Science.gov

Sample records for temperature cycle tests

  1. A rapid-temperature-cycling apparatus for oxidation testing

    SciTech Connect

    Cabrera, A.L.; Kirner, J.F. )

    1991-06-01

    An oxidation test with rapid temperature cycling was developed to evaluate small coated parts. The samples in the form of wire or foils are resistively heated with a high-current AC power supply, allowing fast heating and cooling of the samples. Fast temperature cycling of the samples permits to complete more than 100 cycles in one day. A variety of steels coated with silicon diffusion coatings were tested and the results compared with oxidation via traditional thermal cycling. The test accurately predicts enhanced performance for siliconized 1010 steel, an increase by a factor of three for the life of siliconized 302 stainless steel, and an inadequate siliconized coating for 410 stainless steel. Details of the rapid temperature cycling apparatus as well as testing of the coated steels are described in the paper.

  2. Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    NASA Technical Reports Server (NTRS)

    Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.

    1997-01-01

    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.

  3. Fixture tests bellows reliability through repetitive pressure/temperature cycling

    NASA Technical Reports Server (NTRS)

    Levinson, C.

    1967-01-01

    Fixture explores the reliability of bellows used in precision in inertial systems. The fixture establishes the ability of the bellows to withstand repetitive over-stress pressure cycling at elevated temperatures. It is applicable in quality control and reliability programs.

  4. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  5. Long-term storage life of light source modules by temperature cycling accelerated life test

    NASA Astrophysics Data System (ADS)

    Ningning, Sun; Manqing, Tan; Ping, Li; Jian, Jiao; Xiaofeng, Guo; Wentao, Guo

    2014-05-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG.

  6. Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Sebold, D.; Sohn, Y. J.; Mauer, G.; Vaßen, R.

    2015-10-01

    To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.

  7. Long term testing of start-stop cycles on high temperature PEM fuel cell stack

    NASA Astrophysics Data System (ADS)

    Kannan, Arvind; Kabza, Alexander; Scholta, Joachim

    2015-03-01

    A PEM fuel cell with an operating temperature above 100 °C is desired for increasing the kinetics of reactions, reduced sensitivity to impurities of the fuel, as well as for the reduction of the requirements on thermal and water management systems. High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFC) can effectively be combined with CHP systems to offer a simple system design and higher overall system efficiencies. For HT-PEMFC systems, the development of elaborated start/stop strategies is essential in mitigation of fuel cell degradation during these events. A 5 cell co-flow stack is assembled with BASF P1100W membrane electrode assembly (MEA) with an active area of 163.5 cm2. Continuous operation and more than 1500 start stop cycles have been performed in order to study the degradation effects of both continuous operation and of repeated start stops using a protective start-stop algorithm, which is designed to avoid the formation of aggressive cell potentials. The repeated use of this procedure led to a degradation of 26 μV/cycle at a current density of 0.25 A cm-2 and 11 μV/cycle at a current density of 0.03 A cm-2. At open circuit voltage (OCV), a higher degradation rate of 133 μV/cycle was observed.

  8. Closed cycle cryocooler for low temperature electronics circuits: Cold end test

    NASA Astrophysics Data System (ADS)

    Pirtle, F. W.

    1983-08-01

    A fabricated MACOR cold end including a metallic coating to prevent helium permeation and a fabricated die post displacer support bearing were combined with a compressor and motor which are standard CTI-CRYOGENICS products. A mechanical test was performed on the test cryocooler to determine that the mechanical test was performed on the test cryocooler to determine that the MACOR displacer was successfully guided by the die post bearing. Thermodynamic tests were conducted to determine the lowest temperature of the 4th (coldest) stage as a function of operating speed, helium charge pressure, 4th stage electrical heat load, and transfer tube diameter. Cooldown and steady state results are reported. Results indicate a low temperature limit of approximately 95K with the current test hardware. Although this represents an improvement from 122K during the program, a resizing will be necessary to reach 10K. The die post displacer support bearing and the MACOR cold finger construction are mechanically satisfactory.

  9. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  10. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  11. Effects of test design and temperature in a partial life-cycle study with the freshwater gastropod Potamopyrgus antipodarum.

    PubMed

    Macken, Ailbhe; Le Page, Gareth; Hayfield, Amanda; Williams, Timothy D; Brown, Rebecca J

    2012-09-01

    Potamopyrgus antipodarum is a candidate for a standardized mollusk partial life-cycle study. This is a comparative study of two test designs (microplate and beaker), with additional endpoints to the proposed guideline methods, for example, tracking of continuous reproductive output over 28 d and attributing it to individual female snails. In addition, an investigation of the effects of temperature (16, 20, and 25°C) on reproduction was also conducted employing the microplate design. PMID:22573501

  12. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  13. Temperature and the cell cycle.

    PubMed

    Francis, D; Barlow, P W

    1988-01-01

    During the period between successive divisions, a cell traverses three stages of interphase: G1 (pre-synthetic interphase), S-phase (DNA synthetic interphase) and G2 (post-synthetic interphase). The time taken for all cells in a meristem to divide (the cell doubling time (cdt] decreases in response to an increase in temperature. For example, the cdt in root meristems of Zea mays decreases 21-fold as the temperature is increased from 3 to 25 degrees C. Whether all phases of the cell cycle alter proportionately with temperature has been ascertained by comparing data from the root meristem of five species: Pisum sativum, Helianthus annuus, Tradescantia paludosa, Allium cepa and Triticum aestivum. In three of the five species there is a disproportionate lengthening of the G1 phase at low temperatures. We suggest that arrest in G1 with the associated 2C amount of DNA, confers maximal protection on the genome of a somatic cell to the stress of low temperature. DNA replication has been studied at different temperatures for Helianthus annuus, Secale cereal and Oryza sativa. The rate of DNA replication, per single replication fork, increases when the temperature is raised, while the distance between initiation points (replicon size) remains constant. The temperature at which the cell cycle has a minimum duration is close to 30 degrees C in many species, and it seems that this optimum temperature is always near the upper temperature limit of the cell cycle. The rate of cell division determines the rates of organ and cell growth. Thus, temperature has a major effect on the way in which meristematic cells are deployed in organogenesis. The rate of organogenesis, in turn, determines the response of the plant to the growing season. We predict that species growing in sub-arctic conditions comprise cells with low DNA contents and hence have the potentialities for rapid cell cycles so that maximum advantage can be taken of a short growing season. Data from Triticum aestivum show

  14. High-temperature, high-pressure testing of zinc titanate in a bench-scale fluidized-bed reactor for 100 cycles

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1993-06-01

    Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal owing to their potential for superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. A key component of these plants is a hot-gas desulfurization system employing efficient regenerable mixed-metal oxide sorbents. Leading sorbent candidates include zinc ferrite and zinc titanate. These sorbents can remove hydrogen sulfide (H{sub 2}S) in the fuel gas down to very low levels (typically <20 ppmv) at 500 to 750{degree}C and can be readily regenerated for multicycle operation with air. To this end, the Research Triangle Institute (RTI) has formulated and tested a series of zinc titanate sorbents in a high-temperature, high- pressure HTHP fluidized-bed bench-scale reactor. Multicycle HTHP bench-scale testing of these sorbents under a variety of conditions culminated in the development of a ZT-4 sorbent that exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties, and attrition resistance. Following this parametric study, a life-cycle test consisting of 100 sulfidation-regeneration cycles was carried out with ZT-4 in the bench unit.

  15. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  16. Optical fiber distributed sensing structural health monitoring (SHM) strain measurements taken during cryotank Y-joint test article load cycling at liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, W. S.

    2007-09-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240°C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  17. High-Temperature, Low-Cycle Fatigue of Copper-Base Alloys for Rocket Nozzles. Part 1: Data Summary for Materials Tested in Prior Programs

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1975-01-01

    A more detailed analysis of the results obtained in 188 previously reported low-cycle fatigue tests of various candidate materials for regeneratively-cooled, reusable rocket nozzle liners was reported. Plots of load range versus cycles were reported for each test along with a stress-strain hysteresis loop near half-life. In addition, a summary table was provided to compare N5 (cycles to a five percent load range drop) and Nf (cycles to complete specimen separation) values for each test.

  18. Influence of moderate cycling on scrotal temperature.

    PubMed

    Jung, A; Strauss, P; Lindner, H J; Schuppe, H C

    2008-08-01

    Testicular temperature highly correlates with scrotal temperature. It has been postulated that cycling is associated with increased scrotal temperatures with time and consecutively with impaired semen quality. The aim of this study was to evaluate the influence of moderate cycling on scrotal temperature during highly standardized conditions in an experimental lab. A total of 25 volunteers without a history of infertility and normal andrological examination were included for scrotal temperature evaluation. Scrotal temperatures were measured every minute with a portable data recorder connected with two thermistor temperature sensors, which were attached on either side of the scrotum. A further thermistor sensor was attached on the central surface of the bicycle saddle. Ambient temperature in the study room was adjusted to 22 degrees C throughout the whole experiment. All volunteers started the experiment at the same daytime. Clothing of the volunteers consisted of standardized cotton wool trousers and shirts fitting to body size. After acclimatization to the study room in a sitting posture, each volunteer cycled on an exercise cycle for 60 min with a power of 25 Watt representing a speed of 25.45 km/h respectively. The saddle surface temperature reached in the median 35.59 degrees C after 60 min cycling. Median values of scrotal temperatures increased from 35.75 degrees C at the beginning to 35.82 degrees C after 60 min for the left side and from 35.50 to 35.59 degrees C for the right side. No correlation between cycling duration and scrotal temperatures could be found using multivariate anova for repeated measurements. However, scrotal temperatures during cycling were significantly lower (p < 0.001) compared with the last 10 min in sitting posture before starting cycling with a difference of 1.31 degrees C for the left and 1.46 degrees C for the right side. The present study suggests that moderate cycling under standardized conditions with a power of 25 Watt is not

  19. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  20. Cycle life test of secondary spacecraft cells

    NASA Astrophysics Data System (ADS)

    Harkness, J. D.

    1980-04-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  1. Life cycle test of the NOXSO process

    SciTech Connect

    Ma, W.T.; Haslbeck, J.L.; Neal, L.G.

    1990-05-01

    This paper summarizes the data generated by the NOXSO Life Cycle Test Unit (LCTU). The NOXSO process is a dry flue gas treatment system that employs a reusable sorbent. The sorbent consists of sodium carbonate impregnated on a high-surface-area gamma alumina. A fluidized bed of sorbent simultaneously removes SO{sub 2} and NO{sub x} from flue gas at a temperature of 250{degrees}F. The spent sorbent is regenerated for reuse by treatment at high temperature with a reducing gas. This regeneration reduces sorbed sulfur compounds to SO{sub 2}, H{sub 2}S, and elemental sulfur. The SO{sub 2} and H{sub 2}S are then converted to elemental sulfur in a Claus-type reactor. The sulfur produced is a marketable by-product of the process. Absorbed nitrogen oxides are decomposed and evolved on heating the sorbent to regeneration temperature.

  2. PSOC cycle testing method for lithium-ion secondary batteries

    NASA Astrophysics Data System (ADS)

    Kato, Ken; Negishi, Akira; Nozaki, Ken; Tsuda, Izumi; Takano, Kiyonami

    A cycle testing procedure is proposed which carries out charge and discharge in a partial state of charge (PSOC) with some testing levels such as an averaged state of charge, temperature, etc. The PSOC cycle test with this procedure was carried out for a commercial lithium-ion cell for about 20,000 cycles, and the testing procedure and test results are discussed. The features of the degradation due to PSOC cycle test in the tested lithium-ion cell were clarified as follows. The degradation during the PSOC cycle test was greater at higher environmental temperature. The degradation was greatest at a high average SOC, and smallest at SOC=50%. The degradation increased again at a low average SOC. In the test results for 2 years with 20,000 PSOC cycles, which converted to 2200 cycles of full-capacity charge and discharge, capacity degradation was 32% even at the greatest degradation at 318 K and 8% or less at 278 K. The proposed testing procedure is useful for evaluating a cell used on partial charge and discharge cycles.

  3. A combined cycle engine test facility

    NASA Astrophysics Data System (ADS)

    Engers, R.; Cresci, D.; Tsai, C.

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  4. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  5. Test-vehicle cycle programmer

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Soltis, R. F.

    1978-01-01

    Instrument reduces manpower needed for testing electric powered vehicles. Device has dual scale that allows operator to compare actual speed with preprogrammed test speed. Features include large meter, buzzer, packaging to allow ready interchange of memories with different profiles, small size, minimal current drain, and reverse supply voltage protection.

  6. Testing of a Stirling cycle cooler

    SciTech Connect

    Chen, F.C.; Keshock, E.G.; Murphy, R.W.

    1988-09-01

    Stirling cycle coolers have long been used as low temperature refrigeration devices. They are relatively compact, reliable, commercially available, and use helium as the working fluid. The Stirling cycle, in principle, can be used for household refrigeration and heat pumping applications as well. Currently, these applications are almost entirely provided by the vapor compression technology using chlorofluorocarbons (CFCs) as working fluids. It has been known that CFCs cause depletion of the ozone layer that protects the earth against harmful levels of ultraviolet radiation from the sun. A recent report of a ''hole'' in the ozone layer above Antarctica and of possible environmental and health consequences from ozone depletion aroused public attention. The urgent need to reduce the future used of CFCs should instigate investigation of non-CFC alternative technologies. The Stirling cooler technology, which does not use CFCs, could be a viable alternative. A laboratory test of the performance of a Stirling cooler is reported and its implications for household refrigeration are explored. 11 refs., 6 figs., 2 tabs.

  7. Ni-MH storage test and cycle life test

    NASA Technical Reports Server (NTRS)

    Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.

    1994-01-01

    Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot

  8. Plasma-Catalysis During Temperature Transient Testing

    SciTech Connect

    Hoard, John

    2001-08-05

    A combination of catalysts is used together with nonthermal plasma in simulated diesel exhaust, while the gas temperature is varied. The catalysts both store and convert pollutants. As a result, pollutant concentrations during temperature ramps are different than those at steady state conditions. The data are presented for plasma followed by BaY, alumina, and Pt catalysts in simulated exhaust. When temperature ramps from high to low, apparent NOx conversion is quite high. However, when temperature is ramped from low to high, lower apparent conversions are seen. In a typical test cycle, average NOx conversion between 100 and 400 C is 60%. Peak conversion during the down ramp is over 90%, and minimum conversion during the up ramp is 30%. The composition of the effluent gas also varies during the temperature cycle. Intermediates such as methyl nitrate and hydrogen cyanide are not present following the combination of catalysts.

  9. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  10. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  11. A cycle timer for testing electric vehicles

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.

    1978-01-01

    A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.

  12. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  13. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  14. 40 CFR 86.1333-90 - Transient test cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Transient test cycle generation. 86...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-90 Transient test cycle generation. (a) The heavy-duty transient engine cycles for...

  15. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  16. Experimental transient turbine blade temperatures in a research engine for gas stream temperatures cycling between 1067 and 1567 k

    NASA Technical Reports Server (NTRS)

    Gauntner, D. J.; Yeh, F. C.

    1975-01-01

    Experimental transient turbine blade temperatures were obtained from tests conducted on air-cooled blades in a research turbojet engine, cycling between cruise and idle conditions. Transient data were recorded by a high speed data acquisition system. Temperatures at the same phase of each transient cycle were repeatable between cycles to within 3.9 K (7 F). Turbine inlet pressures were repeatable between cycles to within 0.32 N/sq cm (0.47 psia). The tests were conducted at a gas stream temperature of 1567 K (2360 F) at cruise, and 1067 K (1460 F) at idle conditions. The corresponding gas stream pressures were about 26.2 and 22.4 N/sq cm (38 and 32.5 psia) respectively. The nominal coolant inlet temperature was about 811 K (1000 F).

  17. PDP cycle 1 tests at INEL

    SciTech Connect

    Harker, Y.D.; Twedell, G.W.

    1997-11-01

    The Idaho National Engineering Laboratory (INEL) is a participant in the nondestructive assay Performance Demonstration Program (PDP) as part of the U.S. TRU Waste Characterization Program. The PDP program was designed to help ensure compliance with the quality assurance objectives (QAO`s) in the TRU Waste Characterization Program Plan. In June, 1996, cycle 1 of PDP program was completed at the Stored Waste Examination Pilot Plant (SWEPP) at INEL. The assay capability at INEL/SWEPP consists of a passive active neutron (PAN) radioassay system (for bulk fissile material assay) and a passive gamma spectrometry system (for isotopic mass ratio determination). The results from the two systems are combined to produce a single assay report which contains isotopic information ({sup 238}Pu, {sup 239}Pu), density, total activity, alpha activity, TRU activity, TRU activity concentration, Pu equivalent Curies and fissile gram equivalent. The PDP cycle 1 tests were expected to test bias and precision of the assay systems under nearly ideal conditions; ie., non-interfering matrices and little or no source self shielding. The test consisted of two drums in which the source loading was not known by the site. One drum was essentially empty and the other was filled with ethafoam. As per PDP`s instructions, the tests were to be conducted using the same procedures and equipment that normally would be used by SWEPP to assay real waste drums. This paper will discuss the lessons learned from these tests and INEL`s plans to improve the capabilities of the SWEPP assay systems. 7 refs., 6 tabs.

  18. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  19. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  20. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  1. 12 CFR 252.145 - Mid-cycle stress test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Mid-cycle stress test. 252.145 Section 252.145... (CONTINUED) ENHANCED PRUDENTIAL STANDARDS (REGULATION YY) Company-Run Stress Test Requirements for Covered Companies § 252.145 Mid-cycle stress test. (a) Mid-cycle stress test requirement. In addition to the...

  2. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  3. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  4. Non-Nuclear Validation Test Results of a Closed Brayton Cycle Test-Loop

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, or for next generation nuclear power plants on earth. Although open Brayton cycles are in use for many applications (combined cycle power plants, aircraft engines), only a few closed Brayton cycles have been tested. Experience with closed Brayton cycles coupled to nuclear reactors is even more limited and current projections of Brayton cycle performance are based on analytic models. This report describes and compares experimental results with model predictions from a series of non-nuclear tests using a small scale closed loop Brayton cycle available at Sandia National Laboratories. A substantial amount of testing has been performed, and the information is being used to help validate models. In this report we summarize the results from three kinds of tests. These tests include: 1) test results that are useful for validating the characteristic flow curves of the turbomachinery for various gases ranging from ideal gases (Ar or Ar/He) to non-ideal gases such as CO2, 2) test results that represent shut down transients and decay heat removal capability of Brayton loops after reactor shut down, and 3) tests that map a range of operating power versus shaft speed curve and turbine inlet temperature that are useful for predicting stable operating conditions during both normal and off-normal operating behavior. These tests reveal significant interactions between the reactor and balance of plant. Specifically these results predict limited speed up behavior of the turbomachinery caused by loss of load, the conditions for stable operation, and for direct cooled reactors, the tests reveal that the coast down behavior during loss of power events can extend for hours provided the ultimate heat sink remains available.

  5. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  6. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  7. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  8. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  9. Thermal cycling tests on surface-mount assemblies

    SciTech Connect

    Jennings, C.W.

    1988-03-01

    The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65/degree/C and 125/degree/C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100/percent/ relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering. 17 refs, 12 figs.,10 tabs.

  10. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part I. Cycling performance

    NASA Astrophysics Data System (ADS)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    The capacity fade of Sony 18650 Li-ion cells increases with increase in temperature. After 800 cycles, the cells cycled at RT and 45 °C showed a capacity fade of 30 and 36%, respectively. The cell cycled at 55 °C showed a capacity loss of about 70% after 490 cycles. The rate capability of the cells continues to decrease with cycling. Impedance measurements showed an overall increase in the cell resistance with cycling and temperature. Impedance studies of the electrode materials showed an increased positive electrode resistance when compared to that of the negative electrode for cells cycled at RT and 45 °C. However, cells cycled at 50 and 55 °C exhibit higher negative electrode resistance. The increased capacity fade for the cells cycled at high temperatures can be explained by taking into account the repeated film formation over the surface of anode, which results in increased rate of lithium loss and also in a drastic increase in the negative electrode resistance with cycling.

  11. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  12. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. The cycle life test results are presented along with results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  13. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine test cycle. 91.410 Section 91.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... test cycle. (a) The 5-mode cycle specified in Table 2 in appendix A to this subpart shall be...

  14. 40 CFR 86.1341-98 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-98 Test cycle validation criteria. Section 86.1341-98 includes text that specifies... excluded from both cycle validation and the integrated work used for emissions calculations. (4)...

  15. 40 CFR 86.1341-98 - Test cycle validation criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-98 Test cycle validation criteria. Section 86.1341-98 includes text that specifies... excluded from both cycle validation and the integrated work used for emissions calculations. (4)...

  16. A novel high-temperature ejector-topping power cycle

    SciTech Connect

    Freedman, B.Z.; Lior, N. . Dept. of Mechanical Engineering and Applied Mechanics)

    1994-01-01

    A novel, patented topping power cycle is described that takes its energy from a very high-temperature heat source and in which the temperature of the heat sink is still high enough to operate another, conventional power cycle. The top temperatures heat source is used to evaporate a low saturation pressure liquid, which serves as the driving fluid for compressing the secondary fluid in an ejector. Due to the inherently simple construction of ejectors, they are well suited for operation at temperatures higher than those that can be used with gas turbines. The gases exiting from the ejector transfer heat to the lower temperature cycle, and are separated by condensing the primary fluid. The secondary gas is then used to drive a turbine. For a system using sodium as the primary fluid and helium as the secondary fluid, and using a bottoming Rankine steam cycle, the overall thermal efficiency can be at least 11 percent better than that of conventional steam Rankine cycles.

  17. Low-cycle fatigue of a VZh175 high-temperature alloy under elastoplastic deformation conditions

    NASA Astrophysics Data System (ADS)

    Belyaev, M. S.; Terent'ev, V. F.; Bakradze, M. M.; Gorbovets, M. A.; Gol'dberg, M. A.

    2015-04-01

    The low-cycle fatigue of a VZh175 nickel superalloy is studied under conditions of complete deformation per loading cycle at an initial cycle asymmetry R = 0, a deformation amplitude ɛa = 0.4-0.6%, and a temperature of 20 and 650°C. The specific features of cyclic hardening/softening of the alloy under these conditions are detected. The mechanisms of fatigue crack nucleation and growth are analyzed as functions of the deformation amplitude and the test temperature.

  18. Effect of saddle height on skin temperature measured in different days of cycling.

    PubMed

    Priego Quesada, Jose Ignacio; Carpes, Felipe P; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2016-01-01

    Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention. PMID:27026901

  19. Effect of Temperature Cycling and Exposure to Extreme Temperatures on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.

  20. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty-cycle exhaust testing. 1037.510 Section 1037.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510 Duty-cycle exhaust testing. This...

  1. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty-cycle exhaust testing. 1037.510 Section 1037.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510 Duty-cycle exhaust testing. This...

  2. Bypass control valve seal and bearing life cycle test report

    NASA Technical Reports Server (NTRS)

    Lundback, A. V.

    1972-01-01

    The operating characteristics of a bypass control valve seal and bearing life cycle tests are reported. Data from the initial assembly, leak, torque, and deflection tests are included along with the cycle life test results and conclusions. The equipment involved was to be used in the nuclear engine for the rocket vehicles program.

  3. A cycle timer for testing electric vehicles

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.

    1978-01-01

    The paper presents a cycle timer which enables the accurate following and repetition of SAE driving schedules of stop and go cycles, for electric vehicles, by reducing the human factor. The system which consists of a programmable read-only memory (PROM) stores each of these cycles, which are detailed, on its own plug-in card. The actual vehicle speed, and the PROM indicated desired speed are displayed on a dual scale meter allowing the driver to match them. A speed change is preceded by a half second buzzer warning and a new cycle by a one second warning. The PROM controls the recycle start time as well as the buzzer activation. A 5 volt regulator providing logic power, and a 12 volt dc-dc converter providing analog and memory power are described.

  4. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  5. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  6. Cold startup and low temperature performance of the Brayton cycle electrical subsystem

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.; Bainbridge, R. C.

    1971-01-01

    Cold performance tests and startup tests were conducted on the Brayton-cycle inverter, motor-driven pump, dc supply, speed control with parasitic load resistor and the Brayton control system. These tests were performed with the components in a vacuum and mounted on coldplates. A temperature range of ?25 to -50 C was used for the tests. No failures occurred, and component performance gave no indication that there would be any problem with the safe operation of the Brayton power generating system.

  7. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  8. Operational Results of a Closed Brayton Cycle Test-Loop

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Fuller, Robert; Lipinski, Ronald J.; Nichols, Kenneth; Brown, Nicholas

    2005-02-01

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ˜1000 K.

  9. Operational results of a Closed Brayton Cycle test-loop.

    SciTech Connect

    Fuller, Robert; Wright, Steven Alan; Nichols, Kenneth Graham.; Brown, Nicholas; Lipinski, Ronald J.

    2004-11-01

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kW{sub th} with a maximum outlet temperature of {approx}1000 K.

  10. Validity of cycle test in air compared to underwater cycling.

    PubMed

    Almeling, M; Schega, L; Witten, F; Lirk, P; Wulf, K

    2006-01-01

    According to international guidelines, fitness to dive is generally assessed using a bicycle stress test (BST) in air. To date, there is no study explicitly addressing the question whether the results of a BST in air really predict performance status under water. Therefore, the aim of the present study was twofold: first, to design an experimental setting allowing the examination of physical performance status under water, and second, to examine whether there is an association of response to exercise in air compared to exercise under water using self contained underwater breathing apparatus (SCUBA). We constructed and evaluated a measurement technique for a bicycle ergometry and for gas analysis under water. Part of the work was the development of a new valve system which allowed to collect the exhaled air in total and to transport it to the spirometer next to the pool. Twenty-eight healthy male divers underwent a BST. Compared to a given workload in air, gross capacity decreased significantly by about 50% underwater. High performance in air was associated with a high performance underwater. The examinations were carried out without any complications. In conclusion, our experimental setting allowed the safe and reliable examination of physical performance status under water. First results indicate that the results of a BST in air correlate well with the cardio-circulatory performance status underwater. A subsequent study with a larger sample size will enable us to more precisely model this correlation. PMID:16602256

  11. Transient temperature and mixing times of quantum walks on cycles

    NASA Astrophysics Data System (ADS)

    Díaz, Nicolás; Donangelo, Raul; Portugal, Renato; Romanelli, Alejandro

    2016-07-01

    The definition of entanglement temperature for a quantum walk on a line is extended to N cycles, which are more amenable to a physical implementation. We show that, for these systems, there is a linear connection between the thermalization time and the mixing time and, also, that these characteristic times become insensitive to the system size when N is larger than a few units.

  12. Cycle life analysis of series connected lithium-ion batteries with temperature difference

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Huang, Chih-Sheng; Chen, Kuo-Ching

    2014-10-01

    Within a battery pack of electric vehicles, a constant and homogeneous temperature distribution is an ideal case. However, what is in fact frequently observed is an unbalanced cycle life performance between series/parallel connected cells. While previous studies have proposed models that simulate the capacity fade of a single lithium-ion battery (LIB) in cycle life tests, most of them do not consider the accompanying effects when batteries are connected, and these models could only investigate cycling under a constant cell temperature. To analyze the temperature difference effect on a battery pack, we develop a cycle life model that allows for temperature variation of LIBs during cycling, and we apply the model to the simulation of series connected LIBs based on the porous electrode theory. We assign different hypothetical temperatures to each of the cells in series. Such a design generates a state of performance imbalance. Our result shows that the capacity degradation of the battery pack increases with the increase of temperature difference and of the average temperature. We then conduct an experiment to verify this adverse effect. The experimental data agree well with the simulation result.

  13. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1)...

  14. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1)...

  15. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  16. Testing Method for Heat Resistance Under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Kawasaki, A.; Itoh, Y.; Harada, Y.; Ono, F.

    2007-12-01

    Testing Method for Heat Resistance under Temperature Gradient” is a Japanese Industrial Standard (JIS) newly established by the Minister of Economy, Trade and Industry, after deliberations by the Japanese Industrial Standards Committee, in accordance with the Industrial Standardization Law. This standard specified the testing method for heat resistance under temperature gradient of materials and coated members of equipment exposed to high temperature, such as aircraft engines, gas turbines, and so on. This paper introduces the principle and overview of the established standard. In addition, taking the heat cycle test using the burner rig for instance, we specifically illustrate the acquirable data and their analysis in the standard. Monitoring of the effective thermal conductivity and acoustic emission particularly enables to the non-destructive evaluation of failure cycle.

  17. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  18. A comparison of single-cycle versus multi-cycle proof testing strategies

    NASA Technical Reports Server (NTRS)

    Hudak, Stephen J., Jr.; Russell, Dale A.

    1988-01-01

    Proof testing was a useful supplement to conventional nondestructive evaluation (NDE) of space shuttle main engine (SSME) components. Since many of these components involve thin sections and high toughness materials, such as Inconel 718, conventional single-cycle proof test logic is not applicable due to the propensity for stable crack growth during the proof tests. Experience with five-cycle proof testing of SSME components is summarized and a framework is outlined for understanding multi-cycle proof testing using the fracture mechanics concept of a resistance curve. Extreme value statistics are also used to propose an empirical approach to compare the advantages and disadvantages of single- versus multi-cycle proof testing. The importance of the initial flaw size distribution and specimen thickness in such a comparison is also discussed.

  19. Brayton Cycle for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Oh, Chang H.; Moore, Richard L.

    2005-03-15

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others.The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  20. Brayton Cycle for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh

    2005-03-01

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others. The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  1. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  2. 40 CFR 86.1333 - Transient test cycle generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The generation of the maximum torque curve is described in 40 CFR part 1065. (b) Example of the...: ER28AP14.006 Where: Max Test Speed = the maximum test speed as calculated in 40 CFR part 1065. (ii) For Otto-cycle engines: ER28AP14.007 Where: Max Test Speed = the maximum test speed as calculated in 40...

  3. Low cycle fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Chakravartty, J. K.; Nudurupati, Saibaba; Mahobia, G. S.; Chattopadhyay, Kausik; Santhi Srinivas, N. C.; Singh, Vakil

    2013-10-01

    Fuel cladding and pressure tubes of Zircaloy-2 in pressurized light and heavy water nuclear reactors experience plastic strain cycles due to power fluctuations in the reactor, such strain cycles cause low cycle fatigue (LCF) and could be life limiting factor for them. Factors like strain rate, strain amplitude and temperature are known to have marked influence on LCF behavior. The effect of strain rate from 10-2 to 10-4 s-1 on LCF behavior of Zircaloy-2 was studied, at different strain amplitudes between ±0.50% and ±1.25% at room temperature. Fatigue life was decreased with lowering of strain rate from 10-2 to 10-4 s-1 at all the strain amplitudes studied. While there was cyclic softening at lower strain amplitudes (Δεt/2 ⩽ ±0.60%) cyclic hardening was exhibited at higher strain amplitudes (Δεt/2 ⩾ ±1.00%) at all the strain rates. Further, there was secondary cyclic hardening during the later stage of cycling at all the strain amplitudes and the strain rates. Cyclic stress-strain hysteresis loops at the lowest strain rate of 10-4 s-1 were found to be heavily serrated, resulting from dynamic strain aging (DSA). There was significant effect of strain rate on dislocation substructure. The results are discussed in terms of high concentration of point defects generated during cyclic straining and their role in enhancing interaction between solutes and dislocations.

  4. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  5. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  6. Temperature-entropy formulation of thermoelectric thermodynamic cycles.

    PubMed

    Chua, H T; Ng, K C; Xuan, X C; Yap, C; Gordon, Jeffrey M

    2002-05-01

    A temperature-entropy formulation is derived for thermoelectric devices. Thermoelectric chiller and generator cycles can then be cast in the same irreversible thermodynamics framework commonly applied to conventional large-scale cooling and power generation equipment, including a transparent identification of the principal energy flows and performance bottlenecks (dissipation). Distinct differences in chiller versus generator mode are highlighted and illustrated with data from commercial thermoelectric units. PMID:12059651

  7. Elevated temperature fiber push-out testing

    SciTech Connect

    Eldridge, J.I.

    1995-10-01

    The potential use of fiber-reinforced composite materials for high temperature applications makes the development of interface test methodology at those high temperatures very desirable. A facility for performing high temperature fiber push-out tests will be described with emphasis on critical issues in experimental procedure. Examples from several composite systems illustrate the temperature dependence and environmental sensitivity of fiber debonding and sliding. Interpretation of the temperature dependence will be made primarily in terms of changes in residual stresses along with additional effects due to changes in matrix ductility and interfacial wear. Examples will show that high temperature fiber push-out testing can often distinguish between chemical and frictional fiber/matrix bonding in cases where room temperature only testing cannot.

  8. Cycle life of nickel-hydrogen cells. II - Accelerated cycle life test

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1986-01-01

    A cycle life test of nickel-hydrogen (Ni/H2) cells containing electrolytes of various KOH concentrations and a sintered-type nickel electrode were carried out at 23 C using a 45-min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. Ten cells containing 21 to 36 percent KOH were tested. Since this accelerated test regime accelerated the cycle life roughly twice as fast as a typical LEO regime, the present results indicate that the cells with 26 percent KOH may last over 5 years in an 80 percent depth-of-discharge cycling in an LEO regime. Cells with lower KOH concentrations (21 to 23.5 percent) also showed longer cycle life than those with KOH concentrations of 31 percent or higher, although the life was shorter than those with 26 percent KOH.

  9. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  10. Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

    SciTech Connect

    Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

    2002-06-21

    Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

  11. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect

    S. X. Li; D. Vaden; B. R. Westphal; G. L. Fredrickson; R. W. Benedict; T. A. Johnson

    2009-05-01

    An engineering-scale integrated efficiency test was conducted with sodium-bonded, spent EBR-II drive fuel elements. The major pieces of equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 50.4 kg HM) were processed under a set of fixed operating parameters that have been developed for the equipment based on over a decade’s worth of processing experience. A mass balance around this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  12. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to the discrete-mode duty cycles specified in this section, as described in 40 CFR 1039.505. ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission...

  13. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the discrete-mode duty cycles specified in this section, as described in 40 CFR 1039.505. ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission...

  14. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the discrete-mode duty cycles specified in this section, as described in 40 CFR 1039.505. ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission...

  15. Test of US Federal Life Cycle Inventory Data Interoperability

    EPA Science Inventory

    Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...

  16. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines are certified in an engine family that includes primarily non-marine diesel engines, and the... to the discrete-mode duty cycles specified in this section, as described in 40 CFR 1039.505. ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 89.410 Section...

  17. Fracture resistance of Zr-Nb alloys under low-cycle fatigue tests

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Gusev, A. Yu.; Nechaykina, T. A.; Rogachev, S. O.; Zadorozhnyy, M. Yu.

    2014-03-01

    Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  18. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    NASA Technical Reports Server (NTRS)

    Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.

    1994-01-01

    The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.

  19. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  20. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  1. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  2. Elevation of Continuous Low-Cycle Fatigue Behaviour of High Temperature P122 Boiler Material

    SciTech Connect

    Pumwa, John; Soo Woo Nam

    2002-07-01

    The complex thermal-mechanical loading of power-generating plant components usually comprises of creep, high-cycle and low-cycle fatigue which are thermally induced by start-ups, load changes and shut-downs, producing in-stationary temperature gradients and hence creating strain as well as stress fields. In order to select the correct materials for these hostile environmental conditions, it is vitally important to understand the behaviour of mechanical properties of these materials. This paper reports the results of Low-cycle fatigue tests of P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material, which is one of the latest developed materials for high temperature environments. The tests were conducted at temperatures ranging from 550 deg. C to 700 deg. C at 50 deg. C intervals with strain ranges of {+-}1.5 to {+-}3.0% at 0.5% intervals using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. Moreover, the fracture mode assessments strongly revealed a ductile transgranular fracture mode. (authors)

  3. Cycle 10 WFPC2 Flood Preflash Test

    NASA Astrophysics Data System (ADS)

    Biretta, John

    2001-07-01

    The data from this new proposal will allow an assessment of the effect of a super-preflash, such as the one suggested by Janesick {Scientific Charge-Coupled Devices, James R. Janesick, SPIE Press Monograph, 2001}, on the CTE performance of WFPC2. Previous WFPC2 preflash calibration programs have successfully tested the effects of relatively low preflashes {or fat zeros} on the CTE, in order to determine the optimum level at which the CTE problems are minimized. Typical preflash exposures from these proposals added 50-10000 electrons. However, in his new book, Janesick {2001} suggests that radiation-induced traps can not be completely eliminated with low-level preflashes, that such a preflash merely exposes the incoming photons to new traps. Instead, he recommends the use of a light flood, effectively super-preflashing the chips to levels 2-3 times full well, reading out the preflash, then taking external images.

  4. Spatial patterns in timing of the diurnal temperature cycle

    NASA Astrophysics Data System (ADS)

    Holmes, T. R. H.; Crow, W. T.; Hain, C.

    2013-05-01

    This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC) over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between Ka-band temperature estimates, geostationary thermal infrared (TIR) temperature estimates and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO). It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the models ability to assimilate observations that are closely tied to the DTC. For non-desert areas, the Ka-band observations have only a small delay of about 15 min with the TIR observations which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  5. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions.

    PubMed

    Burdon, Catriona; O'Connor, Helen; Gifford, Janelle; Shirreffs, Susan; Chapman, Phillip; Johnson, Nathan

    2010-09-01

    The aims of this study were to determine the effect of cold (4 °C) and thermoneutral (37 °C) beverages on thermoregulation and performance in the heat and to explore sensory factors associated with ingesting a cold stimulus. Seven males (age 32.8 ± 6.1 years, [V(.)]O(2peak) 59.4 ± 6.6 ml x kg(-1) x min(-1)) completed cold, thermoneutral, and thermoneutral + ice trials in randomized order. Participants cycled for 90 min at 65%[V(.)]O(2peak) followed by a 15-min performance test at 28 °C and 70% relative humidity. They ingested 2.3 ml x kg(-1) of a 7.4% carbohydrate-electrolyte solution every 10 min during the 90-min steady-state exercise including 30 ml ice puree every 5 min in the ice trial. Absolute changes in skin temperature (0.22 ± 1.1 °C vs. 1.14 ± 0.9 °C; P = 0.02), mean body temperature (1.2 ± 0.3 vs. 1.6 ± 0.3 °C; P = 0.03), and heat storage were lower across the 90-min exercise bout for the cold compared with the thermoneutral trial. Significant improvements (4.9 ± 2.4%, P < 0.01) in performance were observed with cold but no significant differences were detected with ice. Consumption of cold beverages during prolonged exercise in the heat improves body temperature measures and performance. Consumption of ice did not reveal a sensory response, but requires further study. Beverages consumed by athletes exercising in the heat should perhaps be cold for performance and safety reasons. PMID:20694887

  6. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    SciTech Connect

    Robert Rimmer; Jay Benesch; Joseph Preble; Charles Reece

    2005-05-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running.

  7. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... less than four seconds. (See 40 CFR 1065.514 for allowances in the cycle validation criteria.) (d... engines: ER13JY05.001 Where: MaxTestSpeed = the maximum test speed as calculated in 40 CFR part 1065. (ii... CFR part 1065. (2) Torque is normalized to the maximum torque at the rpm listed with it. Therefore,...

  8. 12 CFR 252.145 - Mid-cycle stress test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Mid-cycle stress test. 252.145 Section 252.145 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) ENHANCED PRUDENTIAL STANDARDS (REGULATION YY) Company-Run Stress Test Requirements for...

  9. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... differences are consistent with the criteria as specified in 40 CFR part 1066. If the speeds do not conform to these criteria, the test is not valid and must be repeated. (e) Run test cycles as specified in 40 CFR... we determine this would be unrepresentative of in-use operation as specified in 40 CFR...

  10. Results of accelerated thermal cycle tests of solar cells modules

    NASA Technical Reports Server (NTRS)

    Berman, P.; Mueller, R.; Salama, M.; Yasui, R.

    1976-01-01

    Various candidate solar panel designs were evaluated, both theoretically and experimentally, with respect to their thermal cycling survival capability, and in particular with respect to an accelerated simulation of thermal cycles representative of Viking '75 mission requirements. The experimental results were obtained on 'mini-panels' thermally cycled in a newly installed automated test facility herein described. The resulting damage was analyzed physically and theoretically, and on the basis of these analyses the panel design was suitably modified to significantly improve its ability to withstand the thermal environment. These successful modifications demonstrate the value of the complementary theoretical-experimental approach adopted, and discussed in detail in this paper.

  11. Test Plan for the Bearing Dust Cycle Test

    NASA Technical Reports Server (NTRS)

    Gunderson, Katelyn; Aitchison, Lindsay

    2014-01-01

    The overall objective of these experiments is to test the dust-resistant seal on the high performance glove disconnect system (HPGD), to analyze the response of the bearing to lunar regolith simulant effects.

  12. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    NASA Astrophysics Data System (ADS)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  13. A comparison of single-cycle versus multiple-cycle proof testing strategies

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1990-01-01

    An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.

  14. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    SciTech Connect

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  15. High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Update of overall plant-design description-combined-cycle electric-power plant with integrated low-Btu-gas plant

    SciTech Connect

    Not Available

    1982-04-01

    Changes made to the preliminary design of a commercial combined cycle electric powerplant operating on low Btu gas fuel are described. Major elements changed were: gas turbine configuration; gas desulfurization system; gas cleanup system; and the steam system operating parameters. The net power output of this base load station was increased from 750 MW to 1032 MW, by increasing the size of the four gas turbines. The gas turbine configuration was changed from a 2-spool, annular burner arrangement to a single shaft engine with can-type combustors. Firing temperature is revised from 3000 to 2750/sup 0/F. The free power turbine arrangement of the original powerplant concept which permits double-ending the electrical generators was retained. The steam system configuration is changed from an 1800/1000 single level system to a 2400/1000/1000 single reheat configuration which utilizes heat extraction from the hot flue gas down to 280/sup 0/F, delivers gasifier steam and jacket water and provides fuel gas preheat. The steam system produces 376.MW of electrical power. The high temperature gas desulfurization and cleanup system of the original powerplant design is replaced by a cold water wash and a commercial Selexol desulfurization unit. This change produced a substantial reduction in overall powerplant efficiency, but was necessary because the previously-used developmental hot gas cleanup system has not advanced to commercial status. The Lurgi fixed bed gasifier utilized in the original powerplant concept was retained. The modular arrangement of the original powerplant design was retained. The overall powerplant coal pile to bus bar efficiency is 40.5%, conservatively based on demonstrated performance of individual commercial or near-commercial components utilized in the design.

  16. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2016-03-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  17. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  18. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    SciTech Connect

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Ogata, T.; Matsuoka, S.

    2006-03-31

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma ({gamma}) grain size of 25 {mu}m. In the present material, plate-like delta phase precipitated at {gamma} grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  19. Effects of temperature and hold times on low cycle fatigue of Astroloy

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Stoloff, N. S.; Duquette, D. J.

    1986-01-01

    Low cycle fatigue (LCF) and creep-fatigue-environment interactions of HIP Astroloy were studied at 650 C and 725 C. The results showed that the model proposed by Kaisand and Mowbray (1979) was successful in predicting the magnitude and trend of the fatigue crack growth rate from LCF data. Raising the temperature from 650 C to 725 C did not change the fracture mode, while employing tensile hold caused a change in fracture mode and was more damaging than raising the temperature by 75 C. All samples displayed multiple fracture origins, which is initiated transgranularly in continuous cycling tests and intergranularly in hold time tests. An examination of the secondary crack showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold time.

  20. Vacuum thermal-mechanical fatigue testing of two iron base high temperature alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1974-01-01

    Ultrahigh vacuum elevated temperature low cycle fatigue and thermal fatigue tests of 304 stainless steel and A-286 alloy have shown significant effects of frequency and combined temperature-strain cycling on fatigue life. At constant temperature, the cyclic life of both alloys was lower at lower frequencies. Combined temperature-strain cycling reduced fatigue life with respect to isothermal life at the maximum temperature of the thermal cycle. Life reductions with in-phase thermal cycling (tension at high temperature, compression at low temperature) were attributed to grain boundary cavitation caused by unreversed tensile grain boundary sliding. The proposed mechanism for out-of-phase cavity generation involved accumulation of unreversed compressive grain boundary displacements which could not be geometrically accomodated by intragranular deformation in the low-ductility A-286 alloy.

  1. Acoustic testing of high temperature panels

    NASA Astrophysics Data System (ADS)

    Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.

    1990-10-01

    Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.

  2. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  3. Toughness variation with test temperature and

    NASA Astrophysics Data System (ADS)

    German, R. M.; Hanafee, J. E.; Digiallonardo, S. L.

    1984-01-01

    A two phase heavy alloy composite based on 95 W-3.5 Ni-1.5 Fe (wt pct) was fabricated from elemental powders by liquid phase sintering. Past reports on the heavy alloys indicate considerable disagreement concerning cooling rate effects on toughness. The present experiments determined the effect of both cooling rate and test temperature on the properties of the 95 W heavy alloy. This alloy undergoes a ductile to brittle transition with decreasing test temperature; the transition temperature is close to room temperature. The cooling rate from post-sintering anneals carried out at temperatures greater than 1000 °C has a large influence on toughness; rapid quenching gives superior toughness. These findings support an impurity segregation explanation for embrittlement in the heavy alloys.

  4. Outer planet spacecraft temperature testing and analysis

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Avila, A.

    2002-01-01

    Unmanned spacecraft flown on missions to the outer planets of the solar system have included flybys, planetary orbiters, and atmospheric probes during the last three decades. The thermal design, test, and analysis approach applied to these spacecraft evolved from the passive thermal designs applied to the earlier lunar and interplanetary spacecraft. The inflight temperature data from representative sets of engineering subsystems and science instruments from a subset of these spacecraft are compared to those obtained during the ground test programs and from the prelaunch predictions. Several lessons are presented with specific recommendations for considerations for new projects to aid in the planning of cost effective temperature design, test, and analysis programs.

  5. Status of the integrated topping cycle and MHD generator testing

    SciTech Connect

    Pian, C.C.P.; Dunton, A.W.; Schmitt, E.W.; Morrison, D.J.

    1993-12-31

    The status of the Integrated Topping Cycle (ITC) MHD generator testing is presented. This generator is part of a 50 MW{sub t} prototypic powertrain that is currently undergoing proof-of-concept (POC) testing at the U.S. Department of Energy`s Component Development and Integration Facility in Butte, Montana. Test objectives are to establish component lifetimes at prototypic operating conditions and to verify the design performance parameters. The ITC generator has completed Design Verification Testing and is now well into the POC duration test. To date (May 1, 1993), over 360 hours of the planned 1000 hours of testing has been completed. Generator testing is being performed at conditions representative of commercial power plant operating conditions. Prototypic generator channel hardware is performing very well. Based on test results obtained thus far, the prognosis is excellent for meeting all of the POC test objectives.

  6. Temperature distortion generator for turboshaft engine testing

    NASA Technical Reports Server (NTRS)

    Klann, G. A.; Barth, R. L.; Biesiadny, T. J.

    1984-01-01

    The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.

  7. Spatial patterns in timing of the diurnal temperature cycle

    NASA Astrophysics Data System (ADS)

    Holmes, T. R. H.; Crow, W. T.; Hain, C.

    2013-10-01

    This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC) over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR), and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO). It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe). Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  8. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  9. Component test program for variable-cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Whitlow, J. B.; Stitt, L. E.

    1976-01-01

    Variable cycle engine (VCE) concepts for a supersonic cruise aircraft were studied. These VCE concepts incorporate unique critical components and flow path arrangements that provide good performance at both supersonic and subsonic cruise and appear to be economically and environmentally viable. Certain technologies were identified as critical to the successful development of these engine concepts and require considerable development and testing. The feasibility and readiness of the most critical VCE technologies, was assessed, a VCE component test program was initiated. The variable stream control engine (VSCE) component test program, tested and evaluated an efficient low emission duct burner and a quiet coannular ejector nozzle at the rear of a rematched F100 engine.

  10. Effect of an aerodynamic helmet on head temperature, core temperature, and cycling power compared with a traditional helmet.

    PubMed

    Lee, Joshua F; Brown, Skyler R; Lange, Andrew P; Brothers, R Matthew

    2013-12-01

    Nonvented "aerodynamic helmets" reduce wind resistance but may increase head (Th) and gastrointestinal (Tgi) temperature and reduce performance when worn in hot conditions. This study tested the hypothesis that Th and Tgi would be greater during low-intensity cycling (LIC) in the heat while wearing an aero helmet (AERO) vs. a traditional vented racing helmet (REG). This study also tested the hypothesis that Th, Tgi, and finish time would be greater, and power output would be reduced during a self-paced time trial in the heat with AERO vs. REG. Ten highly trained heat-acclimated endurance athletes conducted LIC (50% V[Combining Dot Above]O2max, LIC) and a high-intensity 12-km self-paced time trial (12-km TT) on a cycle ergometer in 39° C on 2 different days (AERO and REG), separated by >48 hours. During LIC, Th was higher at minute 7.5 and all time points thereafter in AERO vs. REG (p < 0.05). Similarly, during the 12-km TT, Th was higher at minutes 12.5, 15, and 17.5 in AERO vs. REG (p < 0.05). Heart rate (HR) and Tgi increased during LIC and during 12-km TT (both p < 0.001); however, no significant interaction (helmet × time) existed for HR or Tgi at either intensity (all p > 0.05). No group differences existed for finish time or power output during the 12-km TT (both p > 0.05). In conclusion, Th becomes elevated during cycling in the heat with an aero helmet compared with a traditional vented racing helmet during LIC and high-intensity cycling, yet Tgi and HR responses are similar irrespective of helmet type and Th. Furthermore, the higher Th that develops when an aero helmet is worn during cycling in the heat does not affect power output or cycling performance during short-duration high-intensity events. PMID:23539083

  11. Intermediate Temperature Fluids Life Tests - Experiments

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.

    2007-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.

  12. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  13. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  14. Stability Test for Transient-Temperature Calculations

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  15. Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility.

    PubMed

    Zeng, Feng; Ma, Fei; Gao, Qunyu; Yu, Shujuan; Kong, Fansheng; Zhu, Siming

    2014-11-26

    Slowly digestible starch (SDS) was obtained through debranched waxy rice starch and subsequent crystallization under isothermal and temperature-cycled conditions. Temperature-cycled crystallization of dual 4/-20 °C produced a higher yield of SDS product than isotherm crystallization. Crystal structure of SDS products changed from A-type to a mixture of B and V-type X-ray diffraction patterns. The relative crystallinity was higher in the temperature-cycled samples than that of isotherm. Attenuated total reflectance Fourier transform infrared spectroscopy suggested that the peripheral regions of isothermal storage starch were better organized than temperature-cycles. Temperature cycling induced higher onset temperature for melting of crystals than isothermal storage under a differential scanning calorimeter. The cycled temperature storage induced a greater amount of SDS than the isothermal storage. PMID:25256463

  16. Temperature buffer test design, instrumentation and measurements

    NASA Astrophysics Data System (ADS)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  17. Developing and Testing Water Cycle Intensification Indicator (WCI) over the United States

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P. R.

    2014-12-01

    Is the water cycle intensifying in response to global warming due to temperature-driven changes in atmospheric water holding capacity? To address this question, we are developing and testing Water Cycle Intensification Indicator (WCI) to quantify the current and future change in the strength of the water cycle across the conterminous U.S. in support of the National Climate Assessment (NCA). The WCI consists of a suite of primary water cycle trend and extreme composites that are spatially- and temporally-scalable for summarizing how the climate changes results in stronger or more extreme water cycling over the nation. We calculated trend and extreme in water cycle components using NASA-produced data and modeling products. Six water cycle variables are chosen, including precipitation, evaporation, runoff, moisture convergence flux, terrestrial storage and water vapor. Our preliminary results showed that the strength of water cycle depends on specific regions and variables, even different datasets. For instance, precipitation from MERRA-Land offline simulation is consistent with the CPC unified precipitation dataset in showing positive trend over the northeastern, northwestern and west north central, but negative trend over the western and central regions. However, negative trends are observed in MERRA-land over the southern Texas and some parts of the southern coast, contrary to the positive trend revealed by the unified dataset in the same area. Next, we are going to integrate and combine the trends and extremes of these water cycle components to develop a suite of climate indicators to monitor the changes of water cycle as result of climate change. These indicators will be implemented and tested over the nation for further optimization. Moreover, we will also be developing innovative WCI visualization, documentation and distribution methods to disseminate WCI products to the public and stakeholders.

  18. Tests of alternative reductants in the second uranium purification cycle

    SciTech Connect

    Thompson, M.C.

    1980-05-01

    Miniature mixer-settler tests of the second uranium purification cycle show that plutonium cannot be removed by hydroxylamine-hydrazine (NH/sub 2/OH-N/sub 2/H/sub 4/) because the acidity is too high, or by 2,5-di-t-pentylhydroquinone because HNO/sub 3/ oxidizes the hydroquinone. Plutonium can be removed satisfactorily when U(IV)-hydrazine is used as the reductant.

  19. Ceramic high temperature receiver design and tests

    SciTech Connect

    Davis, S.B.

    1982-07-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectangular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable, and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  20. Ceramic high temperature receiver design and tests

    NASA Technical Reports Server (NTRS)

    Davis, S. B.

    1982-01-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectagular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable; and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  1. Ultrasonic waveguide transducer for high temperature testing of ceramic honeycomb

    NASA Astrophysics Data System (ADS)

    Wang, N.; An, C. P.; Nickerson, S. T.; Gunasekaran, N.; Shi, Z.

    2013-01-01

    This paper describes the development of a practical ultrasonic waveguide transducer designed for in situ material property characterization of ceramic honeycomb at high temperatures (>1200°C) and under fast thermal cycles (>1000°C/min). The low thermal conductivity MACOR waveguide allows the use of conventional transducer (max temp. 50°C) at one end and guides ultrasonic waves into the high temperature region where the characterization is carried out. The impact of time, temperature, and heating/cooling rates on the material behavior was studied. It was demonstrated that the same transducer could also be used for in-situ crack detection during the thermal shock testing of ceramic honeycomb.

  2. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  3. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  4. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  5. Life-cycle testing of receiving waters with Ceriodaphnia dubia

    SciTech Connect

    Stewart, A.J.; Konetsky, B.K.

    1996-12-31

    Seven-day tests with Ceriodaphnia dubia are commonly used to estimate toxicity of effluents or receiving waters but can sometimes yield {open_quotes}no toxicity{close_quotes} outcomes even if pollutants are present. We conducted two sets of full life-cycle tests with C. dubia to (1) see if tests with longer exposure periods would reveal evidence for toxicity that might not be evident from 7-day tests, and (2) determine the relative importance of water quality versus food as factors influencing C. dubia reproduction. In the first set of tests, C. dubia was reared in diluted mineral water (negative control), water from a stream impacted by coal fly-ash, or water from a retention basin containing sediments contaminated with mercury, other metals and polychlorinated biphenyls. The second set of tests used water from the retention basin only, but this water was either filtered or not filtered, and food was either added or not added, prior to testing. C. dubia survival and reproduction did not differ much among the three water types in the first set of tests, but these two parameters were strongly affected by the filtering and food-addition treatments in the second set of tests. Thus, C. dubia appeared to be relatively insensitive to general water-quality factors, but quite sensitive to food-related factors. Regression analyses showed that the predictability of life-time reproduction by C. dubia from the results of 7-day tests was very low (R{sup 2}< 0.35) in five of the six experiments. The increase in predictability as a function of test duration also differed among water types in the first set of tests, and among treatments in the second set of tests. Thus, 7-day tests with C. dubia may be used to quantify water-quality problems, but it may not be possible to reliably extrapolate the results of these tests to longer time scales.

  6. Intermediate Temperature Fluids Life Tests - Theory

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2008-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.

  7. 11S4P ABSL18650 Module High DoD Cycling Tests

    NASA Astrophysics Data System (ADS)

    Simon, E.; Buckle, R.; Simmons, N.; Thwaite, C.

    2011-10-01

    An 11s4p ABSL18650HC module is tested under high Depth of Discharge (DoD) continuous cycling at 20°C. The module is charged up to 90% State of Charge (SoC). After 3300 cycles, the capacity loss observed is 17%, the internal cell resistance has increased by 60 to 85%, the end of discharge temperature has increased by about 4°C. The cells degradation observed is not as high as the degradation predicted by ABSL tools, LIFE and BEAST. The four strings exhibit different behaviour. The cells remain balanced, with a maximum end of charge voltage spread around 70 mV. A second 11s 4p ABSL18650HC module is tested under GEO (GEOsynchronous) conditions. After 264 days of GEO cycling, the EOCV dispersion is around 9 mV for the four strings.

  8. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions

  9. Feasibility Investigation for Performing Fireball Temperature Tests

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Kurtz, Joe

    1997-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) was requested by the Launch Abort Subpanel and the Power Systems Subpanel of the Interagency Nuclear Safety Review Panel to investigate the feasibility of using spectroscopic techniques to measure propellant fireball gas temperatures. This report outlines the modeling and experimental approaches and results of this investigation. Descriptions of the theoretical particle temperature and mass effusion models are presented along with the results of the survivability of small plutonium dioxide (less than or equal to 1000 microns diameter) particles entrained in various propellant fireball scenarios. The experimental test systems used to measure the hydroxide radical, water, and particle graybody spectral emissions and absorptions are discussed. Spectral results along with temperatures extracted by analyzing the spectral features are presented for the flames investigated in the laboratory environment. Methods of implementing spectroscopic measurements for future testing using the WSTF Large-scale Hydrogen/Oxygen Explosion Facility are discussed, and the accuracy expected for these measurements is estimated from laboratory measurements.

  10. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  11. Evaluation of Package Stress during Temperature Cycling using Metal Deformation Measurement and FEM Simulation

    SciTech Connect

    Hoeglauer, J.; Bohm, C.; Otremba, R.; Maerz, J.; Nelle, P.; Stecher, M.; Alpern, P.

    2006-02-07

    Plastic encapsulated devices that are exposed to Temperature Cycling (TC) tests undergo an excessive mechanical stress due to different Coefficients of Thermal Expansion (CTE) of the various materials used in the system. Especially in the corners of the die, passivation cracks and shifted metal lines can be observed, which demonstrates an increasing mechanical stress from chip center to the corners of the die. This effect has been known for a long time. This paper presents a simple measurement technique to quantify the mechanical shear stress at the chip-Mold Compound (MC) interface by measuring the deformation of a periodical metal structure. Based on this deformation measurement, we evaluated the stress distribution within the package, and the influence of different parameters such as number of cycles and chip size. Furthermore, these experimental results were compared with FEM simulation, and showed good agreement but could not account in all cases for the total amount of observed shift.

  12. Testing of reciprocating seals for application in a Stirling cycle engine

    NASA Technical Reports Server (NTRS)

    Curulla, J. F.; Beck, T. L.

    1980-01-01

    Six single stage reciprocating seal configurations to the requirements of the Stirling cycle engine were evaluated. The seals tested were: the Boeing Footseal, NASA Chevron polyimide seal, Bell seal, Quad seal, Tetraseal, and Dynabak seal. None of these seal configurations met the leakage goals of .002 cc/sec at helium gas pressure of 1.22 x 10 to the 7th power PA, rod speed of 7.19 m/sec peak, and seal environmental temperature of 408 K for 1500 hours. Most seals failed due to high temperatures. Catastrophic failures were observed for a minimum number of test runs characterized by extremely high leakage rates and large temperature rises. The Bell seal attained 63 hours of run time at significantly lowered test conditions.

  13. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  14. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  15. The influence of temperature on the cycle life performance of rechargeable Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Huang, C.-K.; Deligiannis, F.; Halpert, G.

    1990-01-01

    The authors report studies on the influence of low temperature on the properties and cycling performance of six selected electrolytes. The electrolytes investigated were 2-MeTHF, EC/2-MeTHF, THF, THF/2-MeTHF, EC/THF, and EC/THF/2-MeTHF. All the electrolytes contained 1.5M LiAsF6. Open circuit stand tests indicated that organic electrolytes exhibited improved stability towards lithium at 10 C. However, cycling of the cells at 10 C did not result in improved cycle life performance.

  16. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

  17. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  18. Mysterious diel cycles of mercury emission from soils held in the dark at constant temperature

    SciTech Connect

    Zhang, Hong; Kuiken, Todd; Lindberg, Steven Eric

    2008-01-01

    It is well known that mercury (Hg) emission from soils is largely controlled by solar radiation and soil temperature, exhibiting diel cycles that closely follow diel variations of solar radiation. To study soil Hg emission processes, we conducted experiments by measuring soil Hg emission fluxes under controlled conditions in the laboratory with a dynamic flux chamber using outside ambient air as flushing air. Unexpectedly, we observed consistent, recurring diel cycles of Hg emissions from dry soils held at constant temperature in the dark in our laboratory. The peaks of the emissions also seemed subject to some seasonal variation and to respond to local weather conditions with lower flux peaks in wintertime and on cloudy or rainy days. Finally, much lower soil Hg emission fluxes were observed in the presence of Hg-free zero air than in the presence of outside ambient air. It is hypothesized that some unidentified air-borne substance(s) in the ambient air might be responsible for the observed diel cycles of soil Hg emission. Further elaborate mechanistic investigations are clearly needed to test the initial working hypotheses and uncover the cause for this interesting, mysterious phenomenon. The present work and recent finding of enhancement of Hg emissions from soil and mineral particles by O3 seem to point to a research need to probe the possible role of near-ground atmospheric chemistry in Hg air/soil exchange.

  19. A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Orient, G. E.

    1996-01-01

    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.

  20. A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Millwater, H. R.

    1999-01-01

    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semielliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT versus SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.

  1. High temperature and pressure electrochemical test station

    NASA Astrophysics Data System (ADS)

    Chatzichristodoulou, C.; Allebrod, F.; Mogensen, M.

    2013-05-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 °C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established test station is provided.

  2. High temperature and pressure electrochemical test station.

    PubMed

    Chatzichristodoulou, C; Allebrod, F; Mogensen, M

    2013-05-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 °C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established test station is provided. PMID:23742566

  3. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except...

  4. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  5. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  6. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  7. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  8. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except...

  9. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except...

  10. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except...

  11. 46 CFR 54.05-6 - Toughness test temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except...

  12. Regenerable Microbial Check Valve - Life cycle tests results

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.; Flanagan, David T.

    1992-01-01

    Life cycle regeneration testing of the Microbial Check Valve (MCV) that is used on the Shuttle Orbiter to provide microbial control of potable water is currently in progress. Four beds are being challenged with simulated reclaimed waters and repeatedly regenerated. Preliminary results indicate that contaminant systems exhibit unique regeneration periodicities. Cyclic throughput diminishes with increasing cumulative flow. It is considered to be feasible to design a regenerable MCV system which will function without human intervention and with minimal resupply penalty for the 30 year life of the Space Station.

  13. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  14. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    SciTech Connect

    Bhanu Sankara Rao, K.; Halford, G.R. . Lewis Research Center); Schuster, H. . Inst. for Reactor Materials)

    1994-08-15

    Alloys engineered for high-temperature application are frequently put into use in a thermodynamically unstable condition. Subsequent exposure to service temperatures may promote many thermally-assisted reactions such as formation, coarsening, and/or coalescence of precipitates. Superposition of cyclic straining may accelerate the kinetics of these reactions but also may cause reaction products having specific features not observed under simple thermal exposure. The influence of cyclic strain-induced microstructural changes on the fatigue behavior has to be considered in terms of their effects on both cyclic strength and life. The occurrence of massive (cellular) precipitation of M[sub 23]C[sub 6] on grain boundaries during elevated temperature low cycle fatigue testing has been reported in Type 304 stainless steel, Type 316 stainless steel, and Inconel 617 superalloy, and its presence has already been linked with reduction in high temperature ductility, an important engineering property on which low cycle fatigue (LCF) life depends to a large extent. Massive precipitation may render the austenitic engineering alloys susceptible to corrosion, which would have important bearing on the performance of these alloys in the oxidizing environments. Furthermore, the long term stability of massive M[sub 23]C[sub 6] particles is particularly important since the transformation of such a large structure into a brittle intermetallic phase (such as sigma) could produce a detrimental effect on the mechanical properties. The conditions and the mechanisms responsible for the occurrence of massive precipitation during LCF have not yet been established. This investigation is specifically aimed at understanding the influence of strain rate on massive precipitation and the mechanism responsible for the occurrence of massive M[sub 23]C[sub 6] precipitation in Alloy 800H during elevated temperature LCF testing.

  15. Life cycle test results of a bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1985-01-01

    A history is given of low Earth orbit (LEO) laboratory test data on a 6.5 ampere-hour bipolar nickel hydrogen battery designed and built at the NASA Lewis Research Center. The bipolar concept is a means of achieving the goal of producing an acceptable battery, of higher energy density, able to withstand the demands of low-Earth-orbit regimes. Over 4100 LEO cycles were established on a ten cell battery. It seems that any perturbation on normal cycling effects the cells performance. Explanations and theories of the battery's behavior are varied and widespread among those closely associated with it. Deep discharging does provide a reconditioning effect and further experimentation is planned in this area. The battery watt-hour efficiency is about 75 percent and the time averaged, discharge voltage is about 1.26 volts for all cells at both the C/4 and LEO rate. Since a significant portion of the electrode capacity has degraded, the LEO cycle discharges are approaching depths of 90 to 100 percent of the high rate capacity. Therefore, the low end-of-discharge voltages occur precipitously after the knee of the discharge curve and is more an indication of electrode capacity and is a lesser indicator of overall cell performance.

  16. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  17. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  18. Results of the integrated topping cycle MHD generator testing

    SciTech Connect

    Pian, C.C.P.; Schmitt, E.W.

    1994-12-31

    The results of the Integrated Topping Cycle (ITC) MHD generator tests are presented. This generator is part of a 50 MW{sub t} prototypic powertrain which recently completed proof-of-concept (POC) testing at the U.S. Department of Energy`s Component Development and Integration Facility (CDIF) in Butte, Montana. POC duration testing was carried out at conditions representative of commercial power plant operation, in order to establish component lifetimes and to verify the design performance parameters. Over 500 hours of thermal and power testing was cumulated with the generator hardware before the program funding was terminated. A summary of the MHD generator performance characteristics and hardware evaluations is provided in the paper. A summary of the generator performance throughout the POC test series is presented. Included are comparisons of: (1) plasma electrical conductivities measured early in the Design Verification Test series and during the POC series, (2) measured generator performance with analytical predictions, and (3) internal wall leakage characteristics of the generator channel with and without iron oxide addition. The performance requirement of the ITC program, i.e., the demonstration of 1.5 MW{sub e} power output, was easily achieved. The ITC generator channel, nozzle, and diffuser accumulated more than 300 hours at nominal power conditions. The prototypic hardware performed well throughout the POC test series. Some problems did arise during the tests. but they were not life-threatening to the MHD generator. Corrective measures were implemented; they will be discussed in the full paper. The physical condition of the overall generator channel at the end of POC tests is good.

  19. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  20. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  1. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  2. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  3. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1991-01-01

    Thin films of YBa2Cu3O(7-x) (YBCO) were temperature cycled to simulate conditions of a low earth orbit satellite. In one series of tests, epitaxial and polycrystalline YBCO films were cycled between temperatures of +/- 80 C in vacuum and in nitrogen for hundreds of cycles. The room temperature resistance of an epitaxial YBCO film increased by about 10 percent, but the superconducting transition temperature was unchanged. The largest changes were for a polycrystalline YBCO film on oxidized silicon with a zirconia buffer layer, for which the transition temperature decreased by 3 K. An extended test was carried out for epitaxial films. After 3200 cycles (corresponding to about 230 days in space), transition temperatures and critical current densities remained unchanged.

  4. 40 CFR Appendix E to Subpart S of... - Transient Test Driving Cycle

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Transient Test Driving Cycle E Appendix... Driving Cycle (I) Driver's trace. All excursions in the transient driving cycle shall be evaluated by the... shall cause a test to be void. In addition, provisions shall be available to utilize cycle...

  5. Thermal Cycle Testing of the Powersphere Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Curtis, Henry; Piszczor, Mike; Kerslake, Thomas W.; Peterson, Todd T.; Scheiman, David A.; Simburger, Edward J.; Giants, Thomas W.; Matsumoto, James H.; Garcia, Alexander; Liu, Simon H.; Lin, John K.; Scarborough, Stephen E.; Gleeson, Daniel J.; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.

    2007-01-01

    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU.

  6. Automatic 300-4 K temperature cycling apparatus.

    PubMed

    Hamilton, C A

    1978-05-01

    The apparatus described here automatically cycles small samples between 300 and 4 K by alternately raising and lowering the sample through the neck of a commercial liquid helium storage Dewar. A bellows, which is pressurized by the helium boil-off gas, provides all of the required mechanical motion. By utilizing the cooling available from the boil-off gas, liquid helium helium consumption is limited to 0.03 l/cyc for a 12-g sample. Cycle times can be as short as 5 min. PMID:18699173

  7. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  8. Mutagenicity of diesel exhaust particle extracts: influence of driving cycle and environmental temperature.

    PubMed

    Clark, C R; Dutcher, J S; Brooks, A L; McClellan, R O; Marshall, W F; Naman, T M

    1982-01-01

    General Motors and Volkswagen diesel passenger cars (1980 and 1981 model year) were operated on a climate controlled chassis dynomometer and the particulate portion of the exhaust was collected on high volume filters. Dichloromethane extracts of the exhaust particles (soot) collected while the cars were operated under simulated highway, urban and congested urban driving cycles were assayed for mutagenicity in Salmonella strains TA-98 and TA-100. Driving pattern did not significantly influence the mutagenic potency of the exhaust particle extracts or estimates of the amount of mutagenicity emitted from the exhaust despite large differences in particle emission rates and extractable fraction of the particles. Mutagenicity of extracts of exhaust particles collected while the vehicles were operated at test chamber temperatures of 25, 50, 75 and 100 degrees F were also very similar. The results suggest that driving pattern and environmental temperature do not significantly alter the emission of genotoxic combustion products from the exhaust. PMID:6193022

  9. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa

    SciTech Connect

    Wang, X.D.; Zhao, L.; Wang, J.L.; Zhang, W.Z.; Zhao, X.Z.; Wu, W.

    2010-03-15

    A low-temperature solar Rankine system utilizing R245fa as the working fluid is proposed and an experimental system is designed, constructed and tested. Both the evacuated solar collectors and the flat plate solar collectors are used in the experimental system; meanwhile, a rolling-piston R245fa expander is also mounted in the system. The new designed R245fa expander works stably in the experiment, with an average expansion power output of 1.73 kW and an average isentropic efficiency of 45.2%. The overall power generation efficiency estimated is 4.2%, when the evacuated solar collector is utilized in the system, and with the condition of flat plate solar collector, it is about 3.2%. The experimental results show that using R245fa as working fluid in the low-temperature solar power Rankine cycle system is feasible and the performance is acceptable. (author)

  10. Thermal Cycling Reliability of Sn-Ag-Cu Solder Interconnections. Part 1: Effects of Test Parameters

    NASA Astrophysics Data System (ADS)

    Hokka, Jussi; Mattila, Toni. T.; Xu, Hongbo; Paulasto-Kröckel, Mervi

    2013-06-01

    The work presented in part 1 of this study focuses on identifying the effects of thermal cycling test parameters on the lifetime of ball grid array (BGA) component boards. Detailed understanding about the effects of the thermal cycling parameters is essential because it provides means to develop more efficient and meaningful methods of reliability assessment for electronic products. The study was carried out with a single package type (BGA with 144 solder balls), printed wiring board (eight-layer build-up FR4 structure), and solder interconnection composition (Sn-3.1Ag-0.5Cu) to ensure that individual test results would be comparable with each other. The effects of (i) temperature difference (Δ T), (ii) lower dwell temperature and lower dwell time, (iii) mean temperature, (iv) dwell time, and (v) ramp rate were evaluated. Based on the characteristic lifetimes, the thermal cycling profiles were categorized into three lifetime groups: (i) highly accelerated conditions, (ii) moderately accelerated conditions, and (iii) mildly/nonaccelerated conditions. Thus, one might be tempted to use the highly accelerated conditions to produce lifetime statistics as quickly as possible. However, to do this one needs to know that the failure mechanisms do not change from one lifetime group to another and that the failure mechanisms correlate with real-use failures. Therefore, in part 2 the observed differences in component board lifetimes will be explained by studying the failure mechanisms that take place in the three lifetime groups.

  11. Temperature Cycles Induce Early Maturation in Channel Catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major impediment in improvement of channel catfish by selective breeding is that a high percent of fish do not spawn until the third year. The conditions that lead to sexual maturation in fish have not been established. Size, nutritional state and number of seasonal cycles have all been suggeste...

  12. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    NASA Technical Reports Server (NTRS)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  13. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  14. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    SciTech Connect

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  15. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  16. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  17. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  18. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  19. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  20. Effects of temperature and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lazaro, C.; Valdemarsen, T.; Holmer, M.

    2015-08-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  1. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538/sup 0/C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427/sup 0/C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development.

  2. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.

  3. Conventional and Advanced Silicagel-water Adsorption Cycles Driven by Near - environmental Temperature Heat

    NASA Astrophysics Data System (ADS)

    Boelman, Elisa; B. Saha, Bidyut; Tanaka, Aiharu; Kashiwagi, Takao

    This work aims at clarifying the possible operating temperature ranges for silica gel-water adsorption refrigeration cycles driven by near-environmental temperature heat sources (between 50°C and 85°C), with relatively small regenerating temperature lifts (10 K to 65 K). A newly developed three stage advanced silica gel-water cycle, which is operational with 50°C driving heat source and 30°C cooling source is introduced and compared with a conventional single stage cycle. The cycles are evaluated in terms of cooling capacity, COP and the viability of operation with near-environmental temperature driving heat sources. The analysis is based on experimental and cycle simulation work. The results showed the advanced three stage cycle to be particularly suited for operation with low grade waste heat driving sources, since it worked with small regenerating temperature lifts (ΔTregen)of 10K to 30K. Another significant advantage of operation with small ΔTregen is the possibility to reduce irreversible heat losses from batched cycle operation. Experiments carried out on full-size machine suggested that, even with smallΔTregen, adsorber /desorber heat exchanger improvements such as higher thermal conductance and smaller heat capacitance can contribute to reduce heat losses while improving cycle performance in terms of cooling capacity and COP.

  4. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  5. High temperature erosion testing in a gasifier environment

    SciTech Connect

    Tylczak, Joseph H.; Rawers, James C.; Adler, Thomas A.

    2004-01-01

    The development of materials with the ability to operate in adverse conditions while resisting the effects of erosion and corrosion is essential to the future success of high efficiency power plants. Many next generation coal power plants are envisioned as combined cycle, with gasifiers used to produce both steam and syngas. The gasifier sections of these plants require materials of construction that are resistant to the effects of erosion from silica found in the gas streams and corrosion caused by a reducing atmosphere that may contain sulfur and chloride compounds. The Albany Research Center has developed a test apparatus designed to test the erosion-resistance of candidate materials under a range of environmental conditions, including those found in gasifiers. This Hostile Atmosphere Erosion Wear test apparatus (HAET) has been used to evaluate a group of high alloy candidate materials such as iron aluminide and Haynes HR 160, and compare them to a conventional 310 stainless steel. Erosion tests were conducted using 270μm silica abrasive, a typical impact velocities of 20 m/sec at temperatures up to 700°C in an atmosphere simulating gasifier conditions. The effects of erosion under these conditions on the surface scales that form are described. The total loss rate, loss rates due to erosion and corrosion for the test materials are compared.

  6. Pressure cycle rheology of nanofluids at ambient temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza; Yrac, Rommel; Amani, Mahmood

    2015-11-01

    Colloidal suspensions of particles dispersed in a base fluid (or drilling fluid) are commonly used in oil industry to aid the drilling of oil well into the ground. Nanofluids, the colloidal suspensions of nano-sized particles dispersed in a basefluid, have also shown potentials as cooling and abrasive fluids. Utilizing them along with drilling fluids under cyclic high-pressure loadings have not been investigated so far. In the present work, rheological characteristics of silicon oil based nanofluids (prepared with alumina nanoparticles) under pressures up to 1000 bar are investigated using a high-pressure viscometer. The rheological characteristics of nanofluids are measured and are compared with that of the basefluid under increasing and decreasing pressures. Relative viscosity variations of nanofluids were observed to have influenced by the shear rate. In addition, under cyclic high-pressure loading viscosity values of nanofluids are observed to have reduced. This reduction in viscosity at the second pressure cycle could have been caused by the de-agglomeration of particles in the first cycle while working a high-pressure and high-shear condition.

  7. Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin?

    NASA Astrophysics Data System (ADS)

    Lique, Camille; Steele, Michael

    2012-03-01

    Recent mooring observations in the Arctic Basin suggest the existence of a seasonality of Atlantic Water (AW) temperature. Here the DRAKKAR global ocean/sea-ice model is used to examine the seasonal cycle amplitude of AW temperature within the Arctic Ocean and to investigate the possible mechanisms governing this seasonality. The simulation as well as available mooring data reveals that the amplitude of the AW temperature seasonal cycle is significant only in the Nansen Basin along the continental slope, where AW is primarily advected. In the model, the seasonal cycle of the AW temperature is advected from Fram Strait up to St. Anna Trough and then re-energized by the Barents Sea Branch. This suggests that the seasonal AW temperature signal survives over a finite distance (˜1000 km). Interannual changes in the seasonal cycle amplitude can be as large as the mean seasonal cycle amplitude; thus seasonality is difficult to characterize from observations spanning only a short period. The seasonal bias of in-situ observations taken during spring and summer does not induce a large error when considering the interannual-to-decadal variations of AW temperature, because the seasonal cycle accounts for a small or negligible part of AW temperature variability, even near the inflow region.

  8. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  9. Actual Versus Predicted Cardiovascular Demands in Submaximal Cycle Ergometer Testing

    PubMed Central

    HOEHN, AMANDA M.; MULLENBACH, MEGAN J.; FOUNTAINE, CHARLES J.

    2015-01-01

    The Astrand-Rhyming cycle ergometer test (ARCET) is a commonly administered submaximal test for estimating aerobic capacity. Whereas typically utilized in clinical populations, the validity of the ARCET to predict VO2max in a non-clinical population, especially female, is less clear. Therefore, the purpose of this study was to determine the accuracy of the ARCET in a sample of healthy and physically active college students. Subjects (13 females, 10 males) performed a maximal cycle ergometer test to volitional exhaustion to determine VO2max. At least 48 hours later, subjects performed the ARCET protocol. Predicted VO2max was calculated following the ARCET format using the age corrected factor. There was no significant difference (p=.045) between actual (41.0±7.97 ml/kg/min) and predicted VO2max (40.3±7.58 ml/kg/min). When split for gender there was a significant difference between actual and predicted VO2 for males, (45.1±7.74 vs. 42.7±8.26 ml/kg/min, p=0.029) but no significant difference observed for females, (37.9±6.9 vs. 38.5±6.77 ml/kg/min, p=0.675). The correlation between actual and predicted VO2 was r=0.84, p<0.001 with an SEE= 4.3 ml/kg/min. When split for gender, the correlation for males was r=0.94, p<0.001, SEE=2.72 ml/kg/min; for females, r=0.74, p=0.004, SEE=4.67 ml/kg/min. The results of this study indicate that the ARCET accurately estimated VO2max in a healthy college population of both male and female subjects. Implications of this study suggest the ARCET can be used to assess aerobic capacity in both fitness and clinical settings where measurement via open-circuit spirometry is either unavailable or impractical. PMID:27182410

  10. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  11. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  12. 40 CFR 86.246-94 - Intermediate temperature testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) contained in 40 CFR part 86, subpart C. (c) For testing at temperatures of 50 °F (10 °C) or higher, the FTP... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Intermediate temperature testing. 86... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94...

  13. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  14. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  15. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  16. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface temperature tests. 7.101 Section 7.101... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be... the rated horsepower specified in § 7.97(a)(2). (ii) Install sufficient temperature measuring...

  17. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  18. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  19. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface temperature tests. 7.101 Section 7.101... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be... the rated horsepower specified in § 7.97(a)(2). (ii) Install sufficient temperature measuring...

  20. 40 CFR 86.246-94 - Intermediate temperature testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) contained in 40 CFR part 86, subpart C. (c) For testing at temperatures of 50 °F (10 °C) or higher, the FTP... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Intermediate temperature testing. 86... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94...

  1. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface temperature tests. 7.101 Section 7.101... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be... the rated horsepower specified in § 7.97(a)(2). (ii) Install sufficient temperature measuring...

  2. 40 CFR 86.246-94 - Intermediate temperature testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) contained in 40 CFR part 86, subpart C. (c) For testing at temperatures of 50 °F (10 °C) or higher, the FTP... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Intermediate temperature testing. 86... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94...

  3. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  4. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  5. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface temperature tests. 7.101 Section 7.101... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be... the rated horsepower specified in § 7.97(a)(2). (ii) Install sufficient temperature measuring...

  6. 40 CFR 86.246-94 - Intermediate temperature testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) contained in 40 CFR part 86, subpart C. (c) For testing at temperatures of 50 °F (10 °C) or higher, the FTP... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Intermediate temperature testing. 86... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94...

  7. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface temperature tests. 7.101 Section 7.101... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be... the rated horsepower specified in § 7.97(a)(2). (ii) Install sufficient temperature measuring...

  8. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  9. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  10. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita

    2008-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  11. Laurentide Ice Sheet basal temperatures at the Last Glacial Cycle as inferred from borehole data

    NASA Astrophysics Data System (ADS)

    Mareschal, Jean-Claude; Pickler, Carolyne; Beltrami, Hugo

    2016-04-01

    We measured and inverted thirteen temperature-depth profiles (≥1500 m) in boreholes in eastern and central Canada to determine the ground surface temperature histories during and after the last glacial cycle. The sites are located in the southern part of the region covered by the Laurentide Ice Sheet. The inversions yield ground surface temperatures ranging from -1.4 to 3.0oC throughout the last glacial cycle. These temperatures, near the pressure melting point of ice, demonstrate that the southern portion of the Laurentide Ice Sheet was not frozen to the bed, allowing for basal flow and fast flowing ice streams at the base. Despite such conditions, which have been inferred from geomorphological data and models, the ice sheet persisted throughout the last glacial cycle. Our results suggest some regional trends in basal temperatures with possible control by internal heat flow.

  12. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  13. 40 CFR Appendix II to Part 1054 - Duty Cycles for Laboratory Testing

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during idle at its warm idle speed as described in 40 CFR 1065.510. (b) Test nonhandheld engines with one... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty Cycles for Laboratory Testing II.... 1054, App. II Appendix II to Part 1054—Duty Cycles for Laboratory Testing (a) Test handheld...

  14. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  15. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed...

  16. 40 CFR Appendix II to Part 1054 - Duty Cycles for Laboratory Testing

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during idle at its warm idle speed as described in 40 CFR 1065.510. (b) Test nonhandheld engines with one... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Laboratory Testing II.... 1054, App. II Appendix II to Part 1054—Duty Cycles for Laboratory Testing (a) Test handheld...

  17. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia. PMID:22604882

  18. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang Oh

    2004-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.

  19. Using Radiocarbon to Test Models of Ecosystem Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Trumbore, S.; Lin, H.; Randerson, J.

    2007-05-01

    The radiocarbon content of carbon stored in and respired by ecosystems provides a direct measure of ecosystem carbon dynamics that can be directly compared to model predictions. Because carbon cycles through ecosystems on a variety of timescales, the mean age of C in standing biomass and soil organic matter pools is older than the mean age of microbially respired carbon. In turn, each pathway for C transit through ecosystems my respond differently to edaphic conditions; for example, soil organic matter mean age is controlled by factors affecting stabilization of C on very long timescales, such as mineralogy, while a factor like litter quality that effects decomposition rates reflects vegetation and climate characteristics. We compare the radiocarbon signature of heterotrophically respired CO2 across a number of ecosystems with models predicted using the CASA ecosystem model. The major controls of microbially respired CO2 from ecosystems include the residence time of C in living plant pools (i.e. the age of C in litter inputs to soil) and factors that control decomposition rates (litter quality and climate). Major differences between model and measured values at low latitudes are related to how woody debris pools are treated differently in models and measurements. The time lag between photosynthesis and respiration is a key ecosystem property that defines its potential to store or release carbon given variations in annual net primary production. Radiocarbon provides a rare case where models can be directly compared with measurements to provide a test of this parameter.

  20. Evaluation of a Brayton cycle recuperator after 21,000 hours of ground testing

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1979-01-01

    A metallographic examination was conducted on a Brayton cycle recuperator and associated ducting after 21,000 hours of ground testing in air. At the hot (turbine) end, the recuperator operated at a nominal temperature of 675 C. The type 347 stainless-steel recuperator performed satisfactorily in the ground test even though the primary working fluid leaked to the atmosphere periodically. The leakage path was located at plate-bar braze joints which cracked as a result of thermal stresses. The welded type 347 stainless steel ducting a type 347/Hastelloy X bellows survived the ground test with no apparent loss of ductility or integrity. Some apparent aging embrittlement was observed in the Hastelloy X ducting but the serviceability was not affected.

  1. 40 CFR 86.1341-98 - Test cycle validation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... guidance see § 86.1341-90” (a) Through (b)(2) . For guidance see § 86.1341-90. (b)(3) All feedback torques... reference idle portions of the cycle where CITT is not applied, use measured torque values for cycle validation and the reference torque values for calculating the brake horsepower-hour value used in...

  2. 40 CFR 86.1341-98 - Test cycle validation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... guidance see § 86.1341-90” (a) Through (b)(2) . For guidance see § 86.1341-90. (b)(3) All feedback torques... reference idle portions of the cycle where CITT is not applied, use measured torque values for cycle validation and the reference torque values for calculating the brake horsepower-hour value used in...

  3. Ovarian cycle approach by rectal temperature and fecal progesterone in a female killer whale, Orcinus orca.

    PubMed

    Kusuda, Satoshi; Kakizoe, Yuka; Kanda, Koji; Sengoku, Tomoko; Fukumoto, Yohei; Adachi, Itsuki; Watanabe, Yoko; Doi, Osamu

    2011-01-01

    This study aimed to validate the measurements of body temperature and fecal progesterone concentrations as minimally invasive techniques for assessing ovarian cycle in a single sexually mature female killer whale. Rectal temperature data, fecal and blood samples were collected in the dorsal position using routine husbandry training on a voluntary basis. The correlations between rectal temperature and plasma progesterone concentration and between fecal and plasma progesterone concentrations were investigated. Fecal progesterone metabolites were identified by a combination of high-performance liquid chromatography and enzyme immunoassay. Plasma progesterone concentrations (range: 0.2-18.6 ng/ml) and rectal temperature (range: 35.3-35.9°C) changed cyclically, and cycle lengths were an average (±SD) of 44.9±4.0 days (nine cycles) and 44.6±5.9 days (nine cycles), respectively. Rectal temperature positively correlated with the plasma progesterone concentrations (r=0.641, P<0.01). There was a visual trend for fecal progesterone profiles to be similar to circulating plasma progesterone profiles. Fecal immunoreactive progestagen analysis resulted in a marked immunoreactive peak of progesterone. The data from the single killer whale indicate that the measurement of rectal temperature is suitable for minimally invasive assessment of the estrous cycle and monitoring the fecal progesterone concentration is useful to assess ovarian luteal activity. PMID:20648568

  4. Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles

    PubMed Central

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A. F.; de la Torre Cortes, Pilar; Pronk, Jack T.

    2014-01-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  5. Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).

  6. Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.

    PubMed

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A F; de la Torre Cortes, Pilar; Pronk, Jack T; Daran-Lapujade, Pascale

    2014-07-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  7. FREEZE-THAW CYCLING AND COLD TEMPERATURE EFFECTS ON GEOMEMBRANE SHEETS AND SEAMS. Project summary

    EPA Science Inventory

    The effects of freeze-thaw cycling on the tensile strength of 19 geomembranes and 31 different seam types were investigated. The study was performed in three parts using different test conditions. Part I involved incubating unconfined specimens in freeze-thaw cycles and then per...

  8. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  9. The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    White, M.; Sayma, A. I.

    2015-08-01

    Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (∼10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

  10. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with...