing of both retinal prosthesis and brain. Our proposed learning retina encoder (RE) includes information processing modules to simulate the complex mapping operation of parts of the 5-layered neural retina and to provide an iterative, perception-based dialog between RE and human subject. Alternative information processing technologies in the learning RE are being described, which allow an individual optimization of the RE mapping operation by means of iterative tuning with learning algorithms in a dialog between implant wearing subject and RE. The primate visual system is modeled by a retina module (RM) composed of spatio-temporal (ST) filters and a central visual system module (VM). RM performs a mapping 1 of an optical pattern P1 in the physical domain onto a retinal output vector R1(t) in a neural domain, whereas VM performs a mapping 2 of R1(t) in a neural domain onto a visual percept P2 in the perceptual domain. Retinal ganglion cell properties represent non-invertible ST filters in RE, which generate ambiguous output signals. VM generates visual percepts only if the corresponding R1(t) is properly encoded, contains sufficient information, and can be disambiguated. Based on the learning RE and the proposed visual system model, a novel retina encoder (RE*) is proposed, which considers both ambiguity removal and miniature eye movements during fixation. Our simulation results suggest that VM requires miniature eye movements under control of the visual system to retrieve unambiguous patterns P2 corresponding to P1. For retina implant applications, RE* can be tuned to generate optimal ganglion cell codes for epiretinal stimulation.

  3. Tissue response to peritoneal implants

    NASA Technical Reports Server (NTRS)

    Picha, G. J.

    1980-01-01

    Peritoneal implants were fabricated from poly 2-OH, ethyl methacrylate (HEMA), polyetherurethane (polytetramethylene glycol 1000 MW, 1,4 methylene disocynate, and ethyl diamine), and untreated and sputter treated polytetrafluoroethylene (PTFE). The sputter treated PTFE implants were produced by an 8 cm diameter argon ion source. The treated samples consisted of ion beam sputter polished samples, sputter etched samples (to produce a microscopic surface cone texture) and surface pitted samples (produced by ion beam sputtering to result in 50 microns wide by 100 microns deep square pits). These materials were implanted in rats for periods ranging from 30 minutes to 14 days. The results were evaluated with regard to cell type and attachment kinetics onto the different materials. Scanning electron microscopy and histological sections were also evaluated. In general the smooth hydrophobic surfaces attracted less cells than the ion etched PTFE or the HEMA samples. The ion etching was observed to enhance cell attachment, multinucleated giant cell (MNGC) formation, cell to cell contact, and fibrous capsule formation. The cell responsed in the case of ion etched PTFE to an altered surface morphology. However, equally interesting was the similar attachment kinetics of HEMA verses the ion etched PTFE. However, HEMA resulted in a markedly different response with no MNGC's formation, minimal to no capsule formation, and sample coverage by a uniform cell layer.

  4. Trapeziometacarpal osteoarthritis: pyrocarbon interposition implants

    PubMed Central

    ODELLA, SIMONA; QUERENGHI, AMOS M.; SARTORE, ROBERTA; DE FELICE, AGOSTINO; DACATRA, UGO

    2014-01-01

    Purpose the aim of this study was to evaluate the effectiveness of interposition arthroplasty of the trapeziometacarpal (TMC) joint with pyrolitic carbon implants for the treatment of TMC osteoarthritis. Methods we evaluated two groups of patients surgically treated for TMC osteoarthritis: group 1 (34 patients - 36 TMC joints) treated with PyroDisk implantation and group 2 (25 patients - 25 TMC joints) treated with the Pyrocardan implant. All these patients were clinically evaluated at follow-up using the DASH score, Mayo Wrist score and VAS pain score. Results the mean follow-up was 42 months in group 1 and 12 months in group 2. Both groups showed good clinical outcomes in terms of pain relief, range of motion, and pinch and grasp strength. Revision surgery was needed in only one case in group 1 (2.8%) and in three cases (12%) in group 2. Conclusions prosthetic replacement of the TMC joint was found to be a good solution for low-demand patients. However, the PyroDisk could be a good solution in selected patients (Eaton stage I–III, non-subluxated joint): it provides good pain relief, good range of motion, good pinch and grasp strength, and stable results at more than three-years of follow-up. Level of evidence Level IV, therapeutic case series. PMID:25750903

  5. Mechanical strength of dental implants.

    PubMed

    Zonfrillo, G; Pratesi, F

    2008-01-01

    A series of mechanical strength tests have been carried out in order to characterize some dental implants. Most specimens tested were of the tapered-joint kind, but for comparison further tests have been carried out on screw-joined implants. The loads applied were similar to those existing in the typical working conditions of the component; however, in order to conform to the ISO standard 14801, loads higher than those achieved in working conditions were applied. The static characterization tests determined the strength of the system, with large deformations preceding rupture. The fatigue tests led to the determination of the fatigue limit of the dental implant, defined conventionally in these cases as the maximum value under which the system has a life of at least 2.106 cycles. The fatigue limit is higher than the stress that the teeth endure during the normal process of mastication, and it confirms the suitable structural design of the device. Failure analysis has shown that the fatigue crack leading to rupture commonly occurs in the section in which the hexagonal insert in the tapered joint begins. PMID:20740454

  6. Biostability of materials and implants.

    PubMed

    Bruck, S D

    1991-01-01

    The purpose of this paper is to discuss some important parameters that are involved in the biostability of materials and implants aimed at the eventual development of improved in vitro testing and evaluation procedures. In view of the fact that certain terms have been the subject of misunderstandings, definitions are offered for the terms "biomaterials", "bioerosion", "biostability", and "bioresorption". Following brief descriptions of various classes of materials used in biomedical applications, the in vitro and in vivo degradations of selected materials are discussed. The main conclusions are as follows: (1) most synthetic polymers degrade in vivo by nonenzymatic hydrolysis. Hence, it is recommended that initial, in vitro testing schemes of most synthetic polymers and implants omit the use of enzyme solutions. The use of enzyme solutions is appropriate in the case of natural biopolymers as well as synthetic biodegradable polymers that contain peptidic-, glycosidic-, or phosphatidic bonds. (2) The biostability of materials and implants may be greatly affected by the simultaneous presence of stresses and active components in the physiologic environment that may lead to environmental stress cracking. (3) The biostability of polymeric materials is influenced not only by adsorption but also by the absorption of components in the physiologic environment. PMID:10171109

  7. Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees

    PubMed Central

    Isaacson, Brad M.; Stinstra, Jeroen G.; MacLeod, Rob S.; Webster, Joseph B.; Beck, James P.; Bloebaum, Roy D.

    2009-01-01

    The projected number of American amputees is expected to rise to 3.6 million by 2050. Many of these individuals depend on artificial limbs to perform routine activities, but prosthetic suspensions using traditional socket technology can prove to be cumbersome and uncomfortable for a person with limb loss. Moreover, for those with high proximal amputations, limited residual limb length may prevent exoprosthesis attachment all together. Osseointegrated implant technology is a novel operative procedure which allows firm skeletal attachment between the host bone and an implant. Preliminary results in European amputees with osseointegrated implants have shown improved clinical outcomes by allowing direct transfer of loads to the bone-implant interface. Despite the apparent advantages of osseointegration over socket technology, the current rehabilitation procedures require long periods of restrictive load bearing prior which may be reduced with expedited skeletal attachment via electrical stimulation. The goal of the osseointegrated intelligent implant design (OIID) system is to make the implant part of an electrical system to accelerate skeletal attachment and help prevent periprosthetic infection. To determine optimal electrode size and placement, we initiated proof of concept with computational modeling of the electric fields and current densities that arise during electrical stimulation of amputee residual limbs. In order to provide insure patient safety, subjects with retrospective computed tomography scans were selected and three dimensional reconstructions were created using customized software programs to ensure anatomical accuracy (Seg3D and SCIRun) in an IRB and HIPAA approved study. These software packages supported the development of patient specific models and allowed for interactive manipulation of electrode position and size. Preliminary results indicate that electric fields and current densities can be generated at the implant interface to achieve the homogenous electric field distributions required to induce osteoblast migration, enhance skeletal fixation and may help prevent periprosthetic infections. Based on the electrode configurations experimented with in the model, an external two band configuration will be advocated in the future. PMID:19609251

  8. Subcutaneously implanted tissue chambers: a pathophysiological study.

    PubMed

    Clarke, C R; Short, C R; Usenik, E A; Rawls, R

    1989-09-01

    Tissue and fluid changes occurring within tissue chambers were characterised as a function of time after subcutaneous implantation in cattle. Cytological and chemical investigation revealed that the composition of fluid within chambers approached the theoretical composition of true interstitial fluid as time after implantation progressed. Erythrocyte and leucocyte numbers decreased sharply immediately after implantation and had reached stable numbers by 40 days after implantation. At this stage, chamber fluid samples had lower total protein and albumin concentrations, higher K+ and Cl- concentrations and lower pH than corresponding blood samples. Despite an ongoing low-grade chronic inflammatory reaction resulting in fibrous encapsulation of chambers, the vascularity of chamber tissue did not diminish with time after implantation. By 40 days after implantation, the cellular and chemical constituents had stabilised enough to allow use of the model to study drug distribution. PMID:2508205

  9. [Nuclear magnetic resonance and cochlear implant].

    PubMed

    Ouayoun, M; Dupuch, K; Aitbenamou, C; Chouard, C H

    1997-01-01

    Chou underlined that ive potential effects may be anticipated if MRI is realized on implantees: 1) force on the implant by strong magnetic field, 2) current induced by the implant in the radiofrequency (RF) field, 3) damage of implant by RF exposure, 4) MRI image distortion caused by the implant, 5) implant and adjacent tissue heating due to the absorption of RF energy. We studied the reality of the four first of these risks on the Digisonic cochlear implant from MXM using the Siemens Magneton 42 SP, which supplied the implants during 10 minutes with 1 Tesla magnetic field, RF 42 MHz, maximum intensity 10 kV. During T1 and T2 sequences we could notice that: 1) Provided the receiver is strongly attached in its skull niche as requested by normal surgical procedure, no deplacement may be observed: 2) No adverse current may been observed as well on the implanted electrodes as in the internal circuitry; 3) No damage or adverse magnetisation have been detected in the 3 studied receivers; 4) Cerebral imaging of the animal is moderately darkened by the implant. The volume of the shadow involved by the implant is approximately three times the volume of the implant. As Chou demonstrated that no observable heating could be detected after a long MRI sequence, and as Portnoy using Nucleus device observed also that neither adverse current nor implant damage could be detected, we estimate that there are no real contraindication to perform MRI on implantees, provided the surgical attachment has been correctly realised. Practical attitudes will be evoked and discussed. PMID:9295883

  10. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W. (Tijeras, NM); Ashby, Carol I. H. (Edgewood, NM); Brannon, Paul J. (Albuquerque, NM)

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  11. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  12. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  13. A Murine Model of Lipopolysaccharide-Induced Peri-Implant Mucositis and Peri-Implantitis.

    PubMed

    Pirih, Flavia Q; Hiyari, Sarah; Leung, Ho-Yin; Barroso, Ana D V; Jorge, Adrian C A; Perussolo, Jeniffer; Atti, Elisa; Lin, Yi-Ling; Tetradis, Sotirios; Camargo, Paulo M

    2015-10-01

    Dental implants are a widely used treatment option for tooth replacement. However, they are susceptible to inflammatory diseases such as peri-implant mucositis and peri-implantitis, which are highly prevalent and may lead to implant loss. Unfortunately, the understanding of the pathogenesis of peri-implant mucositis and peri-implantitis is fragmented and incomplete. Therefore, the availability of a reproducible animal model to study these inflammatory diseases would facilitate the dissection of their pathogenic mechanisms. The objective of this study is to propose a murine model of experimental peri-implant mucositis and peri-implantitis. Screw-shaped titanium implants were placed in the upper healed edentulous alveolar ridges of C57BL/6J mice 8 weeks after tooth extraction. Following 4 weeks of osseointegration, Porphyromonas gingivalis -lipolysaccharide (LPS) injections were delivered to the peri-implant soft tissues for 6 weeks. No-injections and vehicle injections were utilized as controls. Peri-implant mucositis and peri-implantitis were assessed clinically, radiographically (microcomputerized tomograph [CT]), and histologically following LPS-treatment. LPS-injections resulted in a significant increase in soft tissue edema around the head of the implants as compared to the control groups. Micro-CT analysis revealed significantly greater bone loss in the LPS-treated implants. Histological analysis of the specimens demonstrated that the LPS-group had increased soft tissue vascularity, which harbored a dense mixed inflammatory cell infiltrate, and the bone exhibited noticeable osteoclast activity. The induction of peri-implant mucositis and peri-implantitis in mice via localized delivery of bacterial LPS has been demonstrated. We anticipate that this model will contribute to the development of more effective preventive and therapeutic approaches for these 2 conditions. PMID:24967609

  14. Injury to the coronary arteries and related structures by implantation of cardiac implantable electronic devices.

    PubMed

    Pang, Benjamin J; Barold, S Serge; Mond, Harry G

    2015-04-01

    Damage to the coronary arteries and related structures from pacemaker and implantable cardioverter-defibrillator lead implantation is a rarely reported complication that can lead to myocardial infarction and pericardial tamponade that may occur acutely or even years later. We summarize the reported cases of injury to coronary arteries and related structures and review the causes of troponin elevation in the setting of cardiac implantable electronic device implantation. PMID:25564549

  15. Fig. 1. (a) Cochlea implant system and (b) Cochlea anatomy Abstract--Robot-assisted cochlear implant surgery was

    E-print Network

    Simaan, Nabil

    --Robot-assisted cochlear implant surgery was proposed and proved to be efficient in reducing insertion forces on acrylic implant surgeries. I. INTRODUCTION ULTI-CHANNEL cochlear implants have been developed for more than 30 cochlear implant surgery. The cochlear implant system includes a microphone, a micro

  16. Thoracic Outlet Syndrome Following Breast Implant Rupture

    PubMed Central

    Caplash, Yugesh; Giri, Pratyush; Kearney, Daniel; Wagstaff, Marcus

    2015-01-01

    Summary: We present a patient with bilateral breast implant rupture who developed severe locoregional silicone granulomatous lymphadenopathy. Poly Implant Prothese silicone implants had been used for bilateral breast augmentation 5 years prior. Extracapsular implant rupture and bilateral axillary lymphadenopathy indicated explantation, capsulectomy, and selective lymph node excision. Histology demonstrated silicone lymphadenopathy with no evidence of malignancy. Over the subsequent 12 months, she developed progressive locoregional lymphadenopathy involving bilateral cervical, axillary, and internal mammary groups, resulting in bilateral thoracic outlet syndrome. We report the unusual presentation, progression, and the ultimate surgical management of this patient. PMID:25878942

  17. Physical modification of polyetheretherketone for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Du, Ya-Wei; Zhang, Li-Nan; Hou, Zeng-Tao; Ye, Xin; Gu, Hong-Sheng; Yan, Guo-Ping; Shang, Peng

    2014-12-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates for replacing current implant applications. To obtain good bone-implant interfaces, many modification methods have been developed to enable PEEK and PEEK-based composites from bio-inert to bioactive. Among them, physical methods have aroused significant attention and been widely used to modify PEEK for orthopedic implants. This review summarizes current physical modification techniques of PEEK for orthopedic applications, which include composite strategies, surface coating methods and irradiation treatments. The positive consequences of those modification methods will encourage continuing investigations and stimulate the wide range of applications of PEEK-based implants in orthopedics.

  18. Ceramic photocell implants could restore sight.

    PubMed

    Flinn, Edward D

    2002-04-01

    Researchers are perfecting the use of ceramic photocells for retinal implantation. The work is being done at the Space Vacuum Epitaxy Center in Houston, TX. The photocells are the results of experiments with oxide detectors conducted in space using the Wake Shield Facility. Artificial retinas are constructed of 100,000 microscopic ceramic detectors attached to a polymer film, which disintegrates after implantation. Initially, four arrays will be implanted, totalling 400,000 detectors per eye. If successful, two additional arrays would be implanted. Human trials are expected to begin in 2002. PMID:11951916

  19. Techniques for dental implant nanosurface modifications

    PubMed Central

    Bathala, Lakshmana Rao; Sangur, Rajashekar

    2014-01-01

    PURPOSE Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants. MATERIALS AND METHODS A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis. RESULTS Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness. CONCLUSION Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures. PMID:25558347

  20. Focused phosphorus ion beam implantation into silicon

    NASA Astrophysics Data System (ADS)

    Madokoro, Y.; Shukuri, S.; Umemura, K.; Tamura, M.

    1989-03-01

    Phosphorus implantation into (100) silicon using a 32-keV focused ion beam is investigated from the standpoints of electrical properties and damage to the implanted layers. Phosphorus ions are extracted from the Pt?P?Sb alloy liguid-metal-ion source. Electrical properties are measured by isochronal annealing with Hall measurements and radiation damage is evaluated using a transmission electron microscope. Compared with the conventional implantation method, focused ion beam implantation causes heavier radiation damage and forms amorphous layers at a dose of 2 × 10 14 cm -2 due to high current density.

  1. Implant Supported Distal Extension over Denture Retained by Two Types of Attachments. A Comparative Radiographic Study by Cone Beam Computed Tomography

    PubMed Central

    Mahrous, Ahmed I; Aldawash, Hussien A; Soliman, Tarek A; Banasr, Fahad H; Abdelwahed, Ahmed

    2015-01-01

    Background: This study was conducted to compare and evaluate the effect of two different attachments (locator attachment and ball and socket [B&S] attachment) on implants and natural abutments supporting structures, in cases of limited inter-arch spaces in mandibular Kennedy Class I implant supported removable partial over dentures by measuring the bone height changes through the cone beam radiographic technology. Materials and Methods: Two implants were positioned in the first or second molar area following the two-stage surgical protocol. Two equal groups were divided ten for each: Group I: Sides were the placed implants restored by the locator attachment. Group II: The other sides, implants were restored by B&S attachment. Evaluation of the implants and main abutments supporting structures of each group was done at the time of removable partial over denture insertion, 6, 12 and 18 months by measuring the bone height changes using cone beam computed tomography. Results: Implants with locator attachment showed marginal bone height better effects on implants and main abutments supporting structures. Conclusion: Implants restored by locator attachment shows better effects on bone of both main natural abutments and implant than those restored with ball and socket. PMID:26028894

  2. Implant Materials Generate Different Peri-implant Inflammatory Factors

    PubMed Central

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connective tissue surface interface whereas Ti-alloy implants demonstrate close approximation with surrounding bone. Ti-alloy surfaces with complex micron/submicron scale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation whereas PEEK favors fibrous tissue formation. Methods. Human mesenchymal stem cells were cultured on tissue culture polystyrene, PEEK, smooth TiAlV, or macro-/micro-/nano-textured rough TiAlV (mmnTiAlV) disks. Osteoblastic differentiation and secreted inflammatory interleukins were assessed after 7 days. Fold changes in mRNAs for inflammation, necrosis, DNA damage, or apoptosis with respect to tissue culture polystyrene were measured by low-density polymerase chain reaction array. Data were analyzed by analysis of variance, followed by Bonferroni's correction of Student's t-test. Results. Cells on PEEK upregulated mRNAs for chemokine ligand-2, interleukin (IL) 1?, IL6, IL8, and tumor necrosis factor. Cells grown on the mmnTiAlV had an 8-fold reduction in mRNAs for toll-like receptor-4. Cells grown on mmnTiAlV had reduced levels of proinflammatory interleukins. Cells on PEEK had higher mRNAs for factors strongly associated with cell death/apoptosis, whereas cells on mmnTiAlV exhibited reduced cytokine factor levels. All results were significant (P < 0.05). Conclusion. These results suggest that fibrous tissue around PEEK implants may be due to several factors: reduced osteoblastic differentiation of progenitor cells and production of an inflammatory environment that favors cell death via apoptosis and necrosis. Ti alloy surfaces with complex macro/micro/nanoscale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation. Level of Evidence: N/A PMID:25584952

  3. Minimizing bone gaps when using custom pediatric cranial implants is associated with implant success.

    PubMed

    Bowers, Christian A; McMullin, Jaron H; Brimley, Cameron; Etherington, Linsey; Siddiqi, Faizi A; Riva-Cambrin, Jay

    2015-10-01

    OBJECT Occasionally after a craniotomy, the bone flap is discarded (as in the case of osteomyelitis) or is resorbed (especially after trauma), and an artificial implant must be inserted in a delayed fashion. Polyetheretherketone (PEEK) implants and hard-tissue replacement patient-matched implants (HTR-PMI) are both commonly used in such cases. This study sought to compare the failure rate of these 2 implants and identify risk factors of artificial implant failure in pediatric patients. METHODS This was a retrospective cohort study examining all pediatric patients who received PEEK or HTR-PMI cranioplasty implants from 2000 to 2013 at a single institution. The authors examined the following variables: age, sex, race, mechanism, surgeon, posttraumatic hydrocephalus, time to cranioplasty, bone gap width, and implant type. The primary outcome of interest was implant failure, defined as subsequent removal and replacement of the implant. These variables were analyzed in a bivariate statistical fashion and in a multivariate logistic regression model for the significant variables. RESULTS The authors found that 78.3% (54/69) of implants were successful. The mean patient age was 8.2 years, and a majority of patients were male (73%, 50/69); the mean follow-up for the cohort was 33.3 months. The success rate of the 41 HTR-PMI implants was 78.1%, and the success rate of the 28 PEEK implants was 78.6% (p = 0.96). Implants with a bone gap of > 6 mm were successful in 33.3% of cases, whereas implants with a gap of < 6 mm had a success rate of 82.5% (p = 0.02). In a multivariate model with custom-type implants, previous failed custom cranial implants, time elapsed from previous cranioplasty attempt, and bone gap size, the only independent risk factor for implant failure was a bone gap > 6 mm (odds ratio 8.3, 95% confidence interval 1.2-55.9). CONCLUSIONS PEEK and HTR-PMI implants appear to be equally successful when custom implantation is required. A bone gap of > 6 mm with a custom implant in children results in significantly higher artificial implant failure. PMID:26161719

  4. Home Monitoring for Cardiovascular Implantable Electronic Devices: Benefits to Patients and to Their Follow-up Clinic.

    PubMed

    Leahy, Robin A; Davenport, Elizabeth E

    2015-01-01

    Recent technological advances in the management of patients with cardiovascular implantable electronic devices (CIEDs) have expanded clinicians' ability to remotely monitor patients with CIEDs. Remote monitoring, in addition to periodic in-person device evaluation, provides many advantages to patients and clinicians. Aside from the therapeutic and diagnostic benefits of pacemakers, implantable cardioverter-defibrillators, cardiac resynchronization therapy devices, and implantable loop recorders, improvement in clinical outcomes, clinical efficiencies, and patient experience can be realized with the adoption of remote CIED monitoring. These advantages create significant value to both patients and CIED follow-up centers. PMID:26484995

  5. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...prosthesis (interpositional implant). 872.3970 Section...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...prosthesis (interpositional implant). (a) Identification...prosthesis (interpositional implant) is a device that is...

  6. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...prosthesis (interpositional implant). 872.3970 Section...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...prosthesis (interpositional implant). (a) Identification...prosthesis (interpositional implant) is a device that is...

  7. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method...Identification. An absorbable implant (scleral buckling method) is a device intended to be implanted on the sclera to aid...

  8. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Implanted electrical urinary continence device...Therapeutic Devices § 876.5270 Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is...

  9. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Shunt system implantation instrument. 882.4545 Section...Devices § 882.4545 Shunt system implantation instrument. (a) Identification. A shunt system implantation instrument is an instrument...

  10. 21 CFR 876.3350 - Penile inflatable implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3350 Penile inflatable implant. (a) Identification. A penile inflatable implant is a device that consists of two inflatable cylinders implanted in the penis, connected to...

  11. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification... An endosseous dental implant abutment is a premanufactured...to the endosseous dental implant and is intended for...

  12. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Implanted neuromuscular stimulator. 882.5860...Therapeutic Devices § 882.5860 Implanted neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a...

  13. 21 CFR 876.3350 - Penile inflatable implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3350 Penile inflatable implant. (a) Identification. A penile inflatable implant is a device that consists of two inflatable cylinders implanted in the penis, connected to...

  14. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Implanted neuromuscular stimulator. 882.5860...Therapeutic Devices § 882.5860 Implanted neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a...

  15. 21 CFR 886.3320 - Eye sphere implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...

  16. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Implanted neuromuscular stimulator. 882.5860...Therapeutic Devices § 882.5860 Implanted neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a...

  17. 21 CFR 886.3320 - Eye sphere implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...

  18. 21 CFR 886.3340 - Extraocular orbital implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3340 Extraocular orbital implant. (a) Identification. An extraocular orbital implant is a nonabsorbable device intended to be implanted during scleral surgery for...

  19. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...prosthesis (interpositional implant). 872.3970 Section...DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...prosthesis (interpositional implant). (a) Identification...prosthesis (interpositional implant) is a device that is...

  20. 21 CFR 874.3695 - Mandibular implant facial prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Mandibular implant facial prosthesis. 874...NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3695 Mandibular implant facial prosthesis. (a) Identification. A mandibular implant facial prosthesis is a...

  1. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Endosseous dental implant abutment. 872.3630 Section 872...Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured...

  2. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970...Interarticular disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis (interpositional implant) is a device that is intended to...

  3. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Endosseous dental implant accessories. 872.3980 Section 872...Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered...

  4. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Penile rigidity implant. 876.3630 Section 876.3630 Food...Devices § 876.3630 Penile rigidity implant. (a) Identification. A penile rigidity implant is a device that consists of a...

  5. 21 CFR 886.3320 - Eye sphere implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Eye sphere implant. 886.3320 Section 886.3320... Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be...

  6. 21 CFR 886.3340 - Extraocular orbital implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...false Extraocular orbital implant. 886.3340 Section...3340 Extraocular orbital implant. (a) Identification. An extraocular orbital implant is a nonabsorbable device...building up the floor of the eye, usually in...

  7. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...false Implantable pacemaker pulse generator. 870.3610 Section 870.3610...3610 Implantable pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a...

  8. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...false Implantable pacemaker pulse generator. 870.3610 Section 870.3610...3610 Implantable pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a...

  9. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...false Implantable pacemaker pulse generator. 870.3610 Section 870.3610...3610 Implantable pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a...

  10. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...false Implantable pacemaker pulse generator. 870.3610 Section 870.3610...3610 Implantable pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a...

  11. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...false Implantable pacemaker pulse generator. 870.3610 Section 870.3610...3610 Implantable pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a...

  12. Bilateral cochlear implants in children R. Litovskya,*, P. Johnstonea

    E-print Network

    Litovsky, Ruth

    Bilateral cochlear implants in children R. Litovskya,*, P. Johnstonea , A. Parkinsonb , R. Petersc of listening with bilateral cochlear implants (CIs) improves the ability of children to hear speech in noise reserved. Keywords: Bilateral; Cochlear; Implantation; Pediatric; Binaural; Experience 1. Introduction

  13. A MANUAL INSERTION MECHANISM FOR PERCUTANEOUS COCHLEAR IMPLANTATION

    E-print Network

    A MANUAL INSERTION MECHANISM FOR PERCUTANEOUS COCHLEAR IMPLANTATION Daniel Schurzig Vanderbilt. Webster III Vanderbilt University Nashville, TN, USA ABSTRACT Percutaneous Cochlear Implantation (PCI point. This precludes standard cochlear implant deployment techniques, and necessitates a new insertion

  14. Localization of cochlear implant electrodes in radiographs Siying Yang

    E-print Network

    Wang, Ge

    Localization of cochlear implant electrodes in radiographs Siying Yang Department of Electrical January 2000 Multielectrode cochlear implantation is the most effective treatment for profound sensorineural hearing loss. In vivo three-dimensional 3-D localization of cochlear implant electrodes

  15. Induction of Angiogenesis and Neovascularization in Adjacent Tissue of Plasma-Collagen–Coated Silicone Implants

    PubMed Central

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-01-01

    Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137

  16. Possible risks due to exposure of workers and patients with implants by TETRA transmitters.

    PubMed

    Cecil, Stefan; Neubauer, Georg; Rauscha, Friedrich; Stix, Günter; Müller, Wolfgang; Breithuber, Christian; Glanzer, Markus

    2014-04-01

    Several studies have demonstrated that mobile telephones that use different technologies, such as Global System for Mobile Communication (GSM) or Universal Mobile Telecommunication System (UMTS), have the potential to influence the functionality of active electronic implants, including cardiac pacemakers. According to these studies, a few safety measures, such as maintaining minimum distances of 25?cm between implants and transmitters, are sufficient to avoid such effects. Terrestrial Trunked Radio (TETRA) has become a well-established communication standard in many countries, including Germany and Austria. TETRA transmitters are typically used by police forces and emergency services. Employees and volunteers working for such institutions are often in close contact with patients, causing TETRA transmitters to potentially have an impact on the functionality of the implants of patients. Therefore, the main focus of our study was to investigate the functionality of several types of implants when exposed to TETRA transmitters. Moreover, we investigated the difference in the degree of exposure of users of TETRA transmitters when they carry the devices in different locations near the body, and when they use them in different positions near the head. Our results show that a compliance distance of 30?cm between implant and transmitter is sufficient to exclude any influence on the examined implants. All examined exposure conditions demonstrated that the levels were well below recommended limits. If a user wants to minimize their exposure, use of transmitters in front of the mouth leads to somewhat lower exposure when compared to typical mobile phone like use. PMID:24436224

  17. Assessment of CpTi Surface Properties after Nitrogen Ion Implantation with Various Doses and Energies

    NASA Astrophysics Data System (ADS)

    Fulazzaky, Mohamad Ali; Ali, Nurdin; Samekto, Haryanti; Ghazali, Mohd Imran

    2012-11-01

    Nitrogen ion implantation is one of the surface modification techniques used for increasing corrosion resistance of commercially pure titanium (CpTi). The nitrogen ion implanted CpTi in various doses markedly changes the corrosion resistance. Still the effect of nitrogen ion implantation on the CpTi at different energies needs to be verified. This study uses different methods to assess the CpTi surface properties after nitrogen ion implantation in various doses and energy. Surface hardness of the CpTi increases with an increase of the dose and decreases with an increase of the energy. The precipitation of the TiN increases with an increase of the nitrogen dose, and no formation of the Ti2N phase clearly appears. Corrosion resistance of the CpTi specimens can be upgraded to some extent after their surfaces are modified, implanting nitrogen ions at 100 keV by increasing dose. The optimum surface properties of the implanted CpTi are analyzed to contribute to materials science technology.

  18. A 5-year randomized trial to compare 1 or 2 implants for implant overdentures.

    PubMed

    Bryant, S R; Walton, J N; MacEntee, M I

    2015-01-01

    The hypothesis of this 5-y randomized clinical trial was that there would be no significant difference in the satisfaction of edentulous participants with removable complete overdentures attached to 1 or 2 mandibular implants. Secondary aims were to test changes in satisfaction between and within the groups from baseline to 5 y and differences between the groups in implant survival and prosthodontic maintenance over 5 y. Each of the 86 participants (mean age, 67 y) was randomly allocated to receive either 1 implant in the midline (group 1) or 2 implants in the canine areas (group 2) attached to a mandibular overdenture opposing a maxillary complete denture. Satisfaction was self-assessed by participants on a visual analog scale at baseline prior to implants, as well as at 2 mo and 1, 3, and 5 y with implant overdentures, whereas implant survival and prosthodontic maintenance were assessed by clinical examination. After 5 y, 29 participants in group 1 and 33 in group 2 were available, with most dropouts due to death. Satisfaction with the implant denture after 5 y was significantly (P < 0.001) higher than at baseline in both groups and remained with no significant difference (P = 0.32) between the groups. No implants failed in group 1 but 5 failed before loading in 4 participants in group 2. Most participants required maintenance or occasionally denture replacement, and although differences between the groups were not statistically significant, group 1 experienced almost twice as many fractured dentures usually adjacent to the implant attachment. We conclude that there were no significant differences after 5 y in satisfaction or survival of implants with mandibular overdentures retained by 1 implant or 2 implants. Additional research is required to confirm long-term treatment effectiveness of single-implant dentures and the implications of prosthetic maintenance with implant overdentures (ClinicalTrials.gov: NCT02117856). PMID:25348544

  19. Implant-supported fixed restoration of post-traumatic mandibular defect accompanied with skin grafting: A clinical report

    PubMed Central

    Noh, Kwantae; Choi, Woo-Jin

    2013-01-01

    Traumatic defects are mostly accompanied by hard and soft tissue loss. This report describes the surgical and prosthetic treatment of a patient with post-traumatic mandibular defect. A split-thickness skin graft was performed prior to implant placement and prefabricated acrylic stent was placed to hold the graft in place. The esthetic and functional demands of the patient were fulfilled by implant-supported screw-retained fixed prosthesis using CAD-CAM technology. PMID:23508120

  20. Optical inspection system for implants

    NASA Astrophysics Data System (ADS)

    Denkena, Berend; Acker, Wolfram

    2006-04-01

    Hip and knee prostheses are complex products with high quality standards. The aim is to reproduce the behavior of a natural joint. This can be achieved by using a hard and a soft component. The research project "Optical Geometry Acquisition of Medical Implants and Prostheses", short "OptiGIP", explores methods for an automated quality assurance included in the production chain of these components. The approach is divided in two sections, a three dimensional and a two dimensional measurement technique. First a stripe projection method is used to produce a three dimensional model of the component. This model can be used to verify the geometry of the component. Furthermore it enables a new examination method, the Model-Based RSA, which is used to explore the effect of loosening. A late loosening of the components within the bones is the most important quality criterion for a successful implantation. The second part of described measurement method aims at a reduction of an early loosening of the prosthesis. Even very small scratches on the prosthesis's surface can have an impact on an early loosening because of friction between the soft and hard surface. Scratches produce bigger particles of the soft component than an undamaged surface would do. Recent research activities show that these bigger particles have an influence on an early loosening mechanism. The two-dimensional measurement checks the quality of the surface of the hard component of the implant. The approach is to use an extended dark field method. The prosthesis is illuminated from various angles producing a sequence of images. These images are filtered to distinguish between reflections from scratches and direct reflections. A combination of the filtered images shows the scratches.

  1. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique.

    PubMed

    Huang, Weidong; Zheng, Qixin; Sun, Wangqiang; Xu, Huibi; Yang, Xiangliang

    2007-07-18

    A novel three-dimensional (3D) printing technique was utilized in the preparation of drug implants that can be designed to have complex drug release profiles. The method we describe is based on a lactic acid polymer matrix with a predefined microstructure that is amenable to rapid prototyping and fabrication. We describe how the process parameters, especially selection of the binder, were optimized. Implants containing levofloxacin (LVFX) with predefined microstructures using an optimized binder solution of ethanol and acetone (20:80, v/v) were prepared by a 3D printing process that achieved a bi-modal profile displaying both pulsatile and steady state LVFX release from a single implant. The pulse release appeared from day 5 to 25, followed by a steady state phase of 25 days. The next pulse release phase then began at the 50th day and ended at the 80th day. To evaluate the drug implants structurally and analytically, the microscopic morphologies and the in vitro release profiles of the implants fabricated by both the 3D printing technique and the conventional lost mold technique were assessed using environmental scanning electron microscopy (ESEM) and UV absorbance spectrophotometry. The results demonstrate that the 3D printing technology can be used to fabricate drug implants with sophisticated micro- and macro-architecture in a single device that may be rapidly prototyped and fabricated. We conclude that drug implants with predefined microstructure fabricated by 3D printing techniques can have clear advantages compared to implants fabricated by conventional compressing methods. PMID:17412538

  2. Bronchoscopic Implantation of a Novel Wireless Electromagnetic Transponder in the Canine Lung: A Feasibility Study

    SciTech Connect

    Mayse, Martin L.; Parikh, Parag J. Lechleiter, Kristen M.; Dimmer, Steven; Park, Mia; Chaudhari, Amir; Talcott, Michael; Low, Daniel A.; Bradley, Jeffrey D.

    2008-09-01

    Purpose: The success of targeted radiation therapy for lung cancer treatment is limited by tumor motion during breathing. A real-time, objective, nonionizing, electromagnetic localization system using implanted electromagnetic transponders has been developed (Beacon electromagnetic transponder, Calypso Medical Technologies, Inc., Seattle, WA). We evaluated the feasibility and fixation of electromagnetic transponders bronchoscopically implanted in small airways of canine lungs and compared to results using gold markers. Methods and Materials: After approval of the Animal Studies Committee, five mongrel dogs were anesthetized, intubated, and ventilated. Three transponders were inserted into the tip of a plastic catheter, passed through the working channel of a flexible bronchoscope, and implanted into small airways of a single lobe using fluoroscopic guidance. This procedure was repeated for three spherical gold markers in the opposite lung. One, 7, 14, 28, and 60 days postimplantation imaging was used to assess implant fixation. Results: Successful bronchoscopic implantation was possible for 15 of 15 transponders and 12 of 15 gold markers; 3 markers were deposited in the pleural space. Fixation at 1 day was 15 of 15 for transponders and 12 of 12 for gold markers. Fixation at 60 days was 6 of 15 for transponders and 7 of 12 for gold markers, p value = 0.45. Conclusions: Bronchoscopic implantation of both transponders and gold markers into the canine lung is feasible, but fixation rates are low. If fixation rates can be improved, implantable electromagnetic transponders may allow improved radiation therapy for lung cancer by providing real-time continuous target tracking. Developmental work is under way to improve the fixation rates and to reduce sensitivity to implantation technique.

  3. Bilingualism: A Pearl to Overcome Certain Perils of Cochlear Implants

    PubMed Central

    Humphries, Tom; Kushalnagar, Poorna; Mathur, Gaurav; Napoli, Donna Jo; Padden, Carol; Rathmann, Christian; Smith, Scott

    2014-01-01

    Cochlear implants (CI) have demonstrated success in improving young deaf children’s speech and low-level speech awareness across a range of auditory functions, but this success is highly variable, and how this success correlates to high-level language development is even more variable. Prevalence on the success rate of CI as an outcome for language development is difficult to obtain because studies vary widely in methodology and variables of interest, and because not all cochlear implant technology (which continues to evolve) is the same. Still, even if the notion of treatment failure is limited narrowly to those who gain no auditory benefit from CI in that they cannot discriminate among ambient noises, the reported treatment failure rate is high enough to call into question the current lack of consideration of alternative approaches to ensure young deaf children’s language development. Recent research has highlighted the risks of delaying language input during critical periods of brain development with concomitant consequences for cognitive and social skills. As a result, we propose that before, during, and after implantation deaf children learn a sign language along with a spoken language to ensure their maximal language development and optimal long-term developmental outcomes. PMID:25419095

  4. Bilingualism: A Pearl to Overcome Certain Perils of Cochlear Implants.

    PubMed

    Humphries, Tom; Kushalnagar, Poorna; Mathur, Gaurav; Napoli, Donna Jo; Padden, Carol; Rathmann, Christian; Smith, Scott

    2014-01-01

    Cochlear implants (CI) have demonstrated success in improving young deaf children's speech and low-level speech awareness across a range of auditory functions, but this success is highly variable, and how this success correlates to high-level language development is even more variable. Prevalence on the success rate of CI as an outcome for language development is difficult to obtain because studies vary widely in methodology and variables of interest, and because not all cochlear implant technology (which continues to evolve) is the same. Still, even if the notion of treatment failure is limited narrowly to those who gain no auditory benefit from CI in that they cannot discriminate among ambient noises, the reported treatment failure rate is high enough to call into question the current lack of consideration of alternative approaches to ensure young deaf children's language development. Recent research has highlighted the risks of delaying language input during critical periods of brain development with concomitant consequences for cognitive and social skills. As a result, we propose that before, during, and after implantation deaf children learn a sign language along with a spoken language to ensure their maximal language development and optimal long-term developmental outcomes. PMID:25419095

  5. Burnishing Techniques Strengthen Hip Implants

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the late 1990s, Lambda Research Inc., of Cincinnati, Ohio, received Small Business Innovation Research (SBIR) awards from Glenn Research Center to demonstrate low plasticity burnishing (LPB) on metal engine components. By producing a thermally stable deep layer of compressive residual stress, LPB significantly strengthened turbine alloys. After Lambda patented the process, the Federal Aviation Administration accepted LPB for repair and alteration of commercial aircraft components, the U.S. Department of Energy found LPB suitable for treating nuclear waste containers at Yucca Mountain. Data from the U.S. Food and Drug Administration confirmed LPB to completely eliminate the occurrence of fretting fatigue failures in modular hip implants.

  6. Fracture dynamics in implanted silicon

    NASA Astrophysics Data System (ADS)

    Massy, D.; Mazen, F.; Tardif, S.; Penot, J. D.; Ragani, J.; Madeira, F.; Landru, D.; Kononchuk, O.; Rieutord, F.

    2015-08-01

    Crack propagation in implanted silicon for thin layer transfer is experimentally studied. The crack propagation velocity as a function of split temperature is measured using a designed optical setup. Interferometric measurement of the gap opening is performed dynamically and shows an oscillatory crack "wake" with a typical wavelength in the centimetre range. The dynamics of this motion is modelled using beam elasticity and thermodynamics. The modelling demonstrates the key role of external atmospheric pressure during crack propagation. A quantification of the amount of gas trapped inside pre-existing microcracks and released during the fracture is made possible, with results consistent with previous studies.

  7. Intraocular lens implantation in children.

    PubMed

    Hiles, D A

    1977-06-01

    The intraocular lens offers an additional parameter to be considered for the visual rehabilitation of children with traumatic or infantile cataracts. The disadvantages of aphakic spectacles or contact lens have committed many of these eyes to the status of visual cripples. Bearing in mind all of the complications and the lack of long-term follow-up, the IOL warrants careful consideration for use in this group of cataract patients. In this series of 27 patients with a maximum of 18 months' follow-up, it is concluded that the IOL may be successfully implanted and that, thus far, no eye has been made worse than the patients preinsertion status. PMID:911121

  8. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: a 1-year prospective study on 15 patients.

    PubMed

    Mangano, Francesco Guido; De Franco, Michele; Caprioglio, Alberto; Macchi, Aldo; Piattelli, Adriano; Mangano, Carlo

    2014-07-01

    This study evaluated the 1-year survival and success rate of root-analogue direct laser metal sintering (DLMS) implants, placed into the extraction sockets of 15 patients. DLMS is a technology which allows solids with complex geometry to be fabricated by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model; the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer-by-layer, the desired object. Cone-beam computed tomography (CBCT) acquisition and 3D image conversion, combined with the DLMS process, allow the fabrication of custom-made, root-analogue implants (RAIs). CBCT images of 15 non-restorable premolars (eight maxilla; seven mandible) were acquired and transformed into 3D models: from these, custom-made, root-analogue DLMS implants with integral abutment were fabricated. Immediately after tooth extraction, the RAIs were placed in the sockets and restored with a single crown. One year after implant placement, clinical and radiographic parameters were assessed: success criteria included absence of pain, suppuration, and exudation; absence of implant mobility and absence of continuous peri-implant radiolucency; distance between the implant shoulder and the first visible bone-to-implant contact <1.5 mm from initial surgery; and absence of prosthetic complications. At the 1-year follow-up, no implants were lost, for a survival rate of 100 %. All implants were stable, with no signs of infection. The good conditions of the peri-implant tissues were confirmed by the radiographic examination, with a mean DIB of 0.7 mm (±0.2). The possibility of fabricating custom-made, RAI DLMS implants opens new interesting horizons for immediate placement of dental implants. PMID:23494103

  9. Implants and Decoding for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) are being developed to enable a person to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software which decodes the user’s intended movement from those signals. Here, we focus on recent advances in these two areas, with special attention being placed on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology’s capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications. PMID:23862678

  10. Implantable Pacemakers Control and Optimization via Fractional Calculus Approaches: A Cyber-Physical Systems Perspective

    E-print Network

    Bruck, Jehoshua (Shuki)

    .g., automated systems for health care monitoring and diagnosis, robust and noninvasive drug delivery systems][30][46]. The CPS paradigm is meant to drive the design of many technological systems ranging from smart to have bio-implantable devices capable of monitoring the heart rate, communicating with medical experts/devices

  11. Preparation and Perceptions of Speech-Language Pathologists Working with Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Compton, Mary V.; Tucker, Denise A.; Flynn, Perry F.

    2009-01-01

    This study examined the level of preparedness of North Carolina speech-language pathologists (SLPs) who serve school-aged children with cochlear implants (CIs). A survey distributed to 190 school-based SLPs in North Carolina revealed that 79% of the participants felt they had little to no confidence in managing CI technology or in providing…

  12. Complete mouth implant rehabilitation with a zirconia ceramic system: a clinical report.

    PubMed

    Mehra, Mamta; Vahidi, Farhad

    2014-07-01

    Currently available ceramic systems offer a wide array of prosthetic advantages, including superior esthetics and enhanced physical and mechanical properties. The dental ceramic with the highest reported mechanical properties is zirconia. This clinical report describes a complete mouth implant rehabilitation with computer-aided design/computer-aided manufacturing technology and monolithic zirconia. PMID:24674807

  13. Sequential Bimodal Bilingual Acquisition: Mediation Using a Cochlear Implant as a Tool

    ERIC Educational Resources Information Center

    Cramér-Wolrath, Emelie

    2013-01-01

    Most deaf children are born to hearing families. During the last twenty years deaf children, in increasing numbers and at an early age, receive a cochlear implant, a highly technological hearing device. The aim of this qualitative, longitudinal, single-case study was to explore and describe critical changes in naturalistic, video-observed…

  14. New operational techniques of implantation of biomaterials and titanium implants in the jaw with the atrophy of the bone and soft tissues

    NASA Astrophysics Data System (ADS)

    Nikityuk, D. B.; Urakov, A. L.; Reshetnikov, A. P.; Kopylov, M. V.; Baimurzin, D. Yu.

    2015-11-01

    The research into dynamics of quality of clinical use in 2003 - 2012 of autologous and xenogeneic biomaterials at dental transplantation and implantation among 1,100 of adult patients was made. The analysis results show that at autologous bone transplantation implant survival is observed only in 72% of cases, and the "necessary" result of bone repair occurred only in 6 - 9 months. Transplantation of biomaterials of OsteoBiol® (materials "mp3", "Genos" and "Evolution") provided engraftment and bone regeneration in 100 % of cases and allowed the use of dental implantation immediately after transplantation even in case of reduction in the patient's alveolar crest down to 2.0 mm. Replace Select implants of Nobel Biocare® were used at plantation. In order to exclude Schneiderian membrane's perforation lighting of Highmore's sinus with the cold blue-violet light from inside at sinus elevation is recommended as well as deepening of dental instruments into the bone only until the blue-violet light appears under them. To exclude deficiency of soft tissue under the cervical part of the ceramic crown application of special anti-fissure technology involving biomaterial flap dissection and its laying around the implant is suggested.

  15. Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing.

    PubMed

    Qian, Chao; Zhang, Fuqiang; Sun, Jian

    2015-01-01

    The aim of this study is to evaluate the feasibility of fabricating titanium(Ti)/hydroxyapatite(HA) composite and functionally graded implant by three-dimensional printing (3DP) technology. Nano-scale Ti and HA powders were mixed at the ratio of 8:2 and prepared with water-soluble binder. The Ti/HA composite CAD model was designed to be in cylinder shape (25 mm in diameter, 20 mm in height) with the 100% bond area in each layer. The functionally graded implant was 25 mm in diameter and 10 mm in height with two segments. The upper segment was composed of 100% Ti in each layer, whereas the lower was composed of 80%Ti/20%HA. The composite and functionally graded implant were fabricated by 3DP and sintered at 1200°C under protective argon atmosphere. There occurred a chemical reaction between Ti and HA, in which new resultants of Ca3(PO4)2, CaTiO3, TiO2 and CaO were created. The sintered Ti/HA composite had the aperture size from 50 to 150 ?m and the compressive strength of 184.3±27.1 MPa. The result of this study demonstrated that it was feasible to fabricate Ti/HA composite and functionally graded implant by 3DP technology. The microstructure and mechanical properties of Ti/HA composite and functionally graded implant were conductive to bone cell ingrowth, resulting in the wide application of this biocomposite. PMID:25813951

  16. Experimental findings on customized mandibular implants in Göttingen minipigs - a pilot study.

    PubMed

    Markwardt, J; Sembdner, P; Lesche, R; Jung, R; Spekl, K; Mai, R; Schulz, M C; Reitemeier, B

    2014-01-01

    Reconstructing continuity defects of the mandible is still challenging for surgeons. The currently applied conventional titanium bridging plates have considerable rates of complications. Now, a new technology enables an individual shape-identical creation of a mandibular implant in a form-board design by the method of LaserCUSING using pure titanium. This technology has been successfully performed in previous examinations to individually reconstruct mandibular continuity defects. This pilot study evaluated the surgical procedure in 10 female Göttingen mini pigs. First, a computed tomography scan from a mini pig cranium was performed. A three-dimensional model of the mandible was designed by data conversion. Based on the data, a customized mandibular implant resembling the natural shape was virtually created and manufactured. Then, a continuity defect of the left mandible was created in a standardized way. The implants were inserted into the defect and the wounds were allowed to heal for 21, 35, 56 and 180 days. During the healing period, no signs of inflammation or infection were observed. After the sacrifice of the minipigs the mandibles were resected. Histological microsections using Donath's sawing and grinding technique were manufactured and stained with Masson Goldner trichrome staining. The histomorphological results showed a pronounced ossification at the outer and inner surface of the implants. This animal study describes a promising approach to optimize customized implants for the application in humans. PMID:24189298

  17. Transvenous Implantable Cardioverter-Defibrillator Lead Reliability: Implications for Postmarket Surveillance

    PubMed Central

    Kramer, Daniel B; Hatfield, Laura A; McGriff, Deepa; Ellis, Christopher R; Gura, Melanie T; Samuel, Michelle; Retel, Linda Kallinen; Hauser, Robert G

    2015-01-01

    Background As implantable cardioverter-defibrillator technology evolves, clinicians and patients need reliable performance data on current transvenous implantable cardioverter-defibrillator systems. In addition, real-world reliability data could inform postmarket surveillance strategies directed by regulators and manufacturers. Methods and Results We evaluated Medtronic Sprint Quattro, Boston Scientific Endotak, and St Jude Medical Durata and Riata ST Optim leads implanted by participating center physicians between January 1, 2006 and September 1, 2012. Our analytic sample of 2653 patients (median age 65, male 73%) included 445 St Jude, 1819 Medtronic, and 389 Boston Scientific leads. After a median of 3.2 years, lead failure was 0.28% per year (95% CI, 0.19 to 0.43), with no statistically significant difference among manufacturers. Simulations based on these results suggest that detecting performance differences among generally safe leads would require nearly 10 000 patients or very long follow-up. Conclusions Currently marketed implantable cardioverter-defibrillator leads rarely fail, which may be reassuring to clinicians advising patients about risks and benefits of transvenous implantable cardioverter-defibrillator systems. Regulators should consider the sample size implications when designing comparative effectiveness studies and evaluating new technology for preventing sudden cardiac death. PMID:26025935

  18. Transcatheter Aortic Valve Implantation - Yesterday, Today and Tomorrow.

    PubMed

    Gooley, R; Cameron, J D; Meredith, I T

    2015-12-01

    Since the first transcatheter aortic valve implantation (TAVI) was performed by Alain Cribier and colleagues in 2002 [1], the technology has garnered global support with more than 200,000 devices implanted. The rapid adoption of this technology has been driven by the need for a less invasive treatment modality in a cohort of patients often denied conventional surgical valve replacement due to an unacceptably high perioperative risk, whether real or perceived [2]. This, together with evidence that the technology confers morbidity and mortality advantages compared to medical therapy [3,4] and at least equivalent outcomes to surgical valve replacement [5,6] in select cohorts, has seen clinical approval in more than 50 countries. The last 13 years has seen an evolution of practises and equipment affecting almost every aspect of the TAVI procedure from pre-procedural assessment to device design and post-procedural care. The almost exponential rate of change has both benefits and risks. Benefits, in that impactful changes are translated into clinical practice very rapidly, but risks, in that meaningful comparative research studies potentially lag behind and can be outmoded by the time they are published. This instability may in turn delay regulatory review and approval processes that are based on such studies. The aim of this review is to provide an overview of the evolution of TAVI, its current clinical position and likely future directions. PMID:26344347

  19. Development of Clinically Relevant Implantable Pressure Sensors: Perspectives and Challenges

    PubMed Central

    Clausen, Ingelin; Glott, Thomas

    2014-01-01

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians. Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported. PMID:25248071

  20. Routes for Drug Delivery: Sustained-Release Devices.

    PubMed

    Yun, Samuel; Huang, John J

    2016-01-01

    Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases. PMID:26501913

  1. Biomechanical Analysis of Implant-Supported Prostheses with Different Implant-Abutment Connections.

    PubMed

    Dayrell, Andreza Costa; Noritomi, Pedro Yoshito; Takahashi, Jessica Mie; Consani, Rafael Leonardo; Mesquita, Marcelo Ferraz; dos Santos, Mateus Bertolini

    2015-01-01

    This study evaluated the influence of implant-abutment connections on stress distribution through 3D finite element analysis. Three-dimensional models of an implant-supported fixed prosthesis in the jaw retained by four implants with different connection systems (external hex and Morse taper) were analyzed. External hex connection promoted higher microstrain values, which were concentrated on the cervical region of the distal implants extending into the trabecular bone, while Morse taper connection provided a more even distribution of the microstrain on all implants. Implant-supported fixed prostheses with external hex connections tend to concentrate strain in the distal implants, while Morse taper connection promoted a better situation. On the other hand, there was greater demand on the prosthetic screws and abutments of Morse taper connections than on external hex connections. PMID:26523723

  2. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple....

  3. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip....

  4. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip....

  5. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip....

  6. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple....

  7. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple....

  8. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple....

  9. Biofilm and dental implant: The microbial link

    PubMed Central

    Dhir, Sangeeta

    2013-01-01

    Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals – clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human) studies, abstracts, review articles. PMID:23633764

  10. Wireless power transfer to a cardiac implant

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoek; Ho, John S.; Chen, Lisa Y.; Poon, Ada S. Y.

    2012-08-01

    We analyze wireless power transfer between a source and a weakly coupled implant on the heart. Numerical studies show that mid-field wireless powering achieves much higher power transfer efficiency than traditional inductively coupled systems. With proper system design, power sufficient to operate typical cardiac implants can be received by millimeter-sized coils.

  11. Resistivity changes in carbon-implanted Teflon 

    E-print Network

    Jackson, Matthew R.

    2013-02-22

    The change in resistance of Teflon due to the implantation of carbon atoms was measured. The procedure involved implanting carbon at energies of 40 kV, 50 kV, and 140 kV using beam currents ranging from 0.5 [mu]A to 3 [mu]A for time intervals...

  12. Ion-implantation effects in glasses

    SciTech Connect

    Arnold, G.W.

    1981-01-01

    Ion implantation can be used to introduce network damage and to alter the chemical composition in glasses. Structural changes can be inferred from IR measurements near 1000 cm/sup -1/ and by optical absorption near 2150 A. Implantation induced damage decreases the implanted volume in fused silica with consequent changes in the refractive index, near-surface hardness, and surface tensile stress. Prior work in these areas is reviewed. Implantation into alkali silicate glasses depletes the alkali content in the implanted region. These changes allow preferential surface crystallization in Li/sub 2/O . 2SiO/sub 2/ glasses. Crystallization of amorphous SiO/sub 2/ can be induced by implantation of Li. Insight into the crystallization process is obtained by observing the associated ion movement using elastic recoil detection (ERD) and optical techniques. Implantation of 20 keV H shows that saturation of implanted H-sites in fused silica occurs at about 2.2 x 10/sup 21/ H/cm/sup 3/ in agreement with estimates of the number of available interstitial sites. Details of H and D interactions in fused silica were studied as a function of fluence and temperature. Results are of interest to studies of corrosion in glasses considered for nuclear waste encapsulation and for components in fusion reactors.

  13. Immunological Response to Biodegradable Magnesium Implants

    NASA Astrophysics Data System (ADS)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  14. Educational Progress Profiles of Cochlear Implant Children.

    ERIC Educational Resources Information Center

    Dawson, Sarah A.

    This study examined the educational development of 22 children (ages 2 to 10), under the supervision of the Cochlear Implant Team of the Medical College of Virginia, who had received implants as a result of deafness (in most cases prelingual and congenital) from 6 months to 3 years prior to the study. Data included a review of the children's case…

  15. Deaf Education: The Impact of Cochlear Implantation?

    ERIC Educational Resources Information Center

    Archbold, Sue; Mayer, Connie

    2012-01-01

    This paper reviews the impact that cochlear implantation has had on the practice of deaf education in terms of educational placement, communication choices, and educational attainments. Although there is variation in outcome, more children with implants are going to mainstream schools, and using spoken language as their primary means of…

  16. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip....

  17. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple....

  18. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip....

  19. Voice and Pronunciation of Cochlear Implant Speakers

    ERIC Educational Resources Information Center

    Horga, Damir; Liker, Marko

    2006-01-01

    Patients with cochlear implants have the ability to exercise auditory control over their own speech production and over the speech of others, which is important for the development of speech control. In the present investigation three groups of 10 subjects were compared. The groups comprised: (1) cochlear implant users, (2) profoundly deaf using…

  20. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries. PMID:25387600

  1. Diclofenac Sodium Loaded Multicomponent Implant

    NASA Astrophysics Data System (ADS)

    Nikkola, Lila; Viitanen, Petrus; Ashammakhi, Nureddin

    2008-02-01

    Earlier we have reported on developing DS releasing bioabsorbable rods for inhibition of osteolysis [l]. Due to their unsatisfactory drug release profiles we assessed the use of sintering technique of enhancement of drug release in the current study. Melt extruded PLGA 80/20 rods were compounded 8 wt-% DS. Some rods were self reinforced (SR) and some of them were sterilized to get three different components with different drug release profiles. Different rods were sintered together with heat and pressure. Three different specimen groups with different construction were studied. Thermal properties were analyzed using differential scanning calorimetry (DSC). Changes of IV were performed with capillary analysis and drug release measurements with UV-Vis spectrophotometer. Mechanical strength were measured two weeks, when disintegration occurred. Release rate consisted of 1) sharp jump start peak, 2) second smoother peak, and 3) third smooth peak. Released DS concentrations reached local therapeutic levels and maintained at that stage for 24-36 days. All DS was released during 50-70 days. The drug release from multicomponent implant was more stable and commenced earlier than from initial rods. Such properties were favored ones. Initial shear strength was 82 MPa and it decreased to 15 MPa. The mechanical bonding was sufficient although the components disintegrated relatively fast. By sintering different PLGA/DS components with different release rates it is possible to construct a truly controlled release implant for bone fixation with anti-inflammatory properties.

  2. Bioactivity of plasma implanted biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Paul K.

    2006-01-01

    Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.

  3. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    PubMed

    Nordgren, Max; Karlsson, Tobias; Svensson, Maria; Koczy, Josefin; Josephson, Anna; Olson, Lars; Tingström, Anders; Brené, Stefan

    2013-01-01

    Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements. PMID:24244357

  4. Depth profile of nitrogen implanted in steel

    NASA Astrophysics Data System (ADS)

    Yoshihiro, Hashiguchi; Takashi, Ohtsubo; Kenji, Sugiyama

    1989-03-01

    The depth profile of nitrogen implanted in an as-cold-rolled steel sheet was studied. The implantation was made with N + at 20 keV with the dose of (1-10) × 10 17 ions/cm 2. The depth profiles by GDS (glow discharge spectrometry), AES, XPS and RBS were identical and revealed that the implanted layer was widened abnormally by the increase of ion dose and that the peak concentration was saturated at about 25 at.%. The results by XPS and XRD (X-ray diffraction) showed that the implanted nitrogen was changed into Fe xN( x = 2-4). Those results suggest that the implanted layer width can be controlled by varying the ion dose.

  5. [Bioethical issues in pediatric cochlear implants].

    PubMed

    Santos Santos, S

    2002-10-01

    The use of cochlear implants can modify significantly the way in which deaf children relate with the outside world through psychological, linguistic and cognitive changes. The main question about this subject is the ethical controversy with regards to who has the right to make such a decision for a young child. We present the children evaluated at our hospital in order to assess the cochlear implant option. That population was of 37 implanted children, 10 children waiting for surgery and 21 rejected children. We describe and analyze from the bioethical bases and methodology the problems found: decision of no implant in children of hearing parents, the deaf culture point of view, the mature minor doctrine, teenagers, social and cultural problems, multihandicapped children and responsibility of the implants team. PMID:12530195

  6. Surface modification of sapphire by ion implantation

    SciTech Connect

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  7. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    PubMed

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. PMID:24863874

  8. High definition surface micromachining of LiNbO 3 by ion implantation

    NASA Astrophysics Data System (ADS)

    Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.

    2010-10-01

    High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).

  9. Trans-catheter mitral valve implantation for mitral regurgitation: clinical case description and literature review.

    PubMed

    Romeo, Francesco; Cammalleri, Valeria; Ruvolo, Giovanni; Quadri, Arshad; De Vico, Pasquale; Muscoli, Saverio; Marchei, Massimo; Meloni, Sabrina; Conti, Fabio; Ussia, Gian Paolo

    2016-02-01

    Trans-catheter mitral valve implantation (TMVI) is actually the most attractive technique for treating patients with severe mitral regurgitation, who are denied surgical therapy. Recently, trans-catheter implantation of aortic biological prosthesis in mitral position has been done in compassionate cases, and very few experiences of TMVI in native non-calcified valves have been recently reported in very-high-risk patients, mainly with functional mitral regurgitation.Here, we report our case of TMVI using the second-generation CardiAQ prostheisis (CardiAQ Valve Technologies, Irvine, California, USA), reviewing the current state of the art. PMID:26556446

  10. Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling.

    PubMed

    Greco, Francesco; Bellacicca, Andrea; Gemmi, Mauro; Cappello, Valentina; Mattoli, Virgilio; Milani, Paolo

    2015-04-01

    A thermally shrinkable and conductive nanocomposite material is prepared by supersonic cluster beam implantation (SCBI) of neutral Au nanoparticles (Au NPs) into a commercially available thermo-retractable polystyrene (PS) sheet. Micronanowrinkling is obtained during shrinking, which is studied by means of SEM, TEM and AFM imaging. Characteristic periodicity is determined and correlated with nanoparticle implantation dose, which permits us to tune the topographic pattern. Remarkable differences emerged with respect to the well-known case of wrinkling of bilayer metal-polymer. Wrinkled composite surfaces are characterized by a peculiar multiscale structuring that promises potential technological applications in the field of catalytic surfaces, sensors, biointerfaces, and optics, among others. PMID:25811100

  11. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care.

    PubMed

    Elman, N M; Ho Duc, H L; Cima, M J

    2009-06-01

    We introduce the first implantable drug delivery system based on MEMS (Micro-Electro-Mechanical-Systems) technology specifically designed as a platform for treatment in ambulatory emergency care. The device is named IRD(3) (implantable rapid drug delivery device) and allows rapid delivery of drugs. Vasopressin was used as a model drug for in vitro tests as it is a commonly used drug for cardiac resuscitation. Experimental results reveal that the IRD(3) provides an effective method for rapid delivery without significant drug degradation. Several medical uses and delivery modalities for IRD(3) are proposed. PMID:19169826

  12. Nanoporosity Induced by Ion Implantation in Germanium Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Impellizzeri, Giuliana; Romano, Lucia; Bosco, Lorenzo; Spinella, Corrado; Grazia Grimaldi, Maria

    2012-03-01

    This paper reports on the formation of nanoporous Ge in polycrystalline and amorphous Ge thin films, grown by molecular beam epitaxy and implanted with Ge+ ions at 300 keV with different fluences (3×1015-2×1016 Ge/cm2). Implanted polycrystals show a more regular columnar structure with respect to smaller and disconnected voids of amorphous grown films. These results strongly rely on the film properties and mechanism of void nucleation. Our findings represent a goal for the technology transfer of the ion-induced nanoporosity from bulk Ge to Ge thin films and meet the requirements for future applications.

  13. Influence of Oxygen Ion Implantation on the Damage and Annealing Kinetics of Iron-Implanted Sapphire

    SciTech Connect

    Hunn, J.D.; McHargue, C.J.

    1999-11-14

    The effects of implanted oxygen on the damage accumulation in sapphire which was previously implanted with iron was studied for (0001) sapphire implanted with iron and then with oxygen. The energies were chosen to give similar projected ranges. One series was implanted with a 1:l ratio (4x10{sup 16} ions/cm{sup 2} each) and another with a ratio of 2:3 (4x10{sup 16} fe{sup +}/cm{sup 2}; 6x10{sup 16} O{sup +}/cm{sup 2}). Retained damage, X, in the Al-sublattice, was compared to that produced by implantation of iron alone. The observed disorder was less for the dual implantations suggesting that implantation of oxygen enhanced dynamic recovery during implantation. Samples were annealed for one hour at 800 and 1200 C in an oxidizing and in a reducing atmosphere. No difference was found in the kinetics of recovery in the Al-sublattice between the two dual implant conditions. However, the rate of recovery was different for each from samples implanted with iron alone.

  14. The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview

    PubMed Central

    Wazir, Umar; Kasem, Abdul

    2015-01-01

    Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage. PMID:25606483

  15. Restoration of hearing by hearing aids: conventional hearing aids – implantable hearing aids – cochlear implants – auditory brainstem implants

    PubMed Central

    Leuwer, R.; Müller, J.

    2005-01-01

    Aim of this report is to explain the current concept of hearing restoration using hearing aids. At present the main issues of conventional hearing aids are the relative benefits of analogue versus digital devices and different strategies for the improvement of hearing in noise. Implantable hearing aids provide a better sound quality and less distortion. The lack of directional microphones is the major disadvantage of the partially implantable hearing aids commercially available. Two different clinical studies about fully implantable hearing aids have been started in 2004. One of the most-promising developments seems to be the electric-acoustic stimulation. PMID:22073051

  16. Intrauterine insemination of cultured peripheral blood mononuclear cells prior to embryo transfer improves clinical outcome for patients with repeated implantation failures.

    PubMed

    Madkour, Aicha; Bouamoud, Nouzha; Louanjli, Noureddine; Kaarouch, Ismail; Copin, Henri; Benkhalifa, Moncef; Sefrioui, Omar

    2016-02-01

    Implantation failure is a major limiting factor in assisted reproduction improvement. Dysfunction of embryo-maternal immuno-tolerance pathways may be responsible for repeated implantation failures. This fact is supported by immunotropic theory stipulating that maternal immune cells, essentially uterine CD56+ natural killer cells, are determinants of implantation success. In order to test this hypothesis, we applied endometrium immuno-modulation prior to fresh embryo transfer for patients with repeated implantation failures. Peripheral blood mononuclear cells were isolated from repeated implantation failure patients undergoing assisted reproductive technology cycles. On the day of ovulation induction, cells were isolated and then cultured for 3 days and transferred into the endometrium cavity prior to fresh embryo transfer. This immunotherapy was performed on 27 patients with repeated implantation failures and compared with another 27 patients who served as controls. Implantation and clinical pregnancy were increased significantly in the peripheral blood mononuclear cell test versus control (21.54, 44.44 vs. 8.62, 14.81%). This finding suggests a clear role for endometrium immuno-modulation and the inflammation process in implantation success. Our study showed the feasibility of intrauterine administration of autologous peripheral blood mononuclear cells as an effective therapy to improve clinical outcomes for patients with repeated implantation failures and who are undergoing in vitro fertilization cycles. PMID:25613318

  17. Selective laser sintering of calcium phosphate materials for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as control of micro and macro pore structure, to maximize bone healing and provide sufficient mechanical strength. It also permits the complete removal of the polymeric binders that are resided in the SLS process. In collaboration with the University of Texas Health Science Center at San Antonio and BioMedical Enterprises, Inc., porous implants based on anatomical geometry have been successfully implanted in rabbits and dogs. These histologic animal studies reveal excellent biocompatibility and show its great potential for commercial custom-fit implant manufacture. The second research effort involves fabrication of fully dense bone for application in dental restoration and load-bearing orthopedic functions. Calcium phosphate glass melts, proven to be biocompatible in the first effort, were cast into carbon molds. Processes were developed for preparing the molds. These carbon molds of anatomic shape can be prepared from either Computer Numerical Control (CNC) milling of slab stock or SLS processing of thermoset-coated graphite powder. The CNC milling method provides accurate dimension of the molds in a short period of time, however, the capable geometries are limited; generally two pieces of molds are required for complex shapes. The SLS method provides very complex shape green molds. However, they need to go through pyrolysis of thermoset binder to provide the high temperature capability reached at calcium phosphate melt temperatures (1100°C) and noticeable shrinkage was observed during pyrolysis. The cast glass was annealed to develop polycrystalline calcium phosphate. This process also exhibits great potential.

  18. A new modification of the individually designed polymer implant visible in X-ray for orbital reconstruction.

    PubMed

    Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin

    2014-10-01

    Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. PMID:24969762

  19. Prevalence of Peri-Implant Mucositis and Peri-Implantitis in Patients Treated with a Combination of Axial and Tilted Implants Supporting a Complete Fixed Denture

    PubMed Central

    Cavalli, Nicolò; Taschieri, Silvio; Francetti, Luca

    2015-01-01

    Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months). Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants) while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants). Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol. PMID:26065029

  20. Diabetes and Oral Implant Failure

    PubMed Central

    Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A.

    2014-01-01

    The aim of this systematic review and meta-analysis was to investigate whether there are any effects of diabetes mellitus on implant failure rates, postoperative infections, and marginal bone loss. An electronic search without time or language restrictions was undertaken in March 2014. The present review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eligibility criteria included clinical human studies. The search strategy resulted in 14 publications. The I2 statistic was used to express the percentage of total variation across studies due to heterogeneity. The inverse variance method was used for the random effects model when heterogeneity was detected or for the fixed effects model when heterogeneity was not detected. The estimates of an intervention for dichotomous outcomes were expressed in risk ratio and in mean difference in millimeters for continuous outcomes, both with a 95% confidence interval. There was a statistically significant difference (p = .001; mean difference = 0.20, 95% confidence interval = 0.08, 0.31) between diabetic and non-diabetic patients concerning marginal bone loss, favoring non-diabetic patients. A meta-analysis was not possible for postoperative infections. The difference between the patients (diabetic vs. non-diabetic) did not significantly affect implant failure rates (p = .65), with a risk ratio of 1.07 (95% confidence interval = 0.80, 1.44). Studies are lacking that include both patient types, with larger sample sizes, and that report the outcome data separately for each group. The results of the present meta-analysis should be interpreted with caution because of the presence of uncontrolled confounding factors in the included studies. PMID:24928096